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We present the a-calculus, a calculus of communicating systems in which one can 
naturally express processes which have changing structure. Not only may the com- 
ponent agents of a system be arbitrarily linked, but a communication between 
neighbours may carry information which changes that linkage. The calculus is an 
extension of the process algebra CCS, following work by Engberg and Nielsen, who 
added mobility to CCS while preserving its algebraic properties. The rr-calculus 
gains simplicity by removing all distinction between variables and constants; com- 
munication links are identified by names, and computation is represented purely as 
the communication of names across links. After an illustrated description of how 
the n-calculus generalises conventional process algebras in treating mobility, several 
examples exploiting mobility are given in some detail. The important examples are 
the encoding into the n-calculus of higher-order functions (the I-calculus and com- 
binatory algebra), the transmission of processes as values, and the representation of 
data structures as processes. The paper continues by presenting the algebraic theory 
of strong bisimilarity and strong equivalence, including a new notion of equivalence 
indexed by distinctions-i.e., assumptions of inequality among names. These 
theories are based upon a semantics in terms of a labeled transition system and 
a notion of strong bisimulation, both of which are expounded in detail in a 
companion paper. We also report briefly on work-in-progress based upon the 
corresponding notion of weak bisimulation, in which internal actions cannot be 
observed. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

We present a calculus of communicating systems in which one can 
naturally express processes which have changing structure. Not only may 
the component agents of a system be arbitrarily linked, but a communica- 
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tion between neighbours may carry information which changes that 
linkage. 

The most mathematically developed models of concurrency can at best 
express this mobility-as we shall call it-indirectly. Examples are Petri 
nets (Reisig, 1983), CSP (Hoare, 1985), ACP (Bergstra and Klop, 1985), 
and CCS (Milner, 1989). On the other hand there are models which 
express mobility directly but which still require, in our view, a mathemati- 
cal analysis of their basic concepts such as we provide in this paper. A well- 
known model of this kind, which has had considerable success in 
applications, is the Actors model of Hewitt (Clinger, 1981). In such models, 
mobility is often achieved by allowing processes to be passed as values in 
communication; we shall instead achieve it by allowing references to pro- 
cesses, i.e., links, to be communicated. This presents an interesting contrast 
with recent attempts to combine the ideas of A-calculus and process calculi 
by admitting processes as values; examples are by Boudol (1988), Nielson 
(1988), and Bent Thomsen (1989). 

The calculus given here is based upon the approach of Engberg and 
Nielsen (1986) who successfully extended CCS to include mobility while 
preserving its algebraic properties. In the concluding section we describe 
in more detail what we have added to that work; roughly speaking, we 
retain (we hope) its essence, but reduce its complexity and strengthen its 
elementary theory. 

We introduce the calculus by means of a sequence of examples, which 
are clearly of practical significance and which fall naturally into the 
formalism. Let us begin with a very simple example; we present it at first 
in the notation of CCS, and we use informally a kind of diagram, which we 
call a fIow graph, to represent the linkage between (or among) agents. We 
suppose that an agent P wishes to send the value 5 to an agent R, along 
a link named a, and that R is willing to receive any value along that link. 
Then the appropriate flow graph is as follows: 

0 ii 
We may have, for example, P E 65. P’ and R E a(x). R’. The prefix a(x) 
binds the variable x in R’ ; in general, both here and later, we use 
parentheses to indicate the binding occurrence of a variable. The system 
depicted in the flow graph is represented by the expression 

(55. P’ 1 a(x). R’)\a. 
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The postfixed operator \a is called a restriction, and indicates that the link 
a is private to P and R. 

Let us now suppose instead that P wishes to delegate to a new agent, Q, 
the task of transmitting 5 to R. We therefore suppose that P is connected 
to Q initially by a link b: 

We now let P- 6a.65.P’; it sends along b both the link a and the value 
5 to be transmitted along a. We also let Q = b(y). b(z).jz.O; it receives a 
link and a value upon b, then transmits the value along the link and 
terminates. Note that the name a is not in the expression Q; Q possesses 
no link to R initially. The whole system is now 

(6a.65.P’ 1 b(y).b(z).jz.O 1 a(x).R’)\a\b. 

After two communications, both along 6, it then becomes 

(P’ 1 G5.0 1 a(x).R’)\a\b. 

Thus, if a does not appear in P’, we may draw the new configuration of the 
system as follows, indicating that P’s a-link has moved to Q, and Q has 
become Q’ G ti5.0: 

This formalism, in which link names appear as parameters in communica- 
tion, goes beyond CCS. It may seem that with the addition of variables 
over link names, as well as over ordinary data values, the calculus would 
become over-rich in primitives. But we avoid this prodigality. In fact we 
remove all distinction among link names, variables, and ordinary data 
values; we call them all names. There will be just two essential classes of 
entity: names and agents. Restriction and input-prefix become name- 
binding operators of different nature; restriction localises the scope of a 
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name, while input-prefix is similar to abstraction in the A-calculus (being a 
place-holder for a name which may be received as input). To emphasize the 
name-binding property of restriction we write (x)P in place of P\x; with 
this syntax, the above example becomes 

(a)(b)(ba.65.P’ 1 b(y).b(z).jk.O 1 a(x).R’). 

Note that a, b, X, y, 5 are all just names. 
It will appear as though we reduce all concurrent computation to some- 

thing like a cocktail party, in which the only purpose of communication is 
to transmit (or to receive) a name which will admit further communica- 
tions. Surprisingly, this meagre basis is enough to encode computation over 
an arbitrary data types, if we consider a data type to be a set of data struc- 
tures-values recursively built from a given finite set of constructors. We 
tentatively call our new calculus the n-calculus, since it aims for universality 
(at an elementary level) for concurrent computation, just as the L-calculus 
is universal for functional computation. 

In a companion paper (Milner, Parrow, and Walker, 1989) we treat the 
semantics of the n-calculus in depth. The present paper is devoted to a 
sequence of motivating examples, followed by a statement of the important 
algebraic properties. In more detail, the remainder of the paper proceeds as 
follows. In Section 2 we define the constructions of the n-calculus with 
some auxiliary notions; we then discuss its salient differences from CCS. In 
Section 3 we look at some basic examples of the calculus; these are simple 
finite processes which indicate how scope and mobility are closely inter- 
dependent notions. In Section 4, we introduce some convenient abbrevia- 
tions, which allow us to treat more realistic examples. In particular, we 
carefully compare the passing of names as parameters with the passing of 
processes as parameters; we also show how to encode data structures as 
processes. This section should indicate, particularly to those familiar with 
process algebras, that the addition of names-as-parameters to CCS 
provides great modeling strength and transforms the nature of these 
algebras. 

Some of the examples in Section 4 are quite substantial; the reader 
may safely skip some or all of them on a first reading, and proceed to 
Section 5 without loss of continuity. 

In Section 5 we present the equational theory of bisimilarity, as it is 
defined and derived in the companion paper (Milner, Parrow, and Walker, 
1989). Although this equational theory is strikingly simple, one feature is 
noteworthy, and needs careful treatment; it is that bisimilarity is not 
preserved in general by instantiation of names. Our solution appears to be 
quite tractable; it is to adopt a relativised equality, which is preserved only 
by those instantiations which maintain the distinction between certain pairs 
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of names. We derive some convenient laws for this relativised equality. The 
section also records the fact that the equational theory of weak equality, in 
which the internal z actions of a system are ignored as far as possible, is 
a direct generalisation from that in CCS. 

2. THE CALCULUS 

We presuppose an infinite set JV of names, and let u, v, w, x, y, z range 
over names. We also presuppose a set X of agent identifiers, each with an 
arity-an integer 20. We let A, B, C, . . . range over agent identifiers. We 
now let P, Q, R, . . . range over the agents or process expressions, which are 
of six kinds as follows: 

1. A summation Cisl P,, where the index set Z is finite. 
This agent behaves like one or another of the Pi. We write 0 for the 

empty summation, and call it inaction; this is the agent which can do 
nothing. Henceforward, in defining the calculus, we confine ourselves just 
to 0 and binary summation, written P, + P,. 

2. A prefix form jx.P, y(x).P or t.P. 

“N .” is called a negative prefix. jj may be thought of as an output port 
of an agent which contains it; jjx. P outputs the name x at port jj and then 
behaves like P. 

“y(x) .” is called a positive prefix. A name y may be thought of as an input 
port of an agent; y(x).P inputs an arbitrary name z at port y and then 
behaves like P{z/x} ( see the definition of substitution below). The name x 
is bound by the positive prefix “y(x).“. (Note that a negative prefix does 
not bind a name.) 

“ 7.” is called a silent prefix. z. P performs the silent action and then 
behaves like P. 

3. A composition P, 1 P,. 
This agent consists of P, and P2 acting in parallel. The components may 

act independently; also, an output action of P, (resp. Pz) at any output 
port X may synchronize with an input action of P, (resp. P,) at x to create 
a silent (7) action of the composite agent P, 1 P2. 

4. A restriction (x)P. 
This agent behaves like P except that actions at ports x and x are 

prohibited (but communication between components of P along the link x 
are not prohibited, since they have become 7 actions as explained above). 

5. A match [x = y] P. 
This agent behaves like P if the names x and y are identical, and 

otherwise like 0. 

6. A defined agent A(y,, . . . . y,). 
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For any agent identifier A (with arity n) used thus, there must be a 
unique defining equation A(x,, . . . . I,,) =def P, where the names x1, . . . . x, are 
distinct and are the only names which may occur free in P. Then 
A(Y , , . ..’ y,) behaves like P(y,/.x,, . . . . y,,/x,) (see below for the definition 
of substitution). Defining equations provide recursion, since P may contain 
any agent identifier, even A itself. 

The syntax of agents may be summarized as follows: 

P ::=o 

I PI +p2 
I jx.P 

I Y(X1.P 

I z.P 

I PIIP, 

I (x)P 

I c-x= YIP 

I A(Y, > . ..> Y,,) 

When our attention is confined to finite agents, i.e., agents with finite 
behaviour, the agent identifiers and their definitions can be omitted, 
thus removing recursion. The 7c-calculus without the match form is also 
interesting. Although matching makes it easy to encode computation with 
data structures, it turns out to be unnecessary for this purpose, as we shall 
see in Section 4, Example 7. We include the match form partly for clarity, 
and partly for the pleasant form of expansion law which it provides (rule 
E’ in Section 5). 

A few further definitions will be needed. 

l The free names fn(P) of P are just those names which occur in P 
not bound either by a positive prefix or by a restriction. We write 
fn(P,, P2, . . . ) for fn(P, ) u fn(P2 u . . . . 

l As in the A-calculus we do not distinguish between agents which 
are alpha-convertible, i.e., which differ only by a change of bound names. 
We write P - Q if P and Q are alpha-convertible. 

l We sometimes write .? for the vector x1, . . . . x, of names, where n is 
understood from context. 

l We write P(y~lx,, .  .  .  .  YJX,}, or p{.Vi/xi]l<i<n, or P{jlT}, for 

the simultaneous substitution of yi for all free occurrences of xi (for 
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1 < i 6 n) in P, with change of bound names if necessary to prevent any of 
the new names yI from becoming bound in P. 

l In the prefixes “jLx.” and “j(x).” we say that y is the subject, and 
x is the object or parameter. It is the names occurring free in subject 
position which determine the (current) communication capabilities of an 
agent. 

l We adopt the following precedence among the syntactic forms: 

Restriction 

Prefix 

Match i 

> Composition > Summation. 

Thus, (x)Plr.Q+Rmeans (((x)p)l(~.Q))+R. 

We now discuss some of the more important features of the calculus, as 
a preparation for the examples in the following two sections. 

1. Apart from the presence of parallel composition, the outstanding 
difference of the x-calculus from the L-calculus is that names may be instan- 
tiated only to names, not to agents (i.e., expressions). This distinction will 
be understood better through our examples. We explain informally here 
why we have chosen this course. An agent enacts a process, which changes 
state through its history; parallel composition admits communication 
among a family of such processes each with independent state. Such a com- 
munication is typically formed by the synchronization of a negative prefix 
“jjx.” with a positive prefix “Y(Z).“. As an example, suppose the sending 
agent is P= 7x. P’, and the receiving agent is Q = v(z). Q’; then Q may 
acquire from P access-via x-to an already existing agent R (see our first 
example below). One may choose to model this by passing R itself as a 
parameter, rather than just passing an x-link as a parameter, but we 
choose not to do so for several reasons. 

First, to pass R as a parameter to Q may result in replication of R, due 
to repeated occurrence of the formal parameter z within Q’; we do not 
wish the replication of agents with state to be a side-effect of communica- 
tion in the rc-calculus. Second, to pass R as a parameter gives Q access to 
the whole of R; we are concerned to model the case where a received name 
x provides only partial access to another agent. (For example, R may com- 
municate with still other neighbours via names not known to Q.) Third, 
the transmission of access links is a very common phenomenon in com- 
putation, even in purely sequential computation, which has hitherto had no 
adequate theoretical basis; we must examine primitives which may provide 
such a basis in as lean a framework as possible. 

2. The free names of an agent represent its current knowledge of, or 
linkage to, other agents. If several agents-say P, Q, and R-all contain x 
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free, we portray this linkage or shared knowledge by a multi-arc in the flow 
graph of P ( Q 1 R, as follows: 

Further, if the shared name x is restricted we write it internally to the 
components; so the flow graph of (x)( P 1 Q ( R) is 

The free names fn(P) correspond roughly to what is called in CCS the sort 
of P. But there are differences. First, a sort in CCS contains both names 
and co-names such as 6; if {a, 6) is the sort of a CCS agent P, it means 
that P may input on the link a and output on the link b, but not vice versa. 
For the present calculus, we do not yet wish to adopt this refinement. 
Second, in CCS a sort cannot grow throughout the history of an agent; 
however, the free names fn(P) can grow throughout P’s subsequent history, 
since P can receive names in communication. Third, a free occurrence of x 
in subject position in P indicates that P may communicate along the link 
x, while a free occurrence in object position merely indicates that P may 
pass x as a parameter; it is only the former type of occurrence which 
corresponds closely to CCS sort, since CCS did not admit the latter type. 

This subject-object distinction is not captured by fn(P). In later develop- 
ment the distinction will no doubt become increasingly important, in order 
to explicate the potential mobility among the agents of a system. 

3. In CCS there is no risk of confusing the binding of an ordinary 
data variable x, in a positive prefix form a(x).P, with the restriction of a 
port-name a as in Q\a. This is because port-names are distinct from data 
variables in CCS. Here, the two are identified. (More accurately, we shall 
see that primitive values are represented as names, while compound 
values--e.g., trees-are represented as processes.) To emphasize this iden- 
tification, we have adopted the prefix notation (x)Q for restriction, in place 
of the postfix notation Q\x. Nonetheless, we must carefully distinguish 
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between the two forms of binding, y(x).P and (x)Q. In y(x).P, x is a 
place-holder for any name which may be received on the link y, and this 
may even be a name already free in P; thus the variable bound by a 
positive prefix is susceptible to arbitrary instantiation. In (x)Q, x 
represents a name which is private to Q, and which moreover can never be 
identified with any other name in Q. The different treatment of these 
bindings lies at the heart of the r-calculus. 

In this paper we do not present the basic semantics of the calculus; this 
is done in our companion paper (Milner, Parrow, and Walker, 1989), in 
the same style as in CCS, namely as a labeled transition system defined by 
structural inference rules. In that paper the notions of strong bisimulation 
and strong equivalence are also defined; the latter is a congruence relation, 
so it may be understood as (strong) semantic equality. Here, we shall rely 
somewhat upon analogy with the transitions of CCS agents. In particular, 
we assume simple transitions such as 

(... +yx.P+ . ..)I(-.. +,v(z).Q+ -.)A PIQ(x/z} 

and simple equations such as 

in which = means strong equivalence. But not all transitions will be 
analogous to CCS; the reader will find the essence of mobility in 
Example 3 in the next section, where we see that the effect of certain 
transitions is to change the scope of a restriction. 

3. BASIC EXAMPLES 

The examples in this section are almost entirely concerned with different 
patterns of occurrence of the two forms of name-binding, positive prefix 
and restriction, and their behaviour in the presence of communication. This 
is the basic anatomy of the n-calculus. 

EXAMPLE 1. Link passing. 
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The agent P has a link x to R, and wishes to pass x along its link y to Q. 
Q is willing to receive it. Thus P may be jx.P' and Q may be y(z).Q’; in 
this case. the transition is 

jx.P'Iy(z).Q'IRA P'(Q'{x/z}IR. (1) 

So Q” in the diagram is Q’{x/z}. The diagram illustrates the case in which 
x4 fn(Q), meaning that Q possesses no x link before the transition. But the 
transition is the same if x~ fn(Q); there is no reason that Q should not 
receive a link which it already possesses. (Compare Examples 2 and 3, 
though, in which one or the other of the x links is private.) The diagram 
also illustrates the case in which x 4 fn( P'), meaning that P' has no x-link 
after the transition, but again this condition does not affect the transition. 

The situation is not much different when the link ,v between P and Q is 
private. In this case the proper flow graphs are 

The privacy of the y-link is represented by a restriction, so the transition 
is now 

In fact we shall be able to prove the equation 

.(rWlQ’{-+>I. (3) 

EXAMPLE 2. Scope intrusion. ‘_ 
P Y : Q ‘..., 

2 ‘. 

. . ‘. 

TTk 
s ‘. ‘. i 

‘. ‘. - 
‘_ 

‘. 
R 

‘. z : 
‘. 

. . s i 
‘_ . . . . . . . . . 

As in Example 1, P has a link x to R, and wishes to pass x along its link 
y to Q. Q is willing to receive it, but already possesses a private link x to 
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S; the latter must be renamed to avoid confusion. We describe this infor- 
mally by saying that P (or the link-passing action) intrudes the scope of the 
private link x between Q and S. 

Taking P to be jx. P’ and Q to be y(z).Q’ as in Example 1, the 
transition is 

jx.P’~RI(x)(y(z).Q’IS)~ P’(RJ(x’)(Q’{x/x}{x/z}~S{x’/x}). (4) 

So Q” and S’ in the diagram are Q’{x’/x} {x/z} and S{x’/x}, respectively, 
where x’ is a new name. 

This phenomenon is analogous to the avoidance of the capture of bound 
variables in the L-calculus. The transition rules will be such that, as in the 
L-calculus, alpha-conversion (i.e., change of bound variables) is enforced in 
such cases. For the present example, the transition rules will ensure that the 
transition (4) is the same, up to alpha-conversion of the result, as we would 
obtain if we applied the alpha-equivalence 

(x)(Q I S) = W,(QWx> I Wl-4 (5) 

beforehand, thus avoiding the intrusion. (Also note that, as we state in 
Section 5 below, alpha-equivalence implies strong equivalence of agents.) 

EXAMPLE 3. Scope extrusion. 

As in Example 1, P has a link x to R, but we now suppose that this link 
is private. However, P wishes to pass x along its link y to Q. Q is willing 
to receive it, and possesses no x-link. This situation is exactly that of a 
program P, with a focal variable modeled by a storage register R, passing 
R to a procedure Q which takes its parameter by reference, not by value. 

So, taking P to be jx.P’ and Q to be y(z).Q’, as in Example 1, the 
transition is 

(x)(yx.P’IR)ly(z).Q’~ (xU”IRIQ’{x/4). (6) 

So Q” in the diagram is Q’(x/z}, as it was in Example 1. The difference 
here is in the privacy of P’s x-link to R, represented by the restriction (x). 
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When this link is exported to Q the scope of the restriction is extended; we 
say that P (or the link-passing action) extrudes the scope of the private 
x-link. 

Now, in contrast with Example 1, the situation is different if Q possesses 
a public x-link before the transition, i.e., if x l fn(Q). Then we have to 
change the private link name in order to preserve its distinction from the 
public link: 

scope of z 
'. 

P ‘.. Y 
: 2: ‘. 

Q' 
‘. 

‘. 
‘. ‘. 

iv 

.. .. 
‘. . . 

.. 
‘. 

‘. 
‘_ 

‘. 
k ; 

. . . . . . 

2 _ -5 

Now the transition becomes 

~W.P’IR)IY(Z).Q’~ (~‘)(P’{x’lx}IR{x’lx}lQ’~x’/z,,. (7) 

So P" in the diagram is P'(x'/x}, Q” is Q’{x’/z}, and R' is R{x'/x}. 
Reverting to the case x $ fn(Q), let us now suppose also that x $ fn(P’), 

i.e., P' possesses no private x-link after the transition: 

scope of * 
‘. 

P ‘.. Y 
: I ‘. Q 

‘_ 
‘. 

‘. ‘. 

T 

‘_ ‘_ 
. . ‘. 

‘. 
.. 

‘. 
‘. ; ; 

‘_ 

-5 

The transition is exactly as in (6), but we can transform the result. There 
is a general law 

(X)(Pl I P2) = p, I (xP2 if x$fn(P,) (8) 

which we can apply to the result of (6): 

(x)(P’lRlQ’~~lz~)=~‘l(~)(RlQ’~~/~>,~ (9) 

This is what justifies the preceding diagram. We may describe this as a 
migration of scope, a special case of extrusion; the scope of the restriction 
(x) has migrated from P to Q. 
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The reader may like to consider a combination of Examples 2 and 3, in 
which both intrusion and extrusion occur. 

EXAMPLE 4. Molecular actions. Suppose that an agent P wishes to pass 
a pair (u, u) of names to one of two agents Q and R. Consider the following 
attempt at defining the three agents: 

P~XU..~V.P 

Q-x(y).x(z).Q' 

R-x(y).x(z).R'. 

A difficulty arises, with these definitions, in the behaviour of the composite 
agent Q 1 PJ R. It may perform the following pair of transitions, which 
represents the possibility that Q receives u and R receives U, instead of one 
or other of them receiving the whole pair as intended: 

If this possibility is to be avoided, we need a way in which the pair (u, u) 
of names can somehow be transmitted in a single atomic action. Private 
names are the key to the solution. Instead of passing the elements u and u 
directly, we arrange that P passes to Q (or to R) the private name of a 
small process whose only task is to deliver u and then u, 

Pr(w)(xw.P'Iwu.wu.O) 

Q=x(w).w(y).w(z).Q' 

R=x(w).w(y).w(z).R', 

where w  $ fn(P’, Q’, R'). Now, Q 1 P( R has two alternative transitions, 

and 

QIPIRA Ql(w)(P'lGu.wu.O~w(y).w(z).R') 

=z.z.(QIP'IR'{u/y}(u/z}). 
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(We have slightly simplified these transitions, taking advantage of the 
associativity of I.) The two transitions represent the transmission of the 
pair to Q and to R, respectively; no mixture is possible. 

We may think of the atomic action XM;, together with the actions of the 
process Wu. Gv.0 which it makes accessible, as together forming a molecular 
action, (It is vital to this idea that u’, which bonds the molecule, is indeed 
a private name.) This device is very powerful, extending far beyond this 
illustration with pairs. As we shall see in Example 7, it yields a uniform 
encoding of data structures as processes. 

4. FURTHER EXAMPLES 

In this section we shall explore some more concrete examples; they are 
on a small scale, but deal with real applications in computing. First, we 
define some abbreviations. 

1. Sometimes a communication needs to carry no parameter. To 
model this we presuppose a special name, say E, which is never bound; then 
we write 

X.P in place of XE.P 

x.P in place of x(y).P (y not free in P). 

2. We often omit “,O” in an agent, and write for example 

,Q in place of Xy.0. 

3. We often wish to allow input names to determine the course of 
computation. Thus, we naturally write 

where usually the names yi will be distinct. Assuming that u does not occur 
free in any Pi, we abbreviate this to 

x:[y,*P,,y,*P,,...] 

or-schematically- 

x: [.t’i*Pilrs,. 

EXAMPLE 5. An Executor. Let us define 

Exec(x) t.5 x(y).j. (10) 
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Exec(x) may be called an executor. It receives, on link x, a link which it 
calls y; it then activates that link. We can think of y as the trigger of a 
process which Exec(x) has been called upon to run. 

Now for any process P, we should (up to a few initial communications) 
obtain the same behaviour in each of the following cases: (a) We run P 
directly; (b) We prefix a trigger z to P, and pass z along the link x to the 
executor Exec(x). (We assume x, z $fn(P).) Here is the agent which, in the 
presence of Exec(x), should behave like P: 

(z)(Xz) z. P). (11) 

(Later we find that a construction like this can be regarded as passing the 
process P itself as a value along the link x, but that the passing of links as 
values has other applications too.) Here then is the agent which should be 
equivalent to P: 

(x)((z)(Xz / z. P) 1 Exec(x)). (12) 

To see this, first apply Eq. (8) to obtain 

Now this, by a suitably generalized expansion law, becomes 

5. (x)(z)(O) z. P 1 F) 

which in turn becomes 

T.?.(X)(Z)(o1PIo) 

which, since x and z were chosen not free in P, is equal to 

T.T.P. 

EXAMPLE 6. Passing processes as parameters. In the previous example, 
the executor had no work to do except to activate (the link to) P, and the 
sender had no work to do except to transmit (the link to) P (and then to 
retain P awaiting activation). If the parenthetical parts of the preceding 
sentence are included, the sentence accurately describes Example 5; if they 
are omitted, then it describes the passing of a process as a parameter. 
Though these two situations are not-at least not obviously-the same, the 
effect of process-passing can in many cases be achieved by link-passing. 

Passing processes as parameters is not represented directly in the 
n-calculus. In a direct representation we would write, instead of (12), some- 
thing like 

(x)(+-.0 I X(P).P), (13) 

643/100/l-2 
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where p is a variable over processes, and P is a process expression (i.e., an 
agent). This notation is close to that of Thomsen (1989), for example (see 
our later discussion of his work). We have seen that, in this simple case, 
(12) indeed has the effect which would be intended for (13). 

Let us pursue this direct representation of process-passing further, to 
draw attention to an important issue of scope. To develop (13) a little, 
suppose that the sender, after sending P, wishes to run Q; suppose also 
that the executor, after receiving P, wishes to run it in parallel with R. In 
an extended language, permitting (13), we would write 

(x)(~P.Qlx(p).(~lR)), (14) 

where we assume that x 4 fn( P, Q, R). A suitably generalized expansion law 
would equate this to 

z.(PI(f’IR)). (15) 

This allows communication to occur both between P and its first 
“neighbour,” Q, and also between P and its second “neighbour,” R. 

To develop the example further, we now suppose that before trans- 
mission a private link w  exists between P and Q ; this privacy may be 
represented as a restriction (w) applied to the sender: 

(x)((w)(xP.Q)I-~(P).(PIR)). (16) 

Now there are two alternatives for how the transmission of P should treat 
the private link w; the choice is significant even when w$fn(R), and even 
more significant when u’ E fn( R). 

In the first alternative, the generalized expansion law would equate (16) 
with 

t.((w)Ql(PIR)). (17) 

This shows that the private link w  between P and Q is broken by the com- 
munication. To put it differently, in the expression (w)(XP.Q), the restric- 
tion (w) binds w  in Q but not in P (and thus the private link does not in 
fact exist !). Moreover, if w  E fn(R), then w  represents a link between P and 
R. In this approach, the passing of processes as parameters amounts to 
passing the text of the process as a parameter, which is similar to the treat- 
ment of function parameters in LISP as originally defined by McCarthy. 
This has often been called “dynamic binding”; the free variables in (the text 
of) a function parameter are interpreted in the receiving environment. 
Thomsen (1989) has adopted dynamic binding in his Calculus of Higher- 
Order Communicating Systems (CHOCS), and has found that many 
important computational phenomena can thereby be modeled satisfac- 
torily. However, we intend to adopt static binding. 
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The second alternative is that, by a form of scope extrusion (see 
Example 3), the generalised expansion law equates (16) to 

~.(w’,(Q{~V4 I (P{w’/w) IR)h (18) 

where w’ has been chosen not free in P, Q, or R. This alternative preserves 
the w-link between P and Q, and preserves its distinction from any w-link 
possessed by R. 

Now let us return to the way we represent the passing of a process 
parameter in the rr-calculus, and we shall see that the effect of (18) is 
obtained. In place of (16) we write 

(x)((z)(w)(,~z.(z.PlQ))lx(y).~.R) 

(where y, z 4 fn(R)) which, by expansion, will be equal to 

(19) 

t.(z)((w)(z.PlQ)IY.R). (20) 

(The restriction (x) is dropped since x $ fn(P, Q, R).) Now, by a change of 
bound name w  to w’$ fn(R), followed by (8) in reverse to extend the scope 
of the restriction (w’), we obtain 

which, by expansion and then discard of the restriction (z), becomes 

(22) 

This, but for an extra t action, is identical with (18). 
It may therefore seem that link-passing has all the power of process- 

passing. This is indeed true, in the presence of recursion; indeed, in a private 
communication Bent Thomsen has given a translation of a static-binding 
variant of his CHOCS calculus (Thomsen, 1989) into the n-calculus. In one 
sense link-passing has greater power, since the link which is passed need 
not be only the trigger of a process; one may pass-to many different 
recipients perhaps-the power to interact in different ways with an existing 
process. In another sense, the power of link-passing is less; for it does not 
by itself give the ability to copy a process, as in x(p). (p 1 p). In particular, 
the n-calculus without recursion cannot provide the power of general recur- 
sion, as the I-calculus does via the paradoxical combinator Y. We take the 
view that it is natural to provide recursion explicitly. 

EXAMPLE 7. Values and data structures. If the only values with which 
we wish to compute are drawn from a finite set, say V= (vi, . . . . u,,}, then 
we can simply designate n names-denoted by 5, . . . . s-as constants. (The 
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role of constant names in the theory is dealt with in Section 5.) Clearly the 
match operator-in its derived form for convenience+an be used to con- 
trol computation. Consider the case V= {t, f }, the truth values. We set 
t = T and f= F. Then a process for simply copying a truth value from one 
link to another is 

cOpy(J',Z)~f JJ:[TdFT,F-FF]. (23) 

(A simpler definition might be Co&y, z) =def y(x).Z.~, but we are starting 
a series of definitions which all compute by case-analysis upon the constant 
or data constructor which is input.) Further, a process A&(x, y, z), which 
produces at z the logical conjunction of the truth values received at x and 
y, may be defined as follows: 

And(X,l',Z)d~fX:[T~Copy(y,Z),F~=F]. (24) 

Now, since we are representing an n-ary Boolean function by an agent with 
n + 1 link parameters, it is reasonable to extend this to the case n = 0. We 
think of the agents True(x) =def .YT and False(x) =def ?CF as pointed values, 
with x playing the role of pointer. We may then represent application of a 
function by composition of agents, followed by restriction of the pointer. 
It is then easy to prove the simple equations which justify the above 
encoding, such as the following: 

(x)(True(x)) Copy(x, y)) = 7. True(y) 

(x)( y)( True(x) 1 Fufse( y ) ( And(x, Y, z)) = T. z. Fufse( z) 

The matter is different if we wish to compute over an infinite set, for 
example over the natural numbers Nat. We could choose an infinite family 
of constants {n: n E Nat}, but we cannot write the successor function (for 
example) as an agent in the form 

Succ(x, y)~fX:[g*jn]ll,,,,, 

because this is an infinite sum, and we want the terms of our calculus to 
be finite. 

To illustrate an alternative method, we use the data type of fist 
structures, built from a nullary operator “nil” (the empty list) and a binary 
operator “cons.” Any list structure L, say “cons(cons(ni1, nil), nil),” is 
represented by a pointed value [L](x); this is an agent which will emit L 
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piecemeal along the link x. [Lj is defined as follows, in terms of constant 
names CONS (for “cons”) and NIL (for “nil”): 

[nill](x) gf XNrL (25) 

[cons(L,, L,)JJ(x) 2f (y)(z)(Xco~s..~y.Xzl [L,j(y)( [&j(z)) (26) 

In the presence of [Ll](x), an agent which possesses or receives the link x 
thereby possesses or receives the power to explore the list structure L 
piecemeal, by following pointers. In the case that an agent Ppriuately holds 
the name x of a list structure L, as in the system (x)(P 1 [LB(x)), the trans- 
fer of L by P to another agent is therefore a molecular action as defined in 
Example 4. Note particularly that the constituent actions of this molecule 
may themselves be molecular, since L may have non-trivial sub-structures. 

We shall now introduce a few further abbreviations to make the 
following examples more legible. First we define some composite prefixes: 

-2-y. ... yn means Xyl. . . ..Xy. (27) 

x(Y~)...(Y,) means x(Y~).....x(Y,). (28) 

Thus, if L = cons(cons(ni1, nil), nil), then we have 

[L](x) = (y)(z)(.?CONSyz 1 (~)(w)(jkONSuw ( 6NIL 1 @NIL) 1 FNIL). 

Second, we define a more relined form of matching clause: 

x:[ . . . . ~(y~)...(y,)=>P ,... ] means x:[ . . . . v=~-x(y~)...(y~)P ,... 1. (29) 

Thus, when v is received on link x, the names subsequently received on x 
are bound to yi , . . . . y,. 

As an example, let us define an agent Equal(x, y, b) which outputs T on 
b if x and y point to equal structures, F otherwise: 

Equd(x, y, b) zf x: [NIL = Nu/l( y, b), CONS(x,)(x,) 

=a Consequal(x,, xz, y, b)] (30) 

Null(y, 6) ‘%’ y: [NIL a True(b), CONS* False(b)] (31) 

Consequd(x,, x2, y, 6) gf y:[NIL*Fu/se(b), CONS(y,)(y,) 

3 (b,Nb,)@w4x,~ ~1, b,)l 

-Qm-4x,, ~2, Ml AMb,, b,, b))l. (32) 

We hope these simple examples provide convincing evidence for what we 
show rigorously in a later paper, namely that our bare calculus of names 
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is enough to encode a richer calculus in which values of many kinds may 
be communicated, and in which value computations may be freely mixed 
with communications. The analogous encoding for CCS (Milner, 1989) 
relies upon infinite summation; instead, we exploit the power which private 
links provide to represent complex values as structured agents. 

One or two points about the above encoding deserve mention: 

l Our pointed values are finite processes; they are ephemeral, in the 
sense that they may only be analysed once. But other encodings are 
possible which give permanence to values. 

l The encoding has only needed a finite number of constant names: 
T, F, CONS, and NIL. But there are encodings which need no constant names 
whatever. The trick is to use matching to distinguish private names; for 
example, 

True(x) fZf (u)(v)(Xuuu) 

False(x) 2’ (u)(u)(Xuuu). 

The reader may enjoy re-defining A&(x, y, z) to work with these forms. 
. We now justify the claim made in the introduction that the match 

form is unnecessary for encoding computation over data types. The control 
which it provides can, in fact, be achieved by other means. Consider the 
following agent P, which inputs a truth value (in the encoding we have just 
presented) on link x, and enters either P, or P, according to the value: 

x(u)(v)(w).([w=u]P~+ [w=u]P2). 

Now let us change the encoding of truth values very slightly: 

True(x)~f (u)(u)(Xuu.U) 

F&e(x) “2’ (u)(u)(Xuu.V). 

Then the agent P can be correspondingly changed to 

x(u)(u).(u.P1 + u.P,). 

Clearly, both this encoding and the previous one can be extended to deal 
with any finite set of value constructors or constants. 

The attentive reader will have noted that, in allowing constants to occur 
free in the equations which define agent identifiers, we have violated the 
condition on defining equations imposed in Section 2. We justify this viola- 
tion at the end of Section 5; it is merely part of a conventional treatment 
of constants. 
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EXAMPLE 8. Combinator graph reduction. In combinatory logic, terms 
are built from combinarors by a binary operation called application. We let 
M, N, and P range over terms, and we shall consider only the three most 
basic combinators S, K, and I. The syntax of terms is therefore 

M::=S 1 KlIl(MN). 

Application associates to the left, so the term SK(MN)S means 
(((SK)(MN))S). Terms may be reduced by the following rules: 

SMfvP --f MP( NP) 

KMN-+M 

IM+M. 

A combinator graph is a graph which represents a term. For every 
application in the term it contains a node labeled @, with a left and a right 
child; every other node is labeled by a combinator and has no children. 
Thus, for the term S(KM)(KM)N, either of two graphs shown in Fig. 1 
will do: The first graph represents sharing of two occurrences of the 
subterm KM. 

Combinator graph reduction models term reduction, except that it takes 
advantage of sharing. It is an important implementation technique for func- 
tional programming languages, and computers are being designed to sup- 
port it by hardware-see for example Goguen and co-workers (1988). It 
will therefore also be important to model the performance of this hardware 
in a formal calculus, to verify its performance. This presents a tough 
challenge to the calculus, which must describe not only the mobile struc- 
ture of the (virtual) processes among themselves, but also their changing 
allocation to (real) processors. We believe that the x-calculus contains the 
right primitives to meet this challenge. We have given a hint in Example 5 
(the Executor) of how allocation to processors may be modeled; the 

K Al K III 

FIG. 1. Two combinator graphs for the term S(KM)(KM)N. 
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changing virtual structure is combinator graph reduction, to which we 
now turn. 

First, we give the graph reduction rules; see Fig. 2. They use auxiliary 
combinators S,, S,, K,, and I, in addition to S, K, and I (which we shall 
now call SO, K,, and I,). There is exactly one rule for each combinator, 
allowing reduction when it occurs as a left child. Note how sharing is intro- 
duced by the rule for Sz. Note also that the auxiliary combinators S1 , S,, . . . 
appear in the graphs not at the leaves, but as operators of arity one or two. 

We now illustrate how the term reduction 

S(KM)(KM)Na KMN(KMN) 2 M(KMN) 3 MA4 

is modeled by graph reduction. We give the graph reduction in Fig. 3. 
Notice that several steps of graph reduction correspond to a single step of 
term reduction; we show this by numbering the arrows. The redex-i.e., the 
subgraph to be reduced-at each stage is indicated by ringing its @ node. 

FIG. 2. Rules for combinator graph reduction. 
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One should note that, just as the subgraph for (KM) has two parents, 
so any other node in the graph may have another parent not shown in 
the diagram (if the whole is a subgraph of a larger system); such nodes, 
even if they become disconnected during this particular reduction, cannot 
be discarded altogether. (In passing, note that we have not succeeded in 
eliminating I, entirely; a more sophisticated set of rules can achieve this.) 

We can now proceed to model the combinator graphs as (flow graphs 
of) composite agents. Each combinator Si, Ki, or Ii is modeled by an agent 
with i + 1 parameters; the first i parameters are links to its children, and 
the last a link to its parent(s). Each combinator repeatedly utters a 
message, which contains its own identity (a constant name such as so) and 
the names of its children. Here are the definitions for the three S 
combinators (the others are completely analogous): 

So(P) Ef (W)(PMJ. (ml I So(P))) 

S,k P) gf (w)(pw.(~s,xls,(.~, p))) 

%(x, Y, PI fzf (WNPW. (@WY I S,(x, Y, PI)). 

The message sent by S,, for example, consists of the pointed value WS, . WX, 
formed into a molecular action whose pointer is the private link w. S, 

K, N 

PI+ (3) 

i@ 

(?- Ki “ 
FIG. 3. Graph reduction for the term S(KM)(KM)N. 
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restores itself after the message, and its next message will have a new 
private link. The use of molecular actions ensures that different parents do 
not read parts of the same message. 

All that remains is to define the application agent (4(x, y, p). It com- 
municates only with its left child, and only when this is a combinator. Each 
clause of the match, in the definition, corresponds to one of the seven 
graph reduction rules: 

@((x, y,p)d~fX(W).W:lISO~SI(y,p),S,(X,)JS2(X,,~v,P)r 

s*(xl)(x2)J(Pl~(P2)(~?(xl~ Y,  Pl)l 

@!(-%, Y Y  P2)l c&J19 P29 PI), 

&,=‘KI(Y, P), KI(X,)=‘II(XI, P), 

Io*I,(Y, PL Il(~~l)*@(x,~ Y, P)l. 
With these definitions, the reader can show, without too much difficulty, 
that (for example) the graph reduction rule for S2 is captured by the 
equation 

WNS,(x, Y,  Y’) I cw’t z, PI) I M(x) I NY) I P(z) 

=z.T.r.r.((p,)(P*)(@(x, z, P,)l @(Y, 2, PJI 

@dPl, P2> P))IM(x)lN(y)lP(z)). 

Finally the reader may like to check that one can avoid using both 
constants (so, si, . ..) and the match form in modeling combinator graphs, 
using alternative encoding as suggested at the end of Example 7. 

EXAMPLE 9. The A-calculus. The encoding of combinator graph reduc- 
tion (Example 8) has already shown that higher-order functions can be 
“handled,” in some sense, in the rr-calculus. This can be thought of as an 
encoding of the Il-calculus, since there are natural translations of L-calculus 
into combinator algebra; but the encoding is rather indirect. Here we give 
a much more direct encoding, one in which reduction sequences in the two 
calculi correspond closely. It will also show that, to gain the full power of 
A-calculus, only a very limited use of recursion is needed-no more than 
just to achieve replication of an agent. More precisely, what we shall 
encode is a particular reduction strategy for L-calculus: lazy reduction 
(Abramsky, 1988). Theorems which justify this encoding, and also an 
encoding of call-by-value reduction, appear in a separate paper 
(Milner, 1990). 

First, recall the syntax of A-calculus; its terms M, N, . . . ~/i have the 
syntax 

A4 ::= x I (IXM) I (MN) 
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where x ranges over an infinite set V of variables. We often omit the 
parentheses around the composite forms, when there is no ambiguity, 
taking application (MN) to be left-associative. For convenience we assume 
that V is a subset of J(r, with JV - Y infinite, and for this example we take 
4 Y, z to range over V while U, u, u’ range over JV - Y. Then the lazy 
reduction relation -+ over /i is the smallest relation such that 

(AxM)N+ M{N/x}; 

If M-t M’ then MN+ M’N’. 

This reduction strategy is completely deterministic. Any term M can be 
written MoMI . . . M, (m 20) where M, is not an application. Then 
M + M’ for some M’ if and only if m > 1 and MO is AxN, and then M’ is 
N{M,/x}M,- M,. So for each M there is at most one irreducible term 
M’ such that Iti + *,M’, and moreover M’ is either of the form IxN or of 
the form xN, . . . N, (n > 0). 

We first encode the linear A-calculus, in which no sub-term of a term 
may contain more than one free occurrence of x, for any variable x. The 
paradoxical combinator Y is thereby excluded; indeed, every reduction 
sequence terminates in the linear I-calculus. Correspondingly, we find that 
we need not call upon recursion for the encoding in the n-calculus. 

We translate each L-term M into a map [MD from names to agents. To 
understand the agent [mu, where u is any name (E Jf- Y), we may 
think of u as pointing to the argument sequence appropriate for a particular 
occurrence of M. More precisely, if M eventually reduces to a d-abstraction 
AxM’, then the corresponding derivative of [Ma u will receive along the 
link u two names: a pointer to M’s first argument, and a pointer to the 
rest of its argument sequence. Thus u represents a list, just as lists are 
represented in Example 7. Here is the full definition of the encoding 
function [ 1: 

[nxm 24 E u(x)(u). [Ma u (33) 

[xl] 24 “Gf x2.4 (34) 

[Mm u 2’ (u)( [M-J UJ (x)Vxu.x(w). [NI w) (x not free in N) (35) 

Note that the variable x occurs free in the translation of the l-term x; 
hence in Eq. (33) x will normally occur free in [IIM u. 

The double guarding of I[w in Eq. (35) is the essence of lazy reduction. 
The first guard, the prefix Vxu, will be activated only when M has reduced 
to the form IxM’ and is ready for its argument; the second guard x(w) will 
be activated only when M’ calls N via the name x. Only then may the 
reduction of N commence. 
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It is illuminating to see how the encoding of a particular example 
behaves. Consider (%xx)N; first, we have 

[Lxx] u = u(x)(w).Xw. 

So, assuming x not free in N, 

More generally, it is easy to show that 

where z is the weak bisimilarity discussed briefly in Section 5. Moreover 
the (unique) derivation sequences of both sides are closely related. (They 
do not keep precisely in step; the left-hand side takes more steps, because 
it simulates the substitution of N for x in M by making the (only !) 
occurrence of x in A4 send its argument list to N.) 

The proof of (36) relies strongly on the linearity of M; if A4 contains x 
twice then each occurrence of x will attempt to send an argument list to N, 
and this will fail because the agent 

(which represents the “procedure” [INj receiving an arbitrary argument list 
w  along x) is consumed by the first call. 

In the translation of the full A-calculus, then, what is needed is replica- 
tion. Let us therefore define, for any action-prefix CI, the form 

Here we have used the fixed-point construction fix XE, which stands for a 
distinguished solution of the agent equation X= E. (We could have used 
such constructions throughout, instead of using agent identifiers and 
providing them with defining equations; apart from one or two niceties the 
two approaches amount to the same thing.) Thus, we have 

WI * P=a.(PIa * P) 
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which indicates that each “call’‘-i.e., each occurrence of the action 
N-generates a new copy of P. Note that this equation holds even when a 
is a bound action such as x(w). 

This replicator, as we call it, can now be used to make the only change 
needed in our translation to accommodate the full A-calculus, namely to 
replace Eq. (35) by 

[MAqu~f (u)(([n/Jau~(x)vxu.(x(w)* [Aqw)) (x not free in N). (37) 

Now N may be called more than once from M; each call generates a new 
replica of N and provides it with a different argument list in place of w. 
Moreover, with the help of some lemmas about replicators, Eq. (36) can 
still be proven, and the close correspondence between the reduction 
sequence of any M in the L-calculus and the derivation of its encoding [m 
is maintained. 

Earlier we referred to Bent Thomsen’s translation of the static-binding 
variant of his CHOCS calculus (Thomsen, 1989) into the rc-calculus; in this 
translation, he independently found that replication is the only use of 
recursion required. 

Abramsky (1988) defines a notion of applicatioe simulation, 5, for the 
lazy A-calculus, and analyses its model theory and proof theory in depth. 
He actually called it applicative bi-simulation, but we prefer to reserve this 
term for the induced equivalence 5 n 2, which we denote by Z. It is 
therefore natural to ask the relationship between [mu z [IN4 u and 
ME N. It turns out that for closed terms 

~wu~:IlNDu implies M Z N. 

But the converse is false; an example of Ong (1988) can be adapted to 
show this. Intuitively, the reason is that applicative bisimulation only con- 
siders the behaviour of a term M when applied to arguments which are 
A-terms, while the process [Lm u inhabits the more unruly environment of 
arbitrary processes. 

Before leaving the A-calculus we should remark that we have only 
encoded faithfully one of its reduction strategies, albeit an important one. 
Much work remains to be done to broaden the connection between the two 
calculi. 

5. ALGEBRAIC THEORY 

In our companion paper (Milner, Parrow, and Walker, 1989) we give a 
definition of strong bisimulation between agents, and a corresponding 
equivalence relation of strong bisimilarity. We use PA Q to mean that P 
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and Q are strongly bisimilar. Before giving the equational theory of this 
relation, we point out a subtlety which was of no great concern in CCS, 
but is important here-namely that strong bisimilarity is not preserved by 
substitution for free names. For this reason, we sometimes refer to strong 
bisimilarity as strong ground equivalence. For example, let x and JJ be 
distinct names and consider the equation 

.Ul v~~~.J’+y.x. (38) 

This holds in our theory, but the substitution of x for y falsifies it; we have 

Xl x ;i .%.x+x.x (39) 
but on the other hand 

xIx~?c.x+x.x+z. (40) 

This is the price we pay for not distinguishing constants from variables. 
Later, however, we introduce strong (non-ground) equivalence N; it will be 
simply defined as strong bisimilarity under all substitutions. This relation 
is preserved by substitution, and moreover we find the following (more 
general) equation true: 

x.PI.v.Q-i.(PIy.Q)+y.(i.PJQ,+[x=.v]z.(PIQ,. (41) 

Our equational axioms use a kind of head normal form. In order to 
define this form we need a new abbreviation: 

X(Y). P means (y).i$. P if x and y are distinct. (42) 

This special case of restriction may be thought of as the simultaneous crea- 
tion and transmission of a new private name; it is a name which cannot 
have been “used before” because it only occurs within P, which only 
becomes active after the transmission. The importance of this form is that, 
as our equational theory shows, every use of restriction can be reduced (up 
to bisimilarity) to this special case. 

We now have four kinds of prefix, and we shall allow a, 0, . . . to range 
over them. The syntax of prefixes is 

II ::=tlx(y)lxyIx(y), 

where, of course, the first three are primitive forms and the last is derived. 

DEFINITION 1. An agent P is in head normal form if it is a sum of 
prefixes: 

Pipl,.P,. 
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5.1. Strong Bisimilarity 

We now give an equational theory for strong bisimilarity. It turns out 
that this theory is complete over finite agents, but incomplete over all 
agents (necessarily since A is not recursively enumerable). We state the 
rules using the standard equality symbol =, rather than the symbol A; the 
reason for this is that, both in this paper and in later work, we wish to 
consider the validity of a rule when = is interpreted by other equivalence 
relations. For example, Proposition 4 below asserts that several-but not 
all-of the rules are valid when = stands for strong equivalence, -. 

The reader may wonder why we first axiomatize L, rather than -, even 
though the latter is preserved by aZl substitutions (i.e., is a congruence) and 
is therefore a more natural candidate for the “equality” of agents. In fact, 
in Proposition 9 below we do axiomatize -, but that second axiomatiza- 
tion, as we shall see, depends upon the present one. 

We omit the standard rules for an equivalence relation, taking them as 
given. On the other hand = will not always stand for a congruence rela- 
tion; in fact the congruence rule CO asserts that = is preserved by all 
operators except the positive prefix, while Cl asserts a weaker property for 
positive prefix. 

Alpha-conversion. 

A From P z Q infer P = Q, 

Congruence. 

co From P = Q infer 

e.P=t.Q Xy.P=Xy.Q 

P+R=Q+R PIR=QlR 

(x)P = (x,Q [x= y]P= [x= y]Q. 

Cl From P(z/y} = Q{z/y}, for all names zefn(P, Q) u (y}, infer 

x(Y).P=x(Y).Q. 

Summation. 

so P+O=P 

Sl P+P=P 

s2 P+Q=Q+P 

s3 P+(Q+R)=(P+Q,+R. 
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Restriction. 

RO 

Rl 

R2 

R3 

R4 

(x)P= P if x#fn(P) 

C~)(Y)P = (Y)(X)P 

b)(P + Q, = (XV’+ (x,Q 
(x)tX.P=cr.(x)P if x is not in a 

(x)cr.P=O if x is the subject of c(. 

Match. 

MO [x=y]P=O if x and y are distinct 

Ml [x=x]P=P. 

Expansion. 

E Assume P = Cj cli. Pi and Q = 1, /?,. Q,, where no aj (resp. pi) binds 
a name free in Q (resp. P); then infer 

PIQ=~~i.(PiIQ)+CBi.(PIQj)+~~~~41i.R~, 
I J 

where the relation cli camp flj (a, complements bj) holds in four cases: 

1. cli is XU and /Ii is x(u); then R, is PiI Qj{ u/u}. 

2. tli is X(U) and pi is x(v); then R, is (w)(P,{w/u} IQ,{w/u}), 
where w  is not free in (u)P, or in (u)Q,. 

3. cli is x(v) and fij is XU; then R, is P, {u/u} ) Q,. 

4. cli is x(v) and /?, is X(U); then R, is (w)(P,{w/u}~Qj{w/u)), 
where w  is not free in (u)P, or in (u)Q,. 

Identifier. 

I From A(1) =def P infer A(j) = P{ j/:/a}. 

We call this axiomatic theory SGE (for Strong Ground Equivalence); if 
P = Q can be proved in SGE we write 

SGE+P=Q 

or just + P = Q if no ambiguity arises. Note some important points: 

1. The last clause of rule CO, namely 

From P=Q infer [x=y]P=[x=y]Q, 
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is redundant in the presence of MO and Ml, since any case of it can be 
deduced from them. But CO will be needed when = is interpreted as N, 
since MO is invalid in that interpretation. 

2. Rule Cl cannot be strengthened to 

From P=Q infer x(y).P=x(y).Q 

as we can see by considering Eq. 38 above; we have in fact 

because y is a place-holder for any received name, and the received name 
may be x. Thus the hypothesis of rule Cl must account for all substitu- 
tions; for this purpose, however, only finitely many of them need to be 
verified. 

3. By means of CO, Ml, and Ml all occurrences of a match operator 
which are not within an input-prefix form can be eliminated from an 
agent. However, [y = z] cannot be removed from the input-prefix form 
x(y). [y = z] P. (See also the previous point.) 

4. In rule R3 note that c( includes in its range the derived prefix Z(y). 

5. In rule E, cases 2 and 4 are crucial; they represent the communica- 
tion of a new private name, resulting in a restriction (w) which embraces 
both sender and receiver in its scope. 

The following results are all proved in the companion paper (Milner, 
Parrow, and Walker, 1989), for the definition of A which is given there. 

PROPOSITION 1 (Soundness). All the laws of SGE are valid when = is 
interpreted as strong bisimilarity, A. 

A natural constraint upon defined agents is the following: 

DEFINITION 2. An agent identifier B is weakly guarded in P if every 
occurrence of B in P is within a prefix form. The agent identifier A is 
weakly-guardedly defined if every agent identifier is weakly guarded in the 
right-hand side of the definition of A. 

The following now shows the importance of head normal form: 

PROPOSITION 2. If every agent identifier is weakly-guardedly defined 
then, for any agent P, there is a head normal form H such that 

SGEI-P=H. 

ProoJ An easy case-analysis upon the structure of P. 1 

643/100/l-3 
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From this, it is not hard to show that SGE is complete for strong 
bisimilarity of finite agents. 

PROPOSITION 3 (Completeness for finite agents). For all finite agents P 
andQ,ifPkQthenSGE+-P=Q. 

Proof. Given in the companion paper (Milner, Parrow, and Walker, 
1989). 1 

5.2. Strong Equivalence 

The definition of strong equivalence is now straightforward. 

DEFINITION 3. A substitution is a function from JV to JV. We use u to 
stand for a substitution, and postfix substitutions in application. 
$dx4xih,” :/;otes th e substitution 0 for which xi0 = yi, 1~ i < n, and 

DEFINITION 4. P and Q are strongly equivalent, written P- Q, if 
PCT k Qa for all substitutions (T. 

Now, when the equality symbol = is interpreted as strong equivalence 
-, all the laws of SGE hold except for rules MO and E. The failure of MO 
is clear; Eqs. (38) and (39) indicate why E fails. On the other hand, a 
stronger form of rule Cl is valid: 

Cl’ From P=Q infer x(y).P=x(y).Q. 

It may also be shown that recursive definition preserves - (though not L ) 
in an appropriate sense; thus strong equivalence is truly a congruence 
relation. 

Matching can be employed to yield a new form E’ of the expansion law 
which is valid for N: 

E’ Assume P = Cj cl;. Pi and Q = & /Ij.Qj, where no ai (resp. b,) binds 
a name free in Q (resp. P); then infer 

PIQ=Cai,(PiIQ)+CB,.(PlQj)+ C Cxi=YiI~~R~, 
I i 1, OPP s, 

where the relation a, opp j?, (cli opposes lJi) holds in four cases: 

1. cx, is qu and flj is yj(v); then R, is PiIQj{u/u}. 

2. ai is q(u) and /I, is y,(u); then R, is (w)(P,{w/u}I 
Qj{w/v}), where w  is not free in (u)P, or in (v)Qj. 

3. ai is xi(v) and /Ii is Eu; then R, is P,(u/v} 1 Qj. 
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4. ai is xi(u) and flj is s(u); then R, is (w)(Pi{w/u}l 
Q,(w/u}), where w  is not free in (u)P, or in (u)Qi. 

We summarize these facts as follows: 

PROPOSITION 4 (Soundness). The laws of SGE - {Cl, MO, E} u 
{Cl’, E’} are valid when = is interpreted as strong equivalence, - . 

This system is not complete for - over finite agents. It may be possible 
to make it so by adding reasonable laws for matching, but we have not yet 
succeeded in this. An alternative and perhaps simpler way to axiomatise 
strong equivalence is given in Proposition 9 below. 

In Proposition 5 we give further useful laws of strong equivalence; they 
are important in the sense that, in exploring alternatives for the semantic 
definition, we have found them-particularly the last two-a stringent test. 
It is no exaggeration to say that, without these laws, we would not feel 
justified in proposing the calculus. 

PROPOSITION 5. 1. PIO-P 

2. PIQ-QlJ’ 
3. f’l(QlW-(PlQ,lR 
4. (x)(PlQ)-Pl(x)Q ifx#fn(f’). 

Proof: In the companion paper (Milner, Parrow, and Walker, 
1989). 1 

5.3. Recursion 

We record here the properties which we would expect of recursive defmi- 
tions, by analogy with CCS (Milner, 1989). First, if we transform the right- 
hand sides of definitions, respecting N, then the agent defined is the same 
up to -. Second, if two agents satisfy the same (recursive) equation, then 
they are the same up to -, provided the equation satisfies a standard 
condition. Both properties fail for A, strong bisimilarity. 

In order to state these results, we need a few preliminaries. We assume 
a set of schematic identifiers, each having a nonnegative arity. In the 
following, X and Xi will range over schematic identifiers. An agent 
expression is like an agent, but may contain schematic identifiers in the 
same way as identifiers; in this section E, F will range over agent 
expressions. 

DEFINITION 5. Let X have arity n, let 2 = x,, . . . . x, be distinct names, 
and assume that fn(P) E (xi, . . . . x, }. The replacement of X(Z) by P in E, 
written E{X(I) := P}, means the result of replacing each subterm X(j) in 
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E by P{ j/Z}. This extends in the obvious way to simultaneous replacement 
of several schematic identifiers, E{ X,(ZI) := P,, . . . . X,(2,) := P,}. 

As an example, 

(fY.WX, xl + (Y) X(x, Y))lW u, w) :=Ilw.O} -.fy.xx.o+ (y)Xy.O. 

In what follows, we assume the indexing set I to be either { 1, . . . . m} for 
some m z 1, or else w. We write w  for a sequence X,, X2, . . . indexed by I; 
similarly p, etc. We use i, j to range over I. When a sequence z of 
schematic identifiers is implied by context, each with an associated name 
sequence fi, then it is convenient to write E{X,(.?-,) := P,, . . . . X,(2,,,) := P,} 
simply as E( PI, P,, . ..). or as E(p). If each Pi is A i(.?i), we also write 
E(A,, A,, . ..) or E(A”). 

It is natural to define strong equivalence between agent expressions as 
equivalence under all replacements of schematic identifiers by agents: 

DEFINITION 6. Let E and F be two agent expressions containing only 
the schematic identifiers Xi, each with associated name sequence 2;. Then 
E - F means that 

E(p) - F(p) 

for all p such that fn(Pi) c Pi for each i. 

We can now state our first result, that recursive definition preserves 
strong equivalence: 

PROPOSITION 6. Assume that E and F are agent expressions containing 
only the schematic identifiers Xi, each with associated name sequence Ei. 
Assume that A” and B are identifiers such that for each i the arities of Ai, B,, 
and Xi are equal. Assume that for all i 

AJ.2,) z’E,(A) 

Bi(2;) ‘%‘FJi(B). 

Then Ai - B,(li) for all i. 

If A is weakly guarded in E then intuitively, from the definition A =def E, 
we can unfold the behaviour of A uniquely. The next result makes this 
precise in the general case: 

PROPOSITION 7. Assume that E are agent expressions containing only the 
schematic identifiers X,, each with associated name sequence Zi, and that 
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each Xi is weakly guarded in each Ej. Assume that P and 0 are agents such 
that fn(P,) c Zi and fn(Qi) - c 2 jf or each i. Assume that for all i 

Pi- Ei(p) 

Qi ‘V Ei(Q). 

Then Pi- Qi for all i. 

5.4. Distinctions 

Having looked at the theories of both strong bisimilarity and strong 
equivalence, we now address the task of combining them into one. 

DEFINITION 7. A distinction is a symmetric irreflexive relation between 
names. We let D range over distinctions. A substitution a respects a 
distinction D if, for all (x, y) E D, xo # yo. 

DEFINITION 8. P and Q are strongly D-equivalent, written p-D Q, if 
Pa A QO for all substitutions o respecting D. 

Now it is quite natural to record, for certain pairs of agents, the distinc- 
tion under which they are equivalent; D need involve only the names which 
are free in the agents. As a simple example, Eq. (38) can be strengthened 
to 

XIY-{.YI.}X*Y+Y-f. (43) 

Here we have used a natural abbreviation, allowing ourselves to write a set 
A E M when we mean the distinction A x A - Id-,-, which keeps all 
members of A distinct from each other. (It may turn out that we only 
need distinctions of this simpler form, but we have not been able to assure 
ourselves of this.) Clearly, then, we have the two extreme cases 

A=- .+. and w=-~. 

There are two useful operations upon distinctions. First, we define 

This removes any constraint in D upon the substitution for x. Also, for any 
set A E J of names, we define 

D rAefDn(AxA). 

PROPOSITION 8. The following properties hold for strong equivalence 
indexed by distinctions: 
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1. I~DcD’ then PwDQ implies PwDcQ 

2. [x=y]P-(,,.) 0 

3. Zf PwD Q then (.x)P-~~,,~ (x)Q 

4. VP-D,, Q then ~(x).P-~., y(x).Q 

5. IfP-J, Q and A=fn(P, Q) then P-, lA Q. 

Proposition 8.1 needs little comment. Proposition 8.2 is the proper 
strengthening of rule MO in SGE. It also combines pleasantly with the 
modified expansion law E’; by using it, we can remove summands from 
an expansion provided we strengthen the distinction. As a very simple 
example, note first that Equation (41), 

is an instance of E’; then using Proposition 8.2 we can deduce 

.~.PIJ?.Q-,,,,.,~~.(P~~.Q)+~.(~.PIQ). (44) 

Propositions 8.3 and 8.4 neatly contrast the two kinds of name-binding. 
Proposition 8.3 indicates that since a restriction (x) itself preserves x 
distinct from other variables, there is no need to enforce the distinction by 
other means. On the other hand, Proposition 8.4 indicates the obligation, 
in proving equality of positive prefix forms, to allow the bound variable to 
range over all names. Note that, using Proposition 8.3, we can deduce from 
(44) that 

(x)(X.PI y.Q)-, (xNX.(PI y.Q)+ y.(f.PI Q,,. 

This is a fdl equivalence, and compared with (41) it does not require the 
[x = r] term because the restriction (x) enforces the distinction between x 
and y. (In passing, note that this expression simplifies further to 
y.(x)(X.PI Q) by R2, R3, and R4,) In contrast, using Proposition 8.4 with 
D=@, we deduce from (41) 

and the match cannot be discarded. 
Proposition 8.5 merely asserts that, in an equation P-D Q, only the free 

names in P and Q have any relevance in D. 
While Proposition 8 provides useful working laws, we do not need it 

to obtain a complete axiomatization of strong equivalence indexed by 
distinctions. This can trivially be done by adding the following law: 

D From PO = QG, for all 0 respecting D, infer P =D Q. 
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(A more refined formulation of rule D actually confines the hypothesis to 
ifinitely many distinct a.) 

PROPOSITION 9. SGE u {D } is sound, and complete over finite agents, 
when = and = n are interpreted as k and -b respectively. 

Proof: Directly from Definition 8. 1 

5.5. Weak Bisimilarity and Equivalence 

We now turn briefly to weak bisimilarity. Analogously with CCS, there 
is a notion of weak bisimilarity &:, also called weak ground equivalence, 
which ignores the silent r actions; it will be treated in a subsequent paper. 
As in CCS, this equivalence is not preserved by summation; also, like A, 
it is not preserved by positive prefix (since it is not preserved by substitu- 
tion). These two defects can be remedied either separately or together; we 
thus arrive at three further equivalences, the third of which is a congruence: 

DEFINITION 9. 1. The agents P and Q are (weakly) ground-equal, 
written P & Q, if P + R & Q + R for all agents R. 

2. The agents P and Q are (weakly) equivalent, written P z Q, if 
Pa & Qa for all substitutions a. 

3. The agents P and Q are (weakfy) equal, written P N Q, if Pa & Qa 
for all substitutions a. 

(Of course the last two may also be distinction-indexed, by constraining 
a.) We shall not pursue these now, but merely point out that the z laws of 
CCS are valid for weak ground equality. The r laws are as follows: 

Prefix. 

PO cc.r.P=cr.P 

Pl P+z.P=t.P 

P2 a.(P+t.Q)+cl.Q=a.(P+z.Q). 

PROPOSITION 10. SGE u {PO, Pl, P2) is sound, when = is interpreted 
as &. 

We conjecture that this axiomatization is also complete for finite agents, 
but the details remain to be checked. 

5.6. Constants 

We tinish with a brief discussion of constants. In our examples in Section 
4 we introduced constant names, and we now need to see how they are best 
handled. The key property of constants, in the general understanding of the 
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term, is that they “stand for themselves.” In our context, this means simply 
that they are never instantiated. In particular, we therefore take the 
liberty-as in (23, 24) for example-not to include them among the 
parameters of an agent identifier A which uses them in its definition. They 
could be so included, to meet the condition imposed on defining equations 
in Section 2; then one would simply include them also in the parameter list 
of every use of A in agent expressions. 

More important is that, since constants will never be instantiated, they 
never run the risk of being identified with one another. Thus, while 
working in the theory, one may prove equations among agents which use 
certain constant names, say i? = (u, , . . . . u,}, and one may take advantage of 
their “constanthood” by proving equations indexed by the distinction D = v" 
(or, more explicitly, fi x 6 - Id, ,.). In this working, one may by convention 
choose to omit the index D from equations. Later, one may wish to 
abstract from the particular choice of constant names. But this is the 
essence of Proposition 8.3 (or its analogue for 2: ); from any D-indexed 
equation P = D Q, with D = i?, one can infer 

(C)P=,, (C)Q. 

Thus the calculus reflects the idea that the difference between constants and 
variables should not be sharply drawn. 

6. CONCLUSION 

An algebraic process calculus with mobility has been long in maturing. 
In 1979, before CCS was published, one of us (Milner) discussed with 
Mogens Nielsen at Aarhus the possibility of including such a notion at the 
outset, but we failed to see how to do it. It was not until the paper by 
Engberg and Nielsen (1986) that the possibility was established; their 
semantic rules represent our starting point. In two ways it has been 
fortunate that the various process algebras-for example CSP (Hoare, 
1985), ACP (Bergstra and Klop, 1985), and CCS (Milner, 1989)--did not 
include mobility: First, they were thereby simpler, and yet presented many 
problems which were better tackled in a simpler setting; second, the situa- 
tions in which mobility is needed have become more sharply defined, and 
therefore the need more sharply felt, through experimental use of these 
algebras. 

There have been a number of formalisms which allow mobility, but have 
not developed its algebraic theory. The first was Hewitt’s Actor formalism. 
Hewitt’s ideas on the changing configuration among actors were developed 
in the early 1970s; a semantic treatment is given by Clinger in his Ph.D. 
thesis (Clinger, 1981). More recently, Kennaway and Sleep invented their 
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LNET and DyNe formalisms specifically to describe parallel graph reduc- 
tion processes, such as we present in Section 4, in the context of a project 
to design a parallel processor (Sleep and Kennaway, 1984). Also Astesiano 
and Zucca (1984) have extended CCS to include parametric channels. 

Engberg and Nielsen (1986) did not publish their report, and it has not 
received due attention, probably because its treatment of constants, 
variables, and names is somewhat difficult. Many features of the z-calculus 
are due to them, in particular the replacement of CCS relabeling by syntac- 
tic substitution (crucial for formulation of the semantic rules); the semantic 
treatment of scope extrusion; the extension of the definition of bisimulation 
to account for name parameters; the definition of strong bisimilarity (which 
they call simply “strong equivalence”); and the soundness of most algebraic 
laws. We made many failed attempts to depart from their formulation. Our 
contribution has been to remove all discrimination among constant names, 
variable names, and values, yielding a more basic calculus; to discriminate 
between ground and non-ground equivalence (needed to replace the 
constant-variable discrimination); to strengthen the algebraic laws-in 
particular the expansion law-in order to achieve complete equational 
theories; to encode value-computations in the calculus in a tractable way 
(with the help of a new match construct); and to provide rather simple 
encodings of functional calculi-the l-calculus and combinatory algebra. 

RECEIVED December 18, 1989; FINAL MANUSCRIPT RECEIVED October 26, 1990 

REFERENCES 

ABRAMSKY, S. (1988), The Lazy Lambda Calculus, in “Declarative Programming” (D. Turner, 
Ed.), Addison-Wesley, Reading, MA. 

ASTESIANO, E., AND ZUCCA, E. (1984), Parametric channels via label expressions in CCS, 
Theoret. Comput. Sci. 33, 4564. 

BERGSTRA, J. A., AND KLOP, J.-W. (1985). Algebra of Communicating Processes with 
Abstraction, Theoret. Comput. Sci. 33, 77-121. 

BOUDOL, G. (1988), private communication. 
CLINGER, W. D. (1981), “Foundations of Actor Semantics,” AI-TR-633, MIT Artificial 

Intelligence Laboratory. 
ENGBERG, U., AND NIELSEN, M. (1986), “A Calculus of Communicating Systems with Label- 

Passing,” Report DAIMI PB-208, Computer Science Department, University of Aarhus. 
HOARE, C. A. R. (1985), “Communicating Sequential Processes,” Prentice-Hall, Englewood 

Cliffs, NJ. 
LEINWAND, S., GOGUEN, J. A., AND WINKLER, T. (1988), Cell and ensemble architecture 

for the rewrite rule machine, in “Proc. International Conference on Fifth Generation 
Computing Systems, ICOT,” pp. 869-878. 

MILNER, R. (1989), “Communication and Concurrency,” Prentice-Hall, Englewood Cliffs, NJ. 
MILNER, R. (1990), “Functions as Processes,” Research Report 1154, INRIA, J. Math. Stud. 

Comput. Sci., to appear. 



40 MILNER, PARROW, AND WALKER 

MILNER, R., PARROW, J. G., AND WALKER, D. J. (1989). “A Calculus of Mobile Processes, 
Part II,” Report ECS-LFCS-89-86, Laboratory for Foundations of Computer Science, 
Computer Science Department, Edinburgh University, and (1992) Informafion and 
Computation 100, 41-77. 

NIELSEN, F. (1989). “The Typed I-Calculus with First-Class Processes,” in Proc. PARLE. 

Vol. 366. Lecture Notes in Computer Science, Springer-Verlag. 
ONG, C.-H. L. (1988) Fully abstract models of the lazy lambda calculus, in “Proc. 

29th Symposium on Foundations of Computer Science,” pp. 368-376. 
REISIG, W. (1983), “Petri Nets,” EATCS Monographs on Theoretical Computer Science, 

Springer-Verlag, Berlin/New York. 
SLEEP, M. R., AND KENNAWAY, J. R. (1984), The Zero Assignment Parallel Processor 

(ZAPP) project, in “The Distributed Computing Systems Programme” (D. A. Duce, Ed.), 
pp. 25&269, Peter Peregrinus. 

THOMSEN, B. (1989) A calculus of higher-order communicating systems, in “Proc. POPL 
Conference.” 


