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Optimal Program Synthesis via Abstract Interpretation
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We consider the problem of synthesizing programs with numerical constants that optimize a quantitative

objective, such as accuracy, over a set of input-output examples. We propose a general framework for optimal

synthesis of such programs in a given DSL, with provable optimality guarantees. Our framework enumerates

programs in a general search graph, where nodes represent subsets of concrete programs. To improve scalability,

it uses 𝐴∗ search in conjunction with a search heuristic based on abstract interpretation; intuitively, this

heuristic establishes upper bounds on the value of subtrees in the search graph, enabling the synthesizer

to identify and prune subtrees that are provably suboptimal. In addition, we propose a natural strategy for

constructing abstract transformers for monotonic semantics, which is a common property for components

in neurosymbolic DSLs. Finally, we implement our approach in the context of two existing DSLs for data

classification, demonstrating that our algorithm is more scalable than existing optimal synthesizers.

CCS Concepts: • Theory of computation→ Abstraction; Program analysis; • General and reference
→ General conference proceedings; Design; • Computing methodologies→ Supervised learning.
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1 INTRODUCTION
There has been a great deal of recent interest in synthesizing programs to solve data processing and

querying tasks, which often operate over semi-structured and unstructured data such as images

and natural language text. Examples include neurosymbolic programs that incorporate deep neural

network (DNN) components to extract semantic information from raw data [Chen et al. 2021; Shah

et al. 2020], as well as fuzzy matching programs that use predicates with quantitative semantics to

approximately match real-valued data [Mell et al. 2023]. For instance, Shah et al. [2020] synthesizes

programs that label sequence data, Mell et al. [2023] synthesizes queries over trajectories output

by an object tracker, and Chen et al. [2021] synthesizes web question answering programs. Most

work focuses on programming by example (PBE), where the user provides a set of input-output (IO)

examples, and the goal is to synthesize a program that generates the correct output for each input.

There are two key properties that distinguish synthesis of such programs from traditional PBE:

• Quantitative (real-valued) objectives: The goal in neurosymbolic synthesis is typically

to optimize a quantitative objective such as accuracy or 𝐹1 score rather than to identify a

program that is correct on all examples (which may be impossible).
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2 Stephen Mell, Steve Zdancewic, and Osbert Bastani

• Numerical constants: Programs operating on fuzzy real-world data or the outputs of DNN

components typically include real-valued constants that serve as thresholds; for example,

when querying video trajectories, one constant may be a threshold on the maximum velocity

of the object.

While these properties occasionally arise in traditional PBE settings (e.g., minimizing resource

consumption), they are fundamental issues in neurosymbolic synthesis. Furthermore, in the neu-

rosymbolic setting, there is often additional structure pertaining to the real-values that can be

exploited to improve synthesis performance—for instance, some of the numerical components

might be monotone in their inputs.

Most existing systems focus on synthesizing examples in a particular domain-specific language

(DSL). In these settings, prior work has leveraged monotonicity of the semantics to prune the

search space [Mell et al. 2023]. One general framework is Shah et al. [2020], which uses neural
relaxations to guide search over a general DSL. At a high level, they use 𝐴∗ search to enumerate

partial programs in the DSL, which are represented as a directed acyclic graph (DAG). In general,

𝐴∗ search prioritizes the order in which to enumerate partial programs based on a score function

(called a heuristic) that maps each partial program to a real-valued score. When the heuristic is

admissible—i.e., its output is an upper bound on the objective value for any completion of that

partial program (assuming the goal is to maximize the objective)—then 𝐴∗ search is guaranteed to

find the optimal program (assuming it terminates).
1

Then, Shah et al. [2020] proposes the following heuristic: fill each hole in the partial program

with an untrained DNN, and then maximize the quantitative objective as a function of the DNN

parameters. However, this score function is only guaranteed to be admissible under assumptions that

typically do not hold in practice: (i) the neural relaxations are sufficiently expressive to represent

any program in the DSL, which requires very large DNNs, and (ii) maximization of the DNN

parameters converges to the global optimum, which does not hold for typical strategies such as

stochastic gradient descent (SGD). Furthermore, SGD cannot handle non-differentiable objectives,

which include common objectives such as accuracy and 𝐹1 score.

Thus, a natural question is whether we can construct practical heuristics that are always guar-

anteed to be admissible. In this work, we take inspiration from deduction-guided synthesis, which
uses automated reasoning techniques such as SMT solvers [Bornholt et al. 2016] or abstract inter-

pretation [Cousot and Cousot 1977] to prune partial programs from the search space—i.e., prove

that no completion of a given partial program can satisfy the given IO examples. In particular, we

propose using abstract interpretation to construct heuristics for synthesis for quantitative objectives.

Traditionally, abstract interpretation can be used to prune partial programs by replacing each hole

with an abstract value overapproximating all possible concrete values that can be taken by that

hole in the context of a given input. Then, if the abstract output does not include the corresponding

concrete output, that partial program cannot possibly be completed into a program that satisfies

that IO example, so it can be pruned.

Our key insight is that abstract interpretation can similarly be used to construct an admissible

heuristic for a quantitative objective. Essentially, we can use abstract interpretation to overapproxi-

mate the possible objective values obtained by any completion of a given partial program; then, the

supremum of concrete values represented by the abstract output serves as an upper bound of the

objective, so it can be used as an admissible heuristic. Thus, given abstract transformers for the DSL

components and for the quantitative objective, our framework can synthesize optimal programs.

1
We mean optimal on the given IO examples. This notion ignores suboptimality due to generalization error, which can be

handled using standard techniques from learning theory [Kearns and Vazirani 1994].
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Optimal Program Synthesis via Abstract Interpretation 3

In addition, we propose general strategies for constructing abstract domains and transformers

for common DSLs and objectives. As discussed above, many DSLs have monotone components. In

these settings, a natural choice of abstract domain is to use intervals for the real-valued constants;

then, a natural abstract transformer is to evaluate the concrete semantics on the upper and lower

bounds of the intervals. This strategy can straightforwardly be shown to correctly overapproximate

the concrete semantics.

We have implemented our approach in the context of two DSLs—namely, the NEAR [Shah et al.

2020] DSL for the CRIM13 [Burgos-Artizzu et al. 2012] dataset, and the Quivr [Mell et al. 2023] DSL

and benchmark. In our experiments, we demonstrate that our approach significantly outperforms

an adaptation of Metasketches [Bornholt et al. 2016]—an existing optimal synthesis framework

based on SMT solving—to our setting, as well as an ablation that uses breadth first search instead

of 𝐴∗ search. Our approach significantly outperforms both of these baselines in terms of running

time. In summary, our contributions are:

• We propose a novel algorithm for optimal synthesis which performs enumerative search

over a space of generalized partial programs. To prioritize search, it uses the 𝐴∗ algorithm
with a search heuristic based on abstract interpretation. If it returns a program, then that

program is guaranteed to be optimal (Section 3).

• In practice, many DSLs have components with monotone semantics—i.e., the concrete values

have a partial order that is preserved by the concrete semantics. For these semantics, we

propose to use intervals as the abstract domains, in which case a natural choice of abstract

transformer is to simply apply the concrete semantics to the lower and upper bound of the

interval (Section 4).

• We implement our framework in the context of two existing DSLs (Section 5) and show in

our experiments that it outperforms Metasketches [Bornholt et al. 2016], a state-of-the-art

optimal synthesis technique based on SMT solvers, and a baseline that uses breadth-first

search instead of our search heuristic (Section 6).

2 MOTIVATING EXAMPLE
We consider a task where the goal is to synthesize a program for predicting the behavior of mice

based on a video of them interacting [Shah et al. 2020]. This task is motivated by a data analysis

problem in biology. In particular, biologists use mice as model animals to investigate both basic

biological processes and to develop new therapeutic interventions, which sometimes requires

determining the effect of an intervention on mouse behavioral patterns, including the nature and

duration of interactions with other mice. For example, Figure 1 depicts two mice in an enclosure,

engaging in the “sniff” behavior.

Doing this behavior analysis typically involves researchers viewing and manually annotating

these behaviors in hours of video, which is very labor intensive. As a result, program synthesis has

been applied to automating this task [Shah et al. 2020]. Their approach first uses an object tracker

to track each mouse across frames in the video, producing trajectories represented as a sequence of

2D positions for each mouse. Then, they featurize each step in the trajectory—for instance, if there

are two mice in the video, then one feature might be the distance between them in each frame.

Based on this sequence of features, the goal is to predict a label for the behavior (if any) that the

mice are engaged in during each frame (producing a sequence of labels, one for each frame). Shah

et al. [2020] solves this problem by synthesizing a neurosymbolic program in a functional DSL

for processing trajectories. In summary, the goal is to synthesize a program that takes as input a

sequence of feature vectors, and outputs a sequence of labels. We consider the programming by

, Vol. 1, No. 1, Article . Publication date: November 2023.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Stephen Mell, Steve Zdancewic, and Osbert Bastani

Fig. 1. A frame from a video of two mice interacting [Sun et al. 2021]; the mice are very close together, and
are exhibiting the “sniff” behavior. The video has been processed using deep neural networks to produce
certain keypoints, which are shown.

example (PBE) setting, where we are given a number of human annotated examples, and the goal

is to synthesize a program that maximizes some objective, such as accuracy or 𝐹1 score.

For example, consider synthesizing a program that, given a featurized trajectory representing

two mice in a video, outputs the behavior of the mice at each time step. In particular, the input

is a trajectory 𝑥 ∈ R∗ (where 𝑇 ∗ denotes lists of 𝑇 s), where the feature 𝑥 [𝑡] ∈ R on time step 𝑡

encodes the distance between the two mice at that time step, and the output is 𝑦 ∈ {f, t}∗, where
𝑦 [𝑡] encodes whether the mice are engaging in the “sniff” behavior (𝑦 = t if so, and 𝑦 = f if not) at
time step 𝑡 .

We consider synthesizing such a program based on a single training example 𝑥1 = (100, 65) and
𝑦1 = (f, t) (i.e., the first frame has mouse distance 100 and is labeled “not sniff” and the second

frame has mouse distance 65 and is labeled “sniff”). Our goal is to find some program that classifies

a dataset of videos well—i.e., if we evaluate the program on the videos to get predicted labels,

and then compute a classification metric (e.g. accuracy) between the predicted and true labels,

the discrepancy should be small. Given a program 𝑝 , its accuracy is 1 if ⟦𝑝⟧(𝑥1) = 𝑦1 and 1/2 if

⟦𝑝⟧(𝑥1) [0] = 𝑦1 [0] but ⟦𝑝⟧(𝑥1) [1] ≠ 𝑦1 [1] (or vice versa), and 0 otherwise (where 𝑧 [𝑖] is the 𝑖-th
item in a sequence 𝑧).

Consider the candidate program “map(𝑑 ≤ 50)”. In traditional syntax, this program ismap (𝜆𝑑 . 𝑑 ≤
50) 𝑥 , but the input is specified separately and the 𝜆 omitted (in combinator-style, similar to the

NEAR DSL). This program performs a map over the sequence of frames, and for each one, it would

output whether the mouse distance in that frame is less than or equal to 50. For example, when

evaluated on 𝑥1, it outputs

⟦map(𝑑 ≤ 50)⟧(𝑥1) = (f, f).

Thus, its accuracy is 1/2, since it correctly labels the first frame but not the second.

One strategy for computing the optimal program (i.e., the one that maximizes the objective) is

to enumerate partial programs (i.e., programs with holes representing pieces that need to filled to

obtain a concrete program) in the DSL, evaluate the objective on every concrete program, and then

choose the best one. There are several challenges to this approach:

• Unlike traditional synthesis, where we can stop enumerating when we reach a concrete

program that satisfies the given specification, for optimal synthesis, we need to enumerate

all programs or risk returning a suboptimal program.

• Traditional synthesizers use a variety of techniques to prune the search space to improve

scalability. For instance, they might use deduction to prove that no completion of a partial

, Vol. 1, No. 1, Article . Publication date: November 2023.
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Optimal Program Synthesis via Abstract Interpretation 5

program can satisfy the specification—i.e., no matter how the holes in the partial program are

filled, the specification will not hold. However, these techniques are not directly applicable

to optimal synthesis.

• Synthesizing real-valued constants poses a problem: one approach is to discretize the these

constants, enumerate all of them, and choose the best, but this approach can be prohibitively

slow. For example, suppose we are enumerating completions of the partial program

map(𝑑 ≤ ??),
where ?? is a hole that needs to be filled with a real value 𝜃 ∈ [0, 100] to obtain a concrete pro-
gram. If we discretize 𝜃 ∈ {0, 1, ..., 100}, then we would enumerate map(𝑑 ≤ 0), ...,map(𝑑 ≤
100), evaluate each of these on (𝑥1, 𝑦1) to measure its accuracy, and choose the program

with the highest accuracy.

Our framework uses two key innovations to address these challenges:

• Generalized partial programs: Our framework takes the traditional notion of partial

programs, representing sets of concrete programs as completions of syntax with holes, and

extends it to more general sets of programs, equipped with a directed acyclic graph (DAG)

structure.

• A∗ search: Rather than enumerate programs in an arbitrary order (e.g., breadth first search),

our framework uses 𝐴∗ search to enumerate programs.

We describe each of these techniques in more detail below.

Generalized partial programs. Traditionally, the search space over partial programs is a DAG,

where the nodes are partial programs, and there is an edge 𝑝 → 𝑝′ if 𝑝′ can be obtained by filling a

hole in 𝑝 using some production in the DSL. For instance, there is an edge

map(𝑑 ≤ ??) → map(𝑑 ≤ 50)
in this DAG, since we have filled the hole with the value 50. However, even if we discretize the

search space, there are 101 ways to fill this hole. As a consequence, if even a single completion of

map(𝑑 ≤ ??) is valid, then we cannot prune it from the search space (ignoring for now the fact

that we want to synthesize the optimal program instead of any valid program).

Instead, in our framework, we allow search DAGs beyond just programs with holes, so long as

each node represents a set of concrete programs and the children of a node should collectively

represent the same set. As a practical instantiation of the general framework, we consider partial

programs where holes for real-valued constants may be annotated with constraints on the value

that can be used to fill them. For instance, the generalized partial program

map(𝑑 ≤ ??[50,100])
represents the set of concrete programs

{map(𝑑 ≤ 𝜃 ) | 𝜃 ∈ [50, 100]}
Then, the children of this generalized partial program in the search DAG should split the constraint

in a way that covers the search space—e.g.,

children(map(𝑑 ≤??[50,100])) = {map(𝑑 ≤??[50,75]),map(𝑑 ≤??[75,100])}.
This strategy presents more opportunities for pruning the search space. For instance, even if we

cannot prune the program map(𝑑 ≤??[50,100]), we may be able to prune the program map(𝑑 ≤
??[50,75]). Then, rather than needing to enumerate 51 programs (i.e., one for each 𝜃 ∈ {50, ..., 100}),
we would only need to prune map(𝑑 ≤??[50,75]) and evaluate 26 programs (i.e., one for each 𝜃 ∈
{75, ..., 100}). Of course, we can further subdivide the search space to further reduce enumeration.
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6 Stephen Mell, Steve Zdancewic, and Osbert Bastani

𝐴∗ search. Next, we describe our strategy for achieving the equivalent of pruning a partial

program in the optimal synthesis setting. In particular, this task is accomplished by using𝐴∗ search.
At a high level, 𝐴∗ search enumerates nodes in a search graph according to a heuristic; for our
purposes, a heuristic is function that maps a partial program 𝑝 to a real value 𝜇, and a heuristic is

said to be admissible if it is an upper bound on the best possible objective value for any completion

of 𝑝—i.e.,

𝑝 ∈ completions(𝑝) ⇒ 𝜇 ≥ objective(𝑝).

The heuristic adapts deductive reasoning to optimal synthesis. Whereas deductive reasoning

guarantees that no completion of 𝑝 can satisfy the given specification, the heuristic guarantees that

no completion of 𝑝 can achieve objective value greater than 𝜇—e.g., if we find a concrete program

with objective value ≥ 𝜇, we can safely prune completions of 𝑝 from the search DAG.

While 𝐴∗ search has previously been used in synthesis for quantitative objectives [Shah et al.

2020], the heuristics used are not admissible and so do not provide theoretical guarantees. Our key

contribution is showing that abstract interpretation can naturally be adapted to design admissible

heuristics. Abstract interpretation can be used for traditional deductive reasoning as follows: fill

each hole in the current partial program with an abstract value ⊤, evaluate the partial program
using abstract semantics, and check if the abstract output is consistent with the specification.

In our example, a natural choice of abstract domain is the interval domain. In addition, rather

than fill each hole with ⊤, if a hole has a constraint ??[𝑎,𝑏 ] , we can instead fill it with the interval

[𝑎, 𝑏]. For instance, for our example program map(𝑑 ≤ ??[50,75]), we can fill the hole with the

interval [50, 75] to obtain map(𝑑 ≤ [50, 75]). Then, the abstract semantics ⟦·⟧#
evaluate as follows:

⟦map(𝑑 ≤ [50, 75])⟧# (𝑥1) = (⟦100 ≤ [50, 75]⟧#, ⟦65 ≤ [50, 70]⟧#) = (f,⊤). (1)

In other words, the first element is f since 𝑥1 = (100, 65), and we know 100 ̸≤ 𝜃 for any 𝜃 ∈ [50, 75],
and the second element is ⊤ since the relationship between 65 and 𝜃 ∈ [50, 75] can be either f or t.
Importantly, here the abstract values are over holes in the program rather than over the input to it.

Traditionally, we would then check whether this abstract output is consistent with the specifica-

tion. For optimal synthesis, we observe that we can define an abstract semantics for the objective

function. In our example, we can compute an “abstract accuracy” as follows (where 1 is a indicator

function, and ≤, 1, +, ·, and = are abstracted in the obvious way):

accuracy
# (𝑝) = 1

2

2∑︁
𝑡=1

1
[
⟦map(𝑑 ≤ ??[50,75])⟧# (𝑥1) [𝑡] = 𝑦1 [𝑡]

]
=

1

2

(1[f = f] + 1[(⊤ = t])

=
1

2

( [1, 1] + [0, 1])

= [1/2, 1] .

(2)

In other words, for the first frame, the concrete programs represented by map(𝑑 ≤ ??[50,75]) all
predict f , which equals 𝑦1 [1], so this frame is always correctly classified. In contrast, for the second

frame, concrete programs programs may output either f or t, so we are uncertain whether this

frame is correctly classified. Thus, the true accuracy is in the interval [1/2, 1]. Since abstract

interpretation is guaranteed to overapproximate the semantics, we can use the upper bound of the

abstract objective value as our heuristic—e.g., for map(𝑑 ≤ [50, 75]), this heuristic computes 𝜇 = 1.
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Optimal Program Synthesis via Abstract Interpretation 7

Finally, we summarize the full search procedure starting from the node map(𝑑 ≤ ??[0,100]) in
our search DAG, which has an abstract objective value of [1/2, 1]. First, we split it into

𝑝1 = map(𝑑 ≤ [0, 50]) and 𝑝2 = map(𝑑 ≤ [50, 100]) .

The abstract accuracies of 𝑝1 and 𝑝2 are [1/2, 1/2] and [1/2, 1], so their heuristic values are 𝜇1 = 1/2
and 𝜇2 = 1, respectively. Since 𝜇2 > 𝜇1, our algorithm explores 𝑝2 next, splitting it into

𝑝3 = map(𝑑 ≤ [50, 75]) and 𝑝4 = map(𝑑 ≤ [75, 100]),

which have abstract accuracies of [1/2, 1] and [1, 1], respectively, and heuristic values of 𝜇3 = 1

and 𝜇4 = 1, respectively. In this example, the lower bound on the accuracy of 𝑝4 is also 1, so we

know that any choice 𝜃 ∈ [75, 100] for filling this hole is guaranteed to achieve an accuracy of 1;

thus, any concrete program map(𝑑 ≤ 𝜃 ) such that 𝜃 ∈ [75, 100] is optimal, and our algorithm can

terminate without ever considering 𝑝1 or 𝑝3.

In general, our algorithm terminates once the range of possible optimal values is sufficiently

small. For each node on the search frontier, we have an upper and lower bound on the objective

value of all the programs it represents. The greatest of these lower bounds provides a lower bound

on the best possible objective value, and the greatest of these upper bounds provides an upper

bound on the best possible objective value. As a result, once the difference between the bounds is

≤ 𝜖 , we know that we have a program within 𝜖 of being optimal.

3 OPTIMAL SYNTHESIS VIA ABSTRACT INTERPRETATION
In this section, we consider the program synthesis problem where: (i) programs in the domain-

specific language may have real-valued constants, and (ii) the synthesis objective is real-valued,

where the goal is to return the optimal program (Section 3.1). Then, we describe our synthesis

algorithm for solving this problem, which uses 𝐴∗ search in conjunction with a search heuristic

based on abstract interpretation (Section 3.2).

3.1 Problem Formulation
Domain-specific language. For concreteness, consider a DSL whose syntax is given by a context-

free grammar G = (𝑉 , Σ, 𝑅, 𝑃), where 𝑉 is the set of nonterminals, Σ is the set of terminals, 𝑃 ∈ 𝑉
is the start symbol, and 𝑅 is the set of productions

𝑃 F 𝑋 | 𝑐 | 𝑓 (𝑃, ..., 𝑃) (𝑐 ∈ C, 𝑓 ∈ F )

where𝑋 is a symbol representing the input, 𝑐 ∈ C is a constant (including real-valued constants, i.e.,

R ⊆ C), and 𝑓 ∈ F is a DSL component (i.e., function), but our framework extends straightforwardly

to more general grammars. We let 𝑝 ∈ P = L(G) ⊆ Σ∗ denote the concrete programs in our DSL.

Furthermore, we assume the DSL has denotational semantics ⟦·⟧, where ⟦𝑝⟧ : X → Y maps inputs

𝑥 ∈ X to outputs 𝑦 ∈ Y according to the following rules:

⟦𝑋⟧(𝑥) = 𝑥, ⟦𝑐⟧(𝑥) = 𝑐, ⟦𝑓 (𝑝1, ..., 𝑝𝑘 )⟧(𝑥) = 𝑓 (⟦𝑝1⟧(𝑥), ..., ⟦𝑝𝑘⟧(𝑥)),

where we assume the functions 𝑓 : X1 × ... × X𝑘 → Y are given.

In Section 2, we considered programs like map(𝑑 ≤ 50), which we will use as a running example

in this section. They are simplified versions of programs from the NEAR DSL, and are generated by

the grammar:

𝐸 F 𝑑 | 𝑐 | map(𝐸) | 𝐸 ≤ 𝐸 (𝑐 ∈ R)
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8 Stephen Mell, Steve Zdancewic, and Osbert Bastani

Task specification. We consider programming by example (PBE), where each task is specified by

a set 𝑍 ⊆ Z = X ×Y of input-output (IO) examples, and the goal is to compute a program 𝑝∗ that
maximizes a given quantitative objective 𝜙 : P ×Z → R

𝑝∗ ∈ arg max

𝑝∈P
𝜙 (𝑝, 𝑍 ).

Often, 𝜙 is a function of the semantics applied to the examples (𝑥,𝑦) ∈ 𝑍—i.e., there is a function
𝜙0 : (Y × Y)∗ such that

𝜙 (𝑝, 𝑍 ) = 𝜙0

(
{(⟦𝑝⟧(𝑥), 𝑦)} (𝑥,𝑦) ∈𝑍

)
, (3)

In our running example, we choose 𝜙0 as follows, so 𝜙 (𝑝, 𝑍 ) is the accuracy of 𝑃 on 𝑍 :

𝜙0 (𝑊 ) =
1

|𝑊 |
∑︁

(𝑦′,𝑦) ∈𝑊
1[𝑦′ = 𝑦],

where 1[·] is the indicator function.

Partial programs. A common strategy for PBE is to enumerate partial programs, which are

programs in the DSL that have holes, to try and find one that satisfies the given IO examples.

Intuitively, partial programs are partial derivations in the grammar G. To formalize this notion,

given two sequences 𝑝, 𝑝′ ∈ (Σ ∪ 𝑉 )∗, we write 𝑝 → 𝑝′ if 𝑝′ can be obtained by replacing a

nonterminal symbol 𝑁𝑖 ∈ 𝑉 in 𝑝 with the right-hand side of a production 𝑟 = 𝑁𝑖 → 𝑀1...𝑀𝑘 ∈ 𝑅
for that nonterminal—i.e., 𝑝 = 𝑁1...𝑁𝑖 ...𝑁ℎ and 𝑝′ = 𝑁1...𝑀1...𝑀𝑘 ...𝑁ℎ . We denote this relationship

by 𝑝′ = fill(𝑝, 𝑖, 𝑟 )—i.e., we obtain 𝑝′ by filling the 𝑖th hole 𝑁𝑖 in 𝑝 using production 𝑟 . Next, we

write 𝑝
∗−→ 𝑝′ if there exists a sequence 𝑝 = 𝑝1 → ...→ 𝑝𝑛 = 𝑝′, and say 𝑝′ can be derived from 𝑝 .

Note that concrete programs 𝑝 ∈ P are sequences 𝑝 ∈ Σ∗ that can be derived from the start

symbol 𝑃 (i.e., 𝑃
∗−→ 𝑝). Similarly, a partial program is a sequence 𝑝 ∈ ˆP ⊆ (Σ ∪𝑉 )∗ that can be

derived from 𝑃—i.e., 𝑃
∗−→ 𝑝 . The only difference is that 𝑝 may contain nonterminals, which are

called holes. The space of partial programs naturally forms a directed acyclic graph (DAG) via the

relation 𝑝 → 𝑝′; note that concrete programs are leaf nodes in this DAG. Thus, we can perform

synthesis by enumerating partial programs according to the structure of this DAG. Furthermore,

given a partial program 𝑝 ∈ ˆP and a concrete program 𝑝 ∈ P, we say 𝑝 is a completion of 𝑝 if

𝑝
∗−→ 𝑝 (i.e., 𝑝 can be obtained from 𝑝 by iteratively filling the holes of 𝑝).

In our running example, traditional partial programs can be viewed as complete derivations in

the following grammar, where ?? has been added as a terminal symbol:

𝐸 F ?? | 𝑑 | 𝑐 | map(𝐸) | 𝐸 ≥ 𝐸 (𝑐 ∈ R).

Generalized partial programs. A key challenge is searching over real-valued constants 𝑐 ∈ R. Our
grammar in theory contains infinitely many productions of the form 𝑃 → 𝜃 for 𝜃 ∈ R, and even if

we discretize this search space, the number of productions is still large in practice.

To address this challenge, we propose a strategy where we enumerate generalized partial programs
𝑝 ∈ ˆP, which generalize (i) the fact that partial programs correspond to sets of concrete programs

(i.e., the set of their completions), and (ii) the DAG structure of partial programs.

Definition 3.1. A space of generalized partial programs is a set ˆP together with a concretization
function 𝛾 :

ˆP → 2
P
and a DAG structure children :

ˆP → 2
ˆP
, such that

𝛾 (𝑝) =
⋃

𝑝′∈children(𝑝 )
𝛾 (𝑝′). (4)
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Optimal Program Synthesis via Abstract Interpretation 9

Intuitively, 𝛾 (𝑝) ⊆ P is the set of concrete programs represented by the abstract program 𝑝 . In

addition, children encodes a DAG structure on
ˆP that is compatible with 𝛾—i.e., the children 𝑝′ of

𝑝 must collectively contain all the concrete programs in 𝑝 .

For example, to capture traditional partial programs, we let

𝛾 (𝑝) = {𝑝 ∈ P | 𝑝 ∗−→ 𝑝},

i.e., 𝑝 is a completion of 𝑝 , and

children(𝑝) = {𝑝′ ∈ ˆP | 𝑝 → 𝑝′}.
In Section 4, we will propose generalized partial programs that can include constraints on real-

valued holes—e.g., ??[0,1] is a partial program that can only be filled by a real value 𝜃 ∈ [0, 1].
Finally, a simple way to satisfy Definition 3.1 is to define𝛾 based on the children function—i.e., we

can define 𝑝 ∈ 𝛾 (𝑝) if there exists a sequence 𝑝 = 𝑝1, ..., 𝑝𝑛 = 𝑝 of generalized partial programs such

that 𝑝 𝑗+1 ∈ children(𝑝 𝑗 ) for all 1 < 𝑗 < 𝑛. In other words, we can reach the concrete program 𝑝 from

the generalized partial program 𝑝 in the search DAG. This strategy straightforwardly guarantees

(4), since by definition, every 𝑝 ∈ 𝛾 (𝑝) must be the descendant of some child of 𝑝 .

In our running example, the generalized partial programs correspond to the grammar

𝐸 F ?? | 𝑋 | ??[𝑎,𝑏 ] | map(𝐸) | 𝐸 ≥ 𝐸 (𝑎, 𝑏 ∈ R),
while the concretization function satisfies

𝛾 (map(𝑑 ≤ ??[50,100])) = {map(𝑑 ≤ 𝑐) | 𝑎 ≤ 𝑐 ≤ 𝑏}
and the children function satisfies

children(map(𝑑 ≤ ??[50,100])) = {map(𝑑 ≤ ??[50,75]),map(𝑑 ≤ ??[75,100])}.

Abstract objective. For now, we consider an abstract objective ⟦·⟧#

𝜙
that directly maps generalized

partial programs to abstract real values; it is typically constructed compositionally by providing

abstract transformers for each component 𝑓 ∈ F as well as for the objective function 𝜙0, and then

composing them together. In particular, the abstract objective has type ⟦𝑝⟧#

𝜙
: Z → ˆR, where ˆR

is an abstract domain for the reals representing the potential objective values 𝜙 (𝑝, 𝑍 ) (e.g., the
interval domain). Rather than require a concretization function for

ˆR, we only need an upper bound

for this abstract domain—i.e., a function 𝜇 :
ˆR→ R, which encodes the intuition that “𝜇 (𝑟 ) is larger

than any real number 𝑟 contained in 𝑟”.

Definition 3.2. Given objective 𝜙 and generalized partial programs ( ˆP, 𝛾, children), an abstract

objective (⟦·⟧#

𝜙
, 𝜇) is valid if(

𝑝 ∈ 𝛾 (𝑝)
)
⇒

(
𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )) ≥ 𝜙 (𝑝, 𝑍 )

)
(∀𝑝 ∈ P), (5)

and

𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )) = 𝜙 (𝑝, 𝑍 ) (∀𝑝 ∈ P). (6)

Intuitively, (5) says that 𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )) is an upper bound on the objective value𝜙 (𝑝, 𝑍 ) for concrete

programs 𝑝 is contained in the abstract program 𝑝 . In addition, (6) says that for concrete programs,

the abstract objective and concrete objective coincide.

Finally, a typical choice of
ˆR is the space of intervals

ˆR = R × R, where (𝑟, 𝑟 ′) ∈ ˆR represents the

set of real numbers {𝑟 ′′ ∈ R | 𝑟 ≤ 𝑟 ′′ ≤ 𝑟 ′}. Then, the upper bound is given by 𝜇 ((𝑟, 𝑟 ′)) = 𝑟 ′. The
abstract objective ⟦·⟧#

𝜙
depends on the DSL; we describe a general construction in Section 4.
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10 Stephen Mell, Steve Zdancewic, and Osbert Bastani

Algorithm 1 Our algorithm takes as input a task specification 𝑍 , along with a DSL G, a space
of generalized programs ( ˆP, 𝛾), abstract objective (⟦·⟧#

𝜙
, 𝜇), objective lower bound 𝜈 , objective

error tolerance 𝜀, and returns the optimal program 𝑝∗ for task 𝑍 . To do so, it uses the abstract

objective ⟦·⟧#

𝜙
as a heuristic in 𝐴∗ search, starting from the initial generalized partial program

𝑃 .DEL: description of heap operations since they are out-of-date and they should be self-explanatory

if someone knows what a "heap" is in the first place (I didn’t) CHANGED ALGORITHM

procedure 𝐴∗-Synthesis(𝑍 ;G, ˆP, 𝛾, ⟦·⟧#

𝜙
, 𝜇)

ℎ ← heap(sort_by = 𝜆𝑝.𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )))

ℎ.push(𝑃)
while true do

𝑝 ← ℎ.pop()
if max{𝜇 (𝑝′ | 𝑝′ ∈ ℎ)} −max{𝜈 (𝑝′ | 𝑝′ ∈ ℎ)} ≤ 𝜀 then

return arg max{𝜈 (𝑝′) | 𝑝′ ∈ ℎ}
end if
for 𝑝′ ∈ children(𝑝) do

ℎ.push(𝑝′)
end for

end while
end procedure

In our running example, the objective 𝜙 decomposes according to Equation 3 into a semantics

⟦·⟧ and accuracy 𝜙0. We thus define the abstract objective ⟦·⟧#

𝜙
in terms of an abstract semantics

⟦·⟧#
:

ˆP → ˆR (Equation 1), and abstract accuracy (Equation 2).

3.2 𝐴∗ Synthesis via Abstract Interpretation
Given a set of IO examples, Algorithm 1 uses 𝐴∗ search over generalized partial programs 𝑝 ∈ ˆP in

conjunction with the heuristic 𝑝 ↦→ 𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )) to compute the optimal program. In particular, it

uses a heap ℎ to keep track of the generalized partial program 𝑝 in the frontier of the search DAG;

at each iteration, it pops the current best node 𝑝 , and then enumerates the children 𝑝′ of 𝑝 and

adds them to the heap according to the heuristic. Termination occurs when the objective lower

bound 𝜈 :
ˆR→ R (analagous to 𝜇, but lower-bounding rather than upper-bounding the abstract

objective) is within a tolerance 𝜀 ≥ 0 of the upper bound 𝜇. When when the objective abstraction
ˆR

is real intervals, 𝜈 ((𝑟, 𝑟 ′)) = 𝑟 is a natural choice.
For our running example, consider the following generalized partial programs and their abstract

objective values:

𝑝0 B map(𝑑 ≤ ??[0,100]) ⟦𝑝0⟧#

𝜙
= [1/2, 1]

𝑝1 B map(𝑑 ≤ ??[0,50]) ⟦𝑝1⟧#

𝜙
= [1/2, 1/2]

𝑝2 B map(𝑑 ≤ ??[50,100]) ⟦𝑝2⟧#

𝜙
= [1/2, 1]

𝑝3 B map(𝑑 ≤ ??[50,75]) ⟦𝑝3⟧#

𝜙
= [1/2, 1]

𝑝4 B map(𝑑 ≤ ??[75,100]) ⟦𝑝4⟧#

𝜙
= [1, 1]

The search process starts with ℎ0 = {(𝑝0 : 1)}. In the first iteration, 𝑝0 is popped, since it (trivially)

has the highest heuristic value. Its children, 𝑝1 and 𝑝2 are pushed, resulting in ℎ1 = {𝑝1 : 1, 𝑝2 : 1/2}.
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Optimal Program Synthesis via Abstract Interpretation 11

Here we can see the “soft pruning” of 𝐴∗ at work: we know descendents of 𝑝2 cannot achieve

objective values > 1/2. We can’t prune 𝑝2 per se, since the optimal objective value may be ≤ 1/2,
but we can defer considering descendents of 𝑝2 until we know that the optimal objective value is

≤ 1/2.
Next, we pop 𝑝1, since it has the highest heuristic value. Its children, 𝑝3 and 𝑝4 are pushed,

resulting in ℎ2 = {𝑝3, : 1, 𝑝4 : 1, 𝑝2 : 1/2}. Finally, we observe that the distance between the greatest

lower bound (1) and greatest upper bound (1) of the abstract objective intervals is 0, and so search

terminates, returning an arbitrary concrete descendent of 𝑝4.

We have the following optimality guarantee:

Theorem 3.3. If Algorithm 1 returns a program 𝑝 , then 𝑝 ∈ arg max𝑝′∈P 𝜙 (𝑝′, 𝑍 ) is optimal.

Proof. By (4), Algorithm 1 preserves the invariant that every program 𝑝 ∈ P is contained in

some generalized partial program 𝑝 ∈ ℎ—i.e.,⋃̂
𝑝∈ℎ

𝛾 (𝑝) = P .

This property can be checked by an easy induction argument on the while loop iteration.

Next, suppose Algorithm 1 terminates and returns 𝑝 ∈ P. For any concrete program 𝑝′ ∈ P such

that 𝑝′ ≠ 𝑝 , let 𝑝′ ∈ ℎ be such that 𝑝′ ∈ 𝛾 (𝑝′); such a 𝑝′ exists by the above claim. Then, we have

𝜙 (𝑝, 𝑍 ) = 𝜇 (⟦𝑝⟧#

𝜙
(𝑍 )) ≥ 𝜇 (⟦𝑝′⟧#

𝜙
(𝑍 )) ≥ 𝜙 (𝑝′, 𝑍 )

where the equality follows by (6), the first inequality follows by the heap property, and the second

inequality follows by (5). The claim follows. □

We can ensure termination straightforwardly by using a finite DAG as the search space; for

instance, we can do so by discretizing the real-valued constants. Even without discretization, we

can terminate when the error interval becomes smaller than some error tolerance 𝜖 ∈ R≥0. In

general, we can guarantee convergence when the abstract losses of every infinite chain converge.

For example, this property holds when the objective is Lipschitz continuous in the real-valued

program parameters. (The gap between the upper and lower bounds of the objective value is

bounded by the Lipschitz constant times the diameter of the box, which goes to zero as search

proceeds and the boxes become smaller.) However, Lipschitz continuity often does not hold; we

leave exploration of alternative ways to ensure convergence to future work.

4 INSTANTIATION FOR INTERVAL DOMAINS
Section 3 described a general framework for optimal synthesis when given an abstract semantics

and search DAG for the target DSL. In this section, we describe a natural strategy for constructing

abstract semantics when the concrete semantics are monotone. We begin by showing how to

construct abstract semantics for individual components with monotone semantics (Section 4.1) and

construct abstract transformers for monotone objectives (Section 4.2). Next, we describe a space

of partial programs where holes corresponding to real-valued constants are optionally annotated

with interval constraints (Section 4.3). Finally, we show how to combine the abstract transformers

constructed in Sections 4.1 and 4.2 to perform abstract interpretation for our interval-constrained

partial programs (Section 4.4).

4.1 Interval Transformers for Monotone Functions
Many DSLs have the property that parts of their concrete semantics are monotone—i.e., for an
appropriate partial ordering on the inputs and outputs of a program statement, the concrete

semantics preserve the partial order relationship.
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Definition 4.1. Consider a function 𝑓 : X1× ...×X𝑘 → Y, and whereX1, ...,X𝑘 andY are partially

ordered sets. We say 𝑓 is monotone if
𝑘∧
𝑖=1

𝑥𝑖 ≤ 𝑥 ′𝑖 ⇒ 𝑓 (𝑥1, ..., 𝑥𝑘 ) ≤ 𝑓 (𝑥 ′1, ..., 𝑥 ′𝑘 ).

For example, the + operator is monotonically increasing in both of its inputs. We assume 𝑓 is

monotonically increasing without loss of generality; we can capture monotonically decreasing

functions by considering the output space with the opposite partial order relation.

We describe a natural strategy for constructing abstract semantics for a monotone function 𝑓—i.e.,

abstract domains
ˆX𝑖 for eachX𝑖 and ˆY forY, along with an abstract transformer

ˆ𝑓 :
ˆX1× ...× ˆX𝑘 →

ˆY. For our purposes, we only require each abstract domain to be a partial order together with an

abstract transformer that overapproximates the concrete semantics.

Definition 4.2. Given a partially ordered setZ, let
¯Z = Z ∪ {−∞, +∞}, where −∞ ≤ 𝑧 ≤ +∞

for all 𝑧 ∈ Z. Then, the interval domain is the set
ˆZ = {(𝑎, 𝑏) ∈ ¯Z2 | 𝑎 ≤ 𝑏} ∪ {⊥}, together

with an abstraction function 𝛼 : Z → ˆZ defined by 𝛼 (𝑧) = (𝑧, 𝑧), and a concretization function

𝛾 :
ˆZ → 2

Z
defined by

𝛾 ((𝑧0, 𝑧1)) = {𝑧 ∈ Z | 𝑧0 ≤ 𝑧 ≤ 𝑧1}.

In other words, 𝛾 maps (𝑧0, 𝑧1) to the interval [𝑧0, 𝑧1] = {𝑧 ∈ Z | 𝑧0 ≤ 𝑧 ≤ 𝑧1}. It is clear that
𝑧 ∈ 𝛾 (𝛼 (𝑧)). Next, we define our notion of abstract transformer for the interval domain.

Definition 4.3. Given a monotone function 𝑓 : X1 × ... × X𝑘 → Y, let ˆX𝑖 be the interval domain

for each X𝑖 and ˆY be the interval domain for Y. The interval transformer for 𝑓 is the function

ˆ𝑓 :
ˆX1 × ... × ˆX𝑘 → ˆY defined by

ˆ𝑓 ((𝑥1,0, 𝑥1,1), ..., (𝑥𝑘,0, 𝑥𝑘,1)) = (𝑓 (𝑥1,0, ..., 𝑥𝑘,0), 𝑓 (𝑥𝑘,1, ..., 𝑥𝑘,1)) .
If 𝑥𝑖,0 = −∞ for any 𝑖 ∈ [𝑘], then we let the lower bound be 𝑓 (𝑥1,0, ..., 𝑥𝑘,0) = −∞, and if 𝑥𝑖,1 = +∞
for any 𝑖 ∈ [𝑘], then we let the upper bound be 𝑓 (𝑥𝑘,1, ..., 𝑥𝑘,1) = +∞.

For example, since + : R × R→ R is monotone, then +̂ :
ˆR × ˆR→ ˆR is given by

(𝑎, 𝑏)+̂(𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑)

The following key result shows that
ˆ𝑓 overapproximates the concrete semantics:

Lemma 4.4. Let 𝑓 : X1 × ... × X𝑘 → Y be monotone, and let ˆ𝑓 be its interval transformer. For any
𝑥𝑖 ∈ X𝑖 and 𝑥𝑖 = (𝑥𝑖,0, 𝑥𝑖,1) ∈ ˆX𝑖 such that 𝑥𝑖 ∈ 𝛾 (𝑥𝑖 ) for all 𝑖 ∈ [𝑘], we have

𝑓 (𝑥1, ..., 𝑥𝑘 ) ∈ 𝛾
(

ˆ𝑓 (𝑥1, ..., 𝑥𝑘 )
)
.

Proof. For all 𝑖 ∈ [𝑘], by our assumption that 𝑥𝑖 ∈ 𝛾 (𝑥𝑖 ), we have 𝑥𝑖,0 ≤ 𝑥𝑖 ≤ 𝑥𝑖,1. Thus, by
monotonicity of 𝑓 , we have

𝑓 (𝑥1,0, ..., 𝑥𝑘,0) ≤ 𝑓 (𝑥1, ..., 𝑥𝑘 ) ≤ 𝑓 (𝑥1,1, ..., 𝑥𝑘,1). (7)

By definition of
ˆ𝑓 , we have ˆ𝑓 (𝑥1, ..., 𝑥𝑘 ) = (𝑓 (𝑥1,0, ..., 𝑥𝑘,0), 𝑓 (𝑥1,1, ..., 𝑥𝑘,1)), so by (7) and definition

of 𝛾 , we have 𝑓 (𝑥1, ..., 𝑥𝑘 ) ∈ 𝛾 ( ˆ𝑓 (𝑥1, ..., 𝑥𝑘 )), as claimed. □

In other words, if 𝑥𝑖 is contained in the interval 𝑥𝑖 for each 𝑖 , then 𝑓 (𝑥1, ..., 𝑥𝑘 ) is contained in

the interval
ˆ𝑓 (𝑥1, ..., 𝑥𝑘 ). Thus, ˆ𝑓 overapproximates the concrete semantics of 𝑓 .
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4.2 Interval Transfomers for Monotone Objectives
Similarly, if𝜙0 is monotone—i.e., for𝑊0 = {(𝑦′0,1, 𝑦0,1), ..., (𝑦′

0,𝑘
, 𝑦0,𝑘 )} and𝑊1 = {(𝑦′1,1, 𝑦1,1), ..., (𝑦′

1,𝑘
, 𝑦1,𝑘 )},

if 𝑦′
0,𝑖 ≤ 𝑦′1,𝑖 for all 𝑖 ∈ [𝑘], then we have

𝜙0 (𝑊0) ≤ 𝜙0 (𝑊1).

Note that we only require monotonicity in the labels 𝑦′𝑗,𝑖 output by a candidate program 𝑝 , not the

ground truth labels 𝑦 𝑗,𝑖 , since the latter are always concrete values. Then, we can construct the

abstract transformer
ˆ𝜙0 : ( ˆY ×Y)∗ → ˆR by

ˆ𝜙0

(
{((𝑦′

0,𝑖 , 𝑦
′
1,𝑖 ), 𝑦𝑖 )}𝑘𝑖=1

)
=

(
𝜙0

(
{(𝑦′

0,𝑖 , 𝑦𝑖 )}𝑘𝑖=1

)
, 𝜙0

(
{(𝑦′

1,𝑖 , 𝑦𝑖 )}𝑘𝑖=1

))
.

4.3 Partial Programs with Interval Constraints
Next, we describe a space of generalized partial programs which extend partial programs with hole

annotations that constrain the values that can be used to fill those holes.

Definition 4.5. Assume that the space of constants C is partially ordered, and let
ˆC be its interval

domain. Then, an interval-constrained partial program 𝑝 = (𝑝, 𝜅) is a partial program 𝑝 together

with a mapping 𝜅 : holes(𝑝) → ˆC ∪ {∅}, where holes(𝑝) ⊆ N are the indices of the holes in 𝑝 .

For example, suppose that 𝑝 = 𝑁1 ...𝑁𝑖 ...𝑁ℎ is a partial program, where 𝑁𝑖 is a nonterminal (and

therefore a hole), so 𝑖 ∈ holes(𝑝). Intuitively, an annotation 𝜅 (𝑖) = 𝑐 imposes the constraint that the

value used to fill 𝑁𝑖 must be a constant 𝑐 ∈ C, and that 𝑐 must satisfy 𝑐 ∈ 𝛾 (𝑐) (i.e., 𝑐 is contained in
the interval [𝑐0, 𝑐1]). Alternatively, if 𝜅 (𝑖) = ∅, then no such constraint is imposed—i.e., 𝑁𝑖 may be

filled with any constant or a different production in the grammar. (Note that ∅ is not the same as

providing the interval [−∞, +∞] because that constraint would require this hole to be filled by a

constant, whereas the optimal program might need a non-constant expression.) We let
˜P denote

the space of interval-constrained partial programs.

These constraints are imposed by the structure of the search DAG, which is a extended version

of the search DAG over partial programs. Below, we first describe the children function for interval-

constrained partial programs; the concretization function is constructed from the children function.

Children function. Next, we describe the children of an interval constrained partial program

children(𝑝) ⊆ ˜P. Intuitively, if a hole 𝑁 in a partial program 𝑝 can be filled with a constant value

𝑐 ∈ C (i.e., there is a production 𝑁 → 𝑐) to obtain 𝑝′, then 𝑝′ ∈ children(𝑝). In contrast, for

an interval-constrained partial program 𝑝 , we include a child annotating 𝑁 with [−∞,∞]. Then,
subsequent children can further split interval constraints to obtain finer-grained interval constraints

(the concrete constant value 𝑐 can be represented by the constraint (𝑐, 𝑐) ∈ ˆC). To formalize this

notion, we first separate out productions for constants.

Definition 4.6. A production 𝑟 ∈ 𝑅 is constant if it has the form 𝑟 = 𝑁 → 𝑐 for some 𝑐 ∈ C.

Now, we can partition 𝑅 into the set 𝑅C of constant productions and its complement 𝑅 = 𝑅 \ 𝑅C ,
which we call non-constant productions. Next, given an interval-constrained partial program 𝑝 =

(𝑝, 𝜅), its holes are simply the holes of the underlying partial program 𝑝 : holes(𝑝) = holes(𝑝). Then,
we partition these holes into unannotated holes and annotated holes—i.e.,

holes∅ ((𝑝, 𝜅)) = {𝑖 ∈ holes(𝑝) | 𝜅 (𝑖) = ∅}
holesC ((𝑝, 𝜅)) = {𝑖 ∈ holes(𝑝) | 𝜅 (𝑖) ≠ ∅},
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respectively. Finally, we define three kinds of children for an interval-constrained partial program 𝑝 .

First, we include children obtained by filling an unannotated hole with a non-constant production:

children∅ (𝑝) = {(𝑝′, 𝜅′) ∈ ˜P | ∃𝑖 ∈ holes∅ (𝑝), 𝑟 ∈ 𝑅 . 𝑝 = fill(𝑝, 𝑖, 𝑟 ) ∧ 𝜅′ = repair(𝜅;𝑝, 𝑖, 𝑟 )}.
These children are the same as the children constructed in the original search DAG over partial

programs. Here, repair(𝜅;𝑝, 𝑖, 𝑟 ) “repairs” 𝜅 by accounting for how the indices in 𝑝 change after

applying production 𝑟 to fill hole 𝑖 in 𝑝 . In particular, this operation changes the indices of nonter-

minals in 𝑝 ; 𝜅′ accounts for these changes without modifying the annotations themselves. Formally,

if 𝑝′ = fill(𝑝, 𝑁𝑖 → 𝑀1...𝑀ℎ, 𝑖), with 𝑝 = 𝑁1...𝑁𝑖 ...𝑁𝑘 and 𝑝′ = 𝑁1...𝑀1 ...𝑀ℎ ...𝑁𝑘 , then we have

𝜅′ ( 𝑗) =


𝜅 ( 𝑗) if 𝑗 < 𝑖

∅ if 𝑖 ≤ 𝑗 ≤ ℎ
𝜅 ( 𝑗 − ℎ + 1) if 𝑗 > ℎ.

In particular, 𝜅′ includes the same annotations as 𝜅.

Second, we consider children obtained by filling an unannotated hole with the interval [−∞,∞]:
children∞ (𝑝) = {(𝑝′, 𝜅′) ∈ ˜P | ∃𝑖 ∈ holes∅ (𝑝) . 𝑝′ = 𝑝 ∧ 𝜅′ (𝑖) = [−∞,∞]}.

In other words, the partial program 𝑝 remains unchanged, but we introduce an annotation onto

one of the previously unannotated holes of 𝑝 .

Third, we consider children obtained by replacing an annotation with a tighter annotation:

childrenC (𝑝) = {(𝑝′, 𝜅′) ∈ ˜P | ∃𝑖 ∈ holesC (𝑝) . 𝑝′ = 𝑝 ∧ subset(𝜅′ (𝑖), 𝜅 (𝑖))}.
Here, subset(𝑐, 𝑐′) checks whether 𝑐 = (𝑐0, 𝑐1) is a strict subset of 𝑐′ = (𝑐′0, 𝑐′1), that is, 𝑐′0 ≤ 𝑐0 and

𝑐1 ≤ 𝑐′1, and one of these inequalities is strict; equivalently, [𝑐0, 𝑐1] ⊊ [𝑐′0, 𝑐′1].
Finally, our overall search DAG is defined by the union of these children:

children(𝑝) = children∅ (𝑝) ∪ children∞ (𝑝) ∪ childrenC (𝑝). (8)

Note that by defining children in this way, there may be infinitely many children; in addition,

multiple children may cover the same concrete program, leading to redundancy in the search DAG.

Practical implementations can restrict to a finite subset of these children as long as they satisfy

(4)—i.e., the union of the concrete programs in the children of 𝑝 cover all concrete programs in 𝑝 .

In addition, these children are ideally chosen so the overlap is minimal.

Concretization function. Recall that the concretization function 𝛾 (𝑝) contains concrete programs

𝑝 represented by 𝑝 . We take the approach where we define 𝛾 based on the children function—i.e.,

𝑝 ∈ 𝛾 (𝑝) if there exists a sequence 𝑝1, ..., 𝑝𝑛 = 𝑝 such that 𝑝1 = 𝑝 , 𝑝𝑛 = 𝑝 , and 𝑝 𝑗+1 ∈ children(𝑝 𝑗 )
for all 1 < 𝑗 < 𝑛.

4.4 Interval Transformers for Partial Programs with Interval Constraints
Next, we describe how to implement abstract interpretation for partial programs with interval

constraints. While abstract interpretation is typically performed with respect to program inputs, in

our case it is with respect to program constants. We assume all components 𝑓 ∈ F have an abstract

transformer
ˆ𝑓 , and the objective 𝜙0 has an abstract transformer

ˆ𝜙0 (if they are monotone, their

abstract transformers can be defined as in Section 4.1). First, we extend the grammar of programs

so that the constants C include abstract values (𝑐0, 𝑐1) ∈ ˆC—i.e., C ← C ∪ ˆC. While the concrete

semantics cannot be applied to these programs, we will define abstract semantics for them.

Now, given a generalized partial program 𝑝 = (𝑝, 𝜅), for each unannotated hole 𝑖 ∈ holes∅ (𝑝),
we replace the corresponding nonterminal 𝑁𝑖 in 𝑝 with the abstract value (−∞,∞), and for each

annotated hole 𝑖 ∈ holesC (𝑝), we replace the corresponding nonterminal 𝑁𝑖 with the annotation
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𝜅 (𝑖). Finally, we replace any constant 𝑐 in 𝑝 with the abstract value (𝑐, 𝑐). Once we have performed

this transformation, we can define the following abstract semantics for 𝑝:

⟦𝑋⟧# (𝑥) = 𝛼 (𝑥), ⟦𝑐⟧# (𝑥) = 𝑐, ⟦𝑓 (𝑝1, ..., 𝑝𝑘 )⟧# (𝑥) = ˆ𝑓 (⟦𝑝1⟧# (𝑥), ..., ⟦𝑝𝑘⟧# (𝑥)),

Now, we can combine ⟦·⟧#
with

ˆ𝜙0 to obtain the abstract objective ⟦·⟧#

𝜙
:

⟦(𝑝, 𝜅)⟧#

𝜙
(𝑍 ) = ˆ𝜙0

(
{(⟦𝑝⟧# (𝑥), 𝑦)} (𝑥,𝑦) ∈𝑍

)
.

In other words, we apply the abstract semantics ⟦𝑝⟧#
to each input 𝑥 , obtain the corresponding

abstract output 𝑦′, and apply
ˆ𝜙0 to the resulting set {(𝑦′, 𝑦)}.

5 IMPLEMENTATION
We instantiate our framework for two different domain specific languages (DSLs):

• NEAR DSL: The NEAR language for the CRIM dataset, described in Section 2 (Section 5.1).

• Quivr DSL: A query language over video trajectories, which uses constructs similar to

regular expressions to match trajectories (Section 5.2).

Although both of these DSLs process sequence data, their computation models are quite different:

NEAR focuses on folding combinators over the inputs, whereas Quivr’s primary operations reduce

to matrix multiplication.

For both DSLs, we refine the definition of children compared to Equation 8. In particular, in

Section 4.3, when defining the search space over programs with interval constraints on holes,

children𝐶 is defined such that the children of [𝑎, 𝑏] are all of its strict subintervals. As discussed
there, this means that each node has (potentially) infinitely many children, which is impractical for

an implementation. Instead, our implementation splits intervals into just two children—i.e., the

children of [𝑎, 𝑏] are [𝑎, (𝑎 +𝑏)/2] and [(𝑎 +𝑏)/2, 𝑏]. These intervals partition [𝑎, 𝑏], so all concrete
programs are still contained in the search space, retaining soundness. This splits an interval into

child intervals of equal length, but with additional domain-knowledge, other choices could be made

(e.g. with a prior distribution over parameters, splitting into intervals of equal probability mass).

Finally, we also describe how we construct the abstract transformer for the 𝐹1 score, which is

commonly used as the objective function in binary classification problems (Section 5.3).

5.1 NEAR DSL for Trajectory Labeling
In this DSL, the program input is a featurized trajectory, which is a sequence of feature vectors

𝑧 ∈ (R𝑛)∗, where ·∗ denotes sequences of any length and 𝑛 is the dimension of the feature vector

for each frame. The output is a sequence of labels 𝑦 ∈ {t, f}∗ of the same length as the input, where

𝑦 [𝑡] = t if a frame exhibits the given behavior and 𝑦 [𝑡] = f otherwise (i.e., the task is binary

classification at the frame level).

Syntax. This DSL has three kinds of expressions, encoded by their corresponding nonterminal

in G: (i) 𝑣𝑣 represents functions mapping feature vectors to real values (e.g., used inside a fold

operator), (ii) ℓ𝑣 represents functions mapping lists to real values (e.g., fold), and (iii) ℓℓ represents

functions mapping lists to lists (e.g., map). In particular, this DSL has the following productions:

𝑣𝑣 F 𝑧𝑖 | 𝑧𝑓 | 𝑐 ∈ R | 𝑣𝑣 + 𝑣𝑣 | 𝑣𝑣 · 𝑣𝑣 | ite(𝑣𝑣, 𝑣𝑣, 𝑣𝑣) (𝑖 ∈ [𝑛])
ℓ𝑣 F fold(𝑣𝑣) | ite(ℓ𝑣, ℓ𝑣, ℓ𝑣)
ℓℓ F map(𝑣𝑣) | mapprefix(ℓ𝑣) | ite(ℓ𝑣, ℓℓ, ℓℓ),

The DSL syntax is in the combinatory style, so 𝜆s are omitted. In particular, the expressions encoded

by 𝑣𝑣 are combinators designed to be used within a higher-order function such as map or fold. These
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combinators are applied to individual elements of the input list, where 𝑧𝑖 is a variable representing

the 𝑖th element of the current feature vector 𝑧 = 𝑥 [𝑡], and 𝑧𝑓 is a special symbol used inside fold to

represent its accumulated running state.

The start symbol is ℓℓ . We impose a type constraint that a program in this DSL maps a list of

feature vectors 𝑥 to a list of real values 𝑟 of the same length. Each real-valued output 𝑟 [𝑡] implicitly

encodes the label

𝑦 [𝑡] =
{
t if 𝑟 [𝑡] ≥ 0

f otherwise.

The running example involved programs in a toy DSL of the form map(𝑑 ≤ 𝑐). In the NEAR

DSL, this would be represented as map(−1 · 𝑧4 + 𝑐), as “distance between mice” is the 4th feature,

and the label will be obtained by comparing the program output to 0.

Semantics. We let 𝑉 = R𝑛 (where 𝑛 is the dimension of the feature space) be the space of feature

vectors, 𝐿 = 𝑉 ∗ is the space of trajectories, and 𝐾 = R∗ is the space of output sequences. Then, the
nonterminal 𝑣𝑣 in this DSL has semantics ⟦𝑣𝑣⟧ : 𝑉 × R→ R, where

⟦𝑧𝑖⟧(𝑣, 𝑠) B 𝑣𝑖

⟦𝑧𝑓 ⟧(𝑣, 𝑠) B 𝑠

⟦𝑐⟧(𝑣, 𝑠) B 𝑐

⟦𝑣𝑣1 + 𝑣𝑣2⟧(𝑣, 𝑠) B ⟦𝑣𝑣1⟧(𝑣, 𝑠) + ⟦𝑣𝑣2⟧(𝑣, 𝑠)
⟦𝑣𝑣1 · 𝑣𝑣2⟧(𝑣, 𝑠) B ⟦𝑣𝑣1⟧(𝑣, 𝑠) · ⟦𝑣𝑣2⟧(𝑣, 𝑠)

⟦ite(𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3)⟧(𝑣, 𝑠) B if (⟦𝑣𝑣1⟧(𝑣, 𝑠) ≥ 0) then ⟦𝑣𝑣2⟧(𝑣, 𝑠) else ⟦𝑣𝑣3⟧(𝑣, 𝑠).

Next, the nonterminal ℓ𝑣 in this DSL has semantics ⟦ℓ𝑣⟧ : 𝑉 ∗ → R, where

⟦fold(𝑣𝑣)⟧(ℓ) B fold (𝜆𝑣𝜆𝑠. ⟦𝑣𝑣⟧(𝑣, 𝑠)) ℓ 0

⟦ite(ℓ𝑣1, ℓ𝑣2, ℓ𝑣3)⟧(ℓ) B if (⟦ℓ𝑣1⟧(ℓ) ≥ 0) then ⟦ℓ𝑣2⟧(ℓ) else ⟦ℓ𝑣3⟧(ℓ).

Here, fold : (𝑉 → R→ R) → 𝑉 ∗ → R→ R is standard, and passes the intermediate value as the

𝑠 argument to 𝑣𝑣 .

The nonterminal ℓℓ in this DSL has semantics ⟦ℓℓ⟧ : 𝐿 → 𝐾 , where

⟦map(𝑣𝑣)⟧(ℓ) B map (𝜆𝑣 . ⟦𝑣𝑣⟧(𝑣, 0)) ℓ
⟦mapprefixes(ℓ𝑣)⟧(ℓ) B map (𝜆ℓ ′ . ⟦ℓ𝑣⟧(ℓ ′)) prefixes(ℓ)
⟦ite(ℓ𝑣, ℓℓ1, ℓℓ2)⟧(ℓ) B if (⟦ℓ𝑣⟧(ℓ) ≥ 0) then ⟦ℓℓ1⟧(ℓ) else ⟦ℓℓ2⟧(ℓ).

Here, map is standard
2

prefixes : (𝑥1, . . . , 𝑥𝑛) ↦→ ((𝑥1), (𝑥1, 𝑥2), (𝑥1, 𝑥2, 𝑥3), . . . (𝑥1, . . . , 𝑥𝑛)) .

Finally, as described above, the labels 𝑦 are obtained by thresholding ⟦ℓℓ⟧(ℓ). That is, we let

⟦ℓℓ⟧𝑏 : 𝐿 → {t, f}∗ denote the label

(⟦ℓℓ⟧𝑏 (ℓ)) [𝑡] =
{
t if (⟦ℓℓ⟧(ℓ)) [𝑡] ≥ 0

f otherwise.

2
But note that 𝑧𝑓 is treated as 0 if it appears inside an expression not within fold
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Abstract semantics. We abstract R with the usual real intervals,
ˆR. We abstract 𝐾 with ( ˆR)∗,

products of real intervals. Addition is monotone, and multiplication [𝑎1, 𝑏1] · [𝑎2, 𝑏2] can be shown

to be tightly abstracted by [min(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2),max(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2)]. For R-valued
conditionals, we define îte(𝑐, 𝑎, 𝑏) = 1[𝑐 ≥ 0] · 𝑎 + 1[𝑐 < 0] · 𝑏, and thus can abstract 𝑣𝑣-level

comparison using addition, multiplication, and the abstraction sending 1[[f, f]] = [0, 0], 1[[f, t]] =
[0, 1], and 1[[t, t]] = [1, 1].

Search space. The search space over 𝑣𝑣 has a redundancy due to commutativity, associativity,

and distributativity, which unduly hinders search. Instead, we use a normalized version, where

𝑣𝑣 expressions are constrainted to be sums-of-products (fully distributed), and where we ignore

commutativity and associative in the sums of products. Essentially, we only consider polynomials,

where the variables are the features 𝑧𝑖 , the fold variable 𝑧𝑓 , and indicator variables 1[𝑣𝑣 ≥ 0] for
each 𝑣𝑣 (to maintain the expressiveness of ite). Further, we consider only constants in [−1, 1] and
we also normalize the dataset so 𝑥𝑖 in [−1, 1].

We define a notion of size for programs, so that we can bound the search space, where ite, map

and mapprefix have size 1, fold has size 0 (since mapprefix must contain a fold and already has

size 1). Each monomial in the polynomial size cost 1, and each polynomial variable in a monomial

has size 1. In a given polynomial, the size of indicators is amortized: each nested 𝑣𝑣 has size 1 and

produces a new polynomial variable.

5.2 Quivr DSL For TrajectoryQueries
In the Quivr DSL [Mell et al. 2023], the program input is a featurized trajectory, which is a sequence

𝑧 ∈ (R𝑛)∗ as before. However, the output is now a single label 𝑦 ∈ {t, f} for the entire trajectory.
This DSL is designed to allow the user to select trajectories that satisfy certain properties—e.g., the

user may want to identify all cars that make a right turn at a certain intersection in a traffic video.

Syntax. This DSL is based on the Kleene algebra with tests [Kozen 1997], which, intuitively, are

regular expressions where the “characters” are actually predicates. Its syntax is

𝑄 F 𝑓 | 𝑔(𝐶) | 𝑄 ; 𝑄 | 𝑄 ∧𝑄 (𝑓 ∈ F∅, 𝑔 ∈ FC)
𝐶 F 𝑐 (𝑐 ∈ R)

where F∅ and FC are given sets of domain-specific predicates, the latter of which have constants

𝑐 ∈ R that need to be chosen by the synthesizer.

Semantics. Expressions in this DSL denote functions mapping sequences of feature vectors

𝑧 ∈ (R𝑛)∗ to whole-sequence labels ({t, f}), defined as

⟦𝑓 ⟧(𝑧) B 𝑓 (𝑧)
⟦𝑓 (𝑐)⟧(𝑧) B 1[𝑓 (𝑧) ≥ 𝑐]

⟦𝑄1 ∧𝑄2⟧(𝑧) B ⟦𝑄1⟧(𝑧) ∧ ⟦𝑄2⟧(𝑧)

⟦𝑄1 ; 𝑄2⟧(𝑧) B
𝑛∨

𝑘=0

⟦𝑄1⟧(𝑧0:𝑘 ) ∧ ⟦𝑄2⟧(𝑧𝑘 :𝑛)

Each predicate 𝑓 ∈ F∅ has type 𝑓 : (R𝑛)∗ → {t, f}, and indicates whether 𝑧 matches 𝑓 , and each

predicate 𝑓 ∈ FC has type 𝑓 : (R𝑛)∗ → R, and produces a real-valued score thresholded at a given

constant 𝑐 to indicate whether 𝑧 matches 𝑓 .

Abstract semantics. Note that under the standard orders for reals R and Booleans B = {t, f}
(i.e., f < t), the semantics ⟦𝑓 (𝑐)⟧(𝑧) is monotone decreasing with respect to 𝑐 . Furthermore, both
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conjunction and disjunction are monotone increasing in their inputs. Thus, we can use our interval

transformers for monotone functions from Section 4.4. In particular, recall that
ˆR is the abstract

domain of real intervals, and let
ˆB be the abstract domain of Boolean intervals

ˆB = {(f, f), (f, t), (t, t)}.

Then, we use the abstract transformers

1[𝑓 (𝑧) ≥ (𝑐0, 𝑐1)] =


(f, f) if 𝑓 (𝑧) < 𝑐0

(f, t) if 𝑐0 ≤ 𝑓 (𝑧) < 𝑐1

(t, t) if 𝑐1 ≤ 𝑓 (𝑥)

𝑥1∧̂𝑥2 =


(t, t) if 𝑥1 = (t, t) ∧ 𝑥2 = (t, t)
(f, f) if 𝑥1 = (f, f) ∨ 𝑥2 = (f, f)
(f, t) otherwise

𝑥1∨̂𝑥2 =


(t, t) if 𝑥1 = (t, t) ∨ 𝑥2 = (t, t)
(f, f) if 𝑥1 = (f, f) ∧ 𝑥2 = (f, f)
(f, t) otherwise,

Since sequencing is defined in terms of conjunction and disjunction, these transformers suffice to

define the abstract semantics.

5.3 Abstract 𝐹1 Score
In Section 5, we described how to construct abstract transformers for monotone functions, which

covers many of the components in these DSLs. However, many objectives commonly used in

practice, such as the 𝐹1 score, are non-monotone. For non-monotone objectives, we need to provide

a custom abstract transformer that overapproximates their concrete semantics for the interval

domain. We describe how to do so for the 𝐹1 score. Let𝑊 be the multiset of outcomes of the form

(𝑦′, 𝑦) where 𝑦′ is the prediction and 𝑦 is the ground truth. Then the 𝐹1 score is given by:

𝑇𝑃 (𝑊 ) B
∑︁

(𝑦′,𝑦) ∈𝑊 +

1[𝑦 = t ∧ 𝑦′ = t]

𝐹𝑃 (𝑊 ) B
∑︁

(𝑦′,𝑦) ∈𝑊 −

1[𝑦 = f ∧ 𝑦′ = t]

𝐹1 (𝑊 ) B 2 · 𝑇𝑃 (𝑊 )
𝑇𝑃 (𝑊 ) + 𝐹𝑃 (𝑊 ) + |𝑊 + | ,

where |𝑊 + | = |{(𝑦′, 𝑦) ∈𝑊 | 𝑦 = t}|, 𝑇𝑃 is the number of true positives, and 𝐹𝑃 is the number of

false positives. Note that 𝑇𝑃 and 𝐹𝑃 are monotone in 𝑦′, so we can use the corresponding interval

transformers:

𝑇𝑃# (𝑊̂ ) B
∑︁

(𝑦̂′,𝑦) ∈𝑊̂


[1, 1] if 1[𝑦 = t ∧ 𝑦′ = (t, t)]
[0, 1] if 1[𝑦 = t ∧ 𝑦′ = (f, t)]
[0, 0] if 1[𝑦 = t ∧ 𝑦′ = (f, f)]

𝐹𝑃# (𝑊̂ ) B
∑︁

(𝑦̂′,𝑦) ∈𝑊̂


[1, 1] if 1[𝑦 = f ∧ 𝑦′ = (t, t)]
[0, 1] if 1[𝑦 = f ∧ 𝑦′ = (f, t)]
[0, 0] if 1[𝑦 = f ∧ 𝑦′ = (f, f)] .
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Letting 𝑇𝑃# (𝑊 ) = [𝑎1, 𝑏1] and 𝐹𝑃# (𝑊 ) = [𝑎2, 𝑏2], and noting that for positive numbers we can

abstract division as [𝑎1, 𝑏1] ˆ/[𝑎2, 𝑏2] =
[
𝑎1

𝑏2

,
𝑏1

𝑎2

]
, a naïve strategy of applying abstractions for +, ·,

and / leads to the abstract 𝐹1 score

𝐹 #

1
(𝑊 ) B 2 · [𝑎1, 𝑏1]

[𝑎1, 𝑏1] + [𝑎2, 𝑏2] + |𝑊 + |
= 2 ·

[
𝑎1

𝑏1 + 𝑏2 + |𝑊 + |
,

𝑏1

𝑎1 + 𝑎2 + |𝑊 + |

]
,

where |𝑊 + | is independent of 𝑦′, so we can treat it as a constant. However, this abstraction is very

loose, and we found it not to be useful in practice—e.g., it can be as loose as [0, 2] even though the

𝐹1 score never exceeds 1. Instead, we can rewrite

𝐹1 (𝑊 ) = 2 ·
𝑇𝑃 (𝑊 )

𝐹𝑃 (𝑊 )+|𝑊 + |
𝑇𝑃 (𝑊 )

𝐹𝑃 (𝑊 )+|𝑊 + | + 1

= 2 · 𝐿
(

𝑇𝑃 (𝑊 )
𝐹𝑃 (𝑊 ) + |𝑊 + |

)
where 𝐿(𝑥) = 𝑥

𝑥+1 is monotone, which leads to the abstract 𝐹1 score

𝐹 #

1
(𝑊 ) B 2 · 𝐿

(
[𝑎1, 𝑏1]

[𝑎2, 𝑏2] + |𝑊 + |

)
= 2 · 𝐿

( [
𝑎1

𝑏2 + |𝑊 + |
,

𝑏1

𝑎2 + |𝑊 + |

] )
= 2 ·

[
𝑎1

𝑎1 + 𝑏2 + |𝑊 + |
,

𝑏1

𝑏1 + 𝑎2 + |𝑊 + |

]
.

6 EXPERIMENTS
We experimentally evaluate our approach in the context of the NEAR and Quivr DSLs described in

Section 5. We demonstrate that our synthesizer outperforms two synthesis baselines in terms of

scalability (specifically, running time): Metasketches [Bornholt et al. 2016], an optimal synthesizer

based on SMT solvers (Section 6.2), as well as an ablation that uses breadth-first search instead of

𝐴∗ search with our abstract interpretation based heuristic (Section 6.3).

6.1 Experimental Setup
Benchmarks. We consider two different neurosymbolic program synthesis benchmarks, based on

the DSLs described in Section 5:

• CRIM13: The NEAR DSL [Shah et al. 2020] applied to the two CRIM13 datasets “sniff” (A)

and “other” (B) [Burgos-Artizzu et al. 2012]. This dataset consists of featurized videos of

two mice interacting in an enclosure, with 12,404 training examples with 100 frames each.

• Quivr: The Quivr [Mell et al. 2023] language, applied to the 17 tasks that they evaluate

on. Of these, 6 tasks are on the MABe22 [Sun et al. 2022] dataset, a dataset of interactions

between 3 mice, and 10 tasks are on the YTStreams [Bastani et al. 2020] dataset, a dataset of

video from fixed-position traffic cameras.

Compute. We ran all experiments on a Intel Xeon Gold 6342 CPU (2.80GHz, 36 cores/72 threads).

Our implementation uses PyTorch, a library which provides fast matrix operations.

6.2 Comparison to Metasketches
Metasketches performs optimal synthesis using an SMT solver by, in addition to the correctness

specification, adding an SMT constraint that the program’s score be greater than the best score

seen so far. Thus if the SMT solver returns “SAT”, a better program will have been found, and the

process is repeated. Note that in our setting, there is no correctness specification, and so achieving

a better score is the only SMT constraint.

A similar strategy, which we found to be more effective, is to do binary search on the objective

score: supposing that the objective is in [0, 1], we ask the SMT solver whether there is a program

achieving score at least 1/2; if it returns “SAT”, we ask for 3/4, and if “UNSAT” we ask for 1/4,
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(a) Quivr, task G (b) CRIM13, task A

Fig. 2. The time (seconds) to identify the optimal program and prove its optimality, for our approach (blue)
and an SMT solver (red), as a function of the size of the training dataset, for two different tasks.

and so on. Our implementation used the Z3 [De Moura and Bjørner 2008] SMT solver. For a fairer

comparison, in this experiment we restricted PyTorch to a single CPU core.

The two approaches were both run until they had converged to the exact optimal program.

Figure 2 shows that the SMT solver scales very poorly as a function of the number of trajectories

in the training dataset. While competitive for three or four trajectories, we would like to evaluate

on datasets of hundreds or thousands of trajectories.

6.3 Comparison to Breadth-First Search
Next, to show the benefit of the search heuristic, we compare against an ablation which ignores

the heuristic and does breadth-first search.

At any point in the search process, there is a heap of search nodes, each of which has a lower and

upper bound of 𝐹1 scores reachable from it. Rather than using the lower bound from the abstract

objective value, we instead evaluate the concrete program whose parameters are the midpoint

of the hyper-rectangle of abstract parameters, to get a concrete objective value; this is a better

lower-bound, and it is cheap to compute. The greatest of these lower bounds provides a lower

bound on the optimal 𝐹1 score, and the greatest of these upper bounds provides an upper bound

on the optimal 𝐹1 score. Note that if the lower and upper bounds are equal, they equal the true

optimal 𝐹1 score, and search terminates.

To make search tractable, on the CRIM13 benchmarks we consider only expressions with struc-

tural cost at most 4. Note that this rules out “ite” expressions, but performs well in practice. On the

Quivr benchmarks, we bound the search space in the same way that their paper does, limiting to

programs with at most 3 predicates, at most 2 of which have parameters.

We use 100 trajectories from each dataset. For CRIM13, these are randomly sampled from the

training set. For Quivr, to ensure that we have some positive examples, because positives are very

sparse on some tasks, we use 2 positive and 10 negative trajectories specially designated in the

dataset, and the remaining 88 are sampled randomly from the training set.

Table 1 shows, at different times during the search process, the best found 𝐹1 score (the lower-

bound of the interval), as well as the width of the interval of optimal 𝐹1 scores. On most tasks,

our approach (H) achieves higher 𝐹1 scores more quickly than the ablation (B), as well as tighter

intervals.
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Table 1. Best 𝐹1 score found and range between upper and lower bounds, at a particular time during search,
for different tasks and different algorithms. “CA” and “CB” are the NEAR CRIM13 queries, and “QA” through
“QQ” are the Quivr queries. “H” is 𝐴∗ search and “B” is breadth-first search. For each task and each time, the
best 𝐹1 score is bolded and the smallest range is bolded. A range of 0 implies that search has converged to
the optimal 𝐹1 score.

Setting 10 s 30 s 1 m 2 m 5 m 10 m

CA H 0.21 (0.79) 0.21 (0.79) 0.21 (0.79) 0.52 (0.14) 0.53 (0.03) 0.53 (0.00)
B 0.21 (0.79) 0.21 (0.79) 0.21 (0.79) 0.22 (0.78) 0.46 (0.54) 0.50 (0.50)

CB H 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.80 (0.05) 0.80 (0.04) 0.80 (0.01)
B 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25)

QA H 0.12 (0.88) 0.77 (0.23) 0.77 (0.23) 0.77 (0.23) 0.77 (0.23) 0.77 (0.23)
B 0.12 (0.88) 0.26 (0.74) 0.26 (0.74) 0.26 (0.74) 0.26 (0.74) 0.28 (0.72)

QB H 0.27 (0.73) 0.31 (0.69) 0.52 (0.48) 0.52 (0.48) 0.52 (0.48) 0.52 (0.48)
B 0.27 (0.73) 0.40 (0.60) 0.40 (0.60) 0.40 (0.60) 0.42 (0.58) 0.50 (0.50)

QC H 0.06 (0.94) 0.14 (0.86) 0.30 (0.70) 0.33 (0.67) 0.38 (0.62) 0.38 (0.62)
B 0.06 (0.94) 0.25 (0.75) 0.25 (0.75) 0.26 (0.74) 0.26 (0.74) 0.26 (0.74)

QD H 0.04 (0.96) 0.25 (0.75) 0.25 (0.75) 0.25 (0.75) 0.40 (0.60) 0.44 (0.56)
B 0.04 (0.96) 0.06 (0.94) 0.06 (0.94) 0.06 (0.94) 0.09 (0.91) 0.19 (0.81)

QE H 0.04 (0.96) 0.20 (0.80) 0.44 (0.56) 0.44 (0.56) 0.44 (0.56) 0.44 (0.56)
B 0.04 (0.96) 0.06 (0.94) 0.06 (0.94) 0.10 (0.90) 0.10 (0.90) 0.15 (0.85)

QF H 0.38 (0.62) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22)
B 0.38 (0.62) 0.42 (0.58) 0.42 (0.58) 0.55 (0.45) 0.56 (0.44) 0.60 (0.40)

QG H 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

B 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

QH H 0.74 (0.26) 0.74 (0.26) 0.74 (0.26) 0.74 (0.26) 0.74 (0.26) 0.74 (0.26)

B 0.78 (0.22) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22) 0.78 (0.22)
QI H 0.75 (0.25) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20)

B 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25)

QJ H 0.64 (0.36) 0.64 (0.36) 0.64 (0.36) 0.64 (0.36) 0.64 (0.36) 0.64 (0.36)

B 0.64 (0.36) 0.73 (0.27) 0.73 (0.27) 0.73 (0.27) 0.73 (0.27) 0.73 (0.27)
QK H 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25)

B 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25) 0.75 (0.25)

QL H 0.71 (0.29) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09)

B 0.71 (0.29) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09) 0.91 (0.09)

QM H 0.73 (0.27) 0.92 (0.08) 0.92 (0.08) 0.92 (0.08) 0.92 (0.08) 0.92 (0.08)

B 0.73 (0.27) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20) 0.92 (0.08) 0.92 (0.08)

QN H 0.73 (0.27) 0.73 (0.27) 0.89 (0.11) 0.89 (0.11) 0.89 (0.11) 0.89 (0.11)
B 0.73 (0.27) 0.73 (0.27) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20)

QO H 0.67 (0.33) 0.67 (0.33) 0.86 (0.14) 0.86 (0.14) 0.86 (0.14) 0.86 (0.14)
B 0.67 (0.33) 0.67 (0.33) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20) 0.80 (0.20)

QP H 0.50 (0.50) 0.50 (0.50) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

B 0.50 (0.50) 0.50 (0.50) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

QQ H 0.80 (0.20) 0.80 (0.20) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

B 0.80 (0.20) 0.80 (0.20) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

7 RELATEDWORK
Neurosymbolic synthesis. There has been a great deal of recent interest in neurosymbolic synthe-

sis [Chaudhuri et al. 2021], including synthesis of functional programs [Gaunt et al. 2016; Shah et al.

2020; Valkov et al. 2018], reinforcement learning policies [Anderson et al. 2020; Inala et al. 2020],
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programs for extracting data from unstructured text [Chen et al. 2023, 2021; Ye et al. 2021], and

programs that extract data from video trajectories [Bastani et al. 2021; Mell et al. 2023; Shah et al.

2020]. Some of these approaches have proposed pruning strategies based on monotonicity [Chen

et al. 2021; Mell et al. 2023], but for specific DSLs. NEAR is a general framework for neurosymbolic

synthesis based on neural admissible heuristics [Shah et al. 2020]; however, their approach is not

guaranteed to synthesize optimal programs due to nonconvexity of neural network learning. To

the best of our knowledge, our work proposes the first general framework for optimal synthesis of

neurosymbolic programs.

Optimal synthesis. More broadly, there has been recent interest in optimal synthesis [Born-

holt et al. 2016; Smith and Albarghouthi 2016], typically focusing on optimizing performance

properties of the program such as running time rather than accuracy; superoptimization is a par-

ticularly well studied application [Bansal and Aiken 2008; Massalin 1987; Mukherjee et al. 2020;

Phothilimthana et al. 2016; Sasnauskas et al. 2017]. Our experiments demonstrate that our approach

outperforms Bornholt et al. [2016], a general framework for optimal synthesis based on SMT solvers.

There has also been work on synthesizing a program that maximizes an objective (expressed as

a neural network scoring function) [Ye et al. 2021], but this work does not target programs with

neural network components. Optimal synthesis has also been leveraged to synthesizing minimal

guards for memory safety [Dillig et al. 2014], or synthesizing chemical reaction networks [Cardelli

et al. 2017], and optimal layouts for quantum computing [Tan and Cong 2020].

Abstract interpretation for synthesis. There has been work on leveraging abstract interpretation

for pruning portions of the search space in program synthesis [Guria et al. 2023; So and Oh 2017], as

well as using abstraction refinement [Wang et al. 2017]; however, these approaches target traditional

synthesis. Rather than evaluating an abstract semantics on partial programs, Wang et al. [2017]

constructs a data structure compactly representing concrete programs whose abstract semantics

are compatible with the input-output examples. However, it is not obvious how their data structure

(which targets Boolean specifications) can be adapted to our quantitative synthesis setting.

Abstract interpretation for planning. One line of work, initiated by the FF Planner [Hoffmann and

Nebel 2001], uses abstract semantics to perform reachability analysis to prune invalid plans [Gregory

et al. 2012; Hoffmann 2003; Zhi-Xuan et al. 2022]. However, other than pruning invalid plans, the

reachability analysis not used in the computation of the search heuristic, which is a traditional

heuristic such as the ℎmax heuristic (in particular, ℎmax computes the shortest plan in a “relaxed

model” that drops delete lists from the postconditions of abstract actions, and outputs the length of

this plan). In contrast, in our work, an abstract transformer for the objective function provides a

lower bound that is directly used as the search heuristic.

A second line of work [Marthi et al. 2008; Vega-Brown and Roy 2018] considers computing

optimal plans by underapproximating the cost function. They assume that the total cost of a plan

equals the sum of the costs of the individual actions in that plan. Then, given a lower bound on the

cost of each action, they simply sum these lower bounds to obtain a lower bound on the cost of

the overall plan. This strategy makes strong assumptions about the structure of the overall cost

function, whereas our abstract interpretation based approach requires no such assumptions.

Finally, another key difference is that we are abstracting over real-valued parameters of partial

programs, whereas the above approaches are abstracting over continuous states. Thus, our frame-

work requires a way to iteratively refine the program space (specified by the “children” function),

which is absent from their frameworks.
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8 CONCLUSION
We have proposed a general framework for synthesizing programs with real-valued inputs and

outputs, using𝐴∗ search in conjunction with a search heuristic based on abstract interpretation. Our
framework searches over a space of generalized partial programs, which represent sets of concrete

programs, and uses the search heuristic to establish upper bounds on the objective value of a given

generalized partial program. In addition, we propose a natural strategy for constructing abstract

transformers for components with monotone semantics. If our algorithm returns a program, then

this program is guaranteed to be optimal. Our experimental evaluation demonstrates that our

approach is more scalable than existing optimal synthesis techniques. Directions for future work

include improving the scalability of our approach and applying it to additional synthesis tasks.
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