
© 2017 A. Alawini, S. Davidson

Datalog	

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

	
http://www.cis.upenn.edu/~susan/cis700/homepage.html

• Sign	up	to	present	a	paper	(the	Google	doc	link	was	sent	on	
Friday)	

• Class	schedule	is	being	updated	based	on	this.	

Homework for this week

University	of	Pennsylvania	 2	

• First	summary	is	on	the	following	paper:	
• “Big	Data	Analytics	with	Datalog	Queries	on	Spark”	SIGMOD	2016	

• What	is	a	summary	(print	and	bring	to	class)?	
• Short	paragraph	describing	paper	
• 1-3	“strengths”,	1-3	“weaknesses”	

• At	least	one	question	you	have	about	the	paper.	

First paper summary due 2/5

University	of	Pennsylvania	 3	

• Facts	(EDB)	and	rules	(IDB)	
• Safe	queries	
• Negation	can	be	tricky…	

Last time: Datalog

University	of	Pennsylvania	 4	

5	

The Bachelor problem
Suppose we have an EDB relation married(x,y)

and want to calculate the bachelors.

Not correct (and not safe):

bachelor(y) :- NOT married(x,y)

bachelor(y) :- person(x), person(Y), NOT married(x,y)

notBachelor(y):- married(x,y)
notBachelor(x):- married(x,y)
bachelor(y) :- person(y), NOT notBachelor(y)

Also not correct (but safe):

Correct (and safe):

• A	simple	recursive	program	and	naïve	evaluation	

• Evaluating	Datalog+	programs	

• Negation	can	still	be	tricky…	

This time: Datalog+ with Recursion

University	of	Pennsylvania	 6	

• Non-recursive	Datalog	with	negation	is	a	cleaned-up	core	of	SQL	

• Unions	of	conjunctive	queries	
•  Forms	the	core	of	query	optimization,	what	we	know	how	to	reason	over	easily	

• You	can	translate	easily	between	non-recursive	Datalog	with	negation	and	
SQL.	

•  Take	the	join	of	the	nonnegated,	relational	subgoals	and	select/delete	from	
there.	

Datalog versus SQL

University	of	Pennsylvania	 7	

• Recursion		

• Rules	express	things	that	go	on	in	both	FROM	and	
WHERE	clauses,	and	let	us	state	some	general	
principles	(e.g.,	containment	of	rules)	that	are	almost	
impossible	to	state	correctly	in	SQL.	

Why Datalog?

University	of	Pennsylvania	 8	

Simple recursive Datalog program

University	of	Pennsylvania	 9	

1	 2	

2	 1	

2	 3	

1	 4	

3	 4	

4	 5	

R=

R encodes a graph.

T(x,y):- R(x,y)
T(x,y):- R(x,z), T(z,y)

What does T compute?

10	

Naïve Evaluation

T=	{}	

WHILE	(changes	to	T)	DO	

	 		T=	T	U	(R(x,y)	U	(R(x,y)	⋈T(y,z)))	

Simple recursive Datalog program

University	of	Pennsylvania	 11	

1	 2	

2	 1	

2	 3	

1	 4	

3	 4	

4	 5	

R=

R encodes a graph.
T(x,y):- R(x,y)
T(x,y):- R(x,z), T(z,y)

Alternate ways to compute
transitive closure:

T(x,y):- R(x,y)
T(x,y):- T(x,z), R(z,y)

T(x,y):- R(x,y)
T(x,y):- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

Another Interesting Program

University	of	Pennsylvania	 12	

1	 2	

2	 1	

2	 3	

1	 4	

3	 4	

4	 5	

R= ODD(x,y):- R(x,y)
ODD(x,y):- R(x,z), EVEN(z,y)
EVEN(x,y):-R(x,z), ODD(z,y)
Q:- ODD(x,x)

Non 2-colorability: R encodes a graph.

13	

Evaluating Datalog+ Programs

1.  Nonrecursive	programs.	

2.  Naïve	evaluation	of	recursive	programs	without	
negation.	

3.  Semi-naïve	evaluation	of	recursive	programs	without	
negation.	
§  Eliminates	some	redundant	computation.	

14	

Nonrecursive Evaluation

• If	(and	only	if!)	a	Datalog	program	is	not	recursive,	
then	we	can	order	the	IDB	predicates	so	that	in	any	
rule	for	p		(i.e.,	p		is	the	head	predicate),	the	only	
IDB	predicates	in	the	body	precede	p.	

15	

Why?

• Consider	the	dependency	graph		with:	
• Nodes	=	IDB	predicates.	

• Arc	p	à	q		iff	there	is	a	rule	for	p		with	q		in	the	body.	

• Cycle	involving	node	p		means	p		is	recursive.	

• No	cycles:	use	topological	order	to	evaluate	predicates.	

16	

Applying Rules

To	evaluate	an	IDB	predicate	p	:	
1.  Apply		each	rule	for	p		to	the	current	relations	corresponding	to	

its	subgoals.	

§  “Apply”	=	If	an	assignment	of	values	to	variables	makes	
the	body	true,	insert	the	tuple	that	the	head	becomes	into	
the	relation	for	p		(no	duplicates).	

§  Also	think	of	the	“product”	of	the	relations	corresponding	
to	the	subgoals	with	selection/join	conditions	

2.  Take	the	union	of	the	result	for	each	p-rule.	

17	

Example

• Assignments	making	the	body	true:		 		

				(x,y,z)	=	(1,5,2),	(3,9,4)	

• So	P	=	{(1,5),	(3,9)}.	

Q={(1,2), (3,4)}
R={(2,5),(4,9),(4,10), (6,7)}

P(x,y) :- Q(x,z), R(z,y), y<10

18	

Algorithm for Nonrecursive

FOR	(each	predicate	P	in	topological	order)	DO	

					Apply	the	rules	for	P	to	 	previously	computed	

							relations 	to	compute	relation	P;	

19	

Naïve Evaluation for Recursive

make	all	IDB	relations	empty;	

WHILE	(changes	to	IDB)	DO	

								FOR	(each	IDB	predicate	P)	DO	

	 												Evaluate	P	using	current			values	of	all	relations;	

20	

Important Points

• As	long	as	there	is	no	negation	of	IDB	subgoals,	then	each	
IDB	relation	“grows,”	i.e.,	on	each	round	it	contains	at	least	
what	it	used	to	contain.	
• monotonicity	

• Since	relations	are	finite,	the	loop	must	eventually	
terminate.	

• Result	is	the	least	fixedpoint		(minimal	model)	of	rules.	

• The	same	facts	are	discovered	over	and	over	again.	

• The	semi-naïve	algorithm	tries	to	reduce	the	number	of	facts	
discovered	multiple	times.	
• There	is	a	similarity	to	incremental	view	maintenance	

Problem with Naïve Evaluation

University	of	Pennsylvania	 21	

Background: Incremental View Maintenance

University	of	Pennsylvania	 22	

V(x,y):-	R(x,z),S(z,y)	

If Rß R U ΔR then what is ΔV(X,Y)?

ΔV(x,y):-	ΔR(x,z),S(z,y)	

If Rß R U ΔR and Sß S U ΔS then what is ΔV(X,Y)?

ΔV(x,y):-	ΔR(x,z),S(z,y)	
ΔV(x,y):-	R(x,z),	ΔS(z,y)	
ΔV(x,y):-	ΔR(x,z),	ΔS(z,y)	

Background: Incremental View Maintenance

University	of	Pennsylvania	 23	

V(x,y):-	T(x,z),T(z,y)	

If Tß T U ΔT then what is ΔV(X,Y)?

ΔV(x,y):-	ΔT(x,z),T(z,y)	
ΔV(x,y):-	T(x,z),	ΔT(z,y)	
ΔV(x,y):-	ΔT(x,z),	ΔT(z,y)	

24	

Semi-naïve Evaluation

• Key	idea:	to	get	a	new	tuple	for	relation	P	on	one	round,	
the	evaluation	must	use	some	tuple	for	some	relation	of	
the	body	that	was	obtained	on	the	previous	round.	

• Maintain	ΔP	=	new	tuples	added	to	P	on	previous	round.	

• “Differentiate”	rule	bodies	to	be	union	of	bodies	with	one	
IDB	subgoal	made	“Δ.”	

• Separate	the	Datalog	program	into	the	non-recursive,	and	the	recursive	part.	

• Each	Pi	defined	by	non-recursive-SPJUi	and	(recursive-)SPJUi.	

Semi-naïve Evaluation

University	of	Pennsylvania	 25	

P1	=	ΔP1	=	non-recursive-SPJU1,	
P2	=	ΔP2	=	non-recursive-SPJU2,	
…
Loop	
						ΔP1 = Δ SPJU1 – P1; ΔP2 = ΔSPJU2 – P2; …
 if	(ΔP1	=	∅	and	ΔP2	=	∅	and	…)	then	break	
							P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop	

Semi-naïve Evaluation

University	of	Pennsylvania	 26	

P1	=	ΔP1	=	non-recursive-SPJU1,	
P2	=	ΔP2	=	non-recursive-SPJU2,	
…
Loop	
						ΔP1 = Δ SPJU1 – P1; ΔP2 = ΔSPJU2 – P2; …
 if	(ΔP1	=	∅	and	ΔP2	=	∅	and	…)	then	break	
							P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop	

T(x,y):- R(x,y)
T(x,y):- R(x,z), T(z,y)	

T(x,y) = ΔT(x,y) =	?	(nonrecursive	rule)
Loop	
				ΔT(x,y) = ?	(recursive	Δ-rule)
 if (ΔT = ∅)	then	break	

				T = T∪ΔT
Endloop	

Semi-naïve Evaluation

University	of	Pennsylvania	 27	

P1	=	ΔP1	=	non-recursive-SPJU1,	
P2	=	ΔP2	=	non-recursive-SPJU2,	
…
Loop	
						ΔP1 = Δ SPJU1 – P1; ΔP2 = ΔSPJU2 – P2; …
 if	(ΔP1	=	∅	and	ΔP2	=	∅	and	…)	then	break	
							P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop	

T(x,y):- R(x,y)
T(x,y):- R(x,z), T(z,y)	

T(x,y) = ΔT(x,y) =	R(x,y)
Loop	
				ΔT(x,y) = (R(x,z),	ΔT(z,y))-	R(x,y)
 if (ΔT = ∅)	then	break	

				T = T∪ΔT
Endloop	

• Avoids	recomputing	some	(but	not	all)	tuples	

• Easy	to	implement,	no	disadvantage	over	naïve	

• A	rule	is	called	linear	if	its	body	contains	only	one	recursive	IDB	
predicate:	

• A	linear	rule	always	results	in	a	single	incremental	rule	

• A	non-linear	rule	may	result	in	multiple	incremental	rules	

Discussion of Semi-Naïve Algorithm

University	of	Pennsylvania	 28	

29	

Recursion and Negation
Don’t Like Each Other

• When	rules	have	negated	IDB	subgoals,	there	can	be	
several	minimal	models.	

• Recall:	model		=	set	of	IDB	facts,	plus	the	given	EDB	facts,	
that	make	the	rules	true	for	every	assignment	of	values	to	
variables.	
• Rule	is	true	unless	body	is	true	and	head	is	false.	

S(x):-	R(x),	not	T(x)	
T(x):-	R(x),	not	S(x)	

Suppose	R(a).			
What	are	S	and	T?	

Next time: Datalog-

University	of	Pennsylvania	 30	

