
Translating Dependency into Parametricity

Stephen Tse Steve Zdancewic

University of Pennsylvania

Technical report: MS-CIS-04-01

Abstract
Abadi et al. introduced the dependency core calculus (DCC)
as a unifying framework to study many important program
analyses such as binding time, information flow, slicing, and
function call tracking. DCC uses a lattice of monads and a
nonstandard typing rule for their associated bind operations
to describe the dependency of computations in a program.
Abadi et al. proved a noninterference theorem that estab-
lishes the correctness of DCC’s type system and thus the
correctness of the type systems for the analyses above.

In this paper, we study the relationship between DCC and
the Girard-Reynolds polymorphic lambda calculus (System
F). We encode the recursion-free fragment of DCC into F
via a type-directed translation. Our main theoretical result
is that, following from the correctness of the translation,
the parametricity theorem for F implies the noninterference
theorem for DCC. In addition, the translation provides in-
sights into DCC’s type system and suggests implementation
strategies of dependency calculi in polymorphic languages.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Languages, Security

Keywords
Dependency, parametricity, noninterference, translation, DCC,
information flow, security, monads, polymorphism, lambda
calculus, logical relations, protection contexts, Haskell

1. Introduction
Abadi et al. introduced the dependency core calculus (DCC)

as a unifying framework to study many important program

Stephen Tse <stse@cis.upenn.edu> and Steve
Zdancewic <stevez@cis.upenn.edu>.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’04, September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00.

analyses such as binding time, information flow, slicing, and
function call tracking. DCC uses a lattice of monads and a
nonstandard typing rule for their associated bind operations
to describe the dependency of computations in a program.

For example, information-flow security analyses prevent
publicly visible outputs of a program from revealing infor-
mation about confidential inputs [15]. Consider the program
e with security type as follows:

e : boolH × boolL→boolH × boolL

Here, the label H indicates high-security or confidential data
and the label L indicates low-security or public data. A
correct information-flow analysis must ensure that the low-
security output of the function depends only on the low-
security input to the function. Or, more formally, if we fix
the low-security input to be a constant e0, the second out-
put does not depend on the first input. This is equivalent
to requiring that the following is a constant function:

λx :boolH. prj2 (e <x, e0>) : boolH→boolL (1)

If there are no illegal dependencies, e is said to satisfy non-
interference. Note that the high-security output of e may
depend on either of the two inputs.

DCC describes dependency analyses by interpreting pro-
grams using a lattice of monads, rather than a single monad
as in Moggi’s computational lambda calculus [10]. The lat-
tice order captures permissible dependencies: computation
interpreted in a monad higher in the lattice is permitted to
depend on data interpreted in a monad lower in the lattice,
but not vice-versa. Intuitively, computation higher in the
lattice is held abstract with respect to computation lower
in the lattice. In our example above, the two-point lattice
L v H suffices: H outputs may depend on H or L inputs, but
L outputs may depend only on L inputs. DCC uses the type
constructor T` to denote the monad corresponding to lattice
level `, so the type of e in DCC is:

e : TH bool× TL bool→TH bool× TL bool

The denotational semantics for DCC extensively uses par-
tial equivalence relations (PERs) indexed by the lattice el-
ements, suggesting a connection to Reynolds’ PER seman-
tics [14] for the Girard–Reynolds polymorphic lambda calcu-
lus [5, 13] (System F). It is, therefore, natural to ask whether
the parametric polymorphism in F can express the depen-
dency in DCC.

This paper answers this question affirmatively by giving
a type-directed translation of DCC into F in such that the
parametricity theorem for F implies the correctness of the
dependency analysis for DCC.

The key idea behind our translation is surprisingly simple.
In DCC, the type TH bool represents a boolean value that is
visible only to H computations (computations that produce
data with label H). L computations must treat such a value
opaquely and hence cannot distinguish between true and
false at the type TH bool. DCC models this situation via
an observation relation that says these two values are equal
at L (written ηH true ∼L ηH false : TH bool) but not at H. In
fact, ∼L relates every possible pair of booleans at the type
TH bool, whereas the corresponding H observation relation
∼H is the identity relation.

Our translation simulates DCC’s observation relations by
encoding TH bool as αH → bool. An L observer translates
to a piece of code that does not have access to any values
of type αH, hence any function of type αH → bool may not
be applied. Therefore, in such a context, the two functions
λx : αH. true and λx : αH. false, which are the translations
of ηH true and ηH false, are indistinguishable.

The contributions of this paper are:

• the development of this translation of DCC into F and
proofs of the static and dynamic correctness of this
translation;

• a proof of DCC’s noninterference derived from F’s para-
metricity theorem;

• a sound extension of DCC’s type system suggested by
the translation into F; and

• a sketch of how the translation can be used to imple-
ment DCC–style types in languages with parametric
polymorphism.

Although the correctness of DCC’s type system has been
proved previously [1], the proof method proposed here is in-
teresting in its own right. These results not only help to
explain how the nonstandard type system in DCC relates to
the well-understood abstract types in F, but also provide in-
sights on how to make DCC’s type system more expressive.
This translation may also lead to implementation strategies
of dependency calculi in polymorphic languages. We demon-
strate this possibility by giving a Haskell implementation of
the translation for the two-point lattice.

It is known that adding fix to a language weakens the
parametricity theorem [21, 8, 7] and the noninterference
theorem [6, 1] because programs may diverge. For most
of this paper we focus on the terminating fragment of DCC
in order to emphasize the connection between noninterfer-
ence and parametricity. Section 6.2 discusses the extension
to the translation for the full DCC with fix.

The remainder of this paper is organized as follows. The
next section introduces the source language of our trans-
lation, the dependency core calculus. Section 3 presents
the translation and proves the correctness of the transla-
tion. Section 4 shows that the parametricity theorem for F
implies the noninterference theorem for DCC. Section 5 ex-
tends DCC’s type system with a protection context to make
it more expressive. The paper concludes with a prototype
implementation in Haskell and a discussion of future and
related work.

2. Dependency core calculus
This section describes the recursion-free fragment of de-

pendency core calculus (DCC) and explains how dependency

information is tracked in its type system [1]. The following
grammar defines the syntax for DCC’s contexts, types, val-
ues and terms:

Γ ::= · | Γ, x :t
s ::= 1 | s× s | s + s | s→s | T` s

v ::= <> | <e, e> | inji e | λx :s. e | η` e

e ::= v | prji e | case e v v | x | e e | bind x = e in e

DCC is a call-by-name, simply-typed lambda calculus with
one additional language construct—a lattice of monads that
restrict dependencies in the program. Let L be a lattice of
dependency levels with join t and order v. We write L`

for the set of lattice labels and Lv for the lattice order such
that L = (L`,Lv). For each element ` ∈ L there is a monad
T` and its corresponding unit η` and bind operations.

The typing rules for constructs other than the monad op-
erations (η` and bind) are completely standard, so we omit
them here. The following rules prevent low-level computa-
tion from depending on high-level computation:

Γ ` e : s
Γ ` η` e : T` s

(DT-Prot)

Γ ` e1 : T` s1 Γ, x :s1 ` e2 : s2 s2 � `

Γ ` bind x = e1 in e2 : s2
(DT-Bind)

The η` e operation marks the computation e with the la-
bel `, restricting how it interacts with the rest of the program
(DT-Prot). The bind x = e1 in e2 operation exposes the
computation e1 hidden inside the monad T` to the scope of
e2 (DT-Bind). Here, e2 may depend on e1, but the results
eventually produced by the entire bind expression must still
be protected from computation with label lower than (or
incomparable to) ` in the lattice. Operationally, bind eval-
uates e1 to a value η` e and then substitutes e for x in e2:

bind x = η` e in e2 −→ e2{e/x}

Protection rules s � ` (type s protects information at level
`) enforce the restrictions on dependencies between compu-
tations at different levels of the lattice:

1 � ` (P-Unit)

s1 � ` s2 � `

s1 × s2 � `
(P-Pair)

` 6v ` ′ s � `

T` ′ s � `
(P-Label1)

s2 � `

s1 →s2 � `
(P-Fun)

` v ` ′

T` ′ s � `
(P-Label2)

No information can be transmitted by a value of type 1

because there is only one such value, so computations of type
1 protect any ` (P-Unit).1 Information can be transmitted
by a product only by examining its components, so a product
type protects information when both of its components do
(P-Pair). A function will protect the data as long as the
return type of the function protects the data (P-Fun).

A monad at a lower (or incomparable) level of computa-
tion does not protect data at a higher monad in the lattice,
unless the contents are already protected at the higher level
(P-Label1). On the other hand, a monad at a higher (or

1Note that if this language permitted diverging computa-
tions, then information could be transmitted via termina-
tion. The full DCC calculus includes lifted types to distin-
guish between total and partial types.

[[1 � `]](x :t, m1, m2) = <> (LP-Unit)

[[s1 × s2 � `]](x :t, m1, m2) = <[[s1 � `]](x :t, m1, prj1 m2), [[s2 � `]](x :t, m1, prj2 m2)> (LP-Pair)

[[s1 →s2 � `]](x :t, m1, m2) = λx0 :s†1. [[s2 � `]](x :t, m1, m2 x0) (fresh x0) (LP-Fun)

[[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . [[s � `]](x :t, m1, m2 x0) (fresh x0, ` 6v ` ′) (LP-Label1)

[[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . (λx :t. m2 x0) (m1 (k` ′` x0)) (fresh x0, ` v ` ′) (LP-Label2)

Figure 1: Protection translation

equal) level in the lattice sufficiently protects the results at
a lower level (P-Label2).

Note that a sum type, which transmits information via the
injection tags, does not protect data at any level. To protect
a sum in a bind expression, we must put the sum into a
monad. For example, the program bind x = ηH inj1 <> in x

is insecure because it leaks the high-security value inj1 <>.
The type system will reject the program as ill-typed because
of the typing rule DT-Bind: x has type 1 + s but the sum
type 1 + s does not protects information at the high level
(that is, 1 + s 6� H).

To make examples in the rest of the paper more read-
able, we define some syntactic sugar for Boolean values. Let
bool = 1 + 1, true = inj1 m1 and false = m2, where both
m1 and m2 have type unit, and, for fresh variables x1 and
x2,

if e then e1 else e2 = case e (λx1.e1) (λx2.e2)

3. DCC to F
This section describes a type-directed translation that im-

plements DCC’s monads using parametric polymorphism.
The target of the translation is the polymorphic lambda cal-
culus (System F) extended with unit, products and sums.
The following grammar defines the syntax for F’s type con-
texts, term contexts, types, values and terms:

∆ ::= · | ∆, α

Γ ::= · | Γ, x :t
t ::= 1 | t× t | t + t | t→t | α | ∀α. t

u ::= <> | <m, m> | inji m | λx :t. m | Λα. m

m ::= u | prji m | case m u u | x | m m | m [t]

We use the standard type system and the call-by-name
dynamic semantics for F [9, 11]. We write its typing judg-
ment as ∆; Γ ` m : t and its evaluation as m1 −→ m2.

Although both languages have the same basic features,
only DCC has the dependency constructs (η` e and bind x =
e1 in e2) while F has the parametric polymorphism (Λα.e

and e [t]). The key observation for the translation is that
a function whose input type is abstract cannot be applied
without an argument of the appropriate type. Hence, if we
keep that input type abstract throughout the translation,
such functions can hide expressions in their body and the
type system can ensure that other parts of the program do
not depend on the expressions inside.2

2Therefore, we are actually translating independency into
parametricity.

3.1 Translation
Let us start by defining the type translation s† = t and

the term translation e∗ = m. As both DCC and F have
the same semantics for the basic constructs, the following
rules simply recurse on the structure of the terms and do
not perform any interesting translation:

1† = 1

(s1 × s2)
† = s

†
1 × s

†
2

(s1 + s2)
† = s

†
1 + s

†
2

(s1 →s2)
† = s

†
1 →s

†
2

<>∗ = <>

<e1, e2>
∗ = <e∗1, e∗2>

(prji e)∗ = prji e∗

(inji e)∗ = inji e∗

(case e v1 v2)
∗ = case e∗ v∗1 v∗2

x∗ = x

(λx :s. e)∗ = λx :s†. e∗

(e1 e2)
∗ = e∗1 e∗2

Now, we translate a protection under label ` as follows:

(T` s)† = α` →s†

(η` e)∗ = λx :α`. e
∗ (fresh x)

We can understand a value of type α` as a key needed
to access the data e. Since α` is abstract, the only way to
access the data under protection is to apply the function clo-
sure to the right key. We will formalize this noninterference
property of DCC in the next section. A privileged compu-
tation that has a key high in the lattice, however, should be
able to use that key to access values lower in the lattice. We
allow such downgrading of keys via coercion functions k`` ′

of type α` → α` ′ . These keys and coercions are generated
fresh from the translation of the lattice L = (L`,Lv):

L†
` = {α` | ` ∈ L`}

L†
v = {k`` ′ : α` →α` ′ | ` ′ v ` ∈ Lv}

The real work is in the translation of bind: we have to
insert keys and key coercions such that they satisfy the type
translation above. Recall that the typing rule of bind in
DCC is

Γ ` e1 : T` s1 Γ, x :s1 ` e2 : s2 s2 � `

Γ ` bind x = e1 in e2 : s2

The type system ensures that a protected expression is elim-
inated only if the result of the bind term protects the label
(s2 � `). Therefore, we must translate bind into F terms
that have the corresponding parametric property. Since this

property depends on the protection derivation (s2 � `), our
translation is actually directed by the typing derivation of
the term. To simplify the presentation, we enrich the term
bind x = e1 in e2 with its typing information and define
the translation on the enriched term as follows:

(bind x : s1 = e1 in e2 : s2 � `)
∗ = [[s2 � `]](x :s†1, e

∗
1, e

∗
2)

Figure 1 shows the protection translation [[s � `]](x :
t, m1, m2), which is defined inductively on the protection
derivation s � `. The first four rules in the figure simply
recurse into components using extensionality. Only the last
rule reveals the value of e∗1 to e∗2, which is sound because e2

is also a protection type T` ′ s with ` v ` ′. Such dependency
of e2 on e1 is translated as follows: we coerce a key of type
α` ′ into that of α` by applying the coercion k` ′` and then
reveal the value of m1 = e∗1 to m2 = e∗2 by function applica-
tion. Note that x of type s is free in e2; we keep track of
the binding variable x :t = x :s† and close m2 = e∗2 only after
the key is applied (λx :t. m2 x0).

Let us illustrate the translation rules with an example.
Consider the typing Γ ` e : s in DCC,

` λx1 :TL bool. bind x2 = x1 in ηH x2 : TL bool→TH bool

The translations of the type and the enriched term are:

(TL bool→TH bool)†

= (TL bool)†→(TH bool)†

= (αL→bool)→(αH→bool)

(λx1 :TL bool.

bind x2 : bool = x1 in ηH x2 : TH bool � L)∗

= λx1 :αL→bool. [[TH bool � L]](x2 :bool†, x∗1, (ηH x2)
∗)

= λx1 :αL→bool. [[TH bool � L]](x2 :bool, x1, λx3 :αH.x2)

= λx1 :αL→bool. λx0 :αH. (λx2 :bool. (λx3 :αH. x2) x0)

(x1 (kHL x0))

We also need to translate the lattice to obtain L†
` = αH, αL

and L†
v = kHL :αH→αL and use them to close the translated

term to obtain the typing L†
` ;L

†
v, Γ† ` e∗ : s† in F:3

αH, αL; kHL :αH→αL

` λx1 :αL→bool. λx0 :αH. (λx2 :bool. (λx3 :αH. x2) x0)

(x1 (kHL x0))

: (αL→bool)→(αH→bool)

3.2 Correctness
In this subsection we prove that the translation is correct

with respect to its static and dynamic semantics. These
correctness theorems are essential in proving the noninter-
ference theorem in the next section.

The static correctness theorem below states that trans-
lated terms are well-typed. We only give proof sketches in
this paper; complete proofs can be found in the appendix.

Theorem 1 (Static correctness). If Γ ` e : s with
(L`,Lv), then

L†
` ;L

†
v, Γ

† ` e
∗ : s†

3Actually, as the lattice order is reflexive, we should have
L†
v = kHL : αH → αL, kHH : αH → αH, kLL : αL → αL. We leave out

the last two coercions to simplify the presentation in later
sections.

Proof. We prove the theorem by induction on the typing
derivation and use the following lemma in case of bind.

Lemma 2. If ∆; Γ ` m1 : α` → t and ∆; Γ, x : t ` m2 : s†,
then ∆; Γ ` [[s � `]](x :t, m1, m2) : s†.

In order to relate the dynamic semantics of the two lan-
guages in a declarative style, we define the following transla-
tion relation v ⇀ u : t to relate a DCC value v to an F value
u at DCC type t. It is a logical relation [9] that formalizes
the behavioral equivalence of the dynamic semantics.

<> ⇀ <> : 1 (DF-Unit)

e1 ⇒ m1 : s1 e2 ⇒ m2 : s2

<e1, e2> ⇀ <m1, m2> : s1 × s2
(DF-Pair)

e ⇒ m : si

inji e ⇀ inji m : s1 + s2
(DF-Inj)

∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2
(DF-Fun)

∀(` m : t). e ⇒ u m : s
η` e ⇀ u : T` s

(DF-Prot)

e −→∗ v m −→∗ u v ⇀ u : s
e ⇒ m : s

(DF-Term)

The last rule defines the translation relation e ⇒ m : s
for terms by extending the corresponding relation for values
v ⇀ u : t with evaluation. We will similarly extend other
logical relations for values to terms by evaluation in later
sections.

Note that the relation above is defined for closed types
and terms. Our translated types and terms, however, have
free type variables α` for the lattice labels and free term
variables k`` ′ for the lattice order. By the static correctness
theorem, we know that those types and terms are closed
under L†

` and L†
v.

At runtime, we need to link the open term with a well-
typed implementation of the keys and the coercions. We
formalize this linking using term and type substitutions. Let
γ denote a finite map from term variables to values and let
δ denote a finite map from type variables to closed types:

γ ::= · | x 7→ v

δ ::= · | α 7→ t

We define δ(Γ) as the pointwise application of δ to the
range of Γ such that (δ(Γ))(x) = δ(Γ(x)). Also, we gen-
eralize the definition of the translation relation for values
v ⇀ u : t to term substitutions such that γ ⇒ γ ′ : δ(Γ) if
γ(x) ⇒ γ ′(x) : δ(Γ(x)) for all x ∈ dom(γ) = dom(γ ′) =
dom(Γ). Formally we state the typing requirements of the
substitutions as:

γ |= Γ iff ` γ(x) : Γ(x)

δ |= ∆ iff dom(δ) = ∆

At last, the dynamic correctness theorem below states
that if a term and a linking are well-typed, then the source
and the target terms have the same dynamic behavior.

Theorem 3 (Dynamic correctness). If Γ ` e : s

with (L`,Lv), δ0 |= L†
`, γ ⇒ γ ′ : δ0(Γ), and γ0 |= L†

v,
then

γ(e) ⇒ δ0γ0γ
′
(e

∗
) : s

Proof. We prove the theorem by induction on the typing
derivation and use the following lemma in case of bind.

Lemma 4. If ∆; Γ, x :t ` m2 : s, δ0 |= ∆, γ0 |= Γ , m1 m0 −→∗

m and e2 ⇒ m2{m/x} : s, then e2 ⇒ δ0γ0[[s � `]](x :
t, m1, m2).

4. Theorems
This section proves the main theoretical result of the pa-

per: the parametricity theorem for F implies the noninterfer-
ence theorem for DCC. Both theorems are defined in terms
of logical equivalence of the dynamic semantics; therefore,
we will use logical relations again to define related values for
DCC and those for F. Then, we come up with a canonical
implementation consisting of substitutions for terms, types
and relations in F. Using these substitutions we can instan-
tiate parametricity to prove noninterference.

4.1 Logical equivalences
We formalize logical equivalences as logical relations. For

DCC, they extend the identity relations, except that data
in a monad higher in the lattice is opaque at levels lower in
the lattice. We write v ∼ζ v ′ : s to denote two related DCC
values v and v ′ at type s below observation bound ζ. These
relations are defined as follows:

<> ∼ζ <> : 1 (DR-Unit)

e1 ≈ζ e ′1 : s1 e2 ≈ζ e ′2 : s2

<e1, e2> ∼ζ <e ′1, e ′2> : s1 × s2
(DR-Pair)

e ≈ζ e ′ : si

inji e ∼ζ inji e ′ : s1 + s2
(DR-Inj)

∀(e ≈ζ e ′ : s1). v e ≈ζ v ′ e ′ : s2

v ∼ζ v ′ : s1 →s2
(DR-Fun)

` 6v ζ

η` e ∼ζ η` e ′ : T` s
(DR-Label1)

e ≈ζ e ′ : s ` v ζ

η` e ∼ζ η` e ′ : T` s
(DR-Label2)

e −→∗ v e ′ −→∗ v ′ v ∼ζ v ′ : s

e ≈ζ e ′ : s
(DR-Term)

Except for protection η` e, the definitions above are stan-
dard [9]. The parameter ζ is the context’s observation label,
capturing the intuition that the equivalence of two terms de-
pends on the label of the observer [20, 6, 23, 16, 12]. For
T` s, either the observer’s label is below the bound (` 6v ζ)
in which case all values are related (DR-Label1), or two pro-
tected terms are actually related recursively (DR-Label2).

Similarly, we define related values for F. However, instead
of labels and bounds for DCC, two F values are related at
type t under relation substitution ρ (which maps type vari-
ables to relations), written v ∼ v : t | ρ. These relations are

defined as follows:

<> ∼ <> : 1 | ρ (FR-Unit)

m1 ≈ m ′1 : t1 | ρ m2 ≈ m ′2 : t2 | ρ

<m1, m2> ∼ <m ′1, m ′2> : t1 × t2 | ρ
(FR-Pair)

m ≈ m ′ : ti | ρ

inji m ∼ inji m ′ : t1 + t2 | ρ
(FR-Inj)

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ
(FR-Fun)

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R)
(FR-Var)

∀(R ∈ t2 ↔ t ′2).
u [t2] ≈ u ′ [t ′2] : t1 | (ρ, α 7→ R)

u ∼ u ′ : ∀α. t1 | ρ
(FR-All)

m −→∗ u m ′ −→∗ u ′ u ∼ u ′ : t | ρ

m ≈ m ′ : t | ρ
(FR-Term)

The ≈ relation is the usual logical relation for System
F [21]. Rule FR-All says that ρ maps type variable α to
any relation respecting the types (R ∈ t2 ↔ t ′2). We write
t2 ↔ t ′2 to denote the set of all binary relations over values
of the types t2 and t ′2. For example, the empty relation
∅ and the diagonal relation {(<>, <>)} for unit (which we
will use in later sections) are both in the set of all binary
relations over unit and unit.

We can also derive the related values at bool in F as
follows. The encoding of Boolean in Section 2 and the rules
FR-Unit and FR-Inj imply the following equivalence:

m ≈ m ′ : 1 | ρ

inji m ∼ inji m ′ : 1 + 1 | ρ

That is, at bool, logical equivalence implies β-equivalence
modulo the definitions of true and false in Section 2. In
particular, the definition does not relate the values true and
false. The same is true for Booleans in DCC.

4.2 Parametricity
System F’s parametricity theorem (below) states that, in-

dependent of substitutions for terms, types and relations, a
well-typed term is related to itself. We write ρ ∈ δ ↔ δ ′ as
the pointwise extension of R ∈ t2 ↔ t ′2 (which is defined in
the last subsection) such that ρ(α) ∈ δ(α) ↔ δ ′(α) for all
α ∈ dom(ρ) = dom(δ) = dom(δ ′).

Theorem 5 (Parametricity). If ∆; Γ ` m : t and δ, δ ′ |=
∆ and γ ≈ γ ′ : Γ | ρ and ρ ∈ δ ↔ δ ′, then

δγ(m) ≈ δ
′
γ
′
(m) : t | ρ

Proof. Proofs can be found in standard references [14,
21]. We have a full proof in our notation in the appendix and
we use the following substitution lemma when the induction
case is type application.

Lemma 6. If m ≈ m ′ : t1 | (ρ, α 7→ [[t2]]ρ), then m ≈ m ′ :
t1{t2/α} | ρ where [[t2]]ρ = {(u, u ′) | u ∼ u ′ : t2 | ρ}.

To motivate our general proof of noninterference from this
parametricity theorem, we demonstrate a simple application
using Wadler’s free theorems [21]. Recall from the introduc-
tion, that a DCC term of type TH bool→TL bool translates
to a term m of type (αH → bool)→ (αL → bool). We use a
free theorem to demonstrate that m is a constant function,
which is required for noninterference..

In this instance, we pick the following substitutions for
types, terms and relations:

δ0 = αH 7→ 1, αL 7→ 1

γ0 = kHL 7→ λx :1.x

ρ0 = αH 7→ ∅, αL 7→ {(<>, <>)}

By the parametricity theorem and the typing L†
` ;L

†
v ` m :

(αH→bool)→(αL→bool), we have

δ0γ0(m) ≈ δ0γ0(m) : (αH→bool)→(αL→bool) | ρ0

Applying FR-Fun two times, we have δ0γ0(m) m1 m2 ≈
δ0γ0(m) m ′1 m ′2 : bool | ρ0 for all m1 ≈ m ′1 : αH→bool | ρ0 and
for all m2 ≈ m2 : αL | ρ0. Since ρ0 maps αH to the empty re-
lation, m1 and m ′1 can be different terms (such as λx :1. true

and λx : 1. false). Yet ρ0 maps αL to the diagonal re-
lation. As the relation ≈ of related values at bool implies
β-equivalence, δ0γ0(m) m1 m2 is equivalent to δ0γ0(m) m ′1 m ′2
despite the difference in the arguments. In other words, m is
a constant function, or its argument does not interfere with
its output.

The key point is that ρ0 maps the type variable for the
high view to be the empty relation (αH 7→ ∅) and the variable
for the low view to be the diagonal relation on 1 (αL 7→
{(<>, <>)}). Because we translate a protection type T` s

into a function type α` →s†, we have the complete relation
over s† when ` = H and we have the relation defined by s†

when ` = L. The complete relation formally captures the
requirement that the observer cannot distinguish values in
the high view.

Another way to motivate the construction of ρ0 is the
following two isomorphisms of relations: ∅ → R ∼= > and
1 → R ∼= R. The former isomorphism says that a function
relation from an empty relation ∅ to an arbitrary relation R

is isomorphic to the total relation >. Thus, setting αH 7→ ∅
implies the total relation for the high view, meaning all val-
ues are related (see DR-Label1 in Section 4.1). On the other
hand, the latter isomorphisms says that a function relation
from a diagonal relation 1 and an arbitrary relation R is iso-
morphism to the relation R itself. Thus, setting αL 7→ 1

implies the relation R itself for the low view, meaning values
are related if they are related recursively (see DR-Label2).

4.3 Noninterference
We generalize the approach above to arbitrary lattices and

terms to prove the noninterference theorem. First, we define
an appropriate implementation of keys based on the lattice
L:

[[L`]]1 = {α` 7→ 1 | ` ∈ L`}
[[Lv]]1 = {k` ′` 7→ λx :1.x | ` v ` ′ ∈ Lv}

[[L`]]ζ =

{
α` 7→ ∅ if ` 6v ζ

α` 7→ {(<>, <>)} if ` v ζ

This canonical implementation substitutes unit for keys
and identity functions for key coercions. The relation sub-
stitution is the diagonal relation if the observer’s label is
higher than the data’s label, or the empty relation other-

wise. This property of [[L`]]ζ is critical in proving Lemma 8
and Lemma 9 below.

The noninterference theorem states that a well-typed term
cannot distinguish substitutions of different values higher
than the observer’s bound. We define γ∗ as γ∗(x) = e∗ iff
γ(x) = e.

Theorem 7 (Noninterference). If Γ ` e : s with
(L`,Lv) and γ ≈ζ γ ′ : Γ , then

γ(e) ≈ζ γ
′
(e) : s

Proof. By Theorem 1 (Static correctness), the trans-

lated term is well-typed: L†
` ;L

†
v, Γ† ` e∗ : s†. By the def-

inition of δ0 = [[L`]]1, we have δ0 |= [[L`]]
†. By Lemma 8

(Relation correctness), the translated substitutions are re-

lated: γ0γ∗ ≈ γ0γ ′∗ : L†
v, Γ† | ρ0. Since ρ0 = [[L`]]ζ is either

the empty relation or the diagonal relation, ρ0 ∈ δ0 ↔ δ0.
Then, by Theorem 5 (Parametricity), the translated terms
are related: δ0γ0γ∗(e∗) ≈ δ0γ0γ ′∗(e∗) : s† | ρ0.

By the definition of γ0 |= [[Lv]]1, we have γ0 |= L†
v. The

result then follows by Theorem 3 (Dynamic correctness) and
Lemma 9 (Adequacy).

Lemma 8 (Relation correctness).

1. If γ ≈ζ γ ′ : Γ with (L`,Lv) and γ0 |= Lv, then

γ0γ∗ ≈ γ0γ ′∗ : L†
v, Γ† | [[L`]]ζ.

2. If e ≈ζ e ′ : s with (L`,Lv) and γ0 |= Lv, then
γ0(e

∗) ≈ γ0(e
′∗) : s† | [[L`]]ζ.

Proof. We prove part 2 by induction on the derivation
of the related terms and thus, by inversion, the deriva-
tion of the related values v ∼ζ v ′ : s. The important
case is s = T` s0. When ` 6v ζ and thus [[L`]]ζ is the
empty relation, there do not exist m and m ′ such that m ≈
m ′ : α` | [[L`]]ζ. The substituted values are related at the

function types (T` s0)
† = α` → s

†
0 because the premise

∀(m ≈ m ′ : α` | [[L`]]ζ). u m ≈ u ′ m ′ : s†0 | [[L`]]ζ is vacuously
true. When ` v ζ, we use the induction hypothesis.

Lemma 9 (Adequacy). If e ⇒ δ0(m) : s, e ′ ⇒ δ0(m
′) :

s with (L`,Lv), δ0 |= L†
` and m ≈ m ′ : s† | [[L`]]ζ, then

e ≈ζ e ′ : s.

Proof. We prove the lemma by induction on the type s.
When s = T` s0 and ` v ζ and thus [[L`]]ζ is the diagonal
relation, m ≈ m ′ : α` | [[L`]]ζ for all m, m ′. Since (T` s0)

† =

α` →s
†
0 and thus m and m ′ are related at the function types,

we have u m ≈ u ′ m ′ : s† | [[L`]]ζ given that m −→∗ u and
m ′ −→∗ u ′. We can then use induction hypothesis to satisfy
DR-Label2.

In the last subsection, we used the parametricity theorem
to prove that a term m of type (TH bool→TL bool)

† = (αH→
bool) → (αL → bool) is a constant function in F. As an
exercise, we want to prove, directly from the noninterference
theorem, that a term e of type TH bool→ TL bool is also a
constant function in DCC. Suppose ` e : TH bool→TL bool.
By the noninterference theorem, e ≈ζ e : TH bool→TL bool.
Expanding the definition of DR-Fun, we have e e2 ≈ζ e e ′2 :
TL bool for all e2 ≈ζ e ′2 : TH bool. Since there are only two
points in the lattice, we have L v ζ. Let us pick ζ = L such

that H 6v ζ. Hence e2 and e ′2 can be different terms (such
as η` true and η` false) but still related by DR-Label1.
Yet e e2 and e e ′2 are related by DR-Label2, implying that
both terms evaluate to related Boolean values despite their
arguments. Because the relation ≈ at type bool implies β-
equivalence (up to the definition of bool), it follows that e

is a constant function.

5. Extending DCC
Having shown that TH bool→TL bool is a constant func-

tion, it is natural to ask: what about functions of other
combinations of high booleans and low booleans? We can
easily construct both the constant functions and the identity
functions of types TL bool→TL bool and TH bool→TH bool;
therefore, functions of these two types are unconstrained.

The other interesting case is TL bool→TH bool. We claim
that, from the high observer’s view (ζ = H), TL bool →
TH bool is isomorphic to bool → bool. This isomorphism
gives us confidence that adding labels to a language does
not reduce the expressiveness of the language: if we have a
function of type bool→bool, we can always write an equiva-
lent function of TL bool→TH bool such that the dependency
information is explicit.

But, because of typing, we fail to prove such an isomor-
phism in DCC. This section describes how we instead prove
the isomorphism in F and, using insights of the proof, how
we extend DCC to type-check the mediating functions for
the isomorphism.

5.1 Excursion to parametricity
First, we propose the following mediating functions in

DCC for the isomorphism of s = TL bool → TH bool and
bool→bool:

f1 : (bool→bool)→s

= λx1 :bool→bool. λx2 :TL bool.

bind x3 = x2 in ηH (x1 x3)

g1 : s→(bool→bool)

= λx4 :s. λx5 :bool. bind x6 = x4 (ηL x5) in x6

But g1 does not type-check. We cannot show bool � H in
type-checking x4 :s, x5 :bool ` bind x6 = x4 (ηL x5) in x6 :
bool with DT-Bind.

Instead we will show that t is isomorphic to (bool →
bool)† = bool→bool in F where

t = ∀αH. ∀αL. (αH→αL)→(αL→bool)→(αH→bool)

First, we construct these mediating functions in F:

f2 : (bool→bool)→t

= λx1 :bool→bool. ΛαH. ΛαL. λx2 :αH→αL.

λx3 :αL→bool. λx4 :αH. x1 (x3 (x2 x4))

g2 : t→(bool→bool)

= λx5 :t. λx6 :bool. x5 [1] [1]

(λx7 :1. x7) (λx8 :1. x6) <>

Now we need to prove that g2 ◦ f2 and f2 ◦ g2 are identity
functions. The first identity g2 ◦ f2 is straightforward from
βη-reductions and we use = to denote βη-equivalence. For
all ` m0 : bool→bool,

(g2 ◦ f2) m0

= λx6 :bool. (λx2 :1→1. λx3 :1→bool. λx4 :1.

m0 (x3 (x2 x4))) (λx7 :1. x7) (λx8 :1. x6) <>

= λx6 :bool. (λx4 :1. m0 x6) <>

= m0

The second identity f2 ◦ g2 requires the parametricity
theorem: for all ` m1 : ∀αH. ∀αL. (αH→αL)→(αH→bool)→
(αL→bool):

(f2 ◦ g2) m1

= ΛαH. ΛαL. λx2 :αH→αL. λx3 :αL→bool. λx4 :αH.

(λx6 :bool. m1 [1] [1] (λx7 :1. x7)

(λx8 :1. x6) <>) (x3 (x2 x4))

= ΛαH. ΛαL. λx2 :αH→αL. λx3 :αL→bool. λx4 :αH.

m1 [1] [1] (λx7 :1. x7) (λx8 :1. (x3 (x2 x4))) <>

We appear to be stuck at this point: there are no more βη-
reductions to apply because m1 is abstract. However, m1 has
a polymorphic type t and, by the parametricity theorem,
m1 ≈ m1 : ∀αH. ∀αL. (αH → αL) → (αH → bool) → (αL →
bool) | ρ. Expanding the definitions of FR-All and FR-Fun
(together with FR-Term) for a few times, we obtain

m1 [t1] [t2] m2 m3 m4 ≈ m1 [t
′
1] [t

′
2] m

′
2 m

′
3 m

′
4 : bool | ρ

′

as long as the following conditions are satisfied:

ρ ′ = ρ, αH 7→ R1, αL 7→ R2

R1 ∈ t1 ↔ t ′1
R2 ∈ t1 ↔ t ′1

m2 ≈ m ′2 : αH→αL | ρ ′

m3 ≈ m ′3 : αL→bool | ρ ′

m4 ≈ m ′4 : αH | ρ ′

We pick the types, relations and terms as follows:

t1 = 1 t ′1 = αH

t2 = 1 t ′2 = αL

R1 = λx ′1 :1. x4

R2 = λx ′2 :1. x2 x4

m2 = λx7 :1. x7 m ′2 = x2

m3 = λx8 :1. x3 (x2 x4) m ′3 = x3

m4 = <> m ′4 = x4

But we need to check that these definitions satisfy those
conditions above. First, since R1 is a function of type 1→αH,
we have R1 ∈ 1 ↔ αH (a binary relation of 1 and αH). The
same goes for R2 of type 1→αL.

Then, we check that m2 ≈ m ′2 : αH → αL | ρ ′. By FR-
Fun, it is equivalent to check that m2 m5 ≈ m ′2 m ′5 : αL | ρ ′

for all m5 ≈ m ′5 : αH. By FR-Var, m ′5 = R1 m5 = x4 and
it is equivalent to check that R2 (m2 m5) = m ′2 m ′5. Indeed,
R2 (m2 m5) = (λx ′1 :1. x2 x4) ((λx7 :1. x7) m5) = x2 x4 and
m ′2 m ′5 = x2 (R1 m5) = x2 x4.

Similarly, we check that m3 ≈ m ′3 : αL → bool | ρ ′. For
all m6 ≈ m ′6 : αL | ρ ′ such that m ′6 = R2 m6 = x2 x4, we
have m3 m6 = (λx8 : 1. x3 (x2 x4)) m6 = x3 (x2 x4) and
m ′3 m ′6 = x3 (x2 x4). At last, we check that m4 ≈ m ′4 : αH | ρ ′

which follows from R1 m4 = x4 and m ′4 = x4.
Since the relation ≈ of related values at bool implies β-

equivalence, the parametricity theorem implies that

m1 [1] [1] (λx7 :1. x7) (λx8 :1. (x3 (x2 x4))) <>

= m1 [αH] [αL] x2 x3 x4

which we can use to finish the proof:

(f2 ◦ g2) m1

= · · ·
= ΛαH. ΛαL. λx2 :αH→αL. λx3 :αL→bool. λx4 :αH.

m1 [αH] [αL] x2 x3 x4

= m1

5.2 Protection contexts
The excursion to F and parametricity shows that our intu-

ition is right: TL bool→TH bool is isomorphic to bool→bool

(from the high observer’s view) in a richer system like F,
even though their mediating function does not type-check
in DCC. Using insights from the translation, we now show
how to extend DCC’s type system to allow such an isomor-
phism.

From the translation, we observe that the protection con-
text is explicit in the typing rule of functions in F but missing
in the typing rule of bind in DCC. In F, protections η` e are
translated into functions and the type system uses the typ-
ing context Γ to keep track of the variable assumptions and
thus the protection assumptions. In DCC, the type system
does not make such protection assumptions of a term. For
example, ηH (bind x = ηH true in x) should type-check, be-
cause the result of the bind is protected by ηH in the outside
context, but this term is not well-typed in DCC.

Therefore, we propose to extend the typing judgment of
DCC to be Γ ; π ` e : s where π ∈ L` is the protection
context. This is similar to the program counter labels that
provide contextual information found in security-typed lan-
guages [6, 24, 19]. The function types s1 →s2 now becomes
[π] s1 →s2 to account for the protection context. The new
typing rules are:

Γ, x :s1; π2 ` e : s2

Γ ; π1 ` λx :s1. e : [π2] s1 →s2

Γ ; π1 ` e1 : [π2] s1 →s2 Γ ; π1 ` e2 : s1 π2 v π1

Γ ; π1 ` e1 e2 : s2

Γ ; π t ` ` e : s

Γ ; π ` η` e : T` s

Γ ; π ` e1 : T` s1 Γ, x :s1; π ` e2 : s2 π ` s2 � `

Γ ; π ` bind x = e1 in e2 : s2

The other typing rules are essentially the same but now
pass around the protection context. We add the following
new protection rules that make use of the protection context,
or call the old rules otherwise:

` v π

π ` s � `

s � ` ` 6v π

π ` s � `

It appears to be straightforward to extend the transla-
tion for this augmented version of DCC by using the fol-
lowing type translation for functions: ([π] s1 → s2)

† =
(απ×s

†
1)→s

†
2. Protection contexts are also useful for other

types whose values may contain delayed computations. For
example, in call-by-name calculi like DCC, the protection
context of a product type ([π] t1 × t2) expresses the con-
straint that a projection of the product can be made only in
a context higher or equal to π. The typing and translation
rules for protection contexts of other types are similar to
those for function types; we do not investigate further here.

5.3 Isomorphism
Given the modified type system for DCC, we now go back

to show the isomorphism of s = TL bool → TH bool and
bool→bool by proving that g1 ◦ f1 and f1 ◦ g1 are identity
functions from the high observer’s view (ζ = H). The tech-
nique is similar to proving the identities of f2 and g2 using

the parametricity theorem in Section 5.1, but instead uses
the noninterference theorem.

The mediating functions now type-check and have the fol-
lowing types. With the additional constraint [H] on the pro-
tection context of g1, the term bind x6 = x4 (ηL x5) in x6

satisfies the new rule above because H ` bool � H.

f1 : [L] ([L] bool→bool)→([L] TL bool→TH bool)

g1 : [H] ([L] TL bool→TH bool)→([L] bool→bool)

As before, we use βη-reductions in DCC to prove the iden-
tities, using these equivalences:

bind x = η` e in x =β e

η` (bind x = e in x) =η e

The first identity g1 ◦ f1 is straightforward: for all ` e0 :
[L] bool→bool, we have (g1◦ f1) e0 = λx5 :bool. bind x6 =
ηH (e0 x5) in x6 = e0.

The second identity f1 ◦ g1 requires the noninterference
theorem: for all ` e1 : [L] TL bool → TH bool, we have
(f1 ◦ g1) e1 = λx2 : TL bool. bind x3 = x2 in e1 (ηL x3).
There are no more βη-reductions to apply because e1 is
abstract. But, using the noninterference theorem, we will
prove the following to order to finish the proof:

λx2 :TL bool. bind x3 = x2 in e1 (ηL x3)

= λx2 :TL bool. e1 x2

Consider the applications of these two functions with two
related terms. For all m2 ≈H m

′
2 : TL bool such that m2 −→∗

ηL m3 and m ′2 −→∗ ηL m
′
3 and m3 ≈H m

′
3 : bool, we have (λx2 :

TL bool. bind x3 = x2 in e1 (ηL x3)) m2 −→∗ e1 (ηL m3) and
(λx2 : TL bool. e1 x2) m ′3 −→∗ e1 (ηL m ′3). By DR-Label2,
ηL m3 ≈H ηL m ′3 : TH bool.

By noninterference and the typing ` e1 : TL bool →
TH bool, we have e1 ≈H e1 : TL bool→ TH bool. Expanding
the definition of DR-Fun, we have e1 (ηL m3) ≈H e1 (ηL m

′
3) :

TL bool. Hence, λx2 :TL bool. bind x3 = x2 in e1 (ηL x3) ≈H

λx2 : TL bool. e1 x2 : TL bool → TH bool, which is the βη-
equivalence from the high observer’s view.

6. Discussion
We have shown in this paper that dependency analyses

embodied by DCC’s type system can be translated into F’s
parametricity. This embedding uses only a small subset of
F—for instance it does not require any nontrivial use of
type abstraction or application. DCC therefore appears to
be much weaker than F. One possible future direction is to
investigate additional extensions that preserve DCC’s spirit
while admitting more of the expressiveness of F. For in-
stance, generating new labels dynamically may correspond
to first-class type abstraction in F. This connection is al-
ready being explored by Fluet and Morrisett, who are in-
vestigating the relationship between region-based memory
management, Haskell-style monadic effects, and polymor-
phism [3].

6.1 Haskell implementation
Another future direction is to use the ideas behind this

translation to provide implementations of dependency anal-
yses in polymorphic languages. Figure 2 shows a prototype
implementation in Haskell4 for DCC with the two-point lat-
tice L v H.
4We use Glasgow Haskell Compiler (GHC) 6.2 with flags
-fglasgow-exts and -fallow-undecidable-instances.

data H ; data L = Khl H -- Lattice

eta :: s -> T l s ; eta e = T (\x -> e) -- Monad injection

newtype T l s = T (l -> s) ; t (T x) = x -- T constructor/destructor

class Bind l s2 where bind :: T l s1 -> (s1 -> s2) -> s2

instance Bind l () where -- P-Unit, LP-Unit

bind m1 m2 = ()

instance (Bind l s1, Bind l s2) => Bind l (s1, s2) where -- P-Pair, LP-Pair

bind m1 m2 = (bind m1 (fst . m2), bind m1 (snd . m2))

instance (Bind l s2) => Bind l (s1 -> s2) where -- P-Fun, LP-Fun

bind m1 m2 = \x0 -> bind m1 (\x -> m2 x x0)

instance (Bind H s) => Bind H (T L s) where -- P-Label1, LP-Label1 with H </= L

bind m1 m2 = T (\x0 -> bind m1 (\x -> t (m2 x) x0))

instance Bind L (T H s) where -- P-Label2, LP-Label2 with L <= H

bind (T m1) m2 = T (\x0 -> t (m2 (m1 (Khl x0))) x0)

instance Bind l (T l s) where -- P-Label2, LP-Label0, reflexive

bind (T m1) m2 = T (\x0 -> t (m2 (m1 x0)) x0)

Figure 2: Prototype implementation in Haskell for the two-point lattice

Abstract datatypes H and L along with the key coercion
function Khl :: H -> L encode the lattice. The type of the
function eta :: s -> T l s corresponds to the typing rule
DT-Prot in Section 2:

Γ ` e : s
Γ ` η` e : T` s

(DT-Prot)

The definitions of the type newtype T l s = T (l -> s)

and the function eta e = T (\x -> e) correspond to the
translation rule for protection under label ` in Section 3.1:

(T` s)† = α` →s†

(η` e)∗ = λx :α`. e
∗ (fresh x)

Finally the destructor t (T x) = x encodes the evaluation
rule of bind:

bind x = η` e in e2 −→ e2{e/x}

The last part of the implementation is to use the type-
class Bind to encapsulate the typing rule DT-Bind and its
protection rules s � ` for the bind operations in Section 2.
Each instance of the Bind typeclass corresponds to a trans-
lation rule in Figure 1, except that we also have the instance
for the implicit reflexive cases LP-Label0 when H v H and
L v L.

The example in Section 3.1 type-checks in Haskell:

e :: T L Bool -> T H Bool

e x1 = bind x1 (\x2 -> eta x2)

On the other hand, if e is constrained to have the type
e :: T H Bool -> T L Bool, Haskell will correctly report a
type error because of the illegal dependency of a low output
on the high input. If we omit the type annotation, Haskell
can even do label inference:

e :: forall s l1 l.

(Bind l (T l1 s)) => T l s -> T l1 s

Unfortunately, this implementation requires O(n2) type-
class instances to encode the bind translation for a lattice
containing n labels. We could have factored the lattice edges
into two classes, class LE (v, less than or equal to) and class
GT (6v, greater than), such that the number of class instances

is shifted to these two classes, and Bind would only have
two instances (one for LE and one for GT). This construc-
tion still has the same complexity of class instances and it
requires non-standard Haskell extensions for checking non-
overlapping and complementary instances, but it may be a
more modular approach.

It would also be interesting to see whether other clever
programming tricks, such as phantom types [4], could reduce
this overhead. Another alternative is to use explicit sub-
typing and bounded quantification, such as F<: [11], which
would simplify the description of the label lattice consider-
ably.

6.2 Fixpoints and termination
It is known that adding fix (and side-effects in general) to

System F weakens the parametricity theorem because pro-
grams may diverge [21, 8, 7]. A similar phenomenon arises
in noninterference, which may be defined to be termination
sensitive [6, 1].

This paper focuses on the terminating fragment of DCC,
which helps to emphasize the connection between noninter-
ference and parametricity. Like the original DCC, we would
need to add pointed types and a fix operator to F to account
for termination. We expect that all of the results presented
here carry through to the case where fix is added to both
DCC and F, assuming that noninterference and parametric-
ity are suitably weakened to account for the possibility of
diverging computations [7]. However, the translation should
be slightly altered to prevent “forged” keys from being used
to access protected data.

The problem is that having fix in the language allows
arbitrary keys or coercions to be created, because all types
are inhabited. For example, the following term

fix (λx :αH. x) : αH

can be used to unlock any high-security data. Note that,
however, this term is non-terminating. To prevent such keys
from being used by a bad F context, we can simply force
the evaluation of the key by using a construct similar to seq

in Haskell. Essentially, we need to modify the translation
rules for protection LP-Label1 and LP-Label2 in Figure 1

as follows:

[[T` ′ s � `]](x :t, m1, m2) where ` 6v ` ′

= λx0 :α` ′ . seq x0 ([[s � `]](x :t, m1, m2 x0))

[[T` ′ s � `]](x :t, m1, m2) where ` v ` ′

= λx0 :α` ′ . seq x0 ((λx :t. m2 x0) (m1 (k` ′` x0)))

Further investigating the interactions between side effects
and relational parametricity is an important area of ongoing
research.

6.3 Related work
The ideas behind our encoding of DCC into F are simi-

lar to Sumii and Pierce’s work on the cryptographic lambda
calculus [17]. They use logical relations (and, more recently,
bisimulations [18]) to capture the effects of encryption as
an information-hiding mechanism. Knowledge of a crypto-
graphic key is sufficient to reveal the encrypted data. In this
paper, our translation uses function closures with types of
the form α` →t to represent hidden data of type t. Posses-
sion of a key of type α` allows the computation to obtain
the data hidden in the closure. Unlike Sumii and Pierce’s
work, our translation must also account for DCC’s lattice
order using key coercions.

Sabelfeld and Sands used PER models to prove nonin-
terference properties in the context of information-flow se-
curity [16]. Benton uses logical relations to prove program
transformations related to information-flow and dependency
correct [2]. Both of these approaches, as we do here, use
complete relations to represent abstract views of data.

Other researchers have studied languages via translation
into F. For example, Washburn and Weirich [22] use para-
metric polymorphism to encode higher-order abstract syn-
tax. There, parametricity is also essential to show that the
encoding is adequate.

7. Conclusion
This paper has shown how to encode the dependency core

calculus, which is useful for modeling many kinds of pro-
gram analyses, into System F. This encoding provides both
novel insights into the relationship between dependency and
parametricity and an alternate proof of DCC’s noninterfer-
ence theorem. We also give a prototype implementation of
this translation in Haskell.

Acknowledgments
The authors thank Eijiro Sumii, Stephanie Weirich, and the
anonymous reviewers for their comments on drafts of this
paper. Stephanie also provided the Haskell prototype.

This research was supported in part by National Science
Foundation grants CNS-0346939 (CAREER: Language-based
Distributed System Security) and CCR-0311204 (Dynamic
Security Policies).

References
[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and

Jon Riecke. A core calculus of dependency. In Proc.
26th ACM Symp. on Principles of Programming
Languages (POPL), pages 147–160, San Antonio, TX,
January 1999.

[2] Nick Benton. Simple relational correctness proofs for
static analyses and program transformations. In Proc.
31st ACM Symp. on Principles of Programming
Languages (POPL), pages 14–25. ACM Press, 2004.

[3] Matthew Fluet and Greg Morrisett. Monadic regions.
In Proc. ACM SIGPLAN International Conference on
Functional Programming (ICFP), 2004.

[4] Matthew Fluet and Riccardo Pucella. Phantom types
and subtyping. In Proc. of the 2nd IFIP International
Conference on Theoretical Computer Science, 2002.

[5] J.-Y. Girard. Interprétation Functionelle et

Élimination des Coupures dans l’Arithmétique d’Order
Supérieure. PhD thesis, Université Paris VII, 1972.

[6] Nevin Heintze and Jon G. Riecke. The SLam calculus:
Programming with secrecy and integrity. In Proc. 25th
ACM Symp. on Principles of Programming Languages
(POPL), San Diego, California, 1998.

[7] Patricia Johann and Janis Voigtländer. Free theorems
in the presence of seq. In Proc. 31st ACM Symp. on
Principles of Programming Languages (POPL), 2004.

[8] J. Launchbury and R. Paterson. Parametricity and
unboxing with pointed types. In Proc. of the 9th
European Symposium on Programming, 1996.

[9] John C. Mitchell. Foundations for Programming
Languages. The MIT Press, 1996.

[10] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 1:55–92, 1991.

[11] Benjamin C. Pierce. Types and Programming
Languages. The MIT Press, 2002.

[12] François Pottier and Vincent Simonet. Information
flow inference for ML. In Proc. 29th ACM Symp. on
Principles of Programming Languages (POPL), 2002.

[13] John C. Reynolds. Towards a theory of type structure.
In Programming Symposium, volume 19 of Lecture
Notes in Computer Science. Springer-Verlag, 1974.

[14] John C. Reynolds. Types, abstraction, and parametric
polymorphism. In Information Processing. Elsevier
Science Publishers B.V., 1983.

[15] Andrei Sabelfeld and Andrew C. Myers.
Language-based information-flow security. IEEE
Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

[16] Andrei Sabelfeld and David Sands. A PER model of
secure information flow in sequential programs.
Higher-Order and Symbolic Computation, 14(1):59–91,
March 2001.

[17] Eijiro Sumii and Benjamin C. Pierce. Logical relations
for encryption. In Proc. of the 14th IEEE Computer
Security Foundations Workshop, 2001.

[18] Eijiro Sumii and Benjamin C. Pierce. A bisimulation
for dynamic sealing. In Proc. 31st ACM Symp. on
Principles of Programming Languages (POPL). ACM
Press, 2004.

[19] Stephen Tse and Steve Zdancewic. Run-time
principals in information-flow type systems. In Proc.
IEEE Symposium on Security and Privacy, 2004. To
Appear.

[20] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine.
A sound type system for secure flow analysis. Journal
of Computer Security, 4(3):167–187, 1996.

[21] Philip Wadler. Theorems for free! In Proceedings of
the 4th International Symposium on Functional

Programming and Computer Architecture, September
1989.

[22] Geoffrey Washburn and Stephanie Weirich. Boxes go
bananas: Encoding higher-order abstract syntax with
parametric polymorphism. In Proc. of the 8th ACM
SIGPLAN International Conference on Functional
Programming, Upsala, Sweden, August 2003.

[23] Stephan Zdancewic. Programming Languages for
Information Security. PhD thesis, Cornell University,
2002.

[24] Steve Zdancewic and Andrew C. Myers. Secure
information flow and CPS. In Proc. of the 10th
European Symposium on Programming, 2001.

APPENDIX

A. Syntax
This section describes the recursion-free fragment of dependency core calculus (DCC) [1] and Girard-Reynolds polymorphic

lambda calculus (System F) [5, 13].
The following defines the syntax for DCC’s types, values, terms, evaluation contexts and lattice.

s ::= DCC types

1 unit
s× s pair
s + s sum
s→s function
T` s protection

v ::= DCC values
<> unit
<e, e> pair
inji e injection
λx :s. e function
η` e protection

e ::= DCC terms
v value
case e v v injection
prji e projection
x variable
e e application
bind x = e in e bind

E ::= [] | prji E | case E v v DCC Hole
| E e | bind x = E in e

L ::= (L`,Lv) Lattice
L` ::= · | L`, `

Lv ::= · | Lv, ` v `

Similarly, the following defines the syntax for F’s types, values, terms and evaluation contexts.

t ::= F types

1 unit
t× t pair
t + t sum
t→t function
α variable
∀α. t universal

u ::= F values
<> unit
<m, m> pair
inji m injection
λx :t. m function
Λα. m polymorphism

m ::= F terms
u value
prji m projection
case m u u injection
x variable
m m application
m [t] instantiation

E ::= [] | prji E | case E u u F Hole
| E m | u [t]

B. Semantics
The following are the typing rules for DCC. The typing rules for constructs other than the monad operations (η` and bind)

are completely standard. The η` e operation marks the computation e with the label `, restricting how it interacts with the
rest of the program (DT-Prot). The bind x = e1 in e2 operation exposes the computation e1 hidden inside the monad T` to
the scope of the e2 (DT-Bind). Here, e2 may depend on e1, but the results eventually produced by the entire bind expression
must still be protected from computation with label lower than (or incomparable to) ` in the lattice.

Γ ` e : s DCC Typing

Γ ` <> : 1 DT-Unit

Γ ` ei : si

Γ ` <e1, e2> : s1 × s2
DT-Pair

Γ ` e : s1 × s2

Γ ` prji e : si
DT-Prj

Γ ` e : si

Γ ` inji e : s1 + s2
DT-Inj

Γ ` e : s1 + s2 Γ ` vi : si →s

Γ ` case e v1 v2 : s
DT-Case

Γ, x :s ` x :s DT-Var

Γ, x :s1 ` e : s2

Γ ` λx :s1. e : s1 →s2
DT-Fun

Γ ` e1 : s1 →s2 Γ ` e2 : s1

Γ ` e1 e2 : s2
DT-App

Γ ` e : s
Γ ` η` e : T` s

DT-Prot

Γ ` e1 : T` s1 Γ, x :s1 ` e2 : s2 s2 � `

Γ ` bind x = e1 in e2 : s2
DT-Bind

Protection rules s � ` (type s protects information at level `) enforce the restrictions on dependencies between computations
at different levels of the lattice.

No information can be transmitted by a value of type 1 because there is only one such value, so computations of type 1

protect any ` (P-Unit).5 Information can be transmitted by a product only by examining its components, so a product type
protects information when both of its components do (P-Pair). A function will protect the data as long as the return type of
the function protects the data (P-Fun).

A monad at a lower (or incomparable) level of computation does not protect data at a higher monad in the lattice, unless
the contents are already protected at the higher level (P-Above). On the other hand, a monad at a higher (or equal) level in
the lattice sufficiently protects the results at a lower level (P-Under).

Note that a sum type, which transmits information via the injection tags, does not protect data at any level. To protect a
sum in a bind expression, we must put the sum into a monad. For example, the insecure program ` bind x = ηH inj1 <> in x

does not type-check, as x has type 1 + s but 1 + t � H is not provable.

s � ` Protection

1 � ` P-Unit

si � `

s1 × s2 � `
P-Pair

s2 � `

s1 →s2 � `
P-Fun

` 6v ` ′ s � `

T` ′ s � `
P-Above

` v ` ′

T` ′ s � `
P-Under

e −→ e DCC Evaluation

e −→ e ′

E [e] −→ E [e ′]
DE-Hole

prji <e1, e2> −→ ei DE-Pair

case (inji e) v1 v2 −→ vi e DE-Sum

(λx :s. e1) e2 −→ e1{e2/x} DE-Fun

bind x = η` e1 in e2 −→ e2{e1/x} DE-Bind

5Note that if this language permitted diverging computations, then information could be transmitted via termination. The
full DCC calculus includes lifted types to distinguish between total and partial types.

We use the standard type system and the call-by-name dynamic semantics for F [9, 11].

Γ ` m : t F Typing

∆; Γ ` <> : 1 FT-Unit

∆; Γ ` mi : ti

∆; Γ ` <m1, m2> : t1 × t2
FT-Pair

∆; Γ ` m : t1 × t2

∆; Γ ` prji m : ti
FT-Prj

∆; Γ ` m : ti

∆; Γ ` inji m : t1 + t2
FT-Inj

∆; Γ ` m : t1 + t2 ∆; Γ ` ui : ti →t

∆; Γ ` case m u1 u2 : t
FT-Case

∆; Γ, x :t ` x :t FT-Var

∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2
FT-Fun

∆; Γ ` m1 : t1 →t2 ∆; Γ ` m2 : t1

∆; Γ ` m1 m2 : t2
FT-App

∆, α; Γ ` m : t

∆; Γ ` Λα. m : ∀α. t
FT-All

∆; Γ ` m : ∀α. t1

∆; Γ ` m [t2] : t1{t2/α} FT-Tapp

m −→ m F Evaluation

m −→ m ′

E [m] −→ E [m ′]
FE-Hole

prji <m1, m2> −→ mi FE-Pair

case (inji m) u1 u2 −→ ui m FE-Sum

(λx :t. m1) m2 −→ m1{m2/x} FE-Fun

(Λα. m) [t] −→ m{t/α} FE-All

C. Translation
This section describes a type-directed translation that implements DCC’s monads using parametric polymorphism. We

also prove that the translation is correct with respect to its static and dynamic semantics. These correctness theorems are
essential in proving the noninterference theorem in the next section.

−∗ −† [[−]] Translation

(L`, `)
† = L†

`, α` L-Label

(Lv, ` ′ v `)† = L†
v, k`` ′ :α` →α` ′ L-Order

(Γ, x :s)† = Γ†, x :s† L-Env

(γ, x 7→ e)∗ = γ∗, x 7→ e∗ L-Subs

s† = t Type translation

1† = 1 LT-Unit

(s1 × s2)
† = s

†
1 × s

†
2 LT-Pair

(s1 + s2)
† = s

†
1 + s

†
2 LT-Sum

(s1 →s2)
† = s

†
1 →s

†
2 LT-Fun

(T` s)† = α` →s† LT-Prot

e∗ = m Term translation

<>∗ = <> LE-Unit

<e1, e2>
∗ = <e∗1, e∗2> LE-Pair

(prji e)∗ = prji e∗ LE-Prj

(inji e)∗ = inji e∗ LE-Inj

(case e v1 v2)
∗ = case e∗ v∗1 v∗2 LE-Case

x∗ = x LE-Var

(λx :s. e)∗ = λx :s†. e∗ LE-Fun

(e1 e2)
∗ = e∗1 e∗2 LE-App

(η` e)∗ = λx :α`. e
∗ (fresh x) LE-Prot

(bind x : s1 = e1 in e2 : s2 � `)∗ = [[s2 � `]](x :s†1, e∗1, e∗2) LE-Bind

[[s � `]](x :t, m, m) = m Protection translation

[[1 � `]](x :t, m1, m2) = <> LP-Unit

[[s1 × s2 � `]](x :t, m1, m2) = <[[s1 � `]](x :t, m1, prj1 m2), [[s2 � `]](x :t, m1, prj2 m2)> LP-Pair

[[s1 →s2 � `]](x :t, m1, m2) = λx0 :s†1. [[s2 � `]](x :t, m1, m2 x0) (fresh x0) LP-Fun

[[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . [[s � `]](x :t, m1, m2 x0) (fresh x0, ` 6v ` ′) LP-Above

[[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . (λx :t. m2 x0) (m1 (k` ′` x0)) (fresh x0, ` v ` ′) LP-Under

v ⇀ u : s DCC-F values

<> ⇀ <> : 1 DF-Unit

ei ⇒ mi : si

<e1, e2> ⇀ <m1, m2> : s1 × s2
DF-Pair

e ⇒ m : si

inji e ⇀ inji m : s1 + s2
DF-Inj

∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2
DF-Fun

∀(` m : t). e ⇒ u m : s
η` e ⇀ u : T` s

DF-Prot

e −→∗ v m −→∗ u v ⇀ u : s
e ⇒ m : s

DF-Term

γ ⇒ γ ′ : Γ e ⇒ m : s

(γ, x 7→ e) ⇒ (γ ′, x 7→ m) : (Γ, x :s)
DF-Subs

· |= · Models

γ |= Γ Γ ` e :s

(γ, x 7→ e) |= (Γ, x :s)
M-Subs

δ |= ∆

(δ, α 7→ t) |= (∆, α)
M-Tsubs

Theorem 10 (Static correctness). If Γ ` e3 : s3 with (L`,Lv), then

L†
` ;L

†
v, Γ

† ` e
∗
3 : s†3

Proof. By induction on Γ ` e3 : s3:

• DT-Unit: Γ ` <> : 1 with e3 = <> and s3 = 1

By LE-Unit: <>∗ = <>, LT-Unit: 1† = 1 and FT-Unit: ∆; Γ ` <> : 1.

• DT-Pair:

Γ ` ei : si

Γ ` <e1, e2> : s1 × s2 with e3 = <e1, e2> and s3 = s1 × s2

By LE-Pair: <e1, e2>
∗ = <e∗1, e∗2>, LT-Pair: (s1×s2)

† = s
†
1×s

†
2, IH: L†

` ;L
†
v, Γ† ` e∗i : s†i , and FT-Pair:

∆; Γ ` mi : ti

∆; Γ ` <m1, m2> : t1 × t2.

• DT-Prj:

Γ ` e : s1 × s2

Γ ` prji e : si with e3 = prji e and s3 = si

By LE-Prj: (prji e)∗ = prji e∗, IH: L†
` ;L

†
v, Γ† ` e∗ : (s1 × s2)

†, LT-Pair: (s1 × s2)
† = s

†
1 × s

†
2 and FT-Prj:

∆; Γ ` m : t1 × t2

∆; Γ ` prji m : ti .

• DT-Inj:

Γ ` e : si

Γ ` inji e : s1 + s2 with e3 = inji e and s3 = s1 + s2

By LE-Inj: (inji e)
∗ = inji e

∗, LT-Sum: (s1+s2)
† = s

†
1+s

†
2, IH: L†

` ;L
†
v, Γ† ` e∗ : s†i , and FT-Inj:

∆; Γ ` m : ti

∆; Γ ` inji m : t1 + t2.

• DT-Case:

Γ ` e : s1 + s2 Γ ` vi : si →s

Γ ` case e v1 v2 : s with e3 = case e v1 v2 and s3 = s

By LE-Case: (case e v1 v2)
∗ = case e∗ v∗1 v∗2, IH: L†

` ;L
†
v, Γ† ` e∗ : (s1 + s2)

†, IH: L†
` ;L

†
v, Γ† ` v∗i : s†i →s†, LT-Sum:

(s1 + s2)
† = s

†
1 + s

†
2 and FT-Case:

∆; Γ ` m : t1 + t2 ∆; Γ ` ui : ti →t

∆; Γ ` case m u1 u2 : t .

• DT-Var: Γ, x :s ` x :s with e3 = x and s3 = s

By LE-Var: x∗ = x, L-Env: (Γ, x :s)† = Γ†, x :s† and FT-Var: ∆; Γ, x :t ` x :t.

• DT-Fun:

Γ, x :s1 ` e : s2

Γ ` λx :s1. e : s1 →s2 with e3 = λx :s1. e and s3 = s1 →s2

By LE-Fun: (λx : s. e)∗ = λx : s†. e∗, LT-Fun: (s1 → s2)
† = s

†
1 → s

†
2, IH: L†

` ;L
†
v, Γ†, x : s† ` e∗ : s†2, and FT-Fun:

∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2.

• DT-App:

Γ ` e1 : s1 →s2 Γ ` e2 : s1

Γ ` e1 e2 : s2 with e3 = e1 e2 and s3 = s2

By LE-App: (e1 e2)
∗ = e∗1 e∗2, IH: L†

` ;L
†
v, Γ† ` e∗1 : (s1 →s2)

†, IH: L†
` ;L

†
v, Γ† ` e∗2 : s†1, LT-Fun: (s1 →s2)

† = s
†
1 →s

†
2

and FT-App:

∆; Γ ` m1 : t1 →t2 ∆; Γ ` m2 : t1

∆; Γ ` m1 m2 : t2 .

• DT-Prot:
Γ ` e : s

Γ ` η` e : T` s with e3 = η` e and s3 = T` s

By LE-Prot: (η` e)
∗ = λx :α`. e

∗ (fresh x), IH: L†
` ;L

†
v, Γ† ` e∗ : s†, the weakening and the freshness of x: L†

` ;L
†
v, Γ†, x :

α` ` e∗ : s†, LT-Prot: (T` s)† = α` →s† and FT-Fun:

∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2.

• DT-Bind:

Γ ` e1 : T` s1 Γ, x :s1 ` e2 : s2 s2 � `

Γ ` bind x = e1 in e2 : s2 with e3 = bind x = e1 in e2 and s3 = s2

By LE-Bind: (bind x : s1 = e1 in e2 : s2 � `)∗ = [[s2 � `]](x : s†1, e∗1, e∗2), LT-Prot: (T` s)† = α` → s†, IH:

L†
` ;L

†
v, Γ† ` e∗1 : (T` s1)

†, IH: L†
` ;L

†
v, Γ†, x :s†1 ` e∗2 : s†2 and Lemma 11 (Static correctness for bind).

Lemma 11 (Static correctness for bind). If ∆; Γ ` m1 : α` →t and ∆; Γ, x :t ` m2 : s†3, then

∆; Γ ` [[s3 � `]](x :t, m1, m2) : s†3

Proof. By induction on [[s3 � `]](x :t, m1, m2):

• LP-Unit: [[1 � `]](x :t, m1, m2) = <> with s3 = 1

By FT-Unit: ∆; Γ ` <> : 1 and LT-Unit: 1† = 1.

• LP-Pair: [[s1 × s2 � `]](x :t, m1, m2) = <[[s1 � `]](x :t, m1, prj1 m2), [[s2 � `]](x :t, m1, prj2 m2)> with s3 = s1 × s2

By LT-Pair: (s1 × s2)
† = s

†
1 × s

†
2 and FT-Prj:

∆; Γ ` m : t1 × t2

∆; Γ ` prji m : ti , we have ∆; Γ, x :t ` prji m2 : s†i . By IH, ∆; Γ ` [[si �

`]](x :t, m1, prji m2) : s†i . The result follows by FT-Pair:

∆; Γ ` mi : ti

∆; Γ ` <m1, m2> : t1 × t2.

• LP-Fun: [[s1 →s2 � `]](x :t, m1, m2) = λx0 :s†1. [[s2 � `]](x :t, m1, m2 x0) (fresh x0) with s3 = s1 →s2

By LT-Fun: (s1 → s2)
† = s

†
1 → s

†
2, we have ∆; Γ, x : t ` m2 : s

†
1 → s

†
2. By FT-Var: ∆; Γ, x : t ` x : t, we have

∆; Γ, x0 : s†1 ` x0 : s
†
1. By weakening, the freshness of x0 and FT-App:

∆; Γ ` m1 : t1 →t2 ∆; Γ ` m2 : t1

∆; Γ ` m1 m2 : t2 , we have

∆; Γ, x0 : s†1, x : t ` m2 x0 : s†2. By IH, ∆; Γ, x0 : s†1 ` [[s2 � `]](x : t, m1, m2 x0) : s†2. The result follows by FT-Fun:
∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2.

• LP-Above: [[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . [[s � `]](x :t, m1, m2 x0) (fresh x0, ` 6v ` ′) with s3 = T` ′ s

By LT-Prot: (T` s)† = α` →s†, we have ∆; Γ ` m2 : α` ′ →s†. By FT-Var: ∆; Γ, x :t ` x :t, we have ∆; Γ, x0 :s† ` x0 : s†.

By weakening, the freshness of x0 and FT-App:

∆; Γ ` m1 : t1 →t2 ∆; Γ ` m2 : t1

∆; Γ ` m1 m2 : t2 , we have ∆; Γ, x0 :α` ′ , x :t ` m2 x0 : s†.

By IH, ∆; Γ, x0 :α` ′ ` [[s � `]](x :t, m1, m2 x0) : s†. The result follows by FT-Fun:

∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2.

• LP-Under: [[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . (λx :t. m2 x0) (m1 (k` ′` x0)) (fresh x0, ` v ` ′) with s3 = T` ′ s

By LT-Prot: (T` s)† = α` →s†, we have ∆; Γ ` m2 : α` ′ →s†. By L-Order: (Lv, ` ′ v `)† = L†
v, k`` ′ :α` →α` ′ , we have

∆; Γ ` k` ′` : α` ′ →α`.

∆; Γ, x0 :α` ′ ` x0 : α` ′ by FT-Var
∆; Γ, x0 :α` ′ ` k` ′` : α` ′ →α` by weakening

∆; Γ, x0 :α` ′ ` k` ′` x0 : α` by FT-App
∆; Γ, x0 :α` ′ ` m1 : α` →t by weakening

∆; Γ, x0 :α` ′ ` m1 (k` ′` x0) : t by FT-App
∆; Γ, x0 :α` ′ , x :t ` x0 : α` ′ by FT-Var
∆; Γ, x0 :α` ′ , x :t ` m2 : α` ′ →s† by weakening

∆; Γ, x0 :α` ′ , x :t ` m2 x0 : s† by FT-App
∆; Γ, x0 :α` ′ ` λx :t. m2 x0 : t→s† by FT-Fun

∆; Γ, x0 :α` ′ ` (λx :t. m2 x0) (m1 (k` ′` x0)) : s† by FT-App
∆; Γ ` λx0 :α` ′ . (λx :t. m2 x0) (m1 (k` ′` x0)) : α` ′ →s† by FT-Fun

Theorem 12 (Dynamic correctness). If Γ ` e3 : s3 with (L`,Lv), γ ⇒ γ ′ : Γ , δ0 |= L†
` and γ0 |= L†

v, then

γ(e3) ⇒ δ0γ0γ
′
(e

∗
3) : s3

Proof. By induction on Γ ` e3 : s3:

• DT-Unit: Γ ` <> : 1 with e3 = <> and s3 = 1

By LE-Unit: <>∗ = <>, DF-Unit: <> ⇀ <> : 1 and DF-Term.

• DT-Pair:

Γ ` ei : si

Γ ` <e1, e2> : s1 × s2 with e3 = <e1, e2> and s3 = s1 × s2

By LE-Prj: (prji e)∗ = prji e∗, IH: γ(ei) ⇒ δ0γ0γ ′(e∗i) : si, DF-Pair:
ei ⇒ mi : si

<e1, e2> ⇀ <m1, m2> : s1 × s2 and DF-Term.

• DT-Prj:

Γ ` e : s1 × s2

Γ ` prji e : si with e3 = prji e and s3 = si

By LE-Pair: <e1, e2>
∗ = <e∗1, e∗2>. By IH, γ(e) ⇒ δ0γ0γ ′(e∗) : s1 × s2. Then by the inversion of DF-Term:

e −→∗ v m −→∗ u v ⇀ u : s
e ⇒ m : s and DF-Pair:

ei ⇒ mi : si

<e1, e2> ⇀ <m1, m2> : s1 × s2, we have ei ⇒ mi : si. The result follows
by DE-Pair: prji <e1, e2> −→ ei and FE-Pair: prji <m1, m2> −→ mi.

• DT-Inj:

Γ ` e : si

Γ ` inji e : s1 + s2 with e3 = inji e and s3 = s1 + s2

By LE-Inj: (inji e)∗ = inji e∗, IH: γ(e) ⇒ δ0γ0γ ′(e∗) : si, and DF-Inj:
e ⇒ m : si

inji e ⇀ inji m : s1 + s2 and DF-Term.

• DT-Case:

Γ ` e : s1 + s2 Γ ` vi : si →s

Γ ` case e v1 v2 : s with e3 = case e v1 v2 and s3 = s

By LE-Case: (case e v1 v2)
∗ = case e∗ v∗1 v∗2. By IH, γ(e) ⇒ δ0γ0γ ′(e∗) : s1 + s2 and γ(vi) ⇒ δ0γ0γ ′(v∗i) : si →s.

Then by the inversion of DF-Term:
e −→∗ v m −→∗ u v ⇀ u : s

e ⇒ m : s and DF-Inj:
e ⇒ m : si

inji e ⇀ inji m : s1 + s2, we have e ⇒
m : si. The result follows by DE-Sum: case (inji e) v1 v2 −→ vi e, FE-Sum: case (inji m) u1 u2 −→ ui m, Lemma 14

(Confluence) and the inversion of DF-Fun:
∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2 .

• DT-Var: Γ, x :s ` x :s with e3 = x and s3 = s

By LE-Var: x∗ = x and DF-Subs:

γ ⇒ γ ′ : Γ e ⇒ m : s

(γ, x 7→ e) ⇒ (γ ′, x 7→ m) : (Γ, x :s).

• DT-Fun:

Γ, x :s1 ` e : s2

Γ ` λx :s1. e : s1 →s2 with e3 = λx :s1. e and s3 = s1 →s2

By LE-Fun: (λx : s. e)∗ = λx : s†. e∗. Suppose e2 ⇒ m2 : s1. By DE-Fun: (λx : s. e1) e2 −→ e1{e2/x}, we have

(λx : s1. γ(e)) e2 −→ γ(e){e2/x}. By FE-Fun: (λx : t. m1) m2 −→ m1{m2/x}, we have (λx : s†1. δ0γ0γ ′(e∗)) m2 −→
δ0γ0γ ′(e∗){m2/x}. Let

γ1 = γ, x 7→ e2 γ
′
1 = γ

′
, x 7→ m2

such that γ1(e) = γ(e){e2/x} and γ ′
1(e) = γ ′(e){m2/x}. By M-Subs:

γ |= Γ Γ ` e :s

(γ, x 7→ e) |= (Γ, x :s), we have γ1 |= Γ, x : s1.

By IH, γ1(e) ⇒ δ0γ0γ ′
1(e

∗) : s2. The result follows by Lemma 14 (Confluence), DF-Fun:
∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2

and DF-Term.

• DT-App:

Γ ` e1 : s1 →s2 Γ ` e2 : s1

Γ ` e1 e2 : s2 with e3 = e1 e2 and s3 = s2

By LE-App: (e1 e2)
∗ = e∗1 e∗2. By IH, γ(e1) ⇒ δ0γ0γ ′(e∗1) : s1 →s2 and γ(e2) ⇒ δ0γ0γ ′(e∗2) : s1. The result follows

by the inversion of DF-Fun:
∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2 and by DF-Term:
e −→∗ v m −→∗ u v ⇀ u : s

e ⇒ m : s .

• DT-Prot:
Γ ` e : s

Γ ` η` e : T` s with e3 = η` e and s3 = T` s

By LE-Prot: (η` e)∗ = λx : α`. e
∗ (fresh x). Suppose ` m : t. By FE-Fun: (λx : t. m1) m2 −→ m1{m2/x} and the

freshness of x, we have δ0γ0γ ′(η` e)∗ m = (λx :δ0(α`). δ0γ0γ ′(e∗)) m −→ δ0γ0γ ′(e∗). By IH, γ(e) ⇒ δ0γ0γ ′(e∗) : s.

The result follows by Lemma 14 (Confluence), DF-Prot:
∀(` m : t). e ⇒ u m : s

η` e ⇀ u : T` s and DF-Term.

• DT-Bind:

Γ ` e1 : T` s1 Γ, x :s1 ` e2 : s2 s2 � `

Γ ` bind x = e1 in e2 : s2 with e3 = bind x = e1 in e2 and s3 = s2

By LE-Bind: (bind x : s1 = e1 in e2 : s2 � `)∗ = [[s2 � `]](x : s†1, e∗1, e∗2). By IH, γ(e1) ⇒ δ0γ0γ ′(e∗1) : T` s1. By

inversion of DF-Term and of DF-Prot:
∀(` m : t). e ⇒ u m : s

η` e ⇀ u : T` s , we have γ(e1) −→∗ η` e, δ0γ0γ ′(e∗1) −→∗ u. By IH,
γ1(e2) ⇒ δ0γ0γ ′

1(e
∗
2) : s2 where

γ1 = γ, x 7→ e γ
′
1 = γ

′
, x 7→ u m

The result follows Lemma 14 (Confluence), Lemma 13 (Dynamic correctness for bind) and

γ(bind x = e1 in e2)

= bind x = γ(e1) in γ(e2)

−→∗ bind x = η` e in γ(e2)

−→∗ γ(e2){e/x}
= γ1(e2)

Lemma 13 (Dynamic correctness for bind). If ∆; Γ, x0 : t0 ` m4 : s4, δ0 |= ∆, γ0 |= Γ , m3 m −→∗ m0 and e ⇒
m4{m0/x0} : s4, then

e2 ⇒ δ0γ0[[s4 � `]](x :t, m3, m4)

Proof. By inversion of DF-Term:
e −→∗ v m −→∗ u v ⇀ u : s

e ⇒ m : s of e ⇒ m4{m0/x0} : s4, and then by induction on s4 of
v ⇀ u : s2 and [[s4 � `]](x0 :t0, m3, m4):

• DF-Unit: <> ⇀ <> : 1 with s4 = 1

LP-Unit: [[1 � `]](x :t, m1, m2) = <>

By DF-Unit and DF-Term.

• DF-Pair:
ei ⇒ mi : si

<e1, e2> ⇀ <m1, m2> : s1 × s2 with s4 = s1 × s2

LP-Pair: [[s1 × s2 � `]](x :t, m1, m2) = <[[s1 � `]](x :t, m1, prj1 m2), [[s2 � `]](x :t, m1, prj2 m2)>

Since prji m4{m0/x0} −→∗ mi and

(prji m4){m0/x0} = prji (m4{m0/x0})

we have ei ⇒ (prji m4){m0/x0}. By IH, ei ⇒ δ0γ0[[si � `]](x0 : t0, m3, prji m4). By DF-Pair, <e1, e2> ⇀ δ0γ0<[[s1 �
`]](x0 :t0, m3, prj1 m4), [[s2 � `]](x0 :t0, m3, prj2 m4)>. The result follows by DF-Term.

• DF-Fun:
∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2 with s4 = s1 →s2

LP-Fun: [[s1 →s2 � `]](x :t, m1, m2) = λx0 :s†1. [[s2 � `]](x :t, m1, m2 x0) (fresh x0)

Since m4{m0/x0} m −→∗ u m and

(m4 m){m0/x0} = m4{m0/x0} m0{m0/x0} = m4{m0/x0} m

we have v e ⇒ (m4 m){m0/x0}. By IH, v e ⇒ δ0γ0[[s2 � `]](x0 :t0, m3, m4 m). By DF-Fun, v ⇀ λx0 :α` ′ . δ0γ0[[s2 � `]](x0 :
t0, m3, m4 x0). The result follows by DF-Term.

• DF-Prot:
∀(` m : t). e ⇒ u m : s

η` e ⇀ u : T` s with s4 = T` s

LP-Above: [[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . [[s � `]](x :t, m1, m2 x0) (fresh x0, ` 6v ` ′)

Since m4{m0/x0} m −→∗ u m and

(m4 m){m0/x0} = m4{m0/x0} m0{m0/x0} = m4{m0/x0} m

we have e ⇒ (m4 m){m0/x0}. By IH, e ⇒ δ0γ0[[s � `]](x0 :t0, m3, m4 m). By DF-Above, η` e ⇀ λx0 :α` ′ . δ0γ0[[s � `]](x0 :
t0, m3, m4 x0). The result follows by DF-Term.

• DF-Prot:
∀(` m : t). e ⇒ u m : s

η` e ⇀ u : T` s with s4 = T` s

LP-Under: [[T` ′ s � `]](x :t, m1, m2) = λx0 :α` ′ . (λx :t. m2 x0) (m1 (k` ′` x0)) (fresh x0, ` v ` ′)

Since m4{m0/x0} m −→∗ u m and

(m4 m){m0/x0} = m4{m0/x0} m0{m0/x0} = m4{m0/x0} m

we have e ⇒ (m4 m){m0/x0}. Since m3 (k` ′` x0) −→∗ λx : t. m0 and x is fresh, we have m3 (k` ′` x0) −→∗ m0. Since
(λx : t. m4 m) m0 −→∗ (m4 m){m0/x0}, we have e ⇒ (λx : t. m4 m) (m3 (k` ′` x0)). By DF-Under, η` e ⇀ λx0 :α` ′ . (λx :
t. m4 x0) (m3 (k` ′` x0)). The result follows by DF-Term.

Lemma 14 (Confluence). If e ⇒ m : s and m ′ −→ m, then

e ⇀ m
′

Proof. By the inversion of DF-Term:
e −→∗ v m −→∗ u v ⇀ u : s

e ⇒ m : s , the confluence of evaluation (m ′ −→∗ u), and DF-
Term.

D. Theorems
This section gives detailed proofs of theorems and lemmas in the paper. Both the parametricity and the noninterference

theorems are defined in terms of behavioral equivalence of the dynamic semantics; therefore, we will first use logical relations
to define related values for DCC and those for F.

v ∼ζ v : s DCC related terms

<> ∼ζ <> : 1 DR-Unit

ei ≈ζ e ′i : si

<e1, e2> ∼ζ <e ′1, e ′2> : s1 × s2
DR-Pair

e ≈ζ e ′ : si

inji e ∼ζ inji e ′ : s1 + s2
DR-Inj

∀(e ≈ζ e ′ : s1). v e ≈ζ v ′ e ′ : s2

v ∼ζ v ′ : s1 →s2
DR-Fun

` 6v ζ

η` e ∼ζ η` e ′ : T` s
DR-Above

e ≈ζ e ′ : s ` v ζ

η` e ∼ζ η` e ′ : T` s
DR-Under

e −→∗ v e ′ −→∗ v ′ v ∼ζ v ′ : s

e ≈ζ e ′ : s
DR-Term

γ ≈ζ γ ′ : Γ e ≈ζ e ′ : s

(γ, x 7→ e) ≈ζ (γ ′, x 7→ e ′) : (Γ, x :s)
DR-Subs

u ∼ u : t | ρ F related values

<> ∼ <> : 1 | ρ FR-Unit

mi ≈ m ′i : ti | ρ

<m1, m2> ∼ <m ′1, m ′2> : t1 × t2 | ρ
FR-Pair

m ≈ m ′ : ti | ρ

inji m ∼ inji m ′ : t1 + t2 | ρ
FR-Inj

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ
FR-Fun

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R)
FR-Var

∀(R ∈ t2 ↔ t ′2). u [t2] ≈ u ′ [t ′2] : t1 | (ρ, α 7→ R)

u ∼ u ′ : ∀α. t1 | ρ
FR-All

m −→∗ u m ′ −→∗ u ′ u ∼ u ′ : t | ρ

m ≈ m ′ : t | ρ
FR-Term

γ ≈ γ ′ : Γ | ρ m ≈ m ′ : t | ρ

(γ, x 7→ m) ≈ (γ ′, x 7→ m ′) : (Γ, x :t) | ρ
FR-Subs

ρ ∈ δ ↔ δ ′ R ∈ t ↔ t ′

(ρ, α 7→ R) ∈ (δ, α 7→ t) ↔ (δ ′, α 7→ t ′)
F-Rsubs

u ∼ u ′ : t | ρ

(u, u ′) ∈ [[t]]ρ
F-Rel

[[L`, `]]1 = [[L`]]1, α` 7→ 1 LL-Unit

[[Lv, ` v ` ′]]1 = [[Lv]]1, k` ′` 7→ λx :1.x LO-Unit

[[L`, `]]ζ = [[L`]]ζ, α` 7→ ∅ (` 6v ζ) L-Above

[[L`, `]]ζ = [[L`]]ζ, α` 7→ [[1]]. (` v ζ) L-Under

Theorem 15 (Parametricity). If ∆; Γ ` m3 : t3 and δ, δ ′ |= ∆ and γ ≈ γ ′ : Γ | ρ and ρ ∈ δ ↔ δ ′, then

δγ(m3) ≈ δ
′
γ
′
(m3) : t3 | ρ

Proof. By induction on ∆; Γ ` m3 : t3:

• FT-Unit: ∆; Γ ` <> : 1 with m3 = <> and t3 = 1

By FR-Unit: <> ∼ <> : 1 | ρ and FR-Term because δγ(<>) = δ ′γ ′(<>) = <>.

• FT-Pair:

∆; Γ ` mi : ti

∆; Γ ` <m1, m2> : t1 × t2 with m3 = <m1, m2> and t3 = t1 × t2

By IH and FR-Pair:

mi ≈ m ′i : ti | ρ

<m1, m2> ∼ <m ′1, m ′2> : t1 × t2 | ρ and FR-Term.

• FT-Prj:

∆; Γ ` m : t1 × t2

∆; Γ ` prji m : ti with m3 = prji m and t3 = ti

By IH, the inversion of of FR-Term, the inversion of FR-Pair:

mi ≈ m ′i : ti | ρ

<m1, m2> ∼ <m ′1, m ′2> : t1 × t2 | ρ, and FE-Pair: prji <m1, m2> −→
mi.

• FT-Inj:

∆; Γ ` m : ti

∆; Γ ` inji m : t1 + t2 with m3 = inji m and t3 = t1 + t2

By IH and FR-Inj:

m ≈ m ′ : ti | ρ

inji m ∼ inji m ′ : t1 + t2 | ρ and FR-Term.

• FT-Case:

∆; Γ ` m : t1 + t2 ∆; Γ ` ui : ti →t

∆; Γ ` case m u1 u2 : t with m3 = case m u1 u2 and t3 = t

By IH, the inversion of FR-Term, the inversion of FR-Inj:

m ≈ m ′ : ti | ρ

inji m ∼ inji m ′ : t1 + t2 | ρ, the inversion of FR-Fun:
∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ , and FE-Sum: case (inji m) u1 u2 −→ ui m.

• FT-Var: ∆; Γ, x :t ` x :t with m3 = x and t3 = t

By the inversion of FR-Subs:

γ ≈ γ ′ : Γ | ρ m ≈ m ′ : t | ρ

(γ, x 7→ m) ≈ (γ ′, x 7→ m ′) : (Γ, x :t) | ρ.

• FT-Fun:

∆; Γ, x :t1 ` m : t2

∆; Γ ` λx :t1. m : t1 →t2 with m3 = λx :t1. m and t3 = t1 →t2

Suppose m ≈ m ′ : t1 | ρ. By FE-Fun: (λx : t. m1) m2 −→ m1{m2/x}, we have (λx : t1. δγ(m3)) m −→ δγ(m3){m/x} and
(λx :t1. δ ′γ ′(m3)) m ′ −→ δ ′γ ′(m3){m ′/x}. Let

γ1 = γ, x 7→ m γ
′
1 = γ

′
, x 7→ m

′

such that γ1(m3) = γ(m3){m/x} and γ ′
1(m3) = γ ′(m3){m ′/x}. By IH, δγ1(m3) ≈ δ ′γ1(m3) : t2 | ρ. The result follows

by FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ and FR-Term.

• FT-App:

∆; Γ ` m1 : t1 →t2 ∆; Γ ` m2 : t1

∆; Γ ` m1 m2 : t2 with m3 = m1 m2 and t3 = t2

By IH, δγ(m1) ≈ δ ′γ ′(m1) : t1 →t2 | ρ and δγ(m2) ≈ δ ′γ ′(m2) : t1 | ρ. The result follows by the inversion of FR-Term

and the inversion of FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ .

• FT-All:

∆, α; Γ ` m : t

∆; Γ ` Λα. m : ∀α. t with e3 = Λα. m and m3 = ∀α. t

Suppose R ∈ t2 ↔ t ′2. By FE-All: (Λα. m) [t] −→ m{t/α}, we have (Λα. δγ(m3)) [t2] −→ δγ(m3){t2/α} and
(Λα. δ ′γ ′(m3)) [t ′2] −→ δ ′γ ′(m3){t ′2/α}. Let

δ1 = δ, α 7→ t2 δ
′
1 = δ

′
, α 7→ t

′
2 ρ1 = ρ, α 7→ R

such that δ1γ(m3) = δγ(m3){t2/α} and δ ′1γ ′(m3) = δ ′γ ′(m3){t ′2/α}. By IH, δ1γ(m3) ≈ δ ′1γ ′(m3) : t | ρ1. The result

follows by FR-All:

∀(R ∈ t2 ↔ t ′2). u [t2] ≈ u ′ [t ′2] : t1 | (ρ, α 7→ R)

u ∼ u ′ : ∀α. t1 | ρ and FR-Term.

• FT-Tapp:

∆; Γ ` m : ∀α. t1

∆; Γ ` m [t2] : t1{t2/α} with e3 = m [t2] and t3 = t1{t2/α}

By IH, δγ(m1) ≈ δ ′γ ′(m1) : ∀α. t1 | ρ. By the inversion of FR-Term:

m −→∗ u m ′ −→∗ u ′ u ∼ u ′ : t | ρ

m ≈ m ′ : t | ρ , we
have δγ(m) −→∗ u, δ ′γ ′(m1) −→∗ u ′ and u ∼ u ′ : ∀α. t1 | ρ. Let R = [[t2]]ρ. By the inversion of F-Rsubs:

ρ ∈ δ ↔ δ ′ R ∈ t ↔ t ′

(ρ, α 7→ R) ∈ (δ, α 7→ t) ↔ (δ ′, α 7→ t ′), we have R ∈ δ(t2) ↔ δ ′(t2). By the inversion of FR-All:

∀(R ∈ t2 ↔ t ′2). u [t2] ≈ u ′ [t ′2] : t1 | (ρ, α 7→ R)

u ∼ u ′ : ∀α. t1 | ρ ,
we have u [δ(t2)] ≈ u ′ [δ ′(t2)] : t1 | (ρ, α 7→ [[t2]]ρ). The result follows by Lemma 16 (Substitution for parametricity).

Lemma 16 (Substitution for parametricity). If m ≈ m ′ : t3 | (ρ, α4 7→ [[t4]]ρ), then

m ≈ m
′ : t3{t4/α4} | ρ

Proof. By the inversion of FR-Term:

m −→∗ u m ′ −→∗ u ′ u ∼ u ′ : t | ρ

m ≈ m ′ : t | ρ and by induction on u ∼ u ′ : t3 | (ρ, α4 7→ [[t4]]ρ):

• FR-Unit: <> ∼ <> : 1 | ρ with u = <> and t3 = 1

By FR-Unit and FR-Term because 1{t4/α4} = 1.

• FR-Pair:

mi ≈ m ′i : ti | ρ

<m1, m2> ∼ <m ′1, m ′2> : t1 × t2 | ρ with u = <m1, m2> and t3 = t1 × t2

By IH, FR-Pair and FR-Term.

• FR-Inj:

m ≈ m ′ : ti | ρ

inji m ∼ inji m ′ : t1 + t2 | ρ with u = inji m and t3 = t1 + t3

By IH, FR-Inj and FR-Term.

• FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ with t3 = t1 →t2

By IH, FR-Fun and FR-Term.

• FR-Var:

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R) and t3 = α = α4

By the inversion of F-Rel:

u ∼ u ′ : t | ρ

(u, u ′) ∈ [[t]]ρ and FR-Term because α{t4/α4} = t4.

• FR-Var:

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R) and t3 = α 6= α4

By FR-Var and FR-Term because α{t4/α4} = α.

• FR-All:

∀(R ∈ t2 ↔ t ′2). u [t2] ≈ u ′ [t ′2] : t1 | (ρ, α 7→ R)

u ∼ u ′ : ∀α. t1 | ρ with t3 = ∀α. t1

Suppose R ∈ t3 ↔ t ′3. We have u [t3] ≈ u ′ [t ′3] : t3 | (ρ, α4 7→ [[t4]]ρ, α 7→ R). By IH, u [t3] ≈ u ′ [t ′3] :
t3{t4/α4} | (ρ, α 7→ R). The result follows by FR-All and FR-Term because (∀α. t3){t4/α4} = ∀α. t3{t4/α4}.

Lemma 17 (Relation correctness).

1. If γ ≈ζ γ ′ : Γ with (L`,Lv) and γ0 |= L†
v, then γ0γ∗ ≈ γ0γ ′∗ : L†

v, Γ† | [[L`]]ζ.

2. If e3 ≈ζ e ′3 : s3 with (L`,Lv) and γ0 |= L†
v, then γ0(e

∗
3) ≈ γ0(e

′∗
3) : s†3 | [[L`]]ζ.

Proof. We prove Part 1 by induction on DR-Subs:

γ ≈ζ γ ′ : Γ e ≈ζ e ′ : s

(γ, x 7→ e) ≈ζ (γ ′, x 7→ e ′) : (Γ, x :s), Part 2, L-Subs: (γ, x 7→ e)∗ =

γ∗, x 7→ e∗ and FR-Subs:

γ ≈ γ ′ : Γ | ρ m ≈ m ′ : t | ρ

(γ, x 7→ m) ≈ (γ ′, x 7→ m ′) : (Γ, x :t) | ρ.

We prove Part 2 as follows: By the inversion of DR-Term:

e −→∗ v e ′ −→∗ v ′ v ∼ζ v ′ : s

e ≈ζ e ′ : s and by induction on v ∼ζ v ′ : s:

• DR-Unit: <> ∼ζ <> : 1 with v = <> and s3 = 1

By LE-Unit, LT-Unit, FR-Unit and FR-Term.

• DR-Pair:

ei ≈ζ e ′i : si

<e1, e2> ∼ζ <e ′1, e ′2> : s1 × s2 with v = <e1, e2> and s3 = s1 × s2

By LE-Pair, LT-Pair, IH, FR-Prj and FR-Term.

• DR-Inj:

e ≈ζ e ′ : si

inji e ∼ζ inji e ′ : s1 + s2 with v = inji e and s3 = s1 + s2

By LE-Case, LT-Sum, IH, FR-Inj and FR-Term.

• DR-Fun:

∀(e ≈ζ e ′ : s1). v e ≈ζ v ′ e ′ : s2

v ∼ζ v ′ : s1 →s2 with s3 = s1 + s2

By LE-Fun, LT-Fun, IH, FR-Fun and FR-Term.

• DR-Above:

` 6v ζ

η` e ∼ζ η` e ′ : T` s with v = η` e and s3 = T` s

By LE-Prot: (η` e)∗ = λx :α`. e
∗ (fresh x) and LT-Prot: (T` s)† = α` →s†. By L-Above: [[L`, `]]ζ = [[L`]]ζ, α` 7→ ∅

(` 6v ζ) and FR-Var:

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R), there do not exist m and m ′ such that m ≈ m ′ : α` | [[L`]]ζ. The result follows

by FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ because the premise is vacuously true.

• DR-Under:

e ≈ζ e ′ : s ` v ζ

η` e ∼ζ η` e ′ : T` s with v = η` e and s3 = T` s

By LE-Prot: (η` e)∗ = λx : α`. e
∗ (fresh x), LT-Prot: (T` s)† = α` → s† and L-Under: [[L`, `]]ζ = [[L`]]ζ, α` 7→ [[1]].

(` v ζ). Suppose m ≈ m ′ : α` | [[L`]]ζ. By FE-Fun: (λx : t. m1) m2 −→ m1{m2/x} and the freshness of x, we have
γ0(η` e)∗ m = (λx : α`. γ0(e

∗)) m −→ γ0(e
∗) and γ0(η` e ′)∗ m = (λx : α`. γ0(e

′∗)) m −→ γ0(e
′∗). By IH,

γ0(e
∗) ≈ γ0(e

′∗) : s† | [[L`]]ζ. The result follows by FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ .

Lemma 18 (Adequacy). If e3 ⇒ δ0(m3) : s3, e
′
3 ⇒ δ0(m

′
3) :s3 with (L`,Lv), δ0 |= L†

` and m3 ≈ m ′3 : s†3 | [[L`]]ζ, then

e3 ≈ζ e
′
3 : s3

Proof. By the inversion of DF-Term:
e −→∗ v m −→∗ u v ⇀ u : s

e ⇒ m : s and FR-Term:

m −→∗ u m ′ −→∗ u ′ u ∼ u ′ : t | ρ

m ≈ m ′ : t | ρ ,

then by induction on s3 of s†3 = t3, v ⇀ u : s3, v ′ ⇀ u ′ : s3 and u ∼ u ′ : s†3 | [[L`]]ζ:

• LT-Unit: 1† = 1, DF-Unit and FR-Unit with s3 = 1

By DR-Unit and DR-Term.

• LT-Pair: (s1 × s2)
† = s

†
1 × s

†
2, DF-Pair and FR-Pair with s3 = s1 × s2

By IH, DR-Pair and DR-Term.

• LT-Sum: (s1 + s2)
† = s

†
1 + s

†
2, DF-Inj and FR-Inj with s3 = s1 + s2

By IH, DR-Inj and DR-Term.

• LT-Fun: (s1 →s2)
† = s

†
1 →s

†
2 with s3 = s1 →s2

DF-Fun:
∀(e ⇒ m : s1). v e ⇒ u m : s2

v ⇀ u : s1 →s2

FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ

Suppose e ≈ζ e ′ : s1. Let γ0 = [[Lv]]1. By Theorem 12 (Dynamic correctness), e ⇒ δ0γ0(e
∗) : s1 and e ′ ⇒ δ0γ0(e

′∗) :

s1. Let m = γ0(e
∗) and m ′ = γ0(e

′∗). By Lemma 17 (Relation correctness), m ≈ m ′ : s†1 | [[L`]]ζ. By the inversion of
DF-Fun, v e ⇒ u m : s2 and v ′ e ′ ⇒ u ′ m ′ : s2 because v and v ′ are related at function type s1 →s2 by assumption. By
the inversion of FR-Fun, u m ≈ u ′ m ′ : s†2 | [[L`]]ζ because u and u ′ are related at s

†
1 →s

†
2. By IH, v e ≈ζ v ′ e ′ : s2. The

result follows by DR-Fun:

∀(e ≈ζ e ′ : s1). v e ≈ζ v ′ e ′ : s2

v ∼ζ v ′ : s1 →s2 and DR-Term.

• LT-Prot: (T` s)† = α` →s† with v = η` e and s3 = T` s

DF-Prot:
∀(` m : t). e ⇒ u m : s

η` e ⇀ u : T` s

FR-Fun:

∀(m ≈ m ′ : t1 | ρ). u m ≈ u ′ m ′ : t2 | ρ

u ∼ u ′ : t1 →t2 | ρ

If ` 6v ζ, the result follows by DR-Above:

` 6v ζ

η` e ∼ζ η` e ′ : T` s and DR-Term.

Suppose ` v ζ. By L-Under: [[L`, `]]ζ = [[L`]]ζ, α` 7→ [[1]]. (` v ζ) and FR-Var:

(u, u ′) ∈ R

u ∼ u ′ : α | (ρ, α 7→ R), we have
m2 ≈ m ′2 : α` | [[L`]]ζ for all m2, m ′2 because the relation is total. This implies u m2 ≈ u ′ m ′2 : s† | [[L`]]ζ as u and u ′ are
related at a function type α` →s† by assumption. By the inversion of DF-Prot, e3 ⇒ u m2 : s and e ′3 ⇒ u ′ m ′2 : s. The

result follows by IH, DR-Under:

e ≈ζ e ′ : s ` v ζ

η` e ∼ζ η` e ′ : T` s and DR-Term.

	Introduction
	Dependency core calculus
	DCC to F
	Translation
	Correctness

	Theorems
	Logical equivalences
	Parametricity
	Noninterference

	Extending DCC
	Excursion to parametricity
	Protection contexts
	Isomorphism

	Discussion
	Haskell implementation
	Fixpoints and termination
	Related work

	Conclusion
	Syntax
	Semantics
	Translation
	Theorems

