how do i do

research

matthiars felleisen.
racketeer.
plt. northeastern



how do | do research? how &€& | do research?

ey




your
advisor




how do | work with my
my PhD students!?

how would | do
research if | were you!?

how do | do research?



how do i

relate to my
PhD studenty




| have never, ever
hired a PhD student.
Period.

Instead my students and |
find a topic we both love.




Typed Racket
(ICFP ’10)

Laziness, what is it (good for)?

Compiler (FP 1996)

Coaching (OOPSLA ‘12 )




And that’s what’s called ‘doing research.




how wovuld |
do rescarch if

1l were you



Two Case Studies

Asumu Tony
Takikawa Garnock-lones

Kuhn, The Structure of Scientific Revolution




Typed Racket
(ICFP’10)

%)
Q
7]
%]

S

O
C

RS
0
e
>

-




opic: Gradual Types for First-class Classes

Is Sound Gradual Typing Dead?
3 Windowing Classes

Programming Objects with ML-A
An extension to ML with Abstract and Record
Types

Windows and controls:

Didier Rémy

AND COMPUTATION 93, 1-15 (1991)

Type Inference for Record Concatenation and
Multiple Inheritance*

dozens of classes,

MITCHELL. WAND

|00s of methods,
and he equipped all
of them with
“lightweight contracts”

Complete. Type Inference for Simple Objects

Mitchell Wand

College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

Abstract e : .
. The function momentum should be applicable to both cars
We consider the problem of strong typing for a model of and submarines. We can think of cars and subma as
object-oriented programming systems. These systems permit val- heriting from movable objects. This model also permits multiple

Events and other:

ues which are records of other values, and in which fields inside inheritance: a submarine is both a movable object and weapons

these records are retrieved by name. We propose a type system
which allows us to classify these kinds of values and to classify
programs by the type of their result, as is usual in strongly-typed
programming languages. Our type system has two important
properties: it admits multiple inheritance, and it has a syntacti-
cally complete type inference system.

1. Introduction

system, because any function applicable to a weapons system will
be applicable to a submarine.

Caxdelli (Cardelli 84) has proposed a type system (which we
call C84) that accounts for inheritance of this sort. He proved
the soundness of a semantics for this system, U; ortunately, C84
sacrifices a useful property of the simply-typed lambda-calculus
(as exemplified by the ML system [Gordon et al, 78]): the solv-
ability of the type inference problem. That is, we would like to

itional




Previous Topic: Contracts for Classes & Obijects

saap MPLEMENT s,

EVALUATE

DESIGN

~ IMPROVE




Is Sound Gradual Typing Dead?

Takikawa & Greenman

Dr. Double B. Reviewing, I Dr. Double B. Reviewing, 11 Dr. Double B. Reviewing, I11
In Famous University In Famous University Somewhat Famous University
turing@award.com turing@award.com turing@award.com

v Dr. Double B. Reviewing, VI
Less Famous University
turing@award.com

Towards Practical Gradual Typing

Asumu Takikawa!, Daniel Feltey!, Earl Dea:
Robert Bruce Findler?, Sam Tobin-Hochstac

Felleisen*
1 Northeastern University Abstract 1. Gradual Typing and Performance
Boston, Massachusetts Programmers have come to embrace dynamically-typed languages Over the past couple of decades dynamically-typed languages have
asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias  for prototyping and delivering large and complex systems. When become a staple of the software engineering world. Programmers
2 Indiana University it comes to maintaining and evolving these systems, the lack of use these languages to build all kinds of software systems. In
Bloomington, Indiana explicit static typing becomes a bottleneck. In response, researchers many cases, the systems start as innocent prototypes. Soon enough,
samth@cs.indiana.edu, edean@cs.indiana.edu have explored the idea of gradually-typed programming languages though, they grow into complex, multi-module programs, at which
3 University of Utah which allow the post-hoc addition of type annotations to software point the engineers realize that they are facing a maintenance night-
Salt Lake City, Utah written in one of these untyped languages. Some of these new, mare, mostly due to the lack of reliable type information.
Lot Yoo st o #ionn aboanton - .
mflatt@cs.utah.edu
4 Northwe i
Evansto
robbyQee
Grad
—— Abstra

Over the past 20 years, programmers have embraced dynamically-typed programming languages.

By now, they have also come to realize that programs in these languages lack reliable type in-

formation for software engineering purposes. Gradual typing addresses this problem; it empowers

programmers to annotate an existing system with sound type information on a piecemeal basis.

{ This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.

Asumu 1

Contracts for First-Cla

1998 ACM Subject Classification D.3 Programming Languages

I kl A ‘ I 5
lual typing, object-oriented programming, performance evaluation a I (a a

4230/LIPIcs. ECOOP.2015.999

T. STEPHEN STRICKLAND,

MATTHIAS FELLEISEN, Noi Abstract
Dynamic type-check
often go hand-in-hang
Ruby, and JavaScript
gramming. When scri
evolve into large programs,
pline reduces maintainability. A pi Gradual type systems allow programmers to add type information to software systems in
to migrate parts of such scripts tc dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
static type system. Unfortunately, canuung iy pe syswuns o UYL plauuiii $1upUdald [UL glauual Ly Py amv GADLIUL
ther support the flexible OO composition mechanisms found JavaScript [19] and Perl [31]. Formal models have validated

. ! . N . . ° ° €
in scripting languages nor accommodate sound interopera- soundness for gradual type systems, allowing seamless in-
tion with untyped code. teroperation between sister languages [22, 27, 32]. a (I awa I I ‘ ( a I l

5 Lnhat wnen tne coniract system assigns piameé 1o a component 10r a

r pro g the non-
rates the need for t

that has seen much u:
cope with first-class ¢
such as numbe: i

rming value. The second

ich contract language and

contract
part, cons
validates that our implementation

n, the component deed responsit

demons
performant with respect to time.

ing of benchmarks and case s

oding Tools and Techniques—Object-
bgram Verification—Programming by
‘Theory—Semantics

ACM Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 57 pages.
DOI: http:/dx.doi.org/10.1145/0000000.0000000

Strickland & Takikawa ‘12

1. FIRST-CLASS CLASSES AND CONTRACTS

First-class classes enable the programmer to dynamically pick context-appropriate
base classes, to load new classes at run-time to implement a plug-in architecture, or




A Positive (Self-perpetuating) Feedback Loop

IMPLEMENT

DESIGN

IMPROVE

% IMPROVE T




RabbitMQ

g
o
=3
@)
=
:




truly functional GUIs

messages as events

communicating
worlds

from
freshman programs
to systems

actors

networks

publish
subscribe

failures!

message
brokers




Functional I/O &
Communicating Worle networking systems

e
Chat

comm
- : comm.
Room

actors




Topic: Coordinated Concurrent Functional Language




What is the cost of breaking open a new field?

6.5 years




how did | do
research as o
PhD student




My Story

Dan Friedman

(f (g (call/cc k))

(ko (v () (F (g x)))

Gres Wof jww%&

o






What does it mean to implement equations

Theoretical Computer Science 1 (1975) 125-159. © Norta-Holland Publishing Company I had read that Papel’.

‘ ... in two hours.

Department of Machine Intelligence, School of A\tificial Tutelligenvg, Universi, [ WSiinhurgh, .
Edinburgh, Unitea Xingdom

| read it again.

Received 1 Au).us 197j A
- NOT 4 hours

Abstract. This papsr esamines the old question of the relation: between ISWIM and .

A-~caiculus, using the distinction beiween caii-by-value and cali-by-. 2. It is held that the re-
lationship should _be.mediated‘ by a standardisatio=ga® 4 4
a new A-calcu'us is introdies avs

S

| spent 4 MONTHS studying this paper.




What does it mean to implement equations

Theoretical Computer Science 1 (1975) 125-159. © Norta-Holland Publishing Compzny

Department of Machine Intelligence, School of Artificial Intelligence, University of Edinburgh,
Edinburgh, United Kingdom

ilner
. Miuner

Receive August 1974

Abstract. This papsr esamines the old question of the relationship between ISWIM and the
A-caiculus, using the distinction beiween caii-by-vaiue and cali-by-name. It is held that the re-
lationship should be mediated by a standardisation theorem. Since this leads to difficulties,
a new A-calcu‘us is introduced whose standardisation theorem gives a good correspondence

STUDIESIN LOGIC
AND
THE FOUNDATIONS OF MATHEMATICS

J.BARWISE / D KAPLAN / H.J KEISLER / P. SUPPES / A S TROELSTRA
EDITORS

The Lambda

Calculus

Its Syntax and Semanties

REVISED EDITION

H.P. BARENDREGT

NORTI HOLLAND

AMATIRDAM @ NEW YORK ® OX)ON




What did four months of reading yield

How do calculi correspond to eval?
- start from an abstract syntax
- identify values & programs
- define basic notion of reduction
- inductively generate theories
= eval-> and eval=
= Church & Rossser Thm.
= Thm.eval-> = eval=
= Standard Reduction Theorem
= [hm:eval-standard = eval->




My dissertation: “This” works for imperative features, too.

How do calculi correspond to eval?

start from an abstract syntax
identify values & programs
define basic notion of reduction
inductively generate theories
eval-> and eval=

Church & Rossser Thm.

Thm. eval-> = eval=

Standard Reduction Theg
Thm: eval-standard = eV?

control

by need

~ futures




Lessons

Know to distinguish the good from the bad
in your advisor’s suggestions.

Good paper require ‘deep study’
not just a ‘reading.

Really good paper are ‘research programs’
not just results.



how do |l do

research now



problem | can solve

problem | can solve
problem | can solve

problem | can solve
problem | can solve
problem | can solve

problem | can solve
problem | can solve
problem | can solve

problem | can solve problem | can solve

problem | can solve problem | can solve

problem | can solve




paper | can write

paper | can write .
paper | can write

paper | can write

aper | can write .
i er | can write

paper | can write |
paper | can write

paper | can write paper | can write

paper | can write paper | can write

paper | can write






Think big, think long-term.

Lesson

Good researchers say “no” to many problems.
They focus on those that they care about.




My Long-term Projects

How do types fit into

untyped languages!?
(1988)




What do such long-term
projects look like?

How do you launch
long-term projects!?



What do such long-term
projects look like?



How do types fit into The “Gradual Typing” Dissertations
untyped languages!’

(1988)

Mike Fagan Soft Typing (***)

Andrew Wright Practical Soft Typing

Cormac Flanagan Componential SBA

Robby Findler Higher-order Contracts

Philippe Meunier Modular SBA from Contracts

Sam Tobin-H. (2010)  From Scripts to Programs

Stevie Strickland Contracts for First-class Classes

Asumu Takikawa Types for First-class Classes




How can
; Little
programmers design LISPer
programs systematically?

How to Design

Friedman, Daniel P.

How do you teach 12,

N This s o the atual ook cver

1985 The Litte Lisper, 2nd ed.
F1992
1993/94
Launch TeachScheme! — FP and algebra in high schools

HOW TO DESIGN PROGRAMS The Dump (~1 ,000 ges) — re—foousing on explici UeSIY

HtDP/1e — Prog s EAFunc-

How to Design Programs, Second Edition

L] L] L] . v
r Please send reports about
DeS|gn|ng [ |p|e| I Ientlng eve
) ) Preface s.neu. edu after double-
P w N

ccs.n
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi checking in the the current
draft

2007-2015 HtDP, 2nd ed. — Programs are n " e e

the Creative Commons CC BY-NC-ND license [interpretation].

able release of HtDP/2e. It is updated in sync




What is linguistic power and
why is a DSL better than an
algorithm?

(1985)

1985 with Kohlbecker et al

Hygienic Maros

1986

88/89

1991

1994

95/97

PLT

Teaching languages

95/99

Shriram Krishnamurthi

Parameterizing over Language

2002

Matthew Flatt

You want it when?

03/08

Ryan Culpepper

Protecting Macros

08/09

Ryan Culpepper

Debugging Macros




How do you launch
long-term projects!?



People Readings

Teaching

“Reality”

Time to Think




Sometimes you stumble into a topic.




How do types fit into The “Gradual Typing” Dissertations
untyped languages!’

(1988)

1990 Mike Fagan Soft Typing (***) Types

1994 Andrew Wright Practical Soft Typing

1998 Cormac Flanagan Componential SBA

2001 Robby Findler igher-order Contracts

lar SBA from Contracts
2ts to Programs
o



Sometimes it is love at first sight.




o
| ~ How can

programmers design
programs systematically?

How do you teach 12, 14, | An

|6 year olds programming “entertaining”
What benefit does it have!? thought

( I 995’ Ia 1985 The Litte Lisper, 2nd ed.

Teaching my first introductory programming course

1993/94 @ CMU, “Bob’s teaching it all wrong”

e ek Launch TeachScheme! — FP and algebra in high schools

1995 The Dump (~1,000 pages) — re-focusing on explicit design

Cormac
asked the one
critical

< D6-2001 HtDP/1e — Programg
questlon

We knew what
2002-2005 Designing, impleme we had to dOI ‘ o
software,
“curriculum,

- teaching

2007-2015 HtDP, 2nd ed. — Progr&=



Sometimes it develops as a necessity.




What is linguistic power and
why is a DSL better than an
algorithm?

(1985)

1985 with Kohlbecker et al

Hygienic Maros

1986

88/89

1991

PLT

Teaching languages

Shriram Krishnamurthi

Parameterizing over Language

Matthew Flatt

You want it when?

Ryan Culpepper

Protecting Macros

Ryan Culpepper

Debugging Macros




remember?



As a student, you need to
— develop a sense of the landscape
— follow your heart
— plan out design, implementation, evaluation.

No matter what, keep in mind that the number of
your papers is unrelated to the quality of your work.

As a researcher, |
— look for long-term projects
— follow my heart
— use teaching (for the 99%) for inspiration
— develop dissertation-size goals
— plan for hand-over
— and have my eyes open for new ideas.




The End



