FP Implementation

Simon Marlow
PLMW’15

Simon L. Peyton Jones
The

Implementation
of Functional
Programming
Languages

C.A.R.HOARE SERIES EDITOR

B ST R T (T

sl

X z (y z)

X
X 1IN
I >N 2

X X X
H XX W

SKI'in GNU make

= $1

(PAP_S2,%1)
(PAP_S3,%$1,%2)
$(call ap,$(call ap,$3,%1),%(call ap,$2,%1))

(PAP_K2,%1)
$2

define ap
$(strip \
$(if $(findstring $(dollar),$1%$2),\
$(dollar)$(lpar)call ap$(comma)$i$(comma)$2$(rpar),\
$(if $(findstring >>$(1lpar)PAP,>>%$1),\
$(subst $(space)<-TMPSPACE,$(comma),\
$(patsubst >>$(lpar)PAP_%,%$(dollar)$(lpar)call %$(comma)$2,\
>>$(subst $(comma),$(space)<-TMPSPACE,$1))),\

$(dollar)$(1lpar)call 1(comma)$2%$(rpar))))
endef

include ski.mk

The example from Simon Peyton Jones' "The Implementation of
Functional Languages"”, pp 263.
#
(\x. (+) x x) 5
#
translates to
#
S (S(K+) I)I5
#
test=%$(call ap,$(call ap,$(call ap,S,$(call ap,$(call ap,S,$(call

ap)K.’plus)).’I)))I).’S)

$(info before: $(test))
$(eval $(call reduce,$(test)))
$(info result: $(result))

all :

$ make -f testl.mk

before: $(call ap,$(call ap,$(call ap,S,$(call ap,$(call
ap,S,$(call K,plus)),I)),I),5)

reduce: $(call ap,$(call ap,$(call ap,S,$(call ap,$(call

S, (PAP_K2,plus)),I)),I),5)

reduce: $(call ap,$(call ap,$(call ap,S,$(call
S2,I,(PAP_K2,plus))),I),5)

reduce: $(call ap,$(call ap,$(call

S, (PAP_S3,I, (PAP_K2,plus))),I),5)

reduce: $(call ap,$(call S2,1I,(PAP_S3,I,(PAP _K2,plus))),5)
reduce: $(call S3,5,I,(PAP_S3,I,(PAP_K2,plus)))

reduce: $(call ap,$(call S3,5,I,(PAP_K2,plus)),$(call I,5))
reduce: $(call ap,$(call ap,$(call K2,5,plus),$(call I,5)),5)
reduce: $(call ap,$(call plus,5),5)

reduce: $(call plus2,5,5)

reduce: 10

result: 10

make: Nothing to be done for "all’.

But seriously...

* SKI is pure magic and a lot of fun

* But really we want to compile functional languages
to machine code

Implementing lazy functional languages on stock hardware:
the Spineless Tagless (G-machine *

Version 2.5

Simon L Peyton Jones
Department of Computing Science, University of Glasgow (12 8Q)Q)
simonpj@des.glasgow.ac.uk

July 9, 1992

Abstract

The Spineless Tagless G-machine 1s an abstract machine designed to support non-
strict higher-order functional languages. This presentation of the machine falls into three
parts. Firstly, we give a general discussion of the design issues involved in implementing
non-strict functional languages.

Next, we present the STG language, an austere but recognisably-functional language,
which as well as a denctational meaning has a well-defined operational semantics. The
STG language 1s the “abstract machine code”™ for the Spineless Tagless G-machine.

Lastly, we discuss the mapping of the STG language onto stock hardware, The success
of an abstract machine model depends largely on how efficient this mapping can be made,
though this topic is often relegated to a short section. Instead, we give a detailed discussion

of the design issues and the choices we have made. Our principal target 1s the O language,
. o | 1 q 1 1 1 1

Evolution of GHC’s Backend

* We knew we wanted to plug into an existing
retargettable code generator

e But gcc was too hard to pull apart

* So... generate C code
e With a multitude of hacks

* Including running a 5000-line Perl script on the generated
assembly code (“the dreaded mangler”)

e Later:
 Write a native backend

 Even later:
e LLVM

What about the evaluation model?

* STG did not survive in its original form

Making a Fast Curry: Push/Enter vs.
Eval/Apply for Higher-order Languages

Simon Marlow and Simon Pevton Jones

Microsoft Research, Cambridge

Abstract

Higher-order languages that encourage curryving are implemented using one of two basic
evaluation models: push/enter or eval/apply. Implementors use their intuition and quali-
tative judgements to choose one model or the other.

Our goal in this paper is to provide, for the first time, a more substantial basis for this

choice, based on our qualitative and quantitative experience of implementing both models
in a state-of-the-art compiler for Haskell.

Our conclusion is simple, and contradicts our initial intuition: compiled implementations
should use eval fapply.

And the tags were added back...

Faster Laziness Using Dynamic Pointer Tagging

Simon Marlow

Microsoft Research
simonmar@microsoft.com

Abstract

In the light of evidence that Haskell programs compiled by GHC
exhibit large numbers of mispredicted branches on modern proces-
sors, we re-examine the “tagless™ aspect of the STG-machine that
GHC uses as its evaluation model.

We propose two tagging strategies: a simple strategy called semi-
tagging that seeks to avoid one common source of unpredictable in-
direct jumps, and a more complex strategy called dynamic pointer-
tagging that uses the spare low bits in a pointer to encode informa-
tion about the pointed-to object. Both of these strategies have been
implemented and exhaustively measured in the context of a produc-
tion compiler, GHC, and the paper contains detailed descriptions
of the implementations. Our measurements demonstrate significant
performance improvements (14% for dynamic pointer-tagging with
only a 2% increase in code size), and we further demonstrate that
much of the improvement can be attributed to the elimination of
mispredicted branch instructions.

As part of our investigations we also discovered that one optimisa-
tion in the STG-machine, vectored-returns, is no longer worthwhile
and we explain why.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
onaces: N3 A TPracrammine T onenaeec]l Proceswore—I ode Gen-

Alexey Rodriguez Yakushev

University of Utrecht, The Netherlands
alexey@cs.uu.nl

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

f x y = case x of (a,b) —> aty

In a lazy language, before taking x apart the compiler must ensure
that it i1s evaluated. So it generates code to push onto the stack a
continuation to compute a+y, and jumps to the enrry code for x.
The first field of every heap closure is its entry code. and jumping
to this code is called entering the closure. The entry code for
an unevaluated closure will evaluate the closure and return its
value to the continuation; an already-evaluated closure will return
immediately.

In contrast, in a tag-ful approach, the closure to evaluate is entered
only if it is found to be not yet evaluated. Here the generated code
performs an extra test on the closure type — the tag — to determine
its evaluatedness and to avoid entering it unnecessarily.

The tagless scheme is attractive because the code to evaluate a clo-
sure is simple and uniform: any closure can be evaluated simply by
entering it. But this uniformity comes at the expense of perform-
ing indirect jumps, one to enter the closure and another to return to
the evaluation site. These indirect jumps are particularly expensive
on a modern processor architecture, because they fox the branch-
prediction hardware, leading to a stall of 10 or more cycles depend-
ing on the length of the pipeline.

If the closure is unevaluated, then we really do have to take an indi-
rect tumn to its entrv code. However if it hannens to be evaluated

Stepping back a little bit...

Build an artefact that people want
to use... and give it away.

it your researc
neople will wa

N IS re

Nt To U

evant,
se your thing

Good things happen...

* Easy for others to
* reproduce your results
* improve on them

e Users will
* report bugs
e suggest improvements

* actually help
* worth devoting time to fostering a community

User feedback leads to further
research opportunities

An innhocuous email...

From: Johan Tibell <johan.tibell@gmail.com>
Date: Sat, 23 Jan 2010 20:00:59 +0100
Subject: Battling interesting performance bug

If you run ./benchmarks/thread-delay -n 20000 it
sometimes takes orders of magnitude longer to
finish. I haven't quite yet figured out what's
going on. I can't reproduce the problem with
profiling on ...

Leads to interesting problems

BLACKHOLE the thunk

And interesting solutions

How does blocking work?

* It would be great if we could attach the
blocked threads to the BLACKHOLE:

BLACKHOLE [
Thread 34 (blocked)
Thread 60 (blocked)

* because then we could easily find all the
blocked threads to wake them up

* People using your system in anger will discover
things that you didn’t

* Fixing the problems improves things for everyone

Nurture your users

* For they are a source of
* ideas

bug reports

feedback

patches

research collaborations

* Not all users are appreciative

Date: Fri, 10 Mar 2006 08:54:33 +0100
To: glasgow-haskell-bugs@haskell.org

Are you fully nerd???? How can ghc expect an installed ghc

Getting back to specific areas

Memory management

* j.e. garbage collection

* Anecdotally, GC is the biggest perf issue in
deployed managed-language systems

GC is not a solved problem

Garbage Collection

Conference

ICFP

OOPSLA

PLDI

POPL

* From Tracking the Flow of Ideas through the
Programming Languages Literature (Michael
Greenberg, Kathleen Fisher, and David Walker)

GC

* broad and complex design space

* many tradeoffs along different axes:

* memory vs. time
* |latency guarantee vs. throughput

* language design affects GC design
* mutation frequency affects barrier design
* JVM not optimised for functional languages

e Parallelism adds a whole new dimension
* But hard to publish in major venues

GHC's garbage collector

* GHC has always used a custom GC
* Began with standard copying + mark/sweep

e Generational
 thunks = mutation!

 Rewrote with a block layer
 GC'd memory is chains of blocks rather than contiguous
* much more flexible: heap can resize
* managing large objects is easy
e arbitrary number of generations, aging

2008: parallel GC

L

2010: local GC

Local GC, retrospective

e Results were mixed
* Hugely complicated

* Not ready for
production

* One of the rare times
we published
something but it
didn’t go into GHC

e Still an important
area for research

Benchmarking

* Proper benchmarking and measurement is essential for
evaluating compiler and runtime techniques

e Systems today are incredibly complex and non-
deterministic

* e.g. a different version of the linker might arrange code
differently in memory, causing differences in cache behaviour

* Need rigour and good statistical methods

e Computer scientists are (often) bad at statistics

Quantifying Performance Changes with Effect Size Confidence
Intervals

TOMAS KALIBERA, RICHARD JONES, University of Kent

Measuring performance and quantifying a performance change are core evaluation techniques in pro-
gramming language and systems research. Out of 122 recent scientific papers published at PLDI, ASPLOS,
ISMM, TOPLAS, and TACO, as many as 65 included experimental evaluation that quantified a performance
change using a ratio of execution times. Unfortunately, few of these papers evaluated their results with the
level of rigour that has come to be expected in other experimental sciences. The uncertainty of measured
results was largely ignored. Scarcely any of the papers mentioned uncertainty in the ratio of the mean exe-
cution times, and most did not even mention uncertainty in the two means themselves. Furthermore, most
of the papers failed to address the non-deterministic execution of computer programs (caused by factors such
as memory placement, for example), and none addressed non-deterministic compilation (when a compiler
creates different binaries from the same sources, which differ in performance, for example again because
of impact on memory placement). It turns out that the statistical methods presented in the computer sys-
tems performance evaluation literature for the design and summary of experiments do not readily allow this
either. This poses a hazard to the repeatability, reproducibility and even validity of quantitative results.

Inspired by statistical methods used in other fields of science, and building on results in statistics that
did not make it to introductory texthooks, we present a statistical model that allows us both to quantify
uncertainty in the ratio of (execution time) means and to design experiments with a rigorous treatment of
those multiple sources of non-determinism that might impact measured performance. Better still, under
our framework summaries can be as simple as “system A is faster than system B by 5.5% + 2.5%, with
95% confidence”, a more natural statement than those derived from typical current practice, which are often
misinterpreted.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Performance measures; 1).3.4
[Programming Languages]: Processors—Run-time environments

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: statistical methods, random effects, effect size

Your benchmarks can deceive
you, don’t trust them

Benchmarks are just programs

* You have no expectation that your set of
benchmarks is representative

* Most programs have an “inner loop”

e Can get disproportionate wins by optimising the
inner loops

Understand what’s going on

* Results need analysis
e Understand where the differences come from
* Do more experiments to find out

* Don’t leave it until just before the deadline to
collect your results

What else?

 Stack traces & debugging

 GHC has 3 ways to get a stack trace, all with drawbacks

* Intermediate languages
* Strict Core

* Optimisation
e Supercompilation

* Low-level code generation
* Hoopl

* Parallel performance
* Mio

* |s front-end important any more?

B ST R T (T

sl

S R R R R B E R
PR RNLAR ARG

or Lo y
e
a4 e
Ny
PR

Questions?

