
CPU Torrent – CPU Cycle Offloading to Reduce User Wait Time and Provider
Resource Requirements

Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{swapneel, kaiser}@cs.columbia.edu

Abstract

Developers of novel scientific computing systems are of-
ten eager to make their algorithms and databases available
for community use, but their own computational resources
may be inadequate to fulfill external user demand – yet
the system’s footprint is far too large for prospective user
organizations to download and run locally. Some heavy-
weight systems have become part of designated “centers”
providing remote access to supercomputers and/or clusters
supported by substantial government funding; others use
virtual supercomputers dispersed across grids formed by
massive numbers of volunteer Internet-connected comput-
ers. But public funds are limited and not all systems are
amenable to huge-scale divisibility into independent com-
putation units. We have identified a class of scientific com-
puting systems where “utility” sub-jobs can be offloaded to
any of several alternative providers thereby freeing up local
cycles for the main proprietary jobs, implemented a proof-
of-concept framework enabling such deployments, and ana-
lyzed its expected throughput and response-time impact on a
real-world bioinformatics system (Columbia’s PredictPro-
tein) whose present users endure long wait queues.

1. Introduction

We are concerned with the problems of reducing the
turnaround time and increasing the throughput of CPU-
intensive processes in scientific computing domains where
“batch” jobs are still commonplace [21], sometimes with
wait queues backed up for days and – when finally sched-
uled for execution – individual jobs running for hours. Most
previous research has concentrated on improving perfor-
mance through the use of parallelization, whether local-
ized (e.g., supercomputers [16, 27]) or massively distributed
(e.g., grid computing [5, 13, 25]). These approaches are ide-
ally suited for embarrassingly parallel computations, but do
not apply well to inherently sequential computations, and
particularly not to pipelined workflows, as occur frequently

in scientific areas like biometrics [15] and computer ani-
mation [4]. There have been numerous grid workflow lan-
guages and tools developed for grid workflow composition
and execution [6, 28]; however, these require the execution
of all workflow elements on the same local grid.

In the context of provider organizations with relatively
limited computational resources, the performance of such
pipelined workflows could potentially be improved by of-
floading the prefix of each workflow to an alternative ser-
vice provider while the suffix remains queued, reducing lo-
cal processing demands for a given workflow and reduc-
ing queue delays for other jobs. This model is appropriate
when prefix elements of the workflow run utility prepro-
cessing or data transformation computations that are read-
ily available from multiple providers, but later elements are
proprietary to a given provider and/or too heavyweight to be
transported to alternative hosts. In this paper, we introduce
an approach, called “CPU Torrent”, that supports and man-
ages this offloading model. CPU Torrent is orthogonal to
and can leverage any parallelization available for individual
workflow elements when resources permit.

We have identified a class of scientific computing sys-
tems where computation jobs can be divided into two parts,
which we call utility and proprietary. Utility sub-jobs
are, by definition, those offered by a number of service
providers, which usually advertise a programmatic way of
submitting jobs and retrieving results. Proprietary sub-jobs,
on the other hand, are, by definition, offered by very few
(and sometimes only one) service providers. The objective
of splitting a job into utility and proprietary sub-jobs is to
use the output produced by the utility sub-job as part of the
input for the proprietary sub-job. Thus, the utility sub-job
needs to run before the proprietary sub-job and can be seen
as preprocessing.

There are many examples of such computations in vari-
ous scientific fields. In the world of image processing: be-
fore adding its own special effects to an image, a provider
often runs Histogram Equalization to improve the contrast
of the image. Histogram Equalization, a well-known mech-
anism in the image processing community, can be thought

of as the utility sub-job. On the other hand, novel algo-
rithms producing special effects, such as adding fog, can
be thought of as proprietary sub-jobs. In the field of bioin-
formatics: sequence alignment using an algorithm like blast
[1] or clustal [14] is often the first step before more complex
analysis of genes and DNA is carried out. Blast and clustal
are offered by a number of service providers, with packages
available in various programming languages and for vari-
ous operating systems. Thus, they can be thought of as util-
ity sub-jobs. Examples of available-to-the-general-public
service providers for blast include the National Center for
Biotechnology Information [18], the European Bioinfor-
matics Institute [10], and the DNA Data Bank of Japan [8].

We call our system CPU Torrent in tribute to BitTor-
rent [7]. In traditional client-server file transfers, the entire
bandwidth load has to be borne by the server. BitTorrent al-
leviates this by offloading part of the bandwidth resource re-
quirement to the clients by dynamically constructing a peer-
to-peer architecture for transferring files, where each client
gets parts of the (usually very large) file from its peers. This
decentralized approach helps reduce the bandwidth needed
at the server to a significant extent, to the point that a cen-
tralized server is not needed at all after enough peers seed
the file for others to download. CPU Torrent is similar in
some ways – we propose to offload part of the CPU com-
putation load to alternative providers, thereby reducing the
proprietary provider’s resource requirements. The analogy
is far from perfect, however, since the heavyweight compu-
tations targeted here are ordinarily not amenable to offload-
ing onto arbitrary user clients and only pre-existing alterna-
tive providers are leveraged (although the latter set can be
dynamically updated in our implementation, in practice it
tends to remain static over months to years).

The plan of this paper is as follows. Section 2 describes
the background and motivation for this paper. Section 3
gives more details about our approach and the general ar-
chitecture of the CPU Torrent system. Section 4 covers the
implementation details of CPU Torrent in connection with a
specific scientific computing system, PredictProtein, which
implements protein sequence analysis, structure and func-
tion prediction [22]. In Section 5, we present a theoretical
analysis using Queuing Theory. Finally, in Sections 6 and
7, we conclude the paper with a discussion of related and
future work.

2. Background and Motivation

We are collaborating with researchers at Columbia Uni-
versity’s Center for Computational Biology & Bioinformat-
ics (C2B2) and its Multiscale Analysis of Genomic and Cel-
lular Networks (MAGNet) Center, who have developed a
variety of software packages and databases supporting re-
search in molecular and systems biology. Our goal is to

explore new ways to improve the experience of the exter-
nal and internal users of their scientific computing systems.
In this paper, we address the problem that the current users
of Columbia’s PredictProtein frequently endure long wait
queues due to limited CPU resources. This problem appears
to be common, with similarly long waits for the results from
analogous genomic analysis services provided by other con-
tributors to the biomedical community.

These systems operate as Internet services to which users
submit their jobs and retrieve results over the Web. Many
systems [8, 10, 11] also allow users to retrieve the results
non-interactively via email. Users may choose the latter
option if there is likely to be a long wait for the results.
The jobs are often implemented by a workflow that first in-
vokes a utility service (e.g., blast in PredictProtein’s case)
prior to executing one or more proprietary services specific
to the provider (e.g., PredictProtein includes several differ-
ent methods, for predictions of disordered/natively unstruc-
tured regions, inter-residue contacts, domain assignments,
and protein-protein interaction and protein-DNA binding
residues). The output produced by the utility service is used
as part of the input for the proprietary service.

Both utility and proprietary analyses demand substantial
processing cycles, generally with each workflow executed
to completion on a dedicated CPU. For example, Predict-
Protein runs as a daemon (system service executed on de-
mand) on a cluster with 23 nodes. Each node has two CPUs,
thus allowing a maximum of 46 jobs to be processed simul-
taneously. Incoming jobs are processed as follows:

1. A new job is put on the queue.

2. When a node becomes available, the PredictProtein
daemon takes a job from the head of the queue, and
dispatches it to the node for processing.

3. PredictProtein periodically checks a shared location
for the results of each dispatched job.

4. When results become available, they are sent back to
the requesting user.

If more than 46 jobs have been submitted before the ear-
liest arriving jobs complete, they must wait in the queue,
increasing the response time for those jobs as well as later
arrivals.

The wait time on the queue can sometimes be substan-
tial. Figure 1 illustrates the job queue for PredictProtein
monitored over the period of a typical week. During that
week, there were two spikes as shown. During the first
spike, the number of jobs waiting in the queue reached a
high of 469. During the second spike, the number of jobs
waiting reached a high of 130. For the entire duration of the
spikes, the cluster was running at a full load of 46 jobs. The
PredictProtein system remained at full load for more than

2

Figure 1. PredictProtein Job Queue

2.5 days during the first spike and almost 1 day for the sec-
ond spike. Other than these two spikes, the cluster always
ran below full load and the number of jobs on queue was
always 0. However, empirical evidence suggests that users
do not conveniently delay their job submissions – and thus
their genomic research – until idle periods.

An apparently simple solution would be to package a
downloadable program for users to install on their own
machines and run the services they want, using their own
CPUs. This is not feasible for two reasons: First, some (not
all) so-called proprietary services are, indeed, proprietary
in the sense that inventors need to safeguard and control the
distribution and use of their algorithms and data, which may
be subject to experimental refinements and other changes as
well as to contractual and regulatory restrictions. Second,
many of the services require huge databases (on the order
of multiple terabytes) as part of their analyses. Even the ba-
sic blast service involves a 70GB database, which might not
be considered all that large given today’s disk sizes – except
that the database is updated and redistributed daily (without
support for incremental update [20]).

However, the so-called utility services that prefix typi-
cal analysis workflows are offered by a number of provider
organizations, which usually supply a programmatic mech-
anism for submitting jobs and retrieving results. Thus, in
principle, users could individually send their own utility
jobs to appropriate providers, and then submit the results
to the proprietary service. But this would require each user

to know the internal workflow steps and file format transfor-
mations – which these kinds of systems aim to encapsulate
– and is tedious and error-prone.

With CPU Torrent, we present a means to reduce the load
on scientific computation systems like PredictProtein by of-
floading utility sub-jobs to external service providers.

3. Model and Architecture

In order to leverage CPU Torrent, a scientific compu-
tation system must fulfill the following requirements: (1)
some reasonable fraction of the jobs submitted to the sys-
tem can be automatically split into sub-jobs; (2) some of
these sub-jobs run programs that can be executed remotely
by at least one alternative provider (i.e., a utility provider);
and (3) those alternative providers supply some practical
means (see discussion below) for remotely submitting jobs
and retrieving the results. The system does not need to
have any explicit notion of “workflow” – although if it does,
that would likely simplify splitting. We discuss primarily in
terms of a prefix for exposition simplicity, but offloading in-
termediate and suffix sub-jobs would also reduce user wait
time and provider resource requirements.

The scientific computation system sends each utility sub-
job to CPU Torrent while the proprietary remainder waits
in its queue (if queuing isn’t necessary because the system
has resources immediately available, CPU Torrent should

3

never be invoked). CPU Torrent, in turn, sends the sub-job
to some utility provider and waits for the results. If CPU
Torrent receives acceptable utility sub-job results before its
configurable timeout or local resources have become avail-
able to run the entire job, the results are transmitted to the
scientific computation system; if not, then that system is no-
tified that is should run the sub-job itself. Our approach is
thus fault tolerant, handling cases when no utility provider
is available/reachable or sufficiently lightly loaded, or if in-
puts or outputs are deemed corrupted. In that case, the util-
ity sub-job must be scheduled locally together with the re-
mainder proprietary sub-job(s), as the scientific computa-
tion system would normally do without CPU Torrent.

The only requirement for external organizations to act
as utility providers is that they must publish some mech-
anism(s) for external users to submit jobs and retrieve re-
sults. Some programmatic means is best, e.g., Web Ser-
vice, API, command-line downloadable client. If there is
no programmatic mechanism available and instead the util-
ity provider presumes an interactive (but still remote) end-
user, more complex wrappers would need to be written to
do some kind of “screen scraping” to submit jobs and re-
trieve results. If the external service returns results asyn-
chronously, say by email, corresponding wrappers would
then be needed to parse the email contents and provide the
results to the scientific computation system. CPU Torrent,
in principle, allows for all these possibilities – but with the
obvious additional burden on the user organizations to de-
velop and maintain the extra code.

Figure 2 shows the general structure of the CPU Torrent
system as a form of middleware. The clients (proprietary
service providers) must be modified to split their workflows
to submit utility jobs to the middleware via its API. The
servers (utility service providers) are necessarily used “as
is”, through whatever mechanisms are already available:
utility service providers do not need to cooperate with or
even know about CPU Torrent. The middleware is respon-
sible for choosing sites to process the utility jobs and all
subsequent interactions with the utility service providers on
behalf of the proprietary service providers.

4. Implementation

Figure 3 shows the structure of the CPU Torrent system
as implemented, in proof-of-concept form, initially targeted
to Columbia’s PredictProtein system. The PredictProtein
daemon is the client that submits jobs to the CPU Torrent
middleware. The only utility job, in this case, is blast. We
implemented two possible options for where it can run:

1. SGE Blast (Local Server):

This is the local installation of blast on a Sun Grid
Engine (SGE) [24] hosted at Columbia’s C2B2 center.

Figure 2. CPU Torrent and a Generic System

2. NCBI netblast (External Server):

This uses the National Center for Biotechnology
Information (NCBI) netblast client [19].

Figure 4 shows the internal details of the CPU Torrent
middleware. The components consist of:

1. Middleware API

The Middleware API is the interface that any Propri-
etary Service provider would use to interact with the
CPU Torrent middleware. It is implemented using
Java’s Remote Method Invocation (RMI) and supports
the following methods:

(a) Submit a Job

S t r i n g su bmi t (byte [] f i l e ,
Hashtable o p t i o n s)

The submit method takes a file as input and re-
turns a String that represents the Job ID, serv-
ing as a handle to this utility sub-job. It also takes
a list of options in the form of a Hashtable.
The file will be the input to the utility job (the
API could easily be extended to allow for an
open-ended number of file inputs). The options
are for runtime configuration.

4

Figure 3. CPU Torrent and PredictProtein

In the case of PredictProtein, the input format is a
FASTA file [17], which is the same input file for-
mat as for blast jobs. FASTA files are reasonably
small, typically on the order of kilobytes. In the
case of blast, the list of options would include the
program name (e.g., blastp, blastn) and the name
of the database against which to run the query.

(b) Query the Status of a Job

i n t g e t S t a t u s (S t r i n g j o b I d)

The getStatus method takes a Job ID as input
and returns an integer representing the status of
the job. The currently implemented status codes
are shown below:

Status Number Description

0 New Job
1 Job Processing
2 Job Completed
3 Job Failed

Table 1. Job Status Codes

The job status is used by Proprietary Service
providers waiting for a job to complete. After
submitting a utility sub-job to the CPU Torrent
middleware, the provider would poll its status,
say every two minutes, until the status changes
to “Job Failed” or “Job Completed”. The job sta-
tus could be “Job Failed” if no External Server is
available, the input file is not formatted correctly,

Figure 4. CPU Torrent Middleware Internal
Details

etc. In the “Job Completed” case, the Proprietary
Service provider can then retrieve the results.

(c) Get the Results

byte [] g e t R e s u l t (S t r i n g j o b I d)

The getResult method takes a Job ID as in-
put and returns a byte stream, which can then be
converted to a regular file containing the results
of the sub-job. The result could be one of the
following:

i. The result file, if the job completed success-
fully.

ii. “Job not found”, if an invalid Job ID was
passed.

iii. “Failed”, if the job did not complete for
some reason.

iv. “Processing”, if the job is still being pro-
cessed.

2. Registry

CPU Torrent’s Registry component keeps track of the
various Local and External Server providers registered
with the middleware, and what services each of these
hosts provide. These details are maintained in two
XML files.

The ServerFetch component is used to retrieve the list
of prospective servers for a given utility service. The
ParamsFetch component is used to retrieve the various
parameters needed to invoke the service on a particular
host. The most important of these parameters is the

5

class name of the Service Wrapper used to invoke the
service. Other parameters, which may be optional, can
be used to set the configuration parameters required by
the Service Wrappers. Examples of such parameters
include the name of the program, the command-line to
execute, and the priority.

Figure 5 shows part of the XML configuration file
when there are two External Server providers: NCBI
netblast and DDBJ Blast [9]. There is one required pa-
rameter common to both cases, the class name. In the
case of NCBI netblast, where we use their command-
line client, we need to provide the path to the exe-
cutable. In the case of DDBJ Blast, where we might
use its RESTful interface [12], we would need to pro-
vide the URL of the web service. The other optional
and required parameters are as shown.

3. Queue Manager

CPU Torrent’s Queue Manager component provides
basic features for managing the middleware queue.
Utility sub-jobs are added to and removed from the
Queue via the Queue Manager. The results of a sub-job
are also retrieved via the Queue Manager.

4. Queue Processor

The Queue Processor processes the Job Queue. When
a new sub-job is added to the queue, the Queue Proces-
sor is activated and uses the Policy Manager to decide
to which server to send the utility sub-job.

5. Policy Manager

The Policy Manager uses a configuration file to deter-
mine the “best” server to which a utility sub-job can
be sent. This file specifies what ratio of such sub-
jobs should be sent to each server. For example, if
there were three servers, the Proprietary Service orga-
nization could define the ratios such that 30% of the
utility sub-jobs are sent to server 0, 50% to server 1,
and the remaining 20% to server 2 (all Utility Service
providers). A more elaborate implementation of CPU
Torrent might automatically adjust the ratios based on
various factors, such as success rate, monitoring of
each server’s own job queue if possible, etc., see Sec-
tion 7.

6. Service Wrappers

For each {service, invocation mechanism} pair, it is
necessary to implement a wrapper (treated as a plug-
in) that handles the specifics of how a sub-job is sub-
mitted and how the results are retrieved. This code is
invoked by the Queue Processor when it chooses to
run a particular sub-job on a particular server. The
Queue Processor uses an XML file as explained above

to obtain the configuration parameters for that Utility
Service provider. For example, in the case of NCBI
netblast, the XML file indicates the file system path
to the program to run and the options to that program
(command-line arguments to the executable). This will
be InvokeNetBlast, the path to the local installation of
NCBI netblast, and blastp, respectively. This is shown
in figure 5.

In the case of PredictProtein, we decided to use one Lo-
cal Server and one External Server utility provider. The
PredictProtein daemon splits all jobs when they arrive, and
sends the utility part of the job (blast) to the CPU Torrent
middleware. It then periodically checks the status of those
sub-jobs, and retrieves the results when they become avail-
able. It would then schedule the remaining part of the job
and proceed as normal.

More generally: if a Proprietary Service organization
wants to use CPU Torrent, it would have to specify and im-
plement Service Wrappers for the various External Server
utility providers to which it plans to offload the utility parts
of relevant jobs as well as the priorities associated with each
of those providers (i.e., if more than one, or if a Local Server
should be used for some of these sub-jobs – if everything is
to be sent to an External Server, then 100%). The Propri-
etary Service server code would need to be modifed to use
CPU Torrent’s API (outlined above) to send the utility part
of the job to the CPU Torrent middleware. It would have
to periodically check the status of that sub-job, and if/when
the results are available, retrieve them and use them during
the rest of the proprietary job.

5. Theoretical Analysis

To study the utility of the CPU Torrent system, we con-
ducted a theoretical analysis using Queuing Theory. This
analysis shows the potential benefits for an existing Propri-
etary Service provider installation to use CPU Torrent. The
expected benefits are the reduction in both user wait time
and the CPU load on provider resources. The analysis is
presented below.

Let t be the total time required for a job. Let tq be the
time spent waiting on the queue and tp be the actual pro-
cessing time. Thus, we have

t = tp + tq (1)

Let to be the processing time of the offloadable sub-jobs
like blast. Let tno be the processing time of non-offloadable
sub-jobs. With CPU Torrent, we can improve t by using the
time spent on the queue to process the offloadable sub-jobs
elsewhere. Let ttorrent be the time taken by a proprietary
service provider to complete an entire job, including its use

6

<s e r v e r i d =“0” name=“NCBI netblast”>
<p a r a m e t e r s>
<p a r a m e t e r r e q u i r e d =“true” name=“classname”>I n v o k e N e t B l a s t </ p a r a m e t e r>
<p a r a m e t e r r e q u i r e d =“true” name=“command”>C:\\ n e t b l a s t \\ b l a s t c l 3 </ p a r a m e t e r>

</ p a r a m e t e r s>
</ s e r v e r>
<s e r v e r i d =“1” name=“DDBJ Blast using REST”>

<p a r a m e t e r s>
<p a r a m e t e r r e q u i r e d =“true” name=“classname”>InvokeDDBJBlast </ p a r a m e t e r>
<p a r a m e t e r r e q u i r e d =“true” name=“url”>

h t t p : / / xml . ddb j . n i g . ac . j p / r e s t / Invoke </ p a r a m e t e r>
<p a r a m e t e r r e q u i r e d =“true” name=“service”>B l a s t </ p a r a m e t e r>
<p a r a m e t e r r e q u i r e d =“false” name=“method”>s e a r c h S i m p l e </ p a r a m e t e r>

</ p a r a m e t e r s>
</ s e r v e r>

Figure 5. Sample XML configuration file for NCBI netblast and DDBJ Blast using REST

of CPU Torrent. Thus, we have

ttorrent = tq + tno (2)

In equation (2), we make the assumption that tq > to.
We consider the alternative case, where tq < to, below.
Percentage Time Improvement, ti, is given by

ti =
t− ttorrent

t
× 100

=
to

tp + tq
× 100 (3)

From Queuing Theory, we assume the M/M/1 Model
with

• 1 Server with Server Time asmµ (µ is the service time
of each individual node, m is the number of nodes)

• Poisson Arrivals

• Exponential Service Time Distribution

The Average Waiting Time, W , is given by,

W =
λ

mµ(mµ− λ)
(4)

where, λ = Rate of Incoming Jobs.
Thus, from (1), (2), (3), and (4), we have,

ti =
αm(m− tpλ)

tpλ(1−m) +m2
× 100 (5)

where α = to

tp
, i.e., the fraction of the entire process that

can be offloaded.
As m is the number of nodes, this number is fixed for

a given Proprietary Service installation. Also, λ is more

or less constant once the system has reached a steady state.
For example, PredictProtein, during the period it was mon-
itored, received about 19 requests/hour. Hence, λ = 19.
Also, we know that the implementation of PredictProtein
has 46 nodes. Hence, m = 46.

Figure 6. Processing Time Improvement

Figure 6 shows the plot of ti as a function of tp for dif-
ferent values of α and treating m and λ as constants. From
(5), we see that ti ∝ 1

tq
. This means that as the time spent

on the queue increases, the time improvement is of dimin-
ishing importance. This will be even further amplified if
tq � tp.

As shown in figure 1, there were many periods during
which the job queue for PredictProtein was empty. Thus,
both tq and ti were 0. With an empty queue, there are
no time improvements gained by offloading some compu-
tation; in fact, it may actually increase the time required
due to overhead like network delays. However, even in this
case, the load on the Local Server can be reduced by CPU
Torrent at the cost of a marginally slower response time (i.e.,

7

tp + δ instead of tp, where δ = overhead due to factors like
network delays). This is shown below.

Let lp be the CPU load for the entire job submitted. Let
lo and lno be the CPU load for the offloadable and non-
offloadable sub-jobs, respectively. Thus, we have

lp = lo + lno (6)

Let ltorrent be the CPU load for the entire process when
we use CPU Torrent.

ltorrent = lno + βlo (7)

where β = fraction of the offloadable sub-jobs that we pro-
cess locally. Percentage Load Improvement, li is given by

li =
lp − ltorrent

lp
× 100

=
lo(1− β)
lo + lno

× 100 (8)

Let α = lo
lp

. Thus α is the fraction of the entire process
which can be offloaded. Thus, from (8), we have

li = α(1− β)× 100 (9)

Figure 7. Load Improvement

Figure 7 shows the plot of li as a function of 1 − β
for different values of α. Thus, from equation (9) and fig-
ure 7, we see the potential benefits of using CPU Torrent
even in cases where the wait time on the Proprietary Service
provider queue is zero. In such situations, we can reduce the
load on the Local Servers. This could prove critical if there
is a sudden spike in the rate of incoming jobs, as has been
observed in the case of PredictProtein. The same analysis
would also hold in the case where tq < to, from equation
(2).

6. Related Work

There are a variety of systems that have previously im-
plemented some form of CPU cycle offloading, but they do

not address the application characteristics outlined above in
Section 1 with respect to non-parallelizability and sequen-
tial workflow nature.

The SETI@home [3] project was one of the first ex-
periments in public-resource computing. It uses millions
of computers on the Internet to analyze radio signals from
space, by dividing the work into small chunks that are
offloaded to end-user’s personal computers. These small
chunks are analyzed when the CPU is idle. When each
small analysis is complete, the results are sent back to the
central server. As mentioned in [3], only certain kinds of
tasks are amenable to public-resource computing: First,
the task should have a high computing-to-data ratio, i.e.,
tasks that require a lot of CPU time, but involve very small
amounts of transported data. Second, the tasks need to be
inherently parallelizable. It is difficult to handle issues like
data dependencies using SETI@home’s model.

However, neither of these constraints hold for CPU Tor-
rent’s target applications: For example, in the case of the
blast utility sub-job, the data required to perform the se-
quence alignment is around 70GB, whereas the CPU time
required is typically a few minutes. Hence, we have a very
low computing-to-data ratio. Also, in the case of Predict-
Protein, there are dependencies between the utility and the
proprietary jobs. Usually, the output of the utility job is used
as part of the input for the proprietary job. Due to these rea-
sons, the SETI@home model would not work and we need
a different model. In our model, we handle dependencies by
using the time spent waiting on the queue to process part of
the job externally. Due to the low computing-to-data ratio,
we do not offload the computation to end users, but instead,
to other service providers.

The Berkeley Open Infrastructure for Network Comput-
ing (BOINC) [2] evolved from the SETI@home project.
Their goal is to provide an infrastructure for public-resource
computing and to reduce the barriers of entry to create
and operate a public-resource computing project. BOINC
makes it easy for scientific computing researchers to harvest
the power of public-resource computing. This is evident
from the large numbers of projects which use BOINC such
as Climateprediction.net [23] and Predictor@home [26].
The BOINC project has a good generalized architecture and
many useful features, like keeping track of user contribu-
tions. However, its model is not directly useful for the ap-
plications targeted by CPU Torrent.

7. Limitations and Future Work

We call our system CPU Torrent due to the analogy to
BitTorrent outlined in Section 1 above. However, the com-
parison to BitTorrent is admittedly weak. In particular, it is
unlikely we could send utility sub-jobs to the end-user’s lap-
top: We can only submit to pre-existing heavyweight Utility

8

Service providers that can handle the CPU cycle and stor-
age load. Our approach is, at present, more akin to using
mirrors to download data rather than the BitTorrent peer-to-
peer architecture.

Also, in BitTorrent, ad hoc clients can join/leave a file
distribution community on the fly. When deciding how
much bandwidth to allocate to a given client, real-time
rather than historic contribution is used. The longer term
goals for CPU Torrent include organizing communities of
users and user organizations based in part on their usage as
well as provisioning of both utility and proprietary service
providers. For example, user jobs might be given priority
on the basis of a Karma Rating. We have in mind that this
would be the measure of “goodness” of a user derived from
the user’s or group’s (or other identifiable unit’s) historic/re-
cent contribution of “quality of service” (max CPU cycles,
min queue wait time) to the community.

Another useful addition to CPU Torrent would be the
ability to dynamically load-balance among the various ser-
vice providers. This could override the static configuration
provided by the Policy Manager, and would enable CPU
Torrent to send jobs to servers that have a smaller wait time
and/or job queue. This would require some way for CPU
Torrent to monitor the status of the job queues for the exter-
nal service providers. This could be done programmatically,
if provided by the service provider, or through screen scrap-
ing, if necessary. If neither of these are viable, one option
would be to send fake jobs to the service providers and in-
fer the load on the provider by the time taken for the job to
complete.

Finally, we need to analyze the real-life benefits and
compare them to the theoretical ones in section 5. We have
transferred the technology and our implementation to the
developers of PredictProtein and we await final integration
with their system. Once this is complete, we will be able to
measure the real benefits of using CPU Torrent.

8. Conclusion

We have presented an approach called CPU Torrent to
offload computations of sub-parts of heavyweight scien-
tific computation workflows onto external service providers,
which has been implemented in limited proof-of-concept
form. CPU Torrent reduces user wait time and provider re-
source requirements.

9. Acknowledgements

We would like to thank Guy Yachdav and Eyal Mozes
for their assistance with PredictProtein. We would also
like to thank Aaron Fernandes, Shruti Gandhi, and Bhavesh
Patira for their collaboration on the implementation of the

CPU Torrent system. The authors are members of the Pro-
gramhming Systems Lab, funded in part by NSF CNS-
0717544, CNS-0627473 and CNS-0426623, and NIH 1
U54 CA121852-01A1.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search tool. J Mol Biol, 215(3):403–
410, 1990.

[2] D. P. Anderson. BOINC: A System for Public-Resource
Computing and Storage. In GRID ’04: Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, Washington, DC, USA, 2004. IEEE Computer
Society.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56–61, 2002.

[4] D. Bitouk and S. K. Nayar. Creating a Speech Enabled
Avatar from a Single Photograph. In Proceedings of IEEE
Virtual Reality, Mar 2008.

[5] A. R. Butt, R. Zhang, and Y. C. Hu. A Self-Organizing Flock
of Condors. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 42, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] J. Chen and W. van der Aalst. On scientific workflow. TCSC
Newsletter, IEEE Technical Committee on Scalable Comput-
ing, 9(1), 2007.

[7] B. Cohen. BitTorrent Protocol 1.0.
http://www.bittorrent.org/beps/bep 0003.html, 2002.

[8] DNA Data Bank of Japan. http://www.ddbj.nig.ac.jp.
[9] DNA Data Bank of Japan. DDBJ Blast.

http://blast.ddbj.nig.ac.jp/top-e.html, 2008.
[10] European Bioinformatics Institute. http://www.ebi.ac.uk.
[11] V. A. Eyrich and B. Rost. META-PP: single interface

to crucial prediction servers. Nucleic Acids Research,
31(13):3308–10, 2003.

[12] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Univer-
sity of California, Irvine, 2000.

[13] I. Foster and C. Kesselman. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publish-
ers Inc., USA, 2003.

[14] D. Higgins, J. Thompson, and T. Gibson. Using CLUSTAL
for multiple sequence alignments. Methods Enzymol.,
266:383–402, 1996.

[15] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Hand-
book of Fingerprint Recognition. Springer-Verlag, New
York, USA, 2003.

[16] J. E. Moreira, V. Salapura, G. Almasi, C. Archer,
R. Bellofatto, P. Bergner, R. Bickford, M. Blumrich, J. R.
Brunheroto, A. A. Bright, M. Brutman, n. José G. Casta
D. Chen, P. Coteus, P. Crumley, S. Ellis, T. Engelsiepen,
A. Gara, M. Giampapa, T. Gooding, S. Hall, R. A. Haring,
R. Haskin, P. Heidelberger, D. Hoenicke, T. Inglett, G. V.
Kopcsay, D. Lieber, D. Limpert, P. McCarthy, M. Megerian,
M. Mundy, M. Ohmacht, J. Parker, R. A. Rand, D. Reed,

9

R. Sahoo, A. Sanomiya, R. Shok, B. Smith, G. G. Stew-
art, T. Takken, P. Vranas, B. Wallenfelt, M. Blocksome, and
J. Ratterman. The blue gene/L supercomputer: a hardware
and software story. Int. J. Parallel Program., 35(3):181–
206, 2007.

[17] National Center for Biotechnology In-
formation. FASTA format description.
http://www.ncbi.nlm.nih.gov/blast/fasta.shtml.

[18] National Center for Biotechnology Information.
http://ncbi.nih.gov.

[19] National Center for Biotechnology Information. NCBI net-
blast. ftp://ftp.ncbi.nih.gov/blast/documents/netblast.html.

[20] National Center for Biotechnology Information. NCBI Blast
README. ftp://ftp.ncbi.nih.gov/blast/db/README, 2007.

[21] National Center for Computational Sciences. In-
teractive Batch Jobs. http://www.nccs.gov/computing-
resources/jaguar/running-jobs/interactive-batch-jobs/.

[22] B. Rost, G. Yachdav, and J. Liu. The PredictProtein Server.
Nucleic Acids Research, 32(Web Server Issue):W321–
W326, 2004.

[23] D. Stainforth, J. Kettleborough, A. Martin, A. Simpson,
R. Gillis, A. Akkas, R. Gault, M. Collins, D. Gavaghan,
and M. Allen. Climateprediction.net: Design Principles for
Public-Resource Modeling Research. In Proceedings of the
14th IASTED International Conference on Parallel and Dis-
tributed Computing Systems, 2002.

[24] Sun Microsystems. Sun Grid Engine.
http://www.sun.com/software/gridware, 2008.

[25] H. Takemiya, Y. Tanaka, S. Sekiguchi, S. Ogata, R. K. Kalia,
A. Nakano, and P. Vashishta. Sustainable adaptive grid su-
percomputing: multiscale simulation of semiconductor pro-
cessing across the pacific. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 106,
New York, NY, USA, 2006. ACM.

[26] The Scripps Research Institute. Predictor@home.
http://predictor.scripps.edu.

[27] N. Venkateswaran, D. Srinivasan, M. Manivannan, T. P.
R. S. Sagar, S. Gopalakrishnan, V. Elangovan, K. Chan-
drasekar, P. K. Ramesh, V. Venkatesan, A. Babu, and Sud-
harshan. Future generation supercomputers I: a paradigm
for node architecture. SIGARCH Comput. Archit. News,
35(5):49–60, 2007.

[28] J. Yu and R. Buyya. A taxonomy of scientific workflow
systems for grid computing. SIGMOD Rec., 34(3):44–49,
2005.

10

