
Approximated Provenance for Complex Applications

Eleanor Ainy
Tel Aviv University
eleanora@cs.tau.ac.il

Susan B. Davidson
University of Pennsylvania

susan@cis.upenn.edu

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Tova Milo
Tel Aviv University
milo@post.tau.ac.il

Abstract
Many applications nowadays involve the collection of mass data
from multiple users, aggregating and manipulating it in intricate
ways. The complexity of such applications, combined with the typ-
ically large size of collected data, makes it difficult to understand
how information was derived, and consequently to asses its cred-
ibility, to optimize and debug its derivation, etc. Provenance has
been helpful in achieving such goals in different contexts, and we
illustrate its potential for novel complex applications such as those
performing crowd-sourcing. We note that maintaining (and present-
ing) the full and exact provenance information may be infeasible
for such applications, due to the provenance large size and com-
plex structure. We consequently propose initial directions towards
addressing this challenge, through a notion of approximated prove-
nance.

1. Introduction
Applications that involve the collection, aggregation and manipula-
tion of mass data, interacting with multiple users in intricate ways,
have become increasingly popular. A notable example is the flour-
ish of crowd-sourcing applications such as Wikipedia, social tag-
ging systems for images, traffic information aggregators like Waze,
hotel and movie ratings like TripAdvisor and IMDb. and platforms
for performing complex tasks like protein folding via the online
game FoldIt.

Several questions arise relating to how data was derived: as a
consumer, what is the basis for trusting the information? If the
information seems wrong, how can the provider debug why it is
wrong? And if some data is found to be wrong, e.g. created by
a spammer, how can it be “undone”, affecting some aggregated
result? At its core, the answer to these questions is based on the
provenance of the collected data and resulting information, that
is who provided the information in what context, and how the
information was manipulated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c� 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

We start by providing two concrete examples of provenance for
complex applications, focusing on the crowd-sourcing domain.

TripAdvisor aggregates crowd-sourced travel-related reviews
(of restaurants, hotels, etc.), and presents average ratings of re-
viewed destinations. The individual reviews thus stand as the prove-

nance of the average rating. TripAdvisor also provides users with
several different views of this provenance: viewing ratings and in-
dividual reviews, or aggregating them separately for different trip
types (e.g. family, couple, or solo). Through such views, we may
understand better how the aggregated rating was computed, who
provided the information, when they traveled, etc.

Wikipedia keeps extensive information about provenance of
edited pages. This includes the ID of the user who generated the
page and information regarding changes to pages, recording when
the change was made, who made the change, a (natural language)
summary of the change, etc. Wikipedia also provides several views
on this provenance information, e.g. view by page (through clicking
on the “View History” tab) or by editor (which gives information
about them and all their contributions to Wikipedia pages).

As exemplified above, current systems use a simple solution for
provenance management, namely recording provenance and pre-
senting some given views of it upon request. While provenance is
indeed useful for presentation and explanation, we will discuss be-
low how it is also useful for maintenance and optimization of the
application. We claim that simply recording all provenance is an
inadequate approach for these purposes in this settings, due to the
complexity of processes and the typically large size of provenance
information. For instance, in a crowd-sourcing setting, the process
is complex since data is collected through a variety of means, rang-
ing from simple questions (e.g. “In which picture is this person
the oldest?”or “What is the capital of France?”), to Datalog-style
reasoning [7], to dynamic processes that evolve as answers are
received from the crowd (e.g. mining association rules from the
crowd [4]). The complexity of the process, together with the num-
ber of user inputs involved in the derivation of even a single value,
lead to an especially large provenance size, which leads to further
difficulties in viewing and understanding the information.

We next identify particular challenges in leveraging provenance
for presentation and maintenance, while accounting for its size and
complexity.

Summarization. A consequence of the large size of provenance
is the need for ways of summarizing or abstracting provenance
information. For example, in heavily edited Wikipedia pages we
would wish to view a higher level summary of the changes, such as
“entries x1, x2, x3 are formatting changes, entries y1, y2, y3, y4
add content, entries z1, z2 represent divergent viewpoints”, or

“entries u1, u2, u3 represent edits by robots, entries v1, v2 rep-
resent edits by Wikipedia administrators.” As another example, in
a movie-rating application we may wish to summarize the prove-
nance of the average rating for “Blue Jasmine” by saying that Eu-
ropeans aged 20-30 gave high ratings (8-10) whereas American
teenagers aged 15-18 gave low ratings (3-5).

Support of Multidimensional Views. The environment in
complex applications such as those performing crowdsourcing con-
sists of multiple components, each of which provides a perspective
through which provenance can be viewed or mined. For example,
Wikipedia allows you to see the edit history of a user, as well as
of an entry. In TripAdvisor, if there is an “outlier” review (i.e. very
negative), it would be nice to be able to see what other reviews the
person has provided to be able to calibrate their response. In appli-
cations where questions are posed to the crowd (e.g. in FoldIt), a
question perspective could be used to determine which questions
were bad or unclear, i.e. those where many users did not answer the
question or where the spread of answers was large, or we may wish
to determine why a particular question was asked of a particular
user.

Mining. Conventional management of provenance typically ad-
dresses questions such as “What data or processes contributed to
this result (and in what ways)”. For instance, in database prove-
nance, provenance may be used to identify whether a piece of data
is a component of an input tuple; in workflow provenance it may
be used to identify whether the data is a parameter or input data.
We aspire to use provenance in additional ways, and in particular
to mine it and potentially combine it with contextual information.
Returning to the rating application, we may have (contextual) infor-
mation about users, e.g. age, nationality, and sex; we may also have
information about hotels, e.g. chain name, location, etc. By mining
the provenance, we may be able to identify demographics of the
users (e.g. Europeans aged 20-30, or Americans aged 15-18) that
correlate with certain answers (e.g. ranges of scores) for classes of
hotels, providing a more in-depth analysis of the application behav-
ior and results.

Compact Representation for Maintenance and Cleaning.
The ability to mine provenance is useful not only for presenta-
tion, but also for data maintenance and cleaning. For example,
mining could be used to identify spammers, whose “bad” answers
should then be removed from an aggregate calculation. Provenance
management techniques should therefore enable hypothetical rea-
soning, and updated propagation, with respect to the effect of the
removal or deletion of certain users, questions and/or answers on
the computation. Known techniques for trust assessment, spam-
mers detection etc. may also be employed, taking (some form of)
the provenance as input, for such goals. This is of particular impor-
tance since the mining of provenance may lag behind the aggregate
calculation; for example, detecting a spammer may only be possible
when they have answered enough questions, or when enough an-
swers have been obtained from other users. Note that the aggregate
calculation may in turn have already been used in a downstream
calculation, or have been used to direct the process itself.

Perspective and Scope Provenance models have been exten-
sively studied in multiple lines of research such as provenance for
database transformations (see [5] for an overview), for workflows
(see [6] for an overview), for the web [1], for data mining applica-
tions (initial ideas can be found in [8]), and many others. The basic
provenance model that we will rely on in Section 2 is borrowed
from these foundations; the challenges listed above, however, were
not addressed. As explained above, these challenges are particu-
larly crucial to address in pursuit of a provenance framework for
complex applications.

ReviewingModule1

ProvSum
Rate

Num
Rate

UID

S14951

S22032

S3450133

Aggregator

(Alice,
MatchPoint,

7)

ReviewingModule2

(Bob,
MatchPoint,

6)

ReviewingModule3

(Carol,
MatchPoint,

9)

AvgRateNumRateSumRateMovie

9.1131501370MatchPoint

5.381370Blue
Jasmine

......

ProvUserUID

U1Alice1

U2Bob2

U3Carol

StatsUsers

ProvNatUID

A1US1

A3ISR3

Audience

ProvNews
Paper

UID

C2NYT2

Critics

(Carol,
BlueJasmine,

9)
ReviewingModule4

Figure 1. Crowdsourcing Application Workflow

2. Approximated Provenance
We propose initial directions towards a solution, based on a novel
notion of approximated provenance. Our starting point is the (ex-
act) provenance model presented in [2], which “marries” database
style and workflow-style provenance. We first explain this model.
We then explain the need for approximations, identify considera-
tions in defining good approximations, and provide initial compu-
tational results.

2.1 Workflow and Provenance Model
We start by presenting the notion of workflows that query an under-
lying database via an example from the crowd-sourcing domain.

EXAMPLE 2.1. Consider a movie reviews aggregator platform,

whose logic is captured by the workflow in Figure 1. Inputs for

the platform are reviews (scores) from users, whose identifiers and

names are stored in the Users table. Users have different roles

(e.g. movie critics, directors, audience, etc.); information about

two such roles, Critics and Audience, is shown in the correspond-

ing relations. Reviews are fed through different reviewing modules,

which “crawl” different reviewing platforms such as IMDB, news-

paper web-sites etc. Each such module updates statistics in the

Stats table, e.g. how many reviews the user has submitted (Num-
Rate), what their average score is (computed as SumRate divided

by NumRate), etc. A reviewing module also consults Stats to output

a “sanitized review”, by implementing some logic. The sanitized re-

views are then fed to an aggregator, which computes an aggregate

movies scores. There are many plausible logics for the reviewing

modules; we exemplify one in which each module “sanitizes” the

reviews by joining the users, reviews and audience/critic relation

(depending on the module), keeping only reviews of users listed un-

der the corresponding role (audience/critic), and are “active”, i.e.

submitted more than 2 reviews. The aggregator combines the re-

views obtained from all modules to compute overall movie ratings

(sum, num, avg).

An execution of such a workflow is a repeated application of the
modules, updating the database accordingly.

Provenance By looking only at the database obtained after work-
flow executions, we obtain only partial information about what hap-
pened. For instance, in our example it is hard to understand details
behind the overall rating of a given movie, i.e. how was it com-
puted, what kinds of users liked it more than others, etc. Similarly,
if we conclude (e.g. using dedicated tools) that a particular user
was a “spammer”, it may be difficult to estimate the effect of the

spammer on the overall movie rating, hence the rating may need to
be re-calculated.

However, using the provenance semirings approach of [2, 3, 9]
we may track this information. We start by assigning “provenance

tokens” to input tuples in the workflow database. These can be
thought of as abstract variables identifying the tuples. Provenance
is then propagated through manipulations of the data, creating
provenance-aware output tuples. There is an intuitive correspon-
dence between algebraic operations in the semi-module structure

[3] and data manipulation. In particular, + corresponds to the al-

ternative use of data (as in union and projection), · to the joint

use of data (as in join), ⊗ is used to “pair” annotations and val-
ues for aggregation queries, and ⊕ is used to capture the aggre-
gation function. Additional correspondences include the use of 1
for annotation of data that is always available (we do not track its
provenance), and 0 for data that is absent. We further introduce spe-
cial “condition tokens”. Intuitively such token [(d1 · d2)⊗m > 2]
is kept abstract and can be used in conjunction with other tokens.
Given concrete values for d1, d2 and m one may then test the truth
value of the equality.

EXAMPLE 2.2. Returning to Figure 1, note now the Prov column

storing provenance of the different tuples. Tuples in the Users
relation are associated with a token Ui, those in the Audience
relation are associated with Ai etc. The provenance-aware value

stored as SumRate for the “MatchPoint” tuple would be:

(U1 ·A1) · [S1 · U1 ⊗ 5 > 2]⊗ 7⊕ (U2 · C2) · [S2 · U2 ⊗ 3 > 2]⊗ 6

⊕(U3 ·A3) · [S3 · U3 ⊗ 13 > 2]⊗ 9⊕ ...

Intuitively, each numeric rating is associated with the provenance

of the tuple obtained as the output of the reviewing module, namely

the “Ui” annotation identifying the user, multiplied by either an A
or C annotation, representing the join query applied by the module

to check whether the user’s role is “critic” or “audience”. Each

such sub-expression is multiplied by an inequality term serving

as a conditional “guard”, indicating that the number of reviews

recorded for the user is above the threshold (2). Applying aggrega-

tion then results in coupling values (numeric reviews) with annota-

tions to form the expression above.

Using Provenance Provenance may serve as the basis for ad-
dressing several of the issues listed in the introduction. In particular,
maintaining provenance expressions such as those shown above en-
able users/administrators of the workflow to understand how spe-
cific movie ratings were computed. We may also use the prove-
nance expression for efficient data maintenance and cleaning: for
instance if we realize that user U2 is a spammer, we may “map”
its provenance annotation to false (0). By the algebraic laws of the
structure, this will have the effect of mapping the entire expression
(U2 · C2) · [S2 · U2 ⊗ 3 > 2]⊗ 6 to 0, thus disabling its effect on
the overall aggregate ratings.

However, storing, or showing to users, the exact and full prove-
nance expression may be infeasible. For example, there may be
many reviewers for a movie, thus the provenance expression may
be very large. We propose to address this challenge using approx-

imated provenance, i.e. we will allow some loss of information to
allow compact representation.

2.2 Approximations via Mappings
We propose to pursue provenance approximation based on map-

pings. Let Ann be a domain of annotations and let Ann� be a
domain of annotation “summaries”. Typically, we expect that |
Ann� |<<| Ann |. To model approximation, we define a mapping
h : Ann �→ Ann� which maps each annotation to a correspond-
ing “summary”. This extends naturally to expressions over Ann,
via the definition of a homomorphism. Essentially, to apply h to a

provenance expression p (we denote the result by h(p)), each oc-
currence of a ∈ Ann in p is replaced by h(a).

EXAMPLE 2.3. Recall Example 2.2, and let Ann = {U1, ...} ∪
{A1, ..} ∪ {C1, ...} ∪ {S1, ...}). Consider a homomorphism that

maps all Ui and Si annotations to 1, all Ai annotations to A and all

Ci annotations to C (so Ann� = {C,A}). Note that the mapping is

applied only to annotations and not to numeric values. By applying

the homomorphism to the provenance-aware values stored as movie

ratings, and applying the congruence rules of the semimodule, we

obtain for each movie expressions of the sort:

C ⊗ VC ⊕A⊗ VA

where VC (VA) is some concrete value, which is the sum of scores

of critics (audience) for which the “threshold” condition holds. The

condition itself was mapped to 1 for such users (thus disappeared),

and to 0 for others (causing the summand corresponding to their

review to disappear).

To understand how the above simplification was obtained note

that, for instance, for the SumRate value corresponding to Match-

Point we will get

(1 ·A) · [1⊗ 5 > 2]⊗ 7⊕ (1 · C) · [1⊗ 3 > 2]⊗ 6⊕
(1 ·A) · [1⊗ 13 > 2]⊗ 9⊕ ...

which simplifies to

A⊗ 7⊕ C ⊗ 6⊕A⊗ 9 ≡ A⊗ 16⊕ C ⊗ 6⊕
Note that we are interested in the average score. To this end,

a similar transformation will be applied to the values in the

NumRate column, resulting in an expression of the same fla-

vor, where VC would be the number of critics reviews on the movie

and VA would be the number of audience reviews (details omitted).

These quantities may then be used to compute averages by critics

and by audience.

In the example, we used one possible mapping h, that clusters
together reviews based on role. In general, however, there may be
many possible mappings and the challenge is, given a provenance
expression p to (a) define what a “good” mapping h is (and con-
sequently what is a “good” approximation h(p)), and (b) find such
“good” h.

Quantifying Approximation Quality Several, possibly compet-
ing, considerations need to be combined.

Provenance size. Since the goal of approximation is to reduce
the provenance size, it is natural to use the size of the obtained
expression as a measure of its quality.

Semantic Constraints. The obtained provenance expression
may be of little use if it is constructed by identifying multiple
unrelated annotations; it is thus natural to impose constraints on
which annotations may be grouped together. Example for a simple
such constraint is to allow two annotations a, a� ∈ Ann to be
mapped to the same annotation in Ann� (with the exception of
0 and 1) only if they annotate tuples in the same input table,
intuitively meaning that they belong to the same domain. E.g. in
the above example it allows mapping annotations Ri, Rj to the
same token, but disallows mapping Ri, Sj to the same token. Other
more complicated constraints may be based, e.g., on clustering w.r.t
similar same values in possibly multiple attributes, etc.

Further constraints may be employed to further reduce the size
of search space.

Distance. Depending on the intended use of the provenance
expression, we may quantify the distance between the original
and approximated expression. As an example, consider a distance
function designed with the intention to use provenance for re-

computation in the presence of spammers. Recall that provenance

expressions enable this using truth valuations for the tokens. Intu-
itively, specifying that u1 is a spammer corresponds to mapping it
to false (and that she is reliable corresponds to mapping the token
to true), and recomputing the derived value w.r.t this valuation.
Such valuation can again be extended in the standard way to a val-
uation V : N [Ann] �→ {true, false}. Now let VAnn be the set
of all such valuations for a set Ann of annotations. A central issue
is how we “transform” a valuation in VAnn to one in VAnn� . We
propose that this will be given by a “combiner” function φ. We can
then define the distance between a provenance expression p and
its approximated version h(p) as an average over all truth valua-
tions, of some property of p, h(p), and the valuation. This property
is based on yet another function, whose choice depends on the in-
tended provenance use. For maintenance, we may e.g. use a func-
tion that returns the absolute difference between the two expres-
sions values under the valuation or, alternatively, a function whose
value is 0 if the two expressions agree under the valuations, and
1 otherwise (so the overall distance is the fraction of disagreeing
valuations).

Putting it all together. Several computational problems are
then of interest. Given a provenance expression p (and a fixed φ)
we may wish to find a mapping h, s.t. the approximated expres-
sion p� defined by p, h, φ (a) satisfies the semantic constraints and
(b) either (1) minimizes the distance from p out of all such p� of
bounded size, or (2) minimizes the expression size, out of all ex-
pressions (obtained through some h, φ) within a bounded distance
from p. Variants of interest include treating the constraints as “soft”
ones, assigning weights to the different factors (size, constraint vi-
olations, distance) etc.

Computing Approximations A natural question is how difficult
it is to compute such approximations. Our initial results show that
even computing the goodness of an approximation defined by a
given h is already �P -hard. This is even if the combiner φ = + and
if p includes no tensor elements (no aggregation in the workflow),
and even if there are no semantic constraints. On the other hand,
we can show an absolute approximation algorithm for computing
distance between two such provenance expressions. This allows
greedy heuristics that, starting from the original set of variables,
constructs the homomorphism h gradually, by choosing at each
step to identify a pair of variables that leads to minimal increase
in distance.

Incorporating Additional Knowledge The search space defined
by possible mappings may be quite large in practice. One may add
additional constraints that guide the search using additional knowl-
edge. For instance, an estimation of how much we trust different
users (derived via dedicated techniques) can be used as an addi-
tional constraints over mapping / provenance approximations, dis-
qualifying ones that discard “too many” contributions of trusted
users. As another example, additional semantic knowledge such as
ontologies can further be used to limit the scope of considered map-
pings, intuitively restricting the attention to mappings that group
together “semantically related” annotations.

3. Conclusion
In this short vision paper, we discussed the challenges associated
with provenance for complex applications, and proposed the use
of a provenance model which “marries” database and workflow-
style provenance, with a novel notion of approximated provenance
as the basis for addressing these challenges. We note that the way
in which the approximated provenance expression is computed es-
sentially involves clustering of annotations – the clusters being
defined by the choice of homomorphism – but, unlike standard
clustering techniques, here the choice of clusters is guided by the
particular provenance expression which is in turn effected by the

tracked computation (e.g. which aggregation function was used).
The approximation-via-homomorphism approach also has the ad-
vantage of compatibility with the underlying semiring-based prove-
nance model, thereby allowing for robust foundations. Adaptation
to specific contexts can be achieved through the use of application-
depended distance functions.

However, this is just a first step and much remains to be done. In
particular: (1) How should we generate the mapping function h for
a particular approximation usage? In the examples we have given,
this could be done by mining the combined contextual and prove-
nance information to find patterns in the ratings, e.g. demographics
of the users that correlate with certain answers. (2) How does the
mining process interact with the distance function? (3) How can
approximated provenance be used for repair? Deletion propagation
and hypothetical reasoning are employed here with only partial in-
formation. Efficient implementation of these ideas is also an open
challenge.

References
[1] Provenance working group. http://www.w3.org/2011/prov/.
[2] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich,

and V. Tannen. Putting Lipstick on Pig: Enabling Database-style Work-
flow Provenance. PVLDB, 2012.

[3] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate
queries. In PODS, pages 153–164, 2011.

[4] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart. Crowd mining.
In SIGMOD Conference, 2013.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why,
how, and where. Foundations and Trends in Databases, 1(4):379–474,
2009.

[6] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD Conference, pages 1345–
1350, 2008.

[7] D. Deutch, O. Greenshpan, B. Kostenko, and T. Milo. Declarative
platform for data sourcing games. In WWW, pages 779–788, 2012.

[8] B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller. Provenance for
Data Mining. In Theory and Practice of Provenance (TAPP), 2013.

[9] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31–40, 2007.

