

Datalog

Susan B. Davidson

CIS 700: Advanced Topics in Databases

MW 1:30-3

Towne 309

http://www.cis.upenn.edu/~susan/cis700/homepage.html

References

- Textbooks
 - Ramakrishnan and Gehrke, Ch 24
 - Ullman ("Principles of Database and Knowledge-Base Systems: Vol 1"), Ch 3
 - Abiteboul, Hull and Vianu ("Foundations of Databases"), Ch. 12, 13:1-3, 15:1-3
 - Phokion Kolaitis' <u>tutorial</u> on database theory at Simon's

https://simons.berkeley.edu/sites/default/files/docs/5241/simons16-21.pdf

Homework for next week (1/24)

- Read and write a summary on one of the following two papers:
 - Joe Hellerstein, "The Declarative Imperative," SIGMOD Record 2010
 - Afrati and Ullman, "Transitive Closure and Recursive Datalog Implemented on Clusters" EDBT2012
- What is a summary (print and bring to class)?
 - Short paragraph describing paper
 - 1-3 "strengths", 1-3 "weaknesses"
 - At least one question you have about the paper.

What is Datalog?

- Logic-based data model designed for recursive queries.
 - "Prolog for Databases"
- Introduced by Chandra and Harel in 1982 and has been widely studied by the research community.
- Modern implementations: commercial (LogicBlox, Datomic), networking (Overlog), programming languages,...
- SQL:1999 and subsequent versions of the SQL standard provide support for linear Datalog.
- We will cover the syntax, semantics, and how to evaluate

Actor(id,fname,Iname)
Casts(pid, mid)
Movie(id, name, year)

Facts = tuples in the database

Rules= queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z),z='1940'

Find Movies made in 1940

Actor(id,fname,Iname)
Casts(pid, mid)
Movie(id, name, year)

Facts = tuples in the database

Rules= queries

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Q1(y):- Movie(x,y,z),z='1940'

Q2(f,l):- Actor(z,f,l),Casts(z,x), Movie(x,y,'1940')

Find Actors who acted in Movies made in 1940

Actor(id,fname,lname)
Casts(pid, mid)
Movie(id, name, year)

Facts = tuples in the database

Actor(344759, 'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Rules= queries

Q1(y):- Movie(x,y,z),z='1940'

Q2(f,l):- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940')

Q2(f,l):- Actor(z,f,l),Casts(z,x1),
Movie(x1,y1,'1910'),
Casts(z,x2), Movie(x2,y2,'1940')

Find Actors who acted in a Movies in 1940 and in one in 1910.

Actor(id,fname,lname)
Casts(pid, mid)
Movie(id, name, year)

Facts = tuples in the database

Actor(344759,'Douglas', 'Fowley').

Casts(344759, 29851).

Casts(355713, 29000).

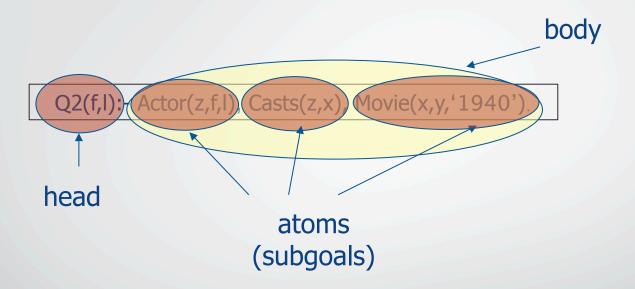
Movie(7909, 'A Night in Armour', 1910).

Movie(29000, 'Arizona', 1940).

Movie(29445, 'Ave Maria', 1940).

Rules= queries

Q1(y):- Movie(x,y,z),z='1940'


Q2(f,l):- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940')

Q2(f,l):- Actor(z,f,l),Casts(z,x1),
Movie(x1,y1,'1910'),
Casts(z,x1), Movie(x1,y1,'1910')

Extensional Database Predicates = EDB (Actor, Casts, Movie)
Intensional Database Predicates = IDB (Q1, Q2, Q3)

Terminology

f, I = head variablesx, y, z = existential variables

"The head is true if all the subgoals are true."

Safe Datalog Rule

Likes(drinker, beer)
Serves(bar, beer)
Freq(drinker, bar)

A Datalog rule is <u>safe</u> if every variable appears in some positive relational atom.

Q10(d,ba):- Likes(d,be), Serves(ba,be), not Freq(d,ba)

What is this query asking?

Safe Datalog Rule

Actor(id,fname,lname)
Casts(pid, mid)
Movie(id, name, year)

A Datalog rule is <u>safe</u> if every variable appears in some positive relational atom.

Here are some <u>unsafe</u> Datalog rules. What is "unsafe" about them?

U1(x,y):- Movie(x,z,'1940'),y>'1910'

Q1(x):- Movie(x,z, '1940'), not Casts(u,x)

Some examples

Likes(drinker, beer)
Serves(bar, beer)
Freq(drinker, bar)

- Write queries for the following
 - Names of all beers.
 - Names of all beers that Chris likes.
 - Drinkers who frequent at least one bar that serves a beer they like.
 - Drinkers who frequent no bars.
 - Drinkers for whom every bar that they frequent serves at least one beer that they like (and they frequent at least one bar).
 - Drinkers for whom no bar that they frequent serves a beer that they like (and they frequent at least one bar).

The Bachelor problem

Suppose we have an EDB relation married(x,y) and want to calculate the bachelors.

Is this correct?

bachelor(Y) :- NOT married(X,Y)

The Bachelor problem

Suppose we have an EDB relation married(x,y) and want to calculate the bachelors.

Is this correct?

bachelor(y) :- NOT married(x,y)

Is this correct?

bachelor(y) :- person(x), NOT married(x,y)

Datalog versus SQL

- Non-recursive Datalog with negation is a cleaned-up core of SQL
 - Unions of conjunctive queries
 - Forms the core of query optimization, what we know how to reason over easily
- You can translate easily between non-recursive Datalog with negation and SQL.
 - Take the join of the nonnegated, relational subgoals and select/delete from there.

Next time: evaluating Datalog⁺