
Acta Informatica 33, 69-97 (1996)	 1

0 Springer-Verlag 1996

A theory of bisimulation for the n-calculus

Davide Sangiorgi
INRIA, 2004, route des Lucioles, B.P. 93,
F-06902 Sophia Antipolis Cedex, France

Received: June 11, 1993/November 28, 1994

Abstract. We study a new formulation of bisimulation for the a-calculus
[MPW92], which we have called open bisimulation (—). In contrast with the
previously known bisimilarity equivalences, ' is preserved by all it-calculus
operators, including input prefix. The differences among all these equivalences
already appear in the sublanguage without name restrictions: Here the definition of
— can be factorised into a "standard" part which, modulo the different syntax of

actions, is the CCS bisimulation, and a part specific to the n-calculus, which
requires name instantiation. Attractive features of ' are: A simple axiomatisation
(of the finite terms), with a completeness proof which leads to the construction of
minimal canonical representatives for the equivalence classes of —; an "efficient"
characterisation, based on a modified transition system. This characterisation
seems promising for the development of automated-verification tools and also
shows the call-by-need flavour of —. . Although in the paper we stick to the
it-calculus, the issues developed may be relevant to value-passing calculi in general.

1 Introduction

Recent developments in the theory of process algebras have led to the formalisation
of calculi for mobile processes, i.e. concurrent systems whose communication
topology may change dynamically. Among these calculi, Milner, Parrow and
Walker's it-calculus [MPW92], based on earlier work of Engberg and Nielsen
[EN86], is the prototypical one. Mobility is a major theme of an ongoing ESPRIT
project [LTLG94].

In the n-calculus there are two entities, names and processes. Processes interact
with each other by exchanging names. This confers mobility to the calculus as well
as great expressiveness, for data values [MPW92], A-calculus [Mi192b] (see also
[Let92], which however uses a different target calculus) and higher-order processes

A preliminary version of this article can be found in the proceedings of CONCUR '93. Work
supported by the ESPRIT BRA project 6454 "CONFER".

70	 D. Sangiorgi

[Tho90, San92] can be modeled as special ir-calculus processes. Indeed, the main
novelty of the n-calculus w.r.t. its predecessor CCS [Mi189] is the focus on name
instantiation, which shows up both in the transition semantics and in the definition
of the behavioural equivalences. The purpose of this paper is add to the under-
standing of bisimulation [Par8l, Mi183] in the framework of calculi for mobile
processes. However, although best suited for these calculi, the ideas we develop
may be relevant for value-passing calculi in general.

In process algebra, bisimulation has become a fundamental notion and it is used
to define behavioural equivalences on processes. It has been extensively studied in
CCS, where there is general consensus on how it should be defined: Approximately,
two processes P and Q are bisimilar if

P -* P' implies Q + Q', for some Q' bisimilar to P' (*)

and the vice versa, on the possible transitions by Q. Here a represents an action and
P + P' means "P can evolve to P' by performing the action a". We shall call ground
bisimulation a bisimilarity relation defined in this way. Obviously, a variation of the
calculus may affect the syntax of the actions in (*): For instance, in CCS, actions
purely express synchronisations, whereas in the n-calculus they may involve
communication of names and, moreover, syntactic identity between actions is
taken modulo alpha conversion.

But in the x-calculus ground bisimulation is unsatisfactory, because it com-
pletely ignores name instantiations. The most unfortunate consequence is that the
relation is not preserved by parallel composition. To see why, take the processes

P =a(x)•[x =b]bb, Q =_a(x)•0

built from the input prefix a(x), the output prefix bb, the inactive process 0 and the
matching [x = b], to be read as "if x = b then". The processes P and Q are ground
bisimilar, since after consuming the initial action a(x) they can do noting. But they
exhibit a different behaviour when run in parallel with ãb, since the interaction
between P and ab sets the matching in P to true and activates the action bb. To
remedy this kind of problem, Milner et al. in [MPW92] adopts a clause different
from (*) for inputs, namely

P+ P implies Q+ Q', for some Q' s.t. for all y,

P' { y/x} and Q' { y/x} are bisimilar. (* *)

The relation obtained is called late bisimulation because the choice of the value
y with which to instantiate the bound name x is done later than the choice of the
derivative Q'. As pointed out in [MPW92], this order can be reversed, yielding the
(coarser) early bisimulation. Late and early bisimulation are the bisimilarity rela-
tions used in the works on the n-calculus which have so far appeared. However, not
even these equivalences are preserved by all it-calculus operators. This time the
failure is on input prefix. Again, the reason has to do with name instantiation, and
can be illustrated with the same P and Q of the example above: [x = b] bb and
0 cannot perform actions and therefore are late and early bisimilar; but P and Q,
obtained by prefixing a(x), are not, as demonstrated using b as input value. The

Theory of bisimulation for the it-calculus 	 71

consequence of this failure is that one has to introduce separately the induced
late/early substitutive congruences, which may make heavy to reason about such
equivalences.

Here, we propose a different formulation of bisimulaiton for the n-calculus,
called open bisimulation and written — . This relation is a full congruence, and
strictly finer than the previously mentioned equivalences. In the definition of —,
name instantiation plays a central role: In the late and early equivalences name
instantiation only appears in the input clause and, in the congruences, before the
initial step; in — it becomes integral part of the recursive clause of bisimilarity. The
appellative "open" was precisely chosen to emphasise that in this bisimulation, at
least in absence of name restrictions, no definitive constraint on the equality of
names is assumed but, instead, (free) names can be identified at any time; that is to
say, names are treated as program variables. Indeed, in the restriction-free sublan-
guage open bisimulation can also be derived from the "classical" ground bisimula-
tion by adding the specific it-calculus requirement of closure under name
instantiation. Thus, the processes [x = b] bb and 0 are distinguished because non
ground bisimilar under the substitution which identifies x and b.

The clause of bisimilarity in the definition of — uses quantification over
substitutions. The drawback is the increase in the size of the relations needed to
define a bisimulation. Luckily, there are remedies to this problem. By constructing
a transition system specialised for — (in the spirit of Hennessy and Lin's symbolic
transition system [HL92]) we shall derive an "efficient" characterisation of —, in
which any quantification on substitutions is avoided. This characterisation seems
promising for the development of automated-verification tools. We also expect that
its average complexity be substantially lower than those of the late/early equiva-
lences, since the latter do have a quantification over substitutions in the input
clause, like in (* *). Moreover, this characterisation of — is useful to understand
better its intrinsic meaning: For instance, it shows that the instantiation of the
parameter of an input should happen "only when needed", in a way which
resembles the call-by-need semantics of A-calculus [Wad7l].

An attractive property of — is the simple axiomatisation (for finite terms). The
treatment of matching, the n-calculus conditional construct, is of technical interest.
In the proof systems in [MPW92, Hen9l, BD92], a conditional construct is
removed upon evaluation of its boolean condition; for instance, an axiom of
[MPW92] says "[a = b] P = 0 if a V. But this is not sound if the equivalence
being axiomatised, like — , is preserved by name instantiation, for substitutions of
names can change the value of a boolean condition. In this case, one has to add
axioms for syntactic manipulations of conditionals (see for instance the axiomatisa-
tions in [PS93] of late and early congruences). Remarkably, with open bisimula-
tion four simple axioms for matching suffice. A spin-off of the axiomatisation is the
construction of cannonical representatives for the equivalence classes of —. As far
as we know, this is the first such result for value-passing calculi. Moreover, in our
case the representatives selected are minimal w.r.t. the length of the defining
expressions.

Further motivation for the study of open bisimulation might come from Robin
Milner's work on action structures [Mil92a]. These are proposed as canonical
algebraic structures which underly concreate models of concurrency, like Petri
Nets, even structures and process calculi. It appears that in the action structures for
process calculi the bisimulation relations recovered are close to open bisimulation;
but the details remain to be worked out.

72	 D. Sangiorgi

We first develop our ideas on the sublanguage of n-calculus without restriction:
This because the differences between — and the previously known bisimulation-
based equivalences already appear in this smaller language, and our ideas can be
expressed more clearly. This sublanguage is also interesting because its semantical
treatment is very close to the one of any ordinary CCS-like value-passing calculus.
Later, we consider how to deal with distinctions and the restriction operator.
Distinctions [MPW92] allow us to forbid certain identifications of names. The
it-calculus does not distinguish among ports, variables and constants: They are all
just names, which only differ in the way we instantiate them; for instance, variables
can be instantiated, or identified, with any name, whereas constants with none.
Thus in the it-calculus a "constanthood" is expressed as a special case of distinc-
tion. Distinctions shall also help us to deal with restriction. Indeed, a restriction, in
common with a constant, declares that a name should not be confused with any
other known name.

Related work will be discussed along the way. The notation and, in part, the
structure of the paper follow [PS93]. The syntax and the operational semantics of
the restriction-free it-calculus are presented in Section 2. We introduce — in
Section 3; we compare — with the previously known bisimilarities and we prove
some basic properties of it. In Section 4 we show a sound and complete axiomatisa-
tion of — on finite terms. In Section 5 we exhibit the efficient characterisation of
—. In Sections 6 and 7 we discuss how to generalise the results in the previous

sections to handle distinctions and the restriction operator.

2. The it-calculus: Syntax and transition system

We use P, Q, R to range over processes, and a, b, x, y, ... to range over names. For
the moment, we leave the operator of restriction out from the syntax of the
it-calculus; we will introduce it in Section 7, after having examined distinctions.
Thus, the class of processes is given by the following grammar:

P:=0 1 a.P I [a=b]P I P1IP2 I P1+P2 I !P.

The prefix a can be input, an output, or a silent move:

a:=a(b)I ab^ r.

We assign parallel composition and sum the lowest precedence among the
operators. 0 is the inactive process. An input-prefixed process a(b). P waits for
a name c to be sent along a and then behaves like P{'/b}, where {c/b} is the
substitution of b with c. An output-prefixed process db. P sends b along a and then
continues like P. The i-prefixed process T. P is capable of evolving to P without
interacting with the environment. The matching construct [a = b] P is used to test
for syntactic equality of names; it behaves like P if a and b are the same name, it
behaves as 0 otherwise. Sum and parallel composition are used, as in CCS, to
express non-determinism and to run two processes in parallel. Finally, the replica-
tion ! P represents an unbounded number of copies of P in parallel and allows us to
describe processes with infinite behaviour.

An input a(b). P represents a formal binder for the occurrences of the name b in
P. A name which is not bound is free. The definitions of free and bound names are

Theory of bisimulation for the it-calculus	 73

Table 1. a-calculus transition system

a
P *P'

pre: a. P P	 sum:
P+Q -P'

a	 a
PI.P-- P'	 P-. P'

rep:	 par: 	 bn(a)n fn(Q) = 0!P P
PIQ-*P'IQ

P A P' Q Q' P -. P'
corn:	 •	 match:

PIQ-4P'IQ'{Y/x}	 [a=a]P +P'

standard. We write fn(P) and fn(a) for the set of free names of P and a; we use bn(P)
and bn(a) for their bound names; and n(P), n(a) for the union of their free and
bound names. Substitution and alpha conversion are defined in the expected way,
with renaming possibly involved to avoid capture of names. We use a and p to
range over substitutions; a(a) is the name onto which a maps a. As syntatic form,
substitutions have precedence over the operators of the language. We shall identify
processes or actions which differ only on the bound names. Therefore the symbol

means "syntactic identity modulo alpha conversion"; this will often avoid some
tedious side conditions, especially in the definitions of bisimulations.

The labelled transition system for the processes of the language is reported in
Table 1. We have omitted the symmetric versions of the rules sum, par and corn.
We work up-to alpha conversion on processes also in the transition system; that is,
alpha convertible agents are deemed to have the same transitions. Formally, this
means that we implicitly assume the rule

P' °` ^ P" P and P' alpha convertible
P !^P„

Sometimes we shall abbreviate a. 0 to a, and P -+ P' to P -- P'. We refer to
[MPW92] for more detailed discussions on the operators and their meaning.

3. Open bisimulation

3.1. From late to open bisimulation

Before introducing open bisimulation, we present the bisimilarity equivalences for
the it-calculus so far investigated in the literature. If .9' is a process relation, then
P.9'Q means (P, Q) e Y.

Definition 3.1. A relation .9' on processes is a late simulation if P.9' Q implies

1. If P' P', then Q' exists s.t. Q	 Q' and for each name b, P' {b/x} 9 Q {b/x}.
2. If P 4 P' for a = ãb or a = r, then Q' exists s.t. Q 4 Q' and P' .So Q'.
.9' is a late bisimulation f.9' and .9' 1 are late simulations. Two processes P and
Q are late bisimilar, written P A L Q, if P .9' Q, for some late bisimulation .9'.

In the definition of early bisimulation, written ^E , the order of the quantifiers in
clause (1) is reversed, i.e. one requires that "for each name b, a process Q' exists s.t.
Q Q' and p' {b/x} 9' Q' {b/} AsAs shown in Section 1, neither '-IL nor ' E are

74	 D. Sangiorgi

preserved by input prefix; the full congruences are obtained using name instanti-
ation. Thus two processes P and Q are late congruent (resp. early congruent), written

L (resp. E) if Pa ' L Qo (resp. Po	 Qa), for every substitution a.
In open bisimulation, which we are going to introduce, name instantiation is

moved inside the definition of bisimulation; as a consequence, the clauses (1) and (2)
of the previous definition collapse into one.

Definition 3.2 A relation 9' on processes is an open simulation if P 9'Q implies, for
every a:

• whenever Pa !^ P' then Q' exists s.t. Qa 4 Q' and P' .9' Q'.

97 is an open bisimulation if both So and 9 -1 are open simulations. The processes
P and Q are open bisimilar, written P - Q, if'P 9' Q, for some open bisimulation Y.

It is shown in [MPW91] that both the late and the early congruences are finer
than the corresponding bisimulations and that, in turn, the two late equivalences
are finer than the corresponding early ones. It is easy to see that open bisimulation
is a late bisimulation; moreover, since open bisimulation is closed under name
instantiation (we shall show this in Proposition 3.9) it is also contained in late
congruence. The following example shows that the inclusion is strict.

Example 3.3 We give an example which can be used in any CCS-like language with
value-passing (for the n-calculus we could make it even simpler by omitting the first
action c(a)). We write R - to mean that R -+ R', for some R'. Define

Pdef
c(a).(T.t + t)

Q def
c(a).(r. r + r + r. [a = b]i)

It holds that P Q: For every a, after the initial input action Qa's third summand
becomes equal to Pa's first summand or to Pa's second summand, depending on
whether a is instantiated to b or not. By contrast, in - the instantiation of a can be
delayed until a is used — echoing a call-by-need style. Consequently, the actions
Q -* [a = b]i are not matched neither by P+ i, nor by P+ -+0,
since in the former case r -> but [a = b] i 71+, and in the latter case ([a = b] r) {°/b} ->
but 0{a/b} 714 .

Figure 1 summarises the relationship among the equivalences considered, an
arrow meaning strict inclusion.

L

N L

1
N

Fig. 1. The spectrum of the bisimilarity equivalences

Theory of bisimulation for the it-calculus 	 75

3.2. The weak version

The relations that we have seen so far are called strong because the internal moves
of the processes, i.e. the i-actions, are given the same weight as the visible actions. If
one wishes to abstract from the internal details of the processes, then one adopts
a weak behavioural equivalence. Let =. be -+*, i.e. the reflexive and transitive
closure of -*, and be . if a = i and if a r. Weak open bisimula-
tion, written , is obtained, as usual, by replacing the arrow Qo ! Q' with
Qo . Q' in the Definition 3.2 of the strong bisimulation. It is straightforward to see
that:

Proposition 3.4 The relations - and .;: are equivalences.

Early bisimulation is extended to the weak case in a similar way. The extension
of late bisimulation is more delicate: In the input clause of Definition 3.1, the arrow
Qp Q' has to be replaced by Q .p Q' rather than (the expected) Q ° Q',
for otherwise the resulting relation is not transitive; the counterexample below
is a variant of the original one due to Robin Milner:

Example 3.5 Let 0 r and define:

Pl aef c(a). [a = b]a + c(a).(z.[a = b]a + -r.a + r),

PZ def	
c(a).(-r.[a = b]a + r.a + r),

P3 def	
c(a).(r.a + r).

It holds that Pl i PZ P3 . However P1 t P3 . The action Pl -^ [a = b] a
cannot be matched by F3 : If it chooses P3 1 T . a + T, then [a = b] a *' T. a + T;
similarly, if it chooses P3 `= a, then [a = b] a i a; finally, if it chooses P3 `1 0, then
([a = b]a){b/a} as' 0{b/}

AnotherAnother way of making weak late bisimulation transitive is to replace not only
Q °4 Q' with Q °) Q', but also P P' with P °-W P' (in the example above, the
equality between P2 and P3 breaks down). But this would yield a clause too
expensive to check in practice: The set of derivatives of P under can be much
bigger - even sometimes infinite - than the set under f+; moreover, certain
derivatives would be considered more than once (for instance, if P - P' P", then
P" would be examined both as an derivative of P and as an derivative of P').
For this reason, it is important to keep the "strong" arrow P* P'.

The smooth weak extension may be the indication of a greater stableness of
open bisimulation w.r.t. late bisimulation. Indeed, a possible interpretation of open
bisimulation is as a correction of late bisimulation — the "very late" approach of
open bisimulation to the instantiation of names already appeared in Example 3.3,
and it will be made clearer in Section 5. In the remainder of the paper we stick to
strong open bisimulation.

3.3. A useful proof technique

Our next result shows that the verification of open bisimilarities can be split into
two parts: On the one hand there is ground bisimulation which, modulo the different

76	 D. Sangiorgi

syntax of actions, is bisimulation as defined in CCS; on the other hand there is name
instantiation, that is the most distinctive notion of ir-calculus w.r.t. CCS.

Definition 3.6 A relation 9 is closed under a substitution o if P.9' Q implies
Pa9'Qa.

Definition 3.7 A relation 9' is a ground simulation if P9' Q implies
• whenever P a^ P' then Q' exists s.t. Q _4 Q' and P'9' Q'.

.5' is a ground bisimulation if both 9 and So -1 are ground simulations.

Proposition 3.8 Suppose that a relation 91
1. is a ground bisimulation,
2. is closed under all substitutions.
Then .9' is an open bisimulation.

Proof. Easy. q

The converse of Proposition 3.8 in general fails: An open bisimulation is
a ground bisimulation but is not necessarily closed under all substitutions. An
example is 9' = {(xy, xy), (0, 0) }. To close .9', we need to add the instantiations of
the "root" (zy, zy). In the same way we can close any open bisimulation. Since the
largest open bisimulation is closed, we have:

Proposition 3.9 — is the largest ground bisimulation which is closed under all
substitutions.

3.4. Congruence

We finish the section by looking at the congruence properties of —

Proposition 3.10 — is a congruence relation.

Proof. By showing that — is preserved by each operator of the language. For
input prefix, this holds because — is closed under substitutions of names (Proposi-
tion 3.9). For the other operators, the technical details are similar to those in the
proofs in [MPW92] of the congruence properties of late bisimulation. We only
consider parallel composition. Define

9' = {(Pi IR,P2IR): Pl — P2 }.

The relation .So is closed under all substitutions because — is so; by Proposition
3.8 it is enough to prove that .9' is a ground bisimulation. For this one proceeds by
a case analysis on the rule used to infer an action for P l I R. We only consider the
rule corn when P l performs an input, since the other are easier. We have

Pl Pi R — R'

Pu IR	 Pi {b/x}IR'

By definition of —, P2 	P' Pi. Therefore also P2 I R -4 Pz {b/x} I R'. Since
is closed under substitution, we have Pi {b/x} PZ{b/x}, hence

P' {b/x} j R' .So P2 {b/x} I R'. q

Theory of bisimulation for the it-calculus	 77

Therefore — is both a bisimulation and a congruence. This reminds us of Mon-
tanari and Sassone's dynamic bisimulation [MS92]. The latter has been introduced
in CCS to study systems which allow for dynamic reconfigurations. When bisimi-
lar, such systems can be consistently substituted one for the other in any context
and at any time of their life. We present here the strong version of dynamic
bisimulation for the sublanguage of it-calculus which we are examining.

Definition 3.11 (Dynamic bisimulation) Dynamic bisimulation is the largest sym-
metric relation 9' s.t. P9' Q implies, for every contexts C[]:

• if C [P] a^ P', then Q' exists s.t. C [Q] +Q' and P'9" Q'

In other words, dynamic bisimulation is the largest ground bisimulation which is
also a congruence. Since the latter requirement is assured by the closure under
substitutions of names and vice versa, by Proposition 3.9 we get:

Proposition 3.12 Dynamic bisimulation and open bisimulation coincide.

4. The axiomatisation

In this section we give a sound and complete axiomatisation for — on finite terms,
i.e. terms in which replication does not appear. We shall use M, N, L to stand for
finite (and possibly empty) match sequences; thus, if N is [a = b] [c = d], then NP is
an abbreviation for [a = b] [c = d] P. A match sequence defines an equivalence
relation on names. Given a match sequence M and the equivalence relation
1 M associated to it, we denote by aM a special substitution which selects a repre-
sentative out each equivalence class of RM and maps all names in the same class to
their representative (there may be many ways of defining aM ; we just pick one). We
write M N if M implies N, i.e. whenever the tests in M are true, then also the tests
in N are true. Similarly, we write M .l> N if both M > N and N > M hold. We
say that a substitution a satisfies a match sequence M if for each a, b, it holds that
M p [a = b] implies a(a) = a(b), that is, the condition Ma is true. We write vp for
the composition of substitutions; therefore we have Pap - (Po) p.

Lemma 4.1

1. (Na. P)am —° -* Pa m iff M NN (or, equivalently, NM'i M).
2. If a satisfies M, then a = am p, for some p.
3. For each name a, aM(aM(a)) = aM (a).
4. If M Qt N, then for some injective substitution p, we have a M = aNP.

4.1. The axiom system

The axioms are in Table 2. S1—S3 are the monoidal laws for sum; Cl—C4 are the
congruence laws; E is the usual expansion law. The interesting laws are those
involving matching. M1 says that two semantically equivalent match sequences
can be exchanged one for the other; M2 shows that underneath a matching the
tested names are indistinguishable; M3 asserts the distributivity of matching over

78	 D. Sangiorgi

Table 2. The axiom system

Alpha-conversion	 A If P and Q alpha-convertible then P = Q

Congruence	 Cl If P = Q then a. P = a. Q

C2 IfP=Qthen P+R=Q+R

C3 IfP=Q then [x=y]P=[x=y]Q

C4 IfP=Qthen PIR=QIR

Summation	 Si P + 0 = P

S2 P+Q=Q+P

S3 P+(Q+R)=(P+Q)+R

Matching	 Ml If M1(' N then MP = NP

M2 [x = YIP = [x = Y] (P {x/Y})

M3 [x=Y](P+Q)=[x=Y]P+[x=YJQ

M4 [x=y]P+P=P

Expansion	 E

Assume P = ^; M ; a ; . P; and Q - j N j pj . Q j where no a, (resp. fl) binds a name free in Q
(resp. P). Then infer:

PIQ=Y_Miai.(PiIQ)+Y.Njpj•(PlQj)+ F.	 M1Nj[x1=Yj]t.Rij
i j aloppfij

where a ; opp f3j and R;j are defined as follows

1. a ; is z ;u and f j is yj(v); then R ;, is Pi

2. a ; is yj(v) and fj is z ;u; then R ij is Pi {u/v} I Qj .

sum; M4 is an absorption law certifying that the only possible effect of matching is
to block the access to a process. If we prefer some more concrete and purely
equational axioms, then M1 can be replaced by the following five axioms which
formalise the notion of equality on names:

[x=Y][x=Y]P=[x=y]P

[x=Y][x=z]P=[x=Y][x=z][Y=z]P

[x=Y][z=u]P=[z=u][x=Y]P

[x=x]P=P

[x=Y]P=[y=x]P

We call the given axiom system. We write c' I—P = Q if P = Q can be inferred
from cS with equational reasoning; occasionally, we might omit 9, if clear. We also
write P = Q if the equality of P and Q is deduced from the axiom (or rule) Z plus
the axioms for congruence and equivalence.

Theory of bisimulation for the n-calculus 	 79

The soundness of f' is evident.

Proposition 4.2 (soundness of 9) If 9 I-P = Q, then P - Q.

The remainder of the section is devoted to the proof of completeness. After having
presented some derived rules, we introduce the notion of normal form and show
how to rewrite a process into normal form. We then refine normal forms to strong
normal forms and demonstrate that equivalent strong normal forms are provably
equal. A tree representation of the terms will allow us to visualise the latter part.

Lemma 4.3 The following are derived rules in 9. (In the denomination of these
axioms, "D" stands for "derived".)

SD1 P+P=P

MD1 [a =b]O=0

MD2 P+MP=P

MD3 MP = M(PaM)

Proof:

SD1: P=° [x=x]P+P"i P + P.

MD!: O =' [a = b] O + 0 = [a = b] O .

MD2: Induction on the length of M. If the length is 0, then it is a special case of
SD1. Otherwise M is of the form [a = b]N, and by induction

F-P+NP=P	 (1)

Therefore we get

HP «P+NP"'=° P+NP+[a=b]NP (- P+[a=b]NP

MD3: Take a name a and suppose am(a) = b. Then, by definition of am it holds
that aM(b) = b and M Q > M [b = a]; hence

MP's 1 M[b = a]P' M[b = a](P{b/a}) "'f M(P{b/a}).

Repeating this for all names free in P gives MD3. q

Definition 4.4 (normal form) A process P is in normal form (nf in short) if

P=Y_M; a i .Pi
tel

where each Pi is in normal form.

Lemma 4.5 For each process P there is a term H in of s.t. I F-P = H.

Proof. By induction on the structure of P. Suppose P =_ [x = y]P 1 and F-P1 = H:
Then F-P = [x = y] H; now, either use M3 to distribute the matching over the
summands of H or , if H - 0, use MDI to reduce P to 0. Suppose P - PI j P2 and
F-P1 = H1 , F-P2 = H2 : Then I-P = Hl jH2, and Hl I H2 can be put into nf by
repeatedly applying E. Finally, the case when P - a. Q or P - Pl + P2 just re-
quires use of induction. q

80
	

D. Sangiorgi

a(x)

a(x)
x=a =

\ab	 be	 xx

Fig. 2. Examples of conditional trees

4.2. The tree representation

Processes in nf can be represented as conditional trees; these are labelled trees in
which the access to a branch is controlled by a condition. Two examples are shown
in Fig. 2; they are the trees of the terms [a = b] a(x).([x = b] zc + ãb) and
a(x). (bc + [x = a] [a = b] ix)), respectively.

The tree representation has been a very useful form of denotational semantics
for CCS-like process algebras; often techniques for manipulating terms have been
described, or even defined, directly on trees [BK85, DKV91]. Till now no tree
representation for n-calculus terms has been proposed. We think that part of the
reason is in the behavioural equivalences used: Usually these equivalences are not
preserved by input prefix and therefore have a rather complicated inference rule for
it; this makes it difficult to prove process equivalences proceeding by term-rewrit-
ing transformations on some form of tree. By contrast, we found conditional trees
helpful to visualise our reasoning with open bisimulation. In the next section, we
shall use them to explain the phases of our completeness proof.

Definition 4.6 (conditional trees) The tree of a term P in nf, written Tr(P), is defined
by induction on the structure of P as follows:
1. If P = >"= 1 Pi then Tr(P) is obtained by joining the roots of the trees of P 1 , ... , P„:

Tr(P i) • • • • • Tr(P„)

2. If P =_ Ma. Pl than Tr(P) is

M
a

Tr(P1)

Theory of bisimulation for the n-calculus 	 81

Note that by clause (1), we have Tr(0) = •. We write Tl ,, TZ if Tl and T2 are
equal modulo the following syntactic manipulations, for which the choice of
a canonical form would require the definition of an ordering on the names and
a standard representation of match sequences:

• alpha conversion,
• commutativity of consecutive branches,
• equality Q > between match sequences,
• identification of names equated by a match underneath the match itself.
These transformations are the direct correspondent of the axioms A, S2, S3, M1,
and M2:

Lemma 4.7 Let P and Q be nf's; then

Tr(P) =,, Tr(Q) iff {C1-4,A,S2,S3,M1,M2} HP = Q.

It is convenient to work in terms of =,, to avoid defining and respecting tedious
technicalities like the ordering on names. With this motivation in mind, the reader
should think of =,, as syntactic equality between trees.

4.3. Strong normal forms and completeness of the axiom system

The next step in the proof of completeness for our axiom system is to rewrite
a normal form into strong normal form (snf). The advantage of this is that
equivalent processes have essentialy the same snf. This unicity property fails for
nf's. For instance, [a = b]a.(ac + bc) and [a = b]a.ac are equivalent but struc-
turally different nf's. Intuitively, a nf P is in snf if none of its non-trivial subterms
are redundant; thus if Pl + P2 is a subterm of P then both Pl and P2 must
contribute to the behaviour of P.

Definition 4.8 A term P is in strong normal form (snf in short) if

P - Mi a ; .P,
!EI

where

1. for all i, bn(a;)n fn(P) = 0 and Pi am, is in snf;
2. if 	 j then M1 ai .P M; a ; .Pi +M;a; .P; .

The reader might want to verify that in clause (2) it does not make a difference to
have a composite term (i.e. a sum) rather than the "single" term Mia i .P,.

Lemma 4.9 Suppose that P is in snf and a is an injective substitution; then also Pa is
in snf.

The next two lemmas are the core of the completeness proof. They show that
equivalent snf's are provable equal and that a nf can be transformed into snf. In the
assertion of the first result all axioms needed are explicitly declared, in order to
show that equivalence of snf's is the same as the equality =,,, of trees; this will be
formalised in Theorem 4.13 and will give us canonical representatives for the
equivalence classes of —.

82	 D. Sangiorgi

Lemma 4.10 If P and Q are snf's and P — Q, then {C1-4, A, S2, S3, M1, M2} I—P = Q.

Proof. We shall also use the axiom MD3 since, as shown in Lemma 4.3, this is
derivable from C1-4, M1 and M2. We proceed by induction on the depth of
P + Q. If the depth is 0, then P - Q - 0. Suppose the depth is non-zero. We show
that each summand of P can be transformed into a summand of Q; the P = Q can
be derived from the commutativity and associativity of sum, namely axioms S2 and
S3 (note that we do not need Si: It cannot be that different summands of P are
transformed into the same summand of Q otherwise, by the soundness of our axiom
system, the second clause in the definition of snf would be violated).

If M. P1 is a summand of P, we have

PaM
— P

1 QM .

Let Nfl. Q 1 be the summand of Q used by QOM to match this move. Then M' N
(Lemma 4.1(1)) and QuM — + Q1aM with

IXQM = PQM	 (2)

P1QM '" Q1QM•	 (3)

By definition of snf, P 1 QM and Q 1 CN are snf's. Let us show how we could finish the
proof if we knew that not only M > N, but also

NM	 (4)

holds: If M Q> N, then by Lemma 4.1(4), QM = UNp, for some injective p, and by
Lemma 4.9, Q1aM - QIaNp is in snf. Therefore, from (3) and the induction assump-
tion of the lemma, we can derive

P1QM = Q1 6M	 (5)

which gives

NI'. Q1 Ml
M$. Q1 =

M(/3QM)•(Q1QM)

M(aCM) (Q1aM) ^^ M(IXCM) (P1CM)
MD3

Ma.PI

Thus it remains to prove (4). Suppose N M. We know that P - Q; consider the
transition

QCN -+ Q 1QN •

The process PCN cannot match it using the summand (Ma. Pl)CN, because of the
assumption N I M (Lemma 4.1(1)). Therefore another summand of P, say Ly.P2i

has to be used and it holds that

vN satisfies L	 (6)

and (Ly. P2)QN y°+ P26N with

YQN = PCN,	 (7)

P2QN -' Q1aN•	 (8)

Theory of bisimulation for the it-calculus	 83

But now we get into contradiction with the hypothesis that P is in snf, since we can
show that

	Ma. PI + Ly. P2 Ly.P2 .	 (9)

We prove (9) following the definition of —. Consider a generic substitution a. The
interesting case is when a allows us to use Ma. PI to infer an action:

(Ma. P I + Ly. P2)a -- P1a.	 (10)

For this to be possible, a must satisfy M, i.e., by Lemma 4.1(2) for some a'

a=ama'.	 (11)

Similarly, since M > N and therefore aM satisfies N, for some p

oM=aNP•	 (12)

This and (11) give

a=aNpa'.	 (13)

We shall use these informations on the substitutions to show that Ly. P2 can match
the transition in (10). First, from (13) and (6) we deduce that a satisfies L; hence
(Ly. P2)a can do:

(Ly. P2)a " P2o .

Then we want to show that ya - as and P2 a — P1 a. This would conclude (9) and
finish the proof of the lemma. For the former, we have

ya (13) YaNP6, (2 3cN pa ' (12) #am a ' (^ "M a' (li) a•.

To derive the latter, we start from (8), namely P2 UN ^ Q 1 UN . Since — is closed
under substitutions (Proposition 3.9), and by (12) CM = QNp, we have

P2QM = P2QNP —' Q1QNP = Q1QM

which together with (3) yields

P2CM — PlaM.

Finally, similarly as above, but this time using (11),

	P2a =_ P2CMa' — PlaMa' = P1 Q .	 q

Now we can show how to transform a nf into snf. If P is in nf, then the length of
P, written len(P), is the number of prefixes appearing in P.

Lemma 4.11 If P is a nf, then there is a snf H s.t. d° I-P = H; moreover fn(H) 9 fn(P)
and len(H) < len(P).

84	 D. Sangiorgi

Proof (By induction on the depth of P). If the depth is 0 then P - 0 and the lemma
is trivially true. Suppose now the depth is non-zero. Applying MD3 on the
summands Ma i . Pi of P, we get the process

E Mi(aicM,)•(Pi 6M1)•
iel

Using the inductive assumption of the lemma, each Pi6M 1 can be put into a snf P;,
thus obtaining the process

P' -	 M; (a iam').P;.
iel

Moreover, since

fn(P) 9 .fn(PicM,)	 (14)

and len(P)<_ len(P,aM,), it also holds that

fn(P') c fn(P) and len(P') _< len(P).	 (15)

Each summand M,(a ; QMJ. P; is in snf if clause (1) of the definition of snf is satisfied.
For this, we demonstrate that P!am, = P;: Let a e fn(P;); by (14) we also have
a e fn(P,aM,) and since QM, is idempotent (Lemma 4.1(3)), 6M,(a) = a.

Thus, we are left with having to fulfill the second clause of the definition of snf
for P'. Suppose that Q and R are summands of P' with

	

Q—Q +R.	 (16)

We shall show that

	I—Q =Q+R	 (17)

i.e. the axioms allow us to eliminate the summand R. The same strategy can be used
to eliminate any other redundant summand of P', thus ending up with a process
which is in snf and, using (15), has no more free names than P and a length not
greater than the one of P. as required by the assertion of the lemma. Suppose
R - Ma. R I ; the equality (17) can be derived from

	I—MQ = R	 (18)

as follows:

QMWWQ+MQ(1r Q+R.

Thus we have reduced ourselves to having to prove (18). Take the substitution
6M corresponding to M. From (16) and Proposition 3.9

Qum — QQM + Ram .	 (19)

Using the summand RCM we can infer

QaM + Ram a!!4 R 1 aM .

Theory of bisimulation for the it-calculus	 85

But because of (19), we know that QO M can match this move. Therefore, if
Q = Nfl. Q 1i then QM must satisfy N, and we have Qum 	 Q1aM with

PaM = aCM,	 (20)

Q1aM — RjCM.	 (21)

Moreover, by Lemma 4.1(1),

NM Q > M .	 (22)

Now, from (22) and (20) we get

MQ = MNf • Q1 Ml M/3. Q1 Mn3
M(flaM)•(Q1aM) = M(aaM)•(QlaM) • (23)

We know that R 1 aM is in snf, and by (21), it is equivalent to the nf Q 1 am .' Using the
inductive assumption of the lemma and the soundness of our axioms, Q am can be
transformed into an equivalent snf which, by Lemma 4.10, is provable equal to
R 1 aM; thus we can infer

HQ1aM = R1aM.	 (24)

Finally, the two previous equalities give

F—MQ (2=) M(auM)•(QlaM) (Z= M(ccaM)•(R1am)
MD3 Mx.R1

which is precisely (18). q

Corollary 4.12 (Soundness and completeness of 9) It holds that P — Q
dl—P =Q.

Proof. The soundness has been considered in Lemma 4.2. For completeness,
suppose P — Q. By Lemmas 4.5 and 4.11 there are snf's H and K such that

I—P = H and 60° I—Q = K. By the soundness of t' and transitivity of —, we have
H — K; therefore, by Lemma 4.10, we also have 1f I—H = K. q

The proofs that we have given say more than the completeness of our axiom
system. They also show how to put a process into a canonical form, namely the snf,
and that these canonical forms are essentially unique for each equivalence class of
—; the latter because Lemma 4.10, together with Lemma 4.7, gives:

Theorem 4.13 (Canonical representatives) If P and Q are snf's then P — Q iff
Tr(P) =*Tr(Q).

Moreover the canonical representatives are minimal w.r.t. the dimension of the
associated conditional tree.

Theorem 4.14 (Minimality of the canonical representatives) Suppose P is a snf, Q is
a nf and P — Q; then Ien(P) _< Ien(Q).

1 Q 1 aN is in snf, but Q 1 QM in general is not

86	 D. Sangiorgi

Proof. Lemma 4.11 shows that the transformation to snf does not increase the
length of nf. By Lemma 4.10, snf's are "structurally" unique for each equivalence
class: Hence the assertion of the theorem follows. q

5. An efficient characterisation

The definition of - involves at each step a universal quantification over substitu-
tions, which in practice may represent a rather heavy requirement. We shall show
in this section a more efficient method to check process bisimilarities. This is based
on the definition of a transition system specialised for -. The actions in this system
are of the form P t t F. Intuitively, M collects the conditions indispensable for
the action a to fire. In other words, M defines the "minimal" substitution Q M which
would allow P to use a; Examples of transitions are

[a = b] a. P tt°-' °t P and ([a = b]ca. P,) I (d(x).P2) «°-btu
dt'T) P

l I P2 {a/x}

The new transition system is presented in Table 3. Its composite actions (M, a) are
ranged over by p. The definitions of substitution and bound names for them are as
expected: (M, a)a is (Ma, aa) and bn((M, a)) is bn(a). We extend the notation
M f N to substitutions and write a > p if a equates more than p, i.e. p(a) = p(b)
implies a(a) = a(b). Note that, in Table 3, if P P', then no name bound in
a appears in M. The bisimulation which we define on the new transition system
and which we shall prove to coincide with - is nearly a ground bisimulation.

Definition 5.1 A binary relation .9' on processes is a v-simulation if P.9' Q implies

• whenever P t'y'i t P' then N, /3 and Q' exist s.t. Q tit Q and
- M > N,
- aCM = PaM,
— P ' QM 9 Q ' QM

.9" is a -bisimulation if both .9' and ,92 are x-simulations. Two processes P and
Q are -bisimilar, written P Q, if P.9' Q for some z-bisimulation Y.

Intuitively, the above clause ensures that, in the ordinary transition system, the
move PaM -^ P'QM is matched by the move QQM -°^ Q'CM . The better efficiency

Table 3. The transition system specialised for open bisimulation

op-pre: o(.P (0'^) P	 op-sum: 	P P
P+QP'

PI!P P'	 P ". P '

	(,u)nfn(Q)-0op -rep: i p P 	op-par:
p I Q 2 P' I Q bn

(M,ay)	 (N,b(x))
P	 P' Q	 Q'	

{MN
MN[a=b] if a0b

op-corn:)	 where L =
	 otherwisePIQ	 P'IQ'{Y/x}

(M,a)
P -' P'	 IMM[a=b] if a^b and a,bbn(a)

op-match: —^-â where N =
[a = b]p 	 if a = b

Theory of bisimulation for the n-calculus 	 87

of -< over — is evident, for -< only forces those instantiations of names which are
strictly necessary to ensure equivalence. We also expect that be easier to verify than

—L or —E . In the input clause, —L and 'E require the instantiation of the bound
name with all names free in the examined processes plus a fresh name. As the number
of input increases, this may cause an explosion of the number of process pairs to check.
In contrast, with , it is enough to instantiate the bound name of the input with a single
fresh name; any other instantiation only occurs when — and if — it is needed to perform
a communication along that name. Indeed, this is the essence of the call-by-need
nature of open bisimulation. We leave for future work a precise analysis of the
complexity of and the comparison with the complexity of the other equivalences.

Now we are ready to embark into the proof that and — coincide, which
occupies the remainder of the section. For this proof, the main lemmas are Lemma
5.4, where we show that is closed under substitution, and Lemmas 5.5 and 5.7,
where we establish the operational correspondence between the ordinary and the
new transition systems. In all lemmas below, by alpha conversion it is assumed that
bound names and free names of processes are always distinct and that bound names
are not affected by the application of a substitution. Therefore, in Pa ° P'a, the
free occurrences of x in P' are not modified by a and fn(Pa)r {x} _ 0.

Lemma 5.2

1. If P	 Q, then Pa	 Q', with M' <> Ma, a' - as and Q' - Qa;
2. the converse, i.e. if Pa -- 	 then P (M°) Q, with M' Q> Ma, a' - as and
Q' = Qa.

Proof Straightforward transition induction. El

Lemma 5.3

1. If M >N then Ma > Na;
2. If M > N then aM > aN;
3. If a > a' then p exists s.t. a = a'p.

Proof. Straightforward from the definitions of [> on conditions and substitu-
tions. q

Lemma 5.4 P Q implies Pa Qa

Proof. We show that

.^=U{(Pa,Qa):P^Q}
0

is a-bisimulation. By Lemma 5.2(2) modulo Q' between match sequences an
action by Pa can be written as Pa 7 a P'a for some M, a and P' s.t. P t P'.
Since PQ, we have Q (U) Q' with

M ' N , (25)

craM = PaM, (26)

P'aM = Q'aM . (27)

88	 D. Sangiorgi

From Lemma 5.2(l), modulo Q> between match sequences, Qc (-A)° Q'o. This
gives a counterpart to the above transition of Pa if

Mo> No,	 (28)

aQQM, = P6bMo,	 (29)

P'6QMa 9' Q '7oMc .	 (30)

Now, (28) follows from (25) and Lemma 5.3(1). For (29) and (30) we first express
10 MQ in terms of QM . The implication

aama D QM	 (31)

holds if for any a, b, aM(a) = QM(b) implies 6M0 (a(a)) = aMQ (a(b)). Now, if
QM(a) = aM(b), then, by definition of QM, M > [a = b]; therefore also
Mo> [a(a) = a(b)], from which, by definition of 0MQ, we have
QMQ(o(a)) = QM ,(o(b)). Having showed (31), we can apply Lemma 5.3(3) and obtain
aamo = QMp, from some p. Finally, using this decomposition, (29) and (30) follow
from (26) and (27). q

Lemma 5.5 If PaM P" then P (4) P' with
• M >N;
• a = Ii aM;

• P" - P'QM .

Proof. By transition induction. The hardest case is corn. We leave the others to
the reader. Consider the derivation

oY	 n	 a(x)	 ,,P1 QM —> P 1 P2aM --' P2

(P1 I P2)aM --' (P7 I Pz {Y/x})

From the inductive assumption, we get

P, (N) I' i P 2 (N2• (X» p,2 	(32)

with

M D N1, ay = (bc)aM Pi = PiaM	 (33)

M D N2, a(x) = (d(x))aM Pa = P' am.	 (34)

Now, from (32) and the rule op-corn, we infer (we suppose b 0 d, the case b = d is
similar)

PI P2 (N1N2[d],=) Pi I P2 {d/x} .

Finally, we obtain (P11 P''2 c/x})QM - P71 P {Y/x} and M j N 1N2 [b = d] from
(33) and (34). For the former, we have

(P 1 I P2 {C/x }) 6M = (P 16M I P2QM {6M (C)/x }) = P'fl P2 {Y/x}

	

Theory of bisimulation for the n-calculus	 89

(since x is a bound name, we can assume that no name free in P1 and P2 {c/x} is
mapped by aM onto x). Now the latter: We have M > [b = d], since
QM(b) = aM (d) = a; this, together with M p N1 and M > N2 gives
M > N1 N2 [b = d], as required. q

Lemma 5.6. If P + P' then Pa — P'a.

Proof By transition induction (see [MPW92]). q

Lemma 5.7 If P () P' then PaM a°M+ P'aM.

Proof. Another transition induction. The interesting rules are op-corn and op-
match. Consider the rule op-corn, and suppose a 0 b; we have

p (Mdy) p,
1 p2

 (M b(x)) p /
	1 	 2

I,1 p2 (MiMz[b],=) pi I PZ {y/x}

Using Lemma 5.3 we can decompose oM1M2[a=b] as aM ,p l and aM2 p2 , for some
Pi, P2• Moreover, by induction,

(Sy)QM1	 (b(x))QM2
P1UM, — + P1uI m, P2UM2 —> P /

26M2 .

Now we apply the above decomposition of QM,MZ[a=b] and Lemma 5.6 to infer with
the rule corn

	(SY)QM'P,	 ,	 (b(x))cM2P2	 /

P1aM,pl —> P1aM,p1 P2aMzp2 —> P2QM2P2

	(P 1 I P2) QM1M2[a=b]	 (P1 I P2{y/x}) aM1M2[a=b]

The case of the rule op-match can be solved using Lemmas 5.3 and 5.6 in
a similar way. q

Theorem 5.8 — implies ^.

Proof. We show that

={(P,Q):P^'Q}

is a-bisimulation. Suppose P () P'. By Lemma 5.7,

PaM !!4 P'QM .

From P — Q and Proposition 3.9, also PaM — QQM , hence

Qum
Q, Q ,/

with

aaM=fJ P /aM^'Q. 	(35)

By Lemma 5.5, Q (") Q' with

M P N, yaM = Q, Q'aM = Q".	 (36)

90	 D. Sangiorgi

Thus, from (35) and (36), we have Q (
y)
 Q with M > N, yam = a6M , and

(P'QM ,Q'aM) e .9', which is what required in the definition of -bisimulation. q

Theorem 5.9	 implies ' .

Proof. The relation

9' = {(P,Q): PQ}

is a — -bisimulation. By Lemma 5.4, 9' is closed under substitutions; by Proposi-
tion 3.8 we have only to show that 9' is a ground bisimulation. Suppose P P'. By
Lemma 5.5, P () P'. Since P Q, we also have Q Q' P'. From Lemma 5.7,
Q a^ Q', which closes up the bisimulation. q

Transition systems and bisimulations similar to those defined in this section (and
with similar "efficiency" motivations in mind) have been considered by Hennesy
and Lin [HL92] and Amadio [Ama92, Sect. 5]. Hennessy and Lin work is CCS
with value-passing and their symbolic bisimulations intend to capture the standard
bisimulations of this calculus (rather than a new one as we do in this paper); our

appears simpler than their symbolic bisimulations since in the clause of bi-
similarity of the latter an action by a process may be matched by a set of actions (as
opposed to a single action) from the other process. Amadio works in a subcalculus
of ours, on which the relation he introduces is similar to our ç however, the theory
of such a relation is not developed.

6. Distinctions

In this section we outline the generalisation of the theory in the previous sections to
deal with distinctions [MPW92]. A distinction expresses permanent inequalities on
names, i.e. if (a, b) are in the distinction, then a must be kept separate from b. We use
D to range over distinctions.

Definition 6.1 A distinction is a finite symmetric and irreflexive relation on names.
A substitution a respects a distinction D if (a, b) e D implies a(a) a(b). Similarly,
a match sequence M respects a distinction D if (a, b) e D implies M (d [a = b].

The finiteness requirement on distinctions is imposed to ensure that there are
always enough names available to permit alpha conversion to fresh names. We
denote by n(D) the set of names which are mentioned in D. Sometimes, in the
expressions defining distinctions we shall avoid to give all symmetric pairs; for
instance, we might define D = {(a, b)} without recalling that also (b, a) a D. We
write D — x for the distinction

{(a, b): (a, b) e D and a, b # x}

and, if a is a substitution which respects D, we write Da for the distinction

{(a(a), a (b)): (a, b) a D } .

To respect distinctions, in the definitions of the bisimulations we use a set of
relations, each of which is indexed by a different distinction. In the statements in

Theory of bisimulation for the it-calculus 	 91

this and in the next section, a name declared fresh is supposed to be different from
any other name appearing in the objects of the statement, like processes or
distinctions; this will avoid ambiguity on the consistency of the distinctions we
define

Definition 6.2 The set 9' = {9'D} D of process relations is an indexed open simulation
if for each .9'D and for each a which respects D, P 9'D Q implies

• whenever Pa P' with bn(a) fresh, then Q' exists s.t. Qa Q' and P'92 Da Q'.

.' is an indexed open bisimulation if both {.'D}D and {.1D ' } D are indexed open
simulations. The process P and Q are open D-bisimilar, written P —D Q, if there is an
indexed open bisimulation 9' s.t. P.'D Q.

Note that — corresponds to the special case of —D in which D is empty. The
class { —D } D ordered by relation inclusion, almost gives rise to a lattice: — is the
bottom element, and two elements —D , —D- have ' DrD' as their greatest lower
bound and ^'D,D- as their least upper bound; there is no top element though, due
to the fact that we only allow finite distinctions. A relation —D enjoys a weak form
of the congruence w.r.t. input prefix, namely

if P —D _ x Q then a(x). P 'D a(x). Q. 	(37)

The other operators of the language preserve —D. Therefore, —D is a full congru-
ence under the assumption that the names of D are not used as bound names in the
process expressions.

The axiom system for —D is obtained by adding two simple axioms to the system
' for " (we take equalities P = Q in ' as abbreviations for P =m Q):

P From (a, b) e D infer [a = b] P =D 0,

W From P =D. Q and D' D infer P =D Q.

P stands for "pruning", W for weakening". Let _q be u {P, W }. The soundness of
off has been considered in Section 4; the soundness of P is self-evident. The
soundness of W comes form the following lemma:

Lemma 6.3 If D' g D, then P 'D• Q implies P 'D Q.

Proof. The requirements in the definition of ''D• are a superset of those in the
definitions of —D. q

Definition 6.4 A term P is in strong normal form on D (D-snf in short) if

P	 M;a;.Pi
{E]

and
1. for all i, M i respects D,
2. for all i, bn(a,) is fresh and PiaM, is in Da M; snf,
3. if i éj, then M ; a ; .Pi -/D M1 a 1 .P1 + Mja;.Pi.

92	 D. Sangiorgi

The snf's of Definition 4.8 are a special case of D-snf's, in which D = 0. Note also
that if P is in D-snf, the P is also in D'-snf, for D' 9 D (clause (3) holds because of
Lemma 6.3).

The following lemma, together with Lemma 4.5 — to put a process into of — and
axiom W — to lift each equality = up to =D — gives the completeness of -9 for —D .

Lemma 6.5
1. If P and Q are D-snf's and P —D Q, then fCl-4, A, S2, S3, Ml, M2} F-P = Q.
2. If P is a nf, then there is a D-snf H s.t. -q 1-P =D H; moreover fn(H) fn(P) and

Ien(H) <_ Ien(P).

Proof. Completely anaologous to the proofs of Lemmas 4.10 and 4.11. We briefly
summarise the proofs. Both of them proceed by induction on the maximal depth of
the given processes. For the assertion (1), one shows that each summand M. Pi of
P can be transformed into a summand of Q, as follows. Given the action

(Ma.Pi)crM a— PS QM,

from the definition of —D one finds a summand Nfl. Q, of Q with M > N which can
match the previous action. For this, the first clause in the definition of D-snf is
needed to ensure that c M respects D. Then, reasoning by absurd and exploiting the
third clause in the definition of D-snf, one infers that also N > M must hold.
Finally, the condition M Q > N and the inductive assumption are used to equate
Nf3. Q 1 to Ma. P1 .

We turn now to the inductive part of the assertion (2) of the lemma. For the first
clause of the definition of D-snf, one uses P (possibly in conjuction with Ml) and
MD1, Si to remove all subterms which at the top have a condition inconsistent
with D, and W to weaken = with =D • The other clauses can be dealt with as in
Lemma 4.11. We only recall the proof schema for the third clause. Suppose that
M, and M; respect D (we can assume this because of the first clause dealt with
above), and Mc;. Pi —D M i a i . Pi + M;a; . P. This holds if M; f M, and
M; MM a ; . Pi —D M; a; . P; . Using the inductive assumption, the terms M; a; . P; and
M;M ; a1 . Pi can be put into D-snf, and by the assertion (1) of the lemma the resulting
D-snf's can be equated with each other. Hence we can conclude that

-9I—M;a1 .P,

=D M I a ; •P, +M; a ; .P; =D Mi a1 •P,+M; a; .P; .

All other redundant summands of P can be cancelled in a similar way. q

Lemma 6.5(1) also shows that the D-snf's, such as the snf's, are essentially unique.
Therefore, on D-snf's —D and — coincide. This property breaks if we remove
clause (3) in Definition 6.4, i.e. we consider normal forms rather strong normal
forms. For instance, the processes

Ptft [c=d]r, Q aef P+[a=c][b=d]T

satisfy clauses (1) and (2) of Definition 6.4 and are in the relation {(a,b)}; but they
are not in the relation —.

The other results presented for — in the previous sections can be generalised to
'D with the expected modifications in the assertions and in the proofs. As example,

Theory of bisimulation for the it-calculus	 93

we consider the new version of Proposition 3.8 and the definition of the efficient
characterisation	 For the former, we have:

• Suppose that 91 = {9'D } D is a class of relations which are ground bisimulations
and closed under respectful substitutions (i.e. P.92D Q and a respects D implies
Pa 9Do Qa). Then .' is an open indexed bisimulation.

Moreover { —D }p represents the class of the Targets relations which satisfy the
above property. Also the definition of D uses a set {'D } D of process relations
indexed by distinctions; the requirement on the bisimilarity is that P 9D Q implies

• whenever P t t P' with bn(oc) fresh, and M respects D, then N, /3 and Q' exists s.t.
Q (U) Q' and
— M>N,
— a6M = #aM ,

— P aM 9'naM QM.

Alternatively, the condition "M respects D" can be moved inside the transition
system by adding the premise (a, b) 0 D in the rules op-match and op-corn.

7. The restriction operator

The work in the previous section shows the central position of —D in the theory we
are developing, with — recovered for a special choice of distinction. Here we show
how 'D behaves with restriction, the it-calculus operator so far ignored. The
restriction of the name x in the process P is written (x)P (in some papers vxP) and
declares the name x local to P. The scope of x can however be widened if x is
exported. The output (x)ãx. P is abbreviated to ã(x). F, and a(x) called bound
output.

To take restriction into account, one has to add the appropriate rules for
restriction in the transition and the axiom systems, and a clause for bound output
in the definition of the bisimulations. We consider this below. These extensions
require fairly simple adaptions to the previous results and proofs 2 about —'D; the
only proof we discuss is the completeness of the axiom system, since it needs a little
more thought.

The it-calculus transition system has three rules specific to restriction. Note that
the prefixes on which a ranges must now include bound outputs as well. We have
omitted the symmetric versions of close.

P*P' QQ'
close: PIQ
	 (x)(P'IQ')

ãb

res:
(b)P + (b)P, b

0 n(a)	 open:
(b)P

 —p

-*
PP, b 0 a

2 In the proof of congruence for —D over parallel composition, the technique of bisimulation
up-to restriction [MPW92] is needed.

94	 D. Sangiorgi

Now the corresponding rules in the transition system specialised for ' D ; we write
n((M,a)) for n(M)un(a).

P (M fix)) I,, Q(NIX))Q,	

I MN
MN[a=b] if a b,

op-close:	 where L =
P I Q () (x)(P' I Q') 	 otherwise.

P , P'	 P cb> P'
op-res:

(b)P (b)P' b n(µ)
	 op-open: (b)P (1fl 	b n(M)u {a} .

This enlarged transition system still has the property that if P {	 P' then no name
bound in a occurs in M. Note in op-open the side condition b n(M): A restricted
name is logically different from any known name and hence an equality in
M involving this name is unsatisfiable. This same principle rules the clause for
bound outputs in bisimulations. Thus, for "D we have:

• if Po	 P' with b fresh, then Q' exists s.t. Qa	 Q' and P' .9'. Q',
for D' = Dau{{b} xfn(PQ,QQ)}.

The distinction Dv is augmented to D' to keep b separate from the names visible in
Pa and Qu. It is worth pointing out that the adoption of a similar clause — i.e., with
increment of the distinction — forces the use of a set of distinction-indexed relations
also in the definition of ground bisimulation.

The axioms for restriction are reported in Table 4. CR is for congruence. Its
soundness can be proved by exhibiting the the appropriate bisimulation. Compare
CR with the rule (37) for the congruence of — D w.r.t. input prefix: The opposite
positioning of D — x reveals the different nature of the two binding operators
involved. R1—R6 say how and when restriction distributes over the it-calculus
operators. Moreover, in the formulation of the expansion law in Sect. 4, we have to
take into account the case in which P and Q exchange a private name; this is done
by adding the clauses for bound outputs in the definition of the terms R d's, as in
[MPW92] or [PS93]. We briefly discuss how to adapt the completeness proof for
—D to the language extended with restriction. First note that the axiom

RD1 (x)[x=y]P=O ifx^y

is derivable: By pruning, [x = y] P ={(x , y)} 0; using CR, we get (x) [x = y] P = (x)0,
whose second member can be equated to 0 with R1. In the clause (2) of Definition

Table 4. The axioms for restriction

Restriction	 CR	 (x)P =D _ x (x)Q	 if P =D Q

Rl	 (x)0 = 0

R2	 (x)(Y)P = (Y)(x)P

R3	 (x)(P + Q) = (x)P + (x)Q

R4	 (x)a. P = a. (x) P	 if x O n(a)

R5	 (x)a.P=O	 ifa-zyora=x(y)

R6	 (x)[Y=z]P=[y=z](x)P	 ifx#y,x0z

Theory of bisimulation for the n-calculus 	 95

6.4 of D-snf, we have to distinguish the case in which a ; is a bound output, since
underneath it a distinction must be augmented. Thus we require:

if a ; is a bound output with bound name x fresh, then P i is in D'-snf, for

D' = DaM,u{{x} xfn(PaM;)}.

The axioms for restriction are only employed in the derivation of D-snf's: They
allow us to strengthen the D-snf underneath a restriction (CR) and to push
a restriction inside a term (R2, R3, R4, R6) until either it disappears (R1, R5, RD1)
or it gives rise to a bound output. Everything else in the completeness proof for _q is
left almost unchanged.

8. Conclusions

In this paper we have presented a new formulation of bisimulation for the
it-calculus, called open bisimulation. Its difference from the previously known
bisimulation-based equivalences is already present in the sublanguage without
name restrictions: Here the definition of open bisimulation can be factorised into
a "standard" part which, modulo the different syntax of actions, is the CCS
bisimulation, and a part specific for the it-calculus, which demands name instanti-
ation. We have showed that on this language open bisimulation coincides with (the
it-calculus's version of) dynamic bisimulation [MS92]. However, the two relations
may differ in the weak case, due to the usual congruence problems of sum: Open
bisimulation is preserved by guarded sum but not by sum, whereas dynamic
bisimulation, by definition, is always a congruence.

We have derived an efficient characterisation of open bisimulation, which also
shows it call-by-need flavour. We have given a sound and complete axiomatisation
on finite terms. There are a few interesting points which emerge from the complete-
ness proof. Fairly simple transformations reconduct open bisimilarity between
finite terms to syntactic equality on their trees. This, on the one hand, suggests that
open bisimulation may represent the finest extensional equality on it-calculus terms
one would like to impose. On the other hand, it has led us to the construction of
canonical and minimal representatives for the equivalence classes of open bisimula-
tion. This kind of result is unusual for value-passsing process calculi. For instance,
the axiomatisations of the it-calculus equivalences so far appeared in the literature
fail to provide canonical representatives because, in some cases, they use normal
forms parametrised upon the set of free names of the processes, in the other cases,
they use head normal forms which apparently cannot be transformed into normal
forms. We think that in the n-calculus it would be difficult to obtain canonical
representatives (for some reasonable form of behavioural equivalence) if mismatch-
ing, i.e. testing for inequality of names, is present in the calculus. Mismatching was
excluded from the original syntax of it-calculus for no special theoretical or
pragmatical motivation except the preservation of the following property, asserting
that substitutions may only increase the action capabilities of an agent:

if P P' then also Pa	 P'o .

The study conducted in this paper highlights some possible advantages in
only having matching: Indeed, the theory developed for open bisimulation — in

96	 D. Sangiorgi

particular the completeness proof of the axiomatisation — is strongly based on the
above monotonicity property. The definition itself of open bisimulation does not
make sense with mismatchings, since their appearance conflicts with the require-
ment of closure under all substitutions. We do not know at the present what is the
most reasonable way to define open bisimulation on a calculus with mismatching.

The minimal canonical representatives are somehow the "best" or "simplest"
processes in the respective equivalence classes. It would be interesting to see
whether the algorithm which can be extracted from the completeness proof of the
axiomatisation is expressible as a non-divergent term-rewriting system. Note that
on the tree representatives, such an algorithm trivially yields a fully abstract
semantics for the finite terms of the language, in which a term is mapped onto its
canonical tree.

We would like to investigate whether the verification of open bisimulation can
be mechanised exploiting the efficient characterisation presented in Sect. 5. This
would be important since at present there is a total lack of software tools to reason
with calculi for mobile processes.' The comparison between open bisimulation and
the late/early equivalences should be developed. The axiomatisations presented
here and in [PS93] might give us some guidance, although there is the obstacle that
the calculus used in [PS93] also includes mismatching. Another direction is to look
at applications in which the it-calculus has been used, like the modeling of
A-calculus [Mi192b] and of higher-order calculi [San92], and see whether the
adoption of open bisimulation affects the process equivalences obtained in these
cases.

Acknowledgements. I am very grateful to Claudio Calvelli, Robin Milner and David N. Turner for
inspiring discussions and suggestions. I also benefited from the comments of the anonymous
referees.

References

[Ama92] Amadio, R.: A uniform presentation CHOCS and a-calculus. Rapport de recherche
1726, INRIA-Lorraine, Nancy, 1992

[BD92]	 Boreale, M., De Nicola, R.: Testing equivalence for mobile processes. In Cleaveland,
R. (ed.) Proc, 3rd CONCUR (Lect. Notes Comput. Sci., Vol. 630, pp. 2-16) Berlin:
Springer 1992. To appear in Information and Computation

[BK85]	 Bergstra, J.A., Klop, J.W.: Algebra for communicating processes with abstraction.
Theoretical Computer Science 37(1), 77-121 (1985)

[DKV91] Degano, P., Kasangian, S., Vigna, S.: Applications of the calculus of trees to process
description languages. Proc. of the CTCS'91 Conf. (Lecture Notes Comput. Sci. Vol.
530, pp. 281-301) Berlin: Springer 1991

[EN86]	 Engberg, U., Nielsen, M.: A calculus of communicating systems with label-passing.
Report DAIMI PB-208, Computer Science Department, University of Aarhus,
Denmark 1986

[Hen9l]	 Hennessy, M.: A model for the ir-calculus. 91/08, Department of Computer Science,
University of Sussex, 1991

[HL92]	 Hennessy, M., Lin, H.: Symbolic bisimulations. Revised Version of Techn. Report
TR 1/92, Department of Computer Science, University of Sussex, 1992

3 By the time this paper has been reviewed, a tool for mechanically checking open bisimilarity on
a certain class of n-calculus processes has been realised by Bjorn Victor and Faron Moller (a
preliminary report is to appear in the Proc. CAV'94, LNCS, Springer).

Theory of bisimulation for the n-calculus	 97

[Let92]	 Leth, L.: Functional programs as reconfigurable networks of communicating pro-
cesses. Ph.D. Thesis, Imperial College, London University, 1992

[LTLG94] Levy, J.-J., Thomsen, B., Leth, L., Giacalone, A.: First year report for Esprit Basic
Research Action 6454-CONFER. Bullettin of EATCS, 52 (1994)

[Mi183]	 Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science,
25, 269-310 (1983)

[Mil89]	 Milner, R.: Communication and Concurrency. Englewood Cliffs, NJ: Printice Hall
1989

[Mil92a]	 Milner, R.: Action structures. Techn. Report ECS-LFCS-92-249, LFCS, Dept. of
omp. Sci., Edinburgh Univ., December 1992

[Mil92b]	 Milner, R.: Functions as processes. Journal of Mathematical Structures in Com-
puter Science 2(2), 119-141 (1992)

[MPW91] Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Proc. 2nd
CONCUR (Lect. Notes Comput. Sci., Vol. 527, pp. 45-60) Berlin: Springer 1991

[MPW92] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I and II).
Information and Computation 100, 1-77 (1992)

[MS92]	 Montanan, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
CCS. Fundamenta Informaticae XVI(2), 171-199 (1992)

[Par8l]	 Park, D.M.: Concurrency on automata and infinite sequences. In Deussen, P. (ed.)
Conf. on Theoretical Computer Science (Lect. Notes Comput. Sci., Vol. 104) Berlin:
Springer 1981

[PS93]	 Parrow, J., Sangiorgi, D.: Algebraic theories for name-passing calculi. Techn. Report
ECS-LFCS-93-262, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1993. To appear
in Information and Computation. Short version in Proc. REX Summer
School/Symposium 1993, (Lect. Notes Comput. Sci., Vol. 803) Berlin: Springer

[San93] Sangiorgi, D.: Expressing mobility in process algebras: First-order and higher-order
paradigms. Ph.D. Thesis CST-99-93, Department of Computer Science, University
of Edinburgh, 1992

[Tho90]	 Thomsen, B.: Calculi for higher order communicating systems. Ph.D. Thesis, De-
partment of Computing, Imperial College, 1990

[Wad7l]	 Wadsworth, C.P.: Semantics and pragmatics of the lambda calculus. Ph.D. Thesis,
University of Oxford, 1971

