
FP Implementation
Simon Marlow

PLMW’15







I x = x
K x y = x
S x y z = x z (y z)



SKI in GNU make

I  = $1

S  = (PAP_S2,$1)
S2 = (PAP_S3,$1,$2)
S3 = $(call ap,$(call ap,$3,$1),$(call ap,$2,$1))

K  = (PAP_K2,$1)
K2 = $2

define ap
$(strip \
$(if $(findstring $(dollar),$1$2),\
$(dollar)$(lpar)call ap$(comma)$1$(comma)$2$(rpar),\
$(if $(findstring >>$(lpar)PAP,>>$1),\

$(subst $(space)<-TMPSPACE,$(comma),\
$(patsubst >>$(lpar)PAP_%,$(dollar)$(lpar)call %$(comma)$2,\

>>$(subst $(comma),$(space)<-TMPSPACE,$1))),\
$(dollar)$(lpar)call $1$(comma)$2$(rpar))))

endef



include ski.mk

# The example from Simon Peyton Jones' "The Implementation of
# Functional Languages", pp 263.
#
#  (\x. (+) x x) 5
#
# translates to 
#
#   S (S (K +) I) I 5
#
test=$(call ap,$(call ap,$(call ap,S,$(call ap,$(call ap,S,$(call 
ap,K,plus)),I)),I),5)

$(info before: $(test))
$(eval $(call reduce,$(test)))
$(info result: $(result))

all :



$ make -f test1.mk
before: $(call ap,$(call ap,$(call ap,S,$(call ap,$(call 
ap,S,$(call K,plus)),I)),I),5)
reduce: $(call ap,$(call ap,$(call ap,S,$(call ap,$(call 
S,(PAP_K2,plus)),I)),I),5)
reduce: $(call ap,$(call ap,$(call ap,S,$(call 
S2,I,(PAP_K2,plus))),I),5)
reduce: $(call ap,$(call ap,$(call 
S,(PAP_S3,I,(PAP_K2,plus))),I),5)
reduce: $(call ap,$(call S2,I,(PAP_S3,I,(PAP_K2,plus))),5)
reduce: $(call S3,5,I,(PAP_S3,I,(PAP_K2,plus)))
reduce: $(call ap,$(call S3,5,I,(PAP_K2,plus)),$(call I,5))
reduce: $(call ap,$(call ap,$(call K2,5,plus),$(call I,5)),5)
reduce: $(call ap,$(call plus,5),5)
reduce: $(call plus2,5,5)
reduce: 10
result: 10
make: Nothing to be done for `all'.



But seriously...

• SKI is pure magic and a lot of fun

• But really we want to compile functional languages 
to machine code





Evolution of GHC’s Backend

• We knew we wanted to plug into an existing 
retargettable code generator

• But gcc was too hard to pull apart

• So... generate C code
• With a multitude of hacks
• Including running a 5000-line Perl script on the generated 

assembly code (“the dreaded mangler”)

• Later:
• Write a native backend

• Even later:
• LLVM



What about the evaluation model?

• STG did not survive in its original form





And the tags were added back...





Stepping back a little bit...



Build an artefact that people want 
to use... and give it away.



if your research is relevant, 
people will want to use your thing



Good things happen...



• Easy for others to
• reproduce your results

• improve on them

• Users will
• report bugs

• suggest improvements

• actually help

• worth devoting time to fostering a community



User feedback leads to further 
research opportunities



An innocuous email...

From: Johan Tibell <johan.tibell@gmail.com>
Date: Sat, 23 Jan 2010 20:00:59 +0100
Subject: Battling interesting performance bug

If you run ./benchmarks/thread-delay -n 20000 it 
sometimes takes orders of magnitude longer to 
finish. I haven't quite yet figured out what's 
going on. I can't reproduce the problem with 
profiling on ...



Leads to interesting problems



And interesting solutions



• People using your system in anger will discover 
things that you didn’t

• Fixing the problems improves things for everyone



Nurture your users

• For they are a source of
• ideas

• bug reports

• feedback

• patches

• research collaborations

• Not all users are appreciative
Date: Fri, 10 Mar 2006 08:54:33 +0100
To: glasgow-haskell-bugs@haskell.org

Are you fully nerd???? How can ghc expect an installed ghc
for the first build stage????? What is that???? ...



Getting back to specific areas



Memory management

• i.e. garbage collection

• Anecdotally, GC is the biggest perf issue in 
deployed managed-language systems



GC is not a solved problem

• From Tracking the Flow of Ideas through the 
Programming Languages Literature (Michael 
Greenberg, Kathleen Fisher, and David Walker)



GC

• broad and complex design space

• many tradeoffs along different axes:
• memory vs. time

• latency guarantee vs. throughput

• language design affects GC design
• mutation frequency affects barrier design

• JVM not optimised for functional languages

• Parallelism adds a whole new dimension

• But hard to publish in major venues



GHC’s garbage collector

• GHC has always used a custom GC

• Began with standard copying + mark/sweep

• Generational
• thunks = mutation!

• Rewrote with a block layer
• GC’d memory is chains of blocks rather than contiguous

• much more flexible: heap can resize

• managing large objects is easy

• arbitrary number of generations, aging



2008: parallel GC



2010: local GC



Local GC, retrospective

• Results were mixed

• Hugely complicated

• Not ready for 
production

• One of the rare times 
we published 
something but it 
didn’t go into GHC

• Still an important 
area for research



Benchmarking

• Proper benchmarking and measurement is essential for 
evaluating compiler and runtime techniques

• Systems today are incredibly complex and non-
deterministic
• e.g. a different version of the linker might arrange code 

differently in memory, causing differences in cache behaviour

• Need rigour and good statistical methods

• Computer scientists are (often) bad at statistics





Your benchmarks can deceive 
you, don’t trust them



Benchmarks are just programs

• You have no expectation that your set of 
benchmarks is representative

• Most programs have an “inner loop”

• Can get disproportionate wins by optimising the 
inner loops



Understand what’s going on

• Results need analysis 

• Understand where the differences come from

• Do more experiments to find out

• Don’t leave it until just before the deadline to 
collect your results



What else?



• Stack traces & debugging
• GHC has 3 ways to get a stack trace, all with drawbacks

• Intermediate languages
• Strict Core

• Optimisation
• Supercompilation

• Low-level code generation
• Hoopl

• Parallel performance
• Mio

• Is front-end important any more?







Questions?


