
INFORMATION AND COMPUTATION 10% 140 (1992)

A Calculus of Mobile Processes, I

ROBIN MILNER

University of Edinburgh, Scotland

JOACHIM PARROW

Swedish Institute of Computer Science, Kista, Sweden

AND

DAVID WALKER

University of Warwick, England

We present the a-calculus, a calculus of communicating systems in which one can
naturally express processes which have changing structure. Not only may the com-
ponent agents of a system be arbitrarily linked, but a communication between
neighbours may carry information which changes that linkage. The calculus is an
extension of the process algebra CCS, following work by Engberg and Nielsen, who
added mobility to CCS while preserving its algebraic properties. The rr-calculus
gains simplicity by removing all distinction between variables and constants; com-
munication links are identified by names, and computation is represented purely as
the communication of names across links. After an illustrated description of how
the n-calculus generalises conventional process algebras in treating mobility, several
examples exploiting mobility are given in some detail. The important examples are
the encoding into the n-calculus of higher-order functions (the I-calculus and com-
binatory algebra), the transmission of processes as values, and the representation of
data structures as processes. The paper continues by presenting the algebraic theory
of strong bisimilarity and strong equivalence, including a new notion of equivalence
indexed by distinctions-i.e., assumptions of inequality among names. These
theories are based upon a semantics in terms of a labeled transition system and
a notion of strong bisimulation, both of which are expounded in detail in a
companion paper. We also report briefly on work-in-progress based upon the
corresponding notion of weak bisimulation, in which internal actions cannot be
observed. 0 1992 Academic Press, Inc.

1. INTRODUCTION

We present a calculus of communicating systems in which one can
naturally express processes which have changing structure. Not only may
the component agents of a system be arbitrarily linked, but a communica-

1
0890-5401/92$5.00

Copyright I, 1992 by Academic Press. Inc.
Ail @Is of reproduction in any form reserved

2 MILNER, PARROW, AND WALKER

tion between neighbours may carry information which changes that
linkage.

The most mathematically developed models of concurrency can at best
express this mobility-as we shall call it-indirectly. Examples are Petri
nets (Reisig, 1983), CSP (Hoare, 1985), ACP (Bergstra and Klop, 1985),
and CCS (Milner, 1989). On the other hand there are models which
express mobility directly but which still require, in our view, a mathemati-
cal analysis of their basic concepts such as we provide in this paper. A well-
known model of this kind, which has had considerable success in
applications, is the Actors model of Hewitt (Clinger, 1981). In such models,
mobility is often achieved by allowing processes to be passed as values in
communication; we shall instead achieve it by allowing references to pro-
cesses, i.e., links, to be communicated. This presents an interesting contrast
with recent attempts to combine the ideas of A-calculus and process calculi
by admitting processes as values; examples are by Boudol (1988), Nielson
(1988), and Bent Thomsen (1989).

The calculus given here is based upon the approach of Engberg and
Nielsen (1986) who successfully extended CCS to include mobility while
preserving its algebraic properties. In the concluding section we describe
in more detail what we have added to that work; roughly speaking, we
retain (we hope) its essence, but reduce its complexity and strengthen its
elementary theory.

We introduce the calculus by means of a sequence of examples, which
are clearly of practical significance and which fall naturally into the
formalism. Let us begin with a very simple example; we present it at first
in the notation of CCS, and we use informally a kind of diagram, which we
call a fIow graph, to represent the linkage between (or among) agents. We
suppose that an agent P wishes to send the value 5 to an agent R, along
a link named a, and that R is willing to receive any value along that link.
Then the appropriate flow graph is as follows:

0 ii
We may have, for example, P E 65. P’ and R E a(x). R’. The prefix a(x)
binds the variable x in R’ ; in general, both here and later, we use
parentheses to indicate the binding occurrence of a variable. The system
depicted in the flow graph is represented by the expression

(55. P’ 1 a(x). R’)\a.

CALCULUS OF MOBILE PROCESSES, I 3

The postfixed operator \a is called a restriction, and indicates that the link
a is private to P and R.

Let us now suppose instead that P wishes to delegate to a new agent, Q,
the task of transmitting 5 to R. We therefore suppose that P is connected
to Q initially by a link b:

We now let P- 6a.65.P’; it sends along b both the link a and the value
5 to be transmitted along a. We also let Q = b(y). b(z).jz.O; it receives a
link and a value upon b, then transmits the value along the link and
terminates. Note that the name a is not in the expression Q; Q possesses
no link to R initially. The whole system is now

(6a.65.P’ 1 b(y).b(z).jz.O 1 a(x).R’)\a\b.

After two communications, both along 6, it then becomes

(P’ 1 G5.0 1 a(x).R’)\a\b.

Thus, if a does not appear in P’, we may draw the new configuration of the
system as follows, indicating that P’s a-link has moved to Q, and Q has
become Q’ G ti5.0:

This formalism, in which link names appear as parameters in communica-
tion, goes beyond CCS. It may seem that with the addition of variables
over link names, as well as over ordinary data values, the calculus would
become over-rich in primitives. But we avoid this prodigality. In fact we
remove all distinction among link names, variables, and ordinary data
values; we call them all names. There will be just two essential classes of
entity: names and agents. Restriction and input-prefix become name-
binding operators of different nature; restriction localises the scope of a

4 MILNER, PARROW, AND WALKER

name, while input-prefix is similar to abstraction in the A-calculus (being a
place-holder for a name which may be received as input). To emphasize the
name-binding property of restriction we write (x)P in place of P\x; with
this syntax, the above example becomes

(a)(b)(ba.65.P’ 1 b(y).b(z).jk.O 1 a(x).R’).

Note that a, b, X, y, 5 are all just names.
It will appear as though we reduce all concurrent computation to some-

thing like a cocktail party, in which the only purpose of communication is
to transmit (or to receive) a name which will admit further communica-
tions. Surprisingly, this meagre basis is enough to encode computation over
an arbitrary data types, if we consider a data type to be a set of data struc-
tures-values recursively built from a given finite set of constructors. We
tentatively call our new calculus the n-calculus, since it aims for universality
(at an elementary level) for concurrent computation, just as the L-calculus
is universal for functional computation.

In a companion paper (Milner, Parrow, and Walker, 1989) we treat the
semantics of the n-calculus in depth. The present paper is devoted to a
sequence of motivating examples, followed by a statement of the important
algebraic properties. In more detail, the remainder of the paper proceeds as
follows. In Section 2 we define the constructions of the n-calculus with
some auxiliary notions; we then discuss its salient differences from CCS. In
Section 3 we look at some basic examples of the calculus; these are simple
finite processes which indicate how scope and mobility are closely inter-
dependent notions. In Section 4, we introduce some convenient abbrevia-
tions, which allow us to treat more realistic examples. In particular, we
carefully compare the passing of names as parameters with the passing of
processes as parameters; we also show how to encode data structures as
processes. This section should indicate, particularly to those familiar with
process algebras, that the addition of names-as-parameters to CCS
provides great modeling strength and transforms the nature of these
algebras.

Some of the examples in Section 4 are quite substantial; the reader
may safely skip some or all of them on a first reading, and proceed to
Section 5 without loss of continuity.

In Section 5 we present the equational theory of bisimilarity, as it is
defined and derived in the companion paper (Milner, Parrow, and Walker,
1989). Although this equational theory is strikingly simple, one feature is
noteworthy, and needs careful treatment; it is that bisimilarity is not
preserved in general by instantiation of names. Our solution appears to be
quite tractable; it is to adopt a relativised equality, which is preserved only
by those instantiations which maintain the distinction between certain pairs

CALCULUS OF MOBILE PROCESSES, I 5

of names. We derive some convenient laws for this relativised equality. The
section also records the fact that the equational theory of weak equality, in
which the internal z actions of a system are ignored as far as possible, is
a direct generalisation from that in CCS.

2. THE CALCULUS

We presuppose an infinite set JV of names, and let u, v, w, x, y, z range
over names. We also presuppose a set X of agent identifiers, each with an
arity-an integer 20. We let A, B, C, . . . range over agent identifiers. We
now let P, Q, R, . . . range over the agents or process expressions, which are
of six kinds as follows:

1. A summation Cisl P,, where the index set Z is finite.
This agent behaves like one or another of the Pi. We write 0 for the

empty summation, and call it inaction; this is the agent which can do
nothing. Henceforward, in defining the calculus, we confine ourselves just
to 0 and binary summation, written P, + P,.

2. A prefix form jx.P, y(x).P or t.P.

“N .” is called a negative prefix. jj may be thought of as an output port
of an agent which contains it; jjx. P outputs the name x at port jj and then
behaves like P.

“y(x) .” is called a positive prefix. A name y may be thought of as an input
port of an agent; y(x).P inputs an arbitrary name z at port y and then
behaves like P{z/x} (see the definition of substitution below). The name x
is bound by the positive prefix “y(x).“. (Note that a negative prefix does
not bind a name.)

“ 7.” is called a silent prefix. z. P performs the silent action and then
behaves like P.

3. A composition P, 1 P,.
This agent consists of P, and P2 acting in parallel. The components may

act independently; also, an output action of P, (resp. Pz) at any output
port X may synchronize with an input action of P, (resp. P,) at x to create
a silent (7) action of the composite agent P, 1 P2.

4. A restriction (x)P.
This agent behaves like P except that actions at ports x and x are

prohibited (but communication between components of P along the link x
are not prohibited, since they have become 7 actions as explained above).

5. A match [x = y] P.
This agent behaves like P if the names x and y are identical, and

otherwise like 0.

6. A defined agent A(y,, y,).

6 MILNER, PARROW, AND WALKER

For any agent identifier A (with arity n) used thus, there must be a
unique defining equation A(x,, I,,) =def P, where the names x1, x, are
distinct and are the only names which may occur free in P. Then
A(Y , , . ..’ y,) behaves like P(y,/.x,, y,,/x,) (see below for the definition
of substitution). Defining equations provide recursion, since P may contain
any agent identifier, even A itself.

The syntax of agents may be summarized as follows:

P ::=o

I PI +p2
I jx.P

I Y(X1.P

I z.P

I PIIP,

I (x)P

I c-x= YIP

I A(Y, > . ..> Y,,)

When our attention is confined to finite agents, i.e., agents with finite
behaviour, the agent identifiers and their definitions can be omitted,
thus removing recursion. The 7c-calculus without the match form is also
interesting. Although matching makes it easy to encode computation with
data structures, it turns out to be unnecessary for this purpose, as we shall
see in Section 4, Example 7. We include the match form partly for clarity,
and partly for the pleasant form of expansion law which it provides (rule
E’ in Section 5).

A few further definitions will be needed.

l The free names fn(P) of P are just those names which occur in P
not bound either by a positive prefix or by a restriction. We write
fn(P,, P2, . . .) for fn(P,) u fn(P2 u

l As in the A-calculus we do not distinguish between agents which
are alpha-convertible, i.e., which differ only by a change of bound names.
We write P - Q if P and Q are alpha-convertible.

l We sometimes write .? for the vector x1, x, of names, where n is
understood from context.

l We write P(y~lx,, YJX,}, or p{.Vi/xi]l<i<n, or P{jlT}, for

the simultaneous substitution of yi for all free occurrences of xi (for

CALCULUS OF MOBILE PROCESSES, I 7

1 < i 6 n) in P, with change of bound names if necessary to prevent any of
the new names yI from becoming bound in P.

l In the prefixes “jLx.” and “j(x).” we say that y is the subject, and
x is the object or parameter. It is the names occurring free in subject
position which determine the (current) communication capabilities of an
agent.

l We adopt the following precedence among the syntactic forms:

Restriction

Prefix

Match i

> Composition > Summation.

Thus, (x)Plr.Q+Rmeans (((x)p)l(~.Q))+R.

We now discuss some of the more important features of the calculus, as
a preparation for the examples in the following two sections.

1. Apart from the presence of parallel composition, the outstanding
difference of the x-calculus from the L-calculus is that names may be instan-
tiated only to names, not to agents (i.e., expressions). This distinction will
be understood better through our examples. We explain informally here
why we have chosen this course. An agent enacts a process, which changes
state through its history; parallel composition admits communication
among a family of such processes each with independent state. Such a com-
munication is typically formed by the synchronization of a negative prefix
“jjx.” with a positive prefix “Y(Z).“. As an example, suppose the sending
agent is P= 7x. P’, and the receiving agent is Q = v(z). Q’; then Q may
acquire from P access-via x-to an already existing agent R (see our first
example below). One may choose to model this by passing R itself as a
parameter, rather than just passing an x-link as a parameter, but we
choose not to do so for several reasons.

First, to pass R as a parameter to Q may result in replication of R, due
to repeated occurrence of the formal parameter z within Q’; we do not
wish the replication of agents with state to be a side-effect of communica-
tion in the rc-calculus. Second, to pass R as a parameter gives Q access to
the whole of R; we are concerned to model the case where a received name
x provides only partial access to another agent. (For example, R may com-
municate with still other neighbours via names not known to Q.) Third,
the transmission of access links is a very common phenomenon in com-
putation, even in purely sequential computation, which has hitherto had no
adequate theoretical basis; we must examine primitives which may provide
such a basis in as lean a framework as possible.

2. The free names of an agent represent its current knowledge of, or
linkage to, other agents. If several agents-say P, Q, and R-all contain x

8 MILNER, PARROW, AND WALKER

free, we portray this linkage or shared knowledge by a multi-arc in the flow
graph of P (Q 1 R, as follows:

Further, if the shared name x is restricted we write it internally to the
components; so the flow graph of (x)(P 1 Q (R) is

The free names fn(P) correspond roughly to what is called in CCS the sort
of P. But there are differences. First, a sort in CCS contains both names
and co-names such as 6; if {a, 6) is the sort of a CCS agent P, it means
that P may input on the link a and output on the link b, but not vice versa.
For the present calculus, we do not yet wish to adopt this refinement.
Second, in CCS a sort cannot grow throughout the history of an agent;
however, the free names fn(P) can grow throughout P’s subsequent history,
since P can receive names in communication. Third, a free occurrence of x
in subject position in P indicates that P may communicate along the link
x, while a free occurrence in object position merely indicates that P may
pass x as a parameter; it is only the former type of occurrence which
corresponds closely to CCS sort, since CCS did not admit the latter type.

This subject-object distinction is not captured by fn(P). In later develop-
ment the distinction will no doubt become increasingly important, in order
to explicate the potential mobility among the agents of a system.

3. In CCS there is no risk of confusing the binding of an ordinary
data variable x, in a positive prefix form a(x).P, with the restriction of a
port-name a as in Q\a. This is because port-names are distinct from data
variables in CCS. Here, the two are identified. (More accurately, we shall
see that primitive values are represented as names, while compound
values--e.g., trees-are represented as processes.) To emphasize this iden-
tification, we have adopted the prefix notation (x)Q for restriction, in place
of the postfix notation Q\x. Nonetheless, we must carefully distinguish

CALCULUS OF MOBILE PROCESSES, I 9

between the two forms of binding, y(x).P and (x)Q. In y(x).P, x is a
place-holder for any name which may be received on the link y, and this
may even be a name already free in P; thus the variable bound by a
positive prefix is susceptible to arbitrary instantiation. In (x)Q, x
represents a name which is private to Q, and which moreover can never be
identified with any other name in Q. The different treatment of these
bindings lies at the heart of the r-calculus.

In this paper we do not present the basic semantics of the calculus; this
is done in our companion paper (Milner, Parrow, and Walker, 1989), in
the same style as in CCS, namely as a labeled transition system defined by
structural inference rules. In that paper the notions of strong bisimulation
and strong equivalence are also defined; the latter is a congruence relation,
so it may be understood as (strong) semantic equality. Here, we shall rely
somewhat upon analogy with the transitions of CCS agents. In particular,
we assume simple transitions such as

(... +yx.P+ . ..)I(-.. +,v(z).Q+ -.)A PIQ(x/z}

and simple equations such as

in which = means strong equivalence. But not all transitions will be
analogous to CCS; the reader will find the essence of mobility in
Example 3 in the next section, where we see that the effect of certain
transitions is to change the scope of a restriction.

3. BASIC EXAMPLES

The examples in this section are almost entirely concerned with different
patterns of occurrence of the two forms of name-binding, positive prefix
and restriction, and their behaviour in the presence of communication. This
is the basic anatomy of the n-calculus.

EXAMPLE 1. Link passing.

10 MILNER, PARROW, AND WALKER

The agent P has a link x to R, and wishes to pass x along its link y to Q.
Q is willing to receive it. Thus P may be jx.P' and Q may be y(z).Q’; in
this case. the transition is

jx.P'Iy(z).Q'IRA P'(Q'{x/z}IR. (1)

So Q” in the diagram is Q’{x/z}. The diagram illustrates the case in which
x4 fn(Q), meaning that Q possesses no x link before the transition. But the
transition is the same if x~ fn(Q); there is no reason that Q should not
receive a link which it already possesses. (Compare Examples 2 and 3,
though, in which one or the other of the x links is private.) The diagram
also illustrates the case in which x 4 fn(P'), meaning that P' has no x-link
after the transition, but again this condition does not affect the transition.

The situation is not much different when the link ,v between P and Q is
private. In this case the proper flow graphs are

The privacy of the y-link is represented by a restriction, so the transition
is now

In fact we shall be able to prove the equation

.(rWlQ’{-+>I. (3)

EXAMPLE 2. Scope intrusion. ‘_
P Y : Q ‘...,

2 ‘.

. . ‘.

TTk
s ‘. ‘. i

‘. ‘. -
‘_

‘.
R

‘. z :
‘.

. . s i
‘_

As in Example 1, P has a link x to R, and wishes to pass x along its link
y to Q. Q is willing to receive it, but already possesses a private link x to

CALCULUS OF MOBILE PROCESSES, I 11

S; the latter must be renamed to avoid confusion. We describe this infor-
mally by saying that P (or the link-passing action) intrudes the scope of the
private link x between Q and S.

Taking P to be jx. P’ and Q to be y(z).Q’ as in Example 1, the
transition is

jx.P’~RI(x)(y(z).Q’IS)~ P’(RJ(x’)(Q’{x/x}{x/z}~S{x’/x}). (4)

So Q” and S’ in the diagram are Q’{x’/x} {x/z} and S{x’/x}, respectively,
where x’ is a new name.

This phenomenon is analogous to the avoidance of the capture of bound
variables in the L-calculus. The transition rules will be such that, as in the
L-calculus, alpha-conversion (i.e., change of bound variables) is enforced in
such cases. For the present example, the transition rules will ensure that the
transition (4) is the same, up to alpha-conversion of the result, as we would
obtain if we applied the alpha-equivalence

(x)(Q I S) = W,(QWx> I Wl-4 (5)

beforehand, thus avoiding the intrusion. (Also note that, as we state in
Section 5 below, alpha-equivalence implies strong equivalence of agents.)

EXAMPLE 3. Scope extrusion.

As in Example 1, P has a link x to R, but we now suppose that this link
is private. However, P wishes to pass x along its link y to Q. Q is willing
to receive it, and possesses no x-link. This situation is exactly that of a
program P, with a focal variable modeled by a storage register R, passing
R to a procedure Q which takes its parameter by reference, not by value.

So, taking P to be jx.P’ and Q to be y(z).Q’, as in Example 1, the
transition is

(x)(yx.P’IR)ly(z).Q’~ (xU”IRIQ’{x/4). (6)

So Q” in the diagram is Q’(x/z}, as it was in Example 1. The difference
here is in the privacy of P’s x-link to R, represented by the restriction (x).

12 MILNER, PARROW, AND WALKER

When this link is exported to Q the scope of the restriction is extended; we
say that P (or the link-passing action) extrudes the scope of the private
x-link.

Now, in contrast with Example 1, the situation is different if Q possesses
a public x-link before the transition, i.e., if x l fn(Q). Then we have to
change the private link name in order to preserve its distinction from the
public link:

scope of z
'.

P ‘.. Y
: 2: ‘.

Q'
‘.

‘.
‘. ‘.

iv

.. ..
‘. . .

..
‘.

‘.
‘_

‘.
k ;

.

2 _ -5

Now the transition becomes

~W.P’IR)IY(Z).Q’~ (~‘)(P’{x’lx}IR{x’lx}lQ’~x’/z,,. (7)

So P" in the diagram is P'(x'/x}, Q” is Q’{x’/z}, and R' is R{x'/x}.
Reverting to the case x $ fn(Q), let us now suppose also that x $ fn(P’),

i.e., P' possesses no private x-link after the transition:

scope of *
‘.

P ‘.. Y
: I ‘. Q

‘_
‘.

‘. ‘.

T

‘_ ‘_
. . ‘.

‘.
..

‘.
‘. ; ;

‘_

-5

The transition is exactly as in (6), but we can transform the result. There
is a general law

(X)(Pl I P2) = p, I (xP2 if x$fn(P,) (8)

which we can apply to the result of (6):

(x)(P’lRlQ’~~lz~)=~‘l(~)(RlQ’~~/~>,~ (9)

This is what justifies the preceding diagram. We may describe this as a
migration of scope, a special case of extrusion; the scope of the restriction
(x) has migrated from P to Q.

CALCULUS OF MOBILE PROCESSES, I 13

The reader may like to consider a combination of Examples 2 and 3, in
which both intrusion and extrusion occur.

EXAMPLE 4. Molecular actions. Suppose that an agent P wishes to pass
a pair (u, u) of names to one of two agents Q and R. Consider the following
attempt at defining the three agents:

P~XU..~V.P

Q-x(y).x(z).Q'

R-x(y).x(z).R'.

A difficulty arises, with these definitions, in the behaviour of the composite
agent Q 1 PJ R. It may perform the following pair of transitions, which
represents the possibility that Q receives u and R receives U, instead of one
or other of them receiving the whole pair as intended:

If this possibility is to be avoided, we need a way in which the pair (u, u)
of names can somehow be transmitted in a single atomic action. Private
names are the key to the solution. Instead of passing the elements u and u
directly, we arrange that P passes to Q (or to R) the private name of a
small process whose only task is to deliver u and then u,

Pr(w)(xw.P'Iwu.wu.O)

Q=x(w).w(y).w(z).Q'

R=x(w).w(y).w(z).R',

where w $ fn(P’, Q’, R'). Now, Q 1 P(R has two alternative transitions,

and

QIPIRA Ql(w)(P'lGu.wu.O~w(y).w(z).R')

=z.z.(QIP'IR'{u/y}(u/z}).

14 MILNER, PARROW, AND WALKER

(We have slightly simplified these transitions, taking advantage of the
associativity of I.) The two transitions represent the transmission of the
pair to Q and to R, respectively; no mixture is possible.

We may think of the atomic action XM;, together with the actions of the
process Wu. Gv.0 which it makes accessible, as together forming a molecular
action, (It is vital to this idea that u’, which bonds the molecule, is indeed
a private name.) This device is very powerful, extending far beyond this
illustration with pairs. As we shall see in Example 7, it yields a uniform
encoding of data structures as processes.

4. FURTHER EXAMPLES

In this section we shall explore some more concrete examples; they are
on a small scale, but deal with real applications in computing. First, we
define some abbreviations.

1. Sometimes a communication needs to carry no parameter. To
model this we presuppose a special name, say E, which is never bound; then
we write

X.P in place of XE.P

x.P in place of x(y).P (y not free in P).

2. We often omit “,O” in an agent, and write for example

,Q in place of Xy.0.

3. We often wish to allow input names to determine the course of
computation. Thus, we naturally write

where usually the names yi will be distinct. Assuming that u does not occur
free in any Pi, we abbreviate this to

x:[y,*P,,y,*P,,...]

or-schematically-

x: [.t’i*Pilrs,.

EXAMPLE 5. An Executor. Let us define

Exec(x) t.5 x(y).j. (10)

CALCULUS OF MOBILE PROCESSES, I 15

Exec(x) may be called an executor. It receives, on link x, a link which it
calls y; it then activates that link. We can think of y as the trigger of a
process which Exec(x) has been called upon to run.

Now for any process P, we should (up to a few initial communications)
obtain the same behaviour in each of the following cases: (a) We run P
directly; (b) We prefix a trigger z to P, and pass z along the link x to the
executor Exec(x). (We assume x, z $fn(P).) Here is the agent which, in the
presence of Exec(x), should behave like P:

(z)(Xz) z. P). (11)

(Later we find that a construction like this can be regarded as passing the
process P itself as a value along the link x, but that the passing of links as
values has other applications too.) Here then is the agent which should be
equivalent to P:

(x)((z)(Xz / z. P) 1 Exec(x)). (12)

To see this, first apply Eq. (8) to obtain

Now this, by a suitably generalized expansion law, becomes

5. (x)(z)(O) z. P 1 F)

which in turn becomes

T.?.(X)(Z)(o1PIo)

which, since x and z were chosen not free in P, is equal to

T.T.P.

EXAMPLE 6. Passing processes as parameters. In the previous example,
the executor had no work to do except to activate (the link to) P, and the
sender had no work to do except to transmit (the link to) P (and then to
retain P awaiting activation). If the parenthetical parts of the preceding
sentence are included, the sentence accurately describes Example 5; if they
are omitted, then it describes the passing of a process as a parameter.
Though these two situations are not-at least not obviously-the same, the
effect of process-passing can in many cases be achieved by link-passing.

Passing processes as parameters is not represented directly in the
n-calculus. In a direct representation we would write, instead of (12), some-
thing like

(x)(+-.0 I X(P).P), (13)

643/100/l-2

16 MILNER, PARROW. AND WALKER

where p is a variable over processes, and P is a process expression (i.e., an
agent). This notation is close to that of Thomsen (1989), for example (see
our later discussion of his work). We have seen that, in this simple case,
(12) indeed has the effect which would be intended for (13).

Let us pursue this direct representation of process-passing further, to
draw attention to an important issue of scope. To develop (13) a little,
suppose that the sender, after sending P, wishes to run Q; suppose also
that the executor, after receiving P, wishes to run it in parallel with R. In
an extended language, permitting (13), we would write

(x)(~P.Qlx(p).(~lR)), (14)

where we assume that x 4 fn(P, Q, R). A suitably generalized expansion law
would equate this to

z.(PI(f’IR)). (15)

This allows communication to occur both between P and its first
“neighbour,” Q, and also between P and its second “neighbour,” R.

To develop the example further, we now suppose that before trans-
mission a private link w exists between P and Q ; this privacy may be
represented as a restriction (w) applied to the sender:

(x)((w)(xP.Q)I-~(P).(PIR)). (16)

Now there are two alternatives for how the transmission of P should treat
the private link w; the choice is significant even when w$fn(R), and even
more significant when u’ E fn(R).

In the first alternative, the generalized expansion law would equate (16)
with

t.((w)Ql(PIR)). (17)

This shows that the private link w between P and Q is broken by the com-
munication. To put it differently, in the expression (w)(XP.Q), the restric-
tion (w) binds w in Q but not in P (and thus the private link does not in
fact exist !). Moreover, if w E fn(R), then w represents a link between P and
R. In this approach, the passing of processes as parameters amounts to
passing the text of the process as a parameter, which is similar to the treat-
ment of function parameters in LISP as originally defined by McCarthy.
This has often been called “dynamic binding”; the free variables in (the text
of) a function parameter are interpreted in the receiving environment.
Thomsen (1989) has adopted dynamic binding in his Calculus of Higher-
Order Communicating Systems (CHOCS), and has found that many
important computational phenomena can thereby be modeled satisfac-
torily. However, we intend to adopt static binding.

CALCULUS OF MOBILE PROCESSES, I 17

The second alternative is that, by a form of scope extrusion (see
Example 3), the generalised expansion law equates (16) to

~.(w’,(Q{~V4 I (P{w’/w) IR)h (18)

where w’ has been chosen not free in P, Q, or R. This alternative preserves
the w-link between P and Q, and preserves its distinction from any w-link
possessed by R.

Now let us return to the way we represent the passing of a process
parameter in the rr-calculus, and we shall see that the effect of (18) is
obtained. In place of (16) we write

(x)((z)(w)(,~z.(z.PlQ))lx(y).~.R)

(where y, z 4 fn(R)) which, by expansion, will be equal to

(19)

t.(z)((w)(z.PlQ)IY.R). (20)

(The restriction (x) is dropped since x $ fn(P, Q, R).) Now, by a change of
bound name w to w’$ fn(R), followed by (8) in reverse to extend the scope
of the restriction (w’), we obtain

which, by expansion and then discard of the restriction (z), becomes

(22)

This, but for an extra t action, is identical with (18).
It may therefore seem that link-passing has all the power of process-

passing. This is indeed true, in the presence of recursion; indeed, in a private
communication Bent Thomsen has given a translation of a static-binding
variant of his CHOCS calculus (Thomsen, 1989) into the n-calculus. In one
sense link-passing has greater power, since the link which is passed need
not be only the trigger of a process; one may pass-to many different
recipients perhaps-the power to interact in different ways with an existing
process. In another sense, the power of link-passing is less; for it does not
by itself give the ability to copy a process, as in x(p). (p 1 p). In particular,
the n-calculus without recursion cannot provide the power of general recur-
sion, as the I-calculus does via the paradoxical combinator Y. We take the
view that it is natural to provide recursion explicitly.

EXAMPLE 7. Values and data structures. If the only values with which
we wish to compute are drawn from a finite set, say V= (vi, u,,}, then
we can simply designate n names-denoted by 5, s-as constants. (The

18 MILNER, PARROW, AND WALKER

role of constant names in the theory is dealt with in Section 5.) Clearly the
match operator-in its derived form for convenience+an be used to con-
trol computation. Consider the case V= {t, f }, the truth values. We set
t = T and f= F. Then a process for simply copying a truth value from one
link to another is

cOpy(J',Z)~f JJ:[TdFT,F-FF]. (23)

(A simpler definition might be Co&y, z) =def y(x).Z.~, but we are starting
a series of definitions which all compute by case-analysis upon the constant
or data constructor which is input.) Further, a process A&(x, y, z), which
produces at z the logical conjunction of the truth values received at x and
y, may be defined as follows:

And(X,l',Z)d~fX:[T~Copy(y,Z),F~=F]. (24)

Now, since we are representing an n-ary Boolean function by an agent with
n + 1 link parameters, it is reasonable to extend this to the case n = 0. We
think of the agents True(x) =def .YT and False(x) =def ?CF as pointed values,
with x playing the role of pointer. We may then represent application of a
function by composition of agents, followed by restriction of the pointer.
It is then easy to prove the simple equations which justify the above
encoding, such as the following:

(x)(True(x)) Copy(x, y)) = 7. True(y)

(x)(y)(True(x) 1 Fufse(y) (And(x, Y, z)) = T. z. Fufse(z)

The matter is different if we wish to compute over an infinite set, for
example over the natural numbers Nat. We could choose an infinite family
of constants {n: n E Nat}, but we cannot write the successor function (for
example) as an agent in the form

Succ(x, y)~fX:[g*jn]ll,,,,,

because this is an infinite sum, and we want the terms of our calculus to
be finite.

To illustrate an alternative method, we use the data type of fist
structures, built from a nullary operator “nil” (the empty list) and a binary
operator “cons.” Any list structure L, say “cons(cons(ni1, nil), nil),” is
represented by a pointed value [L](x); this is an agent which will emit L

CALCULUS OF MOBILE PROCESSES, I 19

piecemeal along the link x. [Lj is defined as follows, in terms of constant
names CONS (for “cons”) and NIL (for “nil”):

[nill](x) gf XNrL (25)

[cons(L,, L,)JJ(x) 2f (y)(z)(Xco~s..~y.Xzl [L,j(y)([&j(z)) (26)

In the presence of [Ll](x), an agent which possesses or receives the link x
thereby possesses or receives the power to explore the list structure L
piecemeal, by following pointers. In the case that an agent Ppriuately holds
the name x of a list structure L, as in the system (x)(P 1 [LB(x)), the trans-
fer of L by P to another agent is therefore a molecular action as defined in
Example 4. Note particularly that the constituent actions of this molecule
may themselves be molecular, since L may have non-trivial sub-structures.

We shall now introduce a few further abbreviations to make the
following examples more legible. First we define some composite prefixes:

-2-y. ... yn means Xyl.Xy. (27)

x(Y~)...(Y,) means x(Y~).....x(Y,). (28)

Thus, if L = cons(cons(ni1, nil), nil), then we have

[L](x) = (y)(z)(.?CONSyz 1 (~)(w)(jkONSuw (6NIL 1 @NIL) 1 FNIL).

Second, we define a more relined form of matching clause:

x:[. . . . ~(y~)...(y,)=>P ,...] means x:[. . . . v=~-x(y~)...(y~)P ,... 1. (29)

Thus, when v is received on link x, the names subsequently received on x
are bound to yi , y,.

As an example, let us define an agent Equal(x, y, b) which outputs T on
b if x and y point to equal structures, F otherwise:

Equd(x, y, b) zf x: [NIL = Nu/l(y, b), CONS(x,)(x,)

=a Consequal(x,, xz, y, b)] (30)

Null(y, 6) ‘%’ y: [NIL a True(b), CONS* False(b)] (31)

Consequd(x,, x2, y, 6) gf y:[NIL*Fu/se(b), CONS(y,)(y,)

3 (b,Nb,)@w4x,~ ~1, b,)l

-Qm-4x,, ~2, Ml AMb,, b,, b))l. (32)

We hope these simple examples provide convincing evidence for what we
show rigorously in a later paper, namely that our bare calculus of names

20 MILNER, PARROW, AND WALKER

is enough to encode a richer calculus in which values of many kinds may
be communicated, and in which value computations may be freely mixed
with communications. The analogous encoding for CCS (Milner, 1989)
relies upon infinite summation; instead, we exploit the power which private
links provide to represent complex values as structured agents.

One or two points about the above encoding deserve mention:

l Our pointed values are finite processes; they are ephemeral, in the
sense that they may only be analysed once. But other encodings are
possible which give permanence to values.

l The encoding has only needed a finite number of constant names:
T, F, CONS, and NIL. But there are encodings which need no constant names
whatever. The trick is to use matching to distinguish private names; for
example,

True(x) fZf (u)(v)(Xuuu)

False(x) 2’ (u)(u)(Xuuu).

The reader may enjoy re-defining A&(x, y, z) to work with these forms.
. We now justify the claim made in the introduction that the match

form is unnecessary for encoding computation over data types. The control
which it provides can, in fact, be achieved by other means. Consider the
following agent P, which inputs a truth value (in the encoding we have just
presented) on link x, and enters either P, or P, according to the value:

x(u)(v)(w).([w=u]P~+ [w=u]P2).

Now let us change the encoding of truth values very slightly:

True(x)~f (u)(u)(Xuu.U)

F&e(x) “2’ (u)(u)(Xuu.V).

Then the agent P can be correspondingly changed to

x(u)(u).(u.P1 + u.P,).

Clearly, both this encoding and the previous one can be extended to deal
with any finite set of value constructors or constants.

The attentive reader will have noted that, in allowing constants to occur
free in the equations which define agent identifiers, we have violated the
condition on defining equations imposed in Section 2. We justify this viola-
tion at the end of Section 5; it is merely part of a conventional treatment
of constants.

CALCULUS OF MOBILE PROCESSES, I 21

EXAMPLE 8. Combinator graph reduction. In combinatory logic, terms
are built from combinarors by a binary operation called application. We let
M, N, and P range over terms, and we shall consider only the three most
basic combinators S, K, and I. The syntax of terms is therefore

M::=S 1 KlIl(MN).

Application associates to the left, so the term SK(MN)S means
(((SK)(MN))S). Terms may be reduced by the following rules:

SMfvP --f MP(NP)

KMN-+M

IM+M.

A combinator graph is a graph which represents a term. For every
application in the term it contains a node labeled @, with a left and a right
child; every other node is labeled by a combinator and has no children.
Thus, for the term S(KM)(KM)N, either of two graphs shown in Fig. 1
will do: The first graph represents sharing of two occurrences of the
subterm KM.

Combinator graph reduction models term reduction, except that it takes
advantage of sharing. It is an important implementation technique for func-
tional programming languages, and computers are being designed to sup-
port it by hardware-see for example Goguen and co-workers (1988). It
will therefore also be important to model the performance of this hardware
in a formal calculus, to verify its performance. This presents a tough
challenge to the calculus, which must describe not only the mobile struc-
ture of the (virtual) processes among themselves, but also their changing
allocation to (real) processors. We believe that the x-calculus contains the
right primitives to meet this challenge. We have given a hint in Example 5
(the Executor) of how allocation to processors may be modeled; the

K Al K III

FIG. 1. Two combinator graphs for the term S(KM)(KM)N.

22 MILNER, PARROW, AND WALKER

changing virtual structure is combinator graph reduction, to which we
now turn.

First, we give the graph reduction rules; see Fig. 2. They use auxiliary
combinators S,, S,, K,, and I, in addition to S, K, and I (which we shall
now call SO, K,, and I,). There is exactly one rule for each combinator,
allowing reduction when it occurs as a left child. Note how sharing is intro-
duced by the rule for Sz. Note also that the auxiliary combinators S1 , S,, . . .
appear in the graphs not at the leaves, but as operators of arity one or two.

We now illustrate how the term reduction

S(KM)(KM)Na KMN(KMN) 2 M(KMN) 3 MA4

is modeled by graph reduction. We give the graph reduction in Fig. 3.
Notice that several steps of graph reduction correspond to a single step of
term reduction; we show this by numbering the arrows. The redex-i.e., the
subgraph to be reduced-at each stage is indicated by ringing its @ node.

FIG. 2. Rules for combinator graph reduction.

CALCULUS OF MOBILE PROCESSES, I 23

One should note that, just as the subgraph for (KM) has two parents,
so any other node in the graph may have another parent not shown in
the diagram (if the whole is a subgraph of a larger system); such nodes,
even if they become disconnected during this particular reduction, cannot
be discarded altogether. (In passing, note that we have not succeeded in
eliminating I, entirely; a more sophisticated set of rules can achieve this.)

We can now proceed to model the combinator graphs as (flow graphs
of) composite agents. Each combinator Si, Ki, or Ii is modeled by an agent
with i + 1 parameters; the first i parameters are links to its children, and
the last a link to its parent(s). Each combinator repeatedly utters a
message, which contains its own identity (a constant name such as so) and
the names of its children. Here are the definitions for the three S
combinators (the others are completely analogous):

So(P) Ef (W)(PMJ. (ml I So(P)))

S,k P) gf (w)(pw.(~s,xls,(.~, p)))

%(x, Y, PI fzf (WNPW. (@WY I S,(x, Y, PI)).

The message sent by S,, for example, consists of the pointed value WS, . WX,
formed into a molecular action whose pointer is the private link w. S,

K, N

PI+ (3)

i@

(?- Ki “
FIG. 3. Graph reduction for the term S(KM)(KM)N.

24 MILNER, PARROW, AND WALKER

restores itself after the message, and its next message will have a new
private link. The use of molecular actions ensures that different parents do
not read parts of the same message.

All that remains is to define the application agent (4(x, y, p). It com-
municates only with its left child, and only when this is a combinator. Each
clause of the match, in the definition, corresponds to one of the seven
graph reduction rules:

@((x, y,p)d~fX(W).W:lISO~SI(y,p),S,(X,)JS2(X,,~v,P)r

s*(xl)(x2)J(Pl~(P2)(~?(xl~ Y, Pl)l

@!(-%, Y Y P2)l c&J19 P29 PI),

&,=‘KI(Y, P), KI(X,)=‘II(XI, P),

Io*I,(Y, PL Il(~~l)*@(x,~ Y, P)l.
With these definitions, the reader can show, without too much difficulty,
that (for example) the graph reduction rule for S2 is captured by the
equation

WNS,(x, Y, Y’) I cw’t z, PI) I M(x) I NY) I P(z)

=z.T.r.r.((p,)(P*)(@(x, z, P,)l @(Y, 2, PJI

@dPl, P2> P))IM(x)lN(y)lP(z)).

Finally the reader may like to check that one can avoid using both
constants (so, si, . ..) and the match form in modeling combinator graphs,
using alternative encoding as suggested at the end of Example 7.

EXAMPLE 9. The A-calculus. The encoding of combinator graph reduc-
tion (Example 8) has already shown that higher-order functions can be
“handled,” in some sense, in the rr-calculus. This can be thought of as an
encoding of the Il-calculus, since there are natural translations of L-calculus
into combinator algebra; but the encoding is rather indirect. Here we give
a much more direct encoding, one in which reduction sequences in the two
calculi correspond closely. It will also show that, to gain the full power of
A-calculus, only a very limited use of recursion is needed-no more than
just to achieve replication of an agent. More precisely, what we shall
encode is a particular reduction strategy for L-calculus: lazy reduction
(Abramsky, 1988). Theorems which justify this encoding, and also an
encoding of call-by-value reduction, appear in a separate paper
(Milner, 1990).

First, recall the syntax of A-calculus; its terms M, N, . . . ~/i have the
syntax

A4 ::= x I (IXM) I (MN)

CALCULUS OF MOBILE PROCESSES, I 25

where x ranges over an infinite set V of variables. We often omit the
parentheses around the composite forms, when there is no ambiguity,
taking application (MN) to be left-associative. For convenience we assume
that V is a subset of J(r, with JV - Y infinite, and for this example we take
4 Y, z to range over V while U, u, u’ range over JV - Y. Then the lazy
reduction relation -+ over /i is the smallest relation such that

(AxM)N+ M{N/x};

If M-t M’ then MN+ M’N’.

This reduction strategy is completely deterministic. Any term M can be
written MoMI . . . M, (m 20) where M, is not an application. Then
M + M’ for some M’ if and only if m > 1 and MO is AxN, and then M’ is
N{M,/x}M,- M,. So for each M there is at most one irreducible term
M’ such that Iti + *,M’, and moreover M’ is either of the form IxN or of
the form xN, . . . N, (n > 0).

We first encode the linear A-calculus, in which no sub-term of a term
may contain more than one free occurrence of x, for any variable x. The
paradoxical combinator Y is thereby excluded; indeed, every reduction
sequence terminates in the linear I-calculus. Correspondingly, we find that
we need not call upon recursion for the encoding in the n-calculus.

We translate each L-term M into a map [MD from names to agents. To
understand the agent [mu, where u is any name (E Jf- Y), we may
think of u as pointing to the argument sequence appropriate for a particular
occurrence of M. More precisely, if M eventually reduces to a d-abstraction
AxM’, then the corresponding derivative of [Ma u will receive along the
link u two names: a pointer to M’s first argument, and a pointer to the
rest of its argument sequence. Thus u represents a list, just as lists are
represented in Example 7. Here is the full definition of the encoding
function [1:

[nxm 24 E u(x)(u). [Ma u (33)

[xl] 24 “Gf x2.4 (34)

[Mm u 2’ (u)([M-J UJ (x)Vxu.x(w). [NI w) (x not free in N) (35)

Note that the variable x occurs free in the translation of the l-term x;
hence in Eq. (33) x will normally occur free in [IIM u.

The double guarding of I[w in Eq. (35) is the essence of lazy reduction.
The first guard, the prefix Vxu, will be activated only when M has reduced
to the form IxM’ and is ready for its argument; the second guard x(w) will
be activated only when M’ calls N via the name x. Only then may the
reduction of N commence.

26 MILNER, PARROW, AND WALKER

It is illuminating to see how the encoding of a particular example
behaves. Consider (%xx)N; first, we have

[Lxx] u = u(x)(w).Xw.

So, assuming x not free in N,

More generally, it is easy to show that

where z is the weak bisimilarity discussed briefly in Section 5. Moreover
the (unique) derivation sequences of both sides are closely related. (They
do not keep precisely in step; the left-hand side takes more steps, because
it simulates the substitution of N for x in M by making the (only !)
occurrence of x in A4 send its argument list to N.)

The proof of (36) relies strongly on the linearity of M; if A4 contains x
twice then each occurrence of x will attempt to send an argument list to N,
and this will fail because the agent

(which represents the “procedure” [INj receiving an arbitrary argument list
w along x) is consumed by the first call.

In the translation of the full A-calculus, then, what is needed is replica-
tion. Let us therefore define, for any action-prefix CI, the form

Here we have used the fixed-point construction fix XE, which stands for a
distinguished solution of the agent equation X= E. (We could have used
such constructions throughout, instead of using agent identifiers and
providing them with defining equations; apart from one or two niceties the
two approaches amount to the same thing.) Thus, we have

WI * P=a.(PIa * P)

CALCULUS OF MOBILE PROCESSES. I 27

which indicates that each “call’‘-i.e., each occurrence of the action
N-generates a new copy of P. Note that this equation holds even when a
is a bound action such as x(w).

This replicator, as we call it, can now be used to make the only change
needed in our translation to accommodate the full A-calculus, namely to
replace Eq. (35) by

[MAqu~f (u)(([n/Jau~(x)vxu.(x(w)* [Aqw)) (x not free in N). (37)

Now N may be called more than once from M; each call generates a new
replica of N and provides it with a different argument list in place of w.
Moreover, with the help of some lemmas about replicators, Eq. (36) can
still be proven, and the close correspondence between the reduction
sequence of any M in the L-calculus and the derivation of its encoding [m
is maintained.

Earlier we referred to Bent Thomsen’s translation of the static-binding
variant of his CHOCS calculus (Thomsen, 1989) into the rc-calculus; in this
translation, he independently found that replication is the only use of
recursion required.

Abramsky (1988) defines a notion of applicatioe simulation, 5, for the
lazy A-calculus, and analyses its model theory and proof theory in depth.
He actually called it applicative bi-simulation, but we prefer to reserve this
term for the induced equivalence 5 n 2, which we denote by Z. It is
therefore natural to ask the relationship between [mu z [IN4 u and
ME N. It turns out that for closed terms

~wu~:IlNDu implies M Z N.

But the converse is false; an example of Ong (1988) can be adapted to
show this. Intuitively, the reason is that applicative bisimulation only con-
siders the behaviour of a term M when applied to arguments which are
A-terms, while the process [Lm u inhabits the more unruly environment of
arbitrary processes.

Before leaving the A-calculus we should remark that we have only
encoded faithfully one of its reduction strategies, albeit an important one.
Much work remains to be done to broaden the connection between the two
calculi.

5. ALGEBRAIC THEORY

In our companion paper (Milner, Parrow, and Walker, 1989) we give a
definition of strong bisimulation between agents, and a corresponding
equivalence relation of strong bisimilarity. We use PA Q to mean that P

28 MILNER. PARROW, AND WALKER

and Q are strongly bisimilar. Before giving the equational theory of this
relation, we point out a subtlety which was of no great concern in CCS,
but is important here-namely that strong bisimilarity is not preserved by
substitution for free names. For this reason, we sometimes refer to strong
bisimilarity as strong ground equivalence. For example, let x and JJ be
distinct names and consider the equation

.Ul v~~~.J’+y.x. (38)

This holds in our theory, but the substitution of x for y falsifies it; we have

Xl x ;i .%.x+x.x (39)
but on the other hand

xIx~?c.x+x.x+z. (40)

This is the price we pay for not distinguishing constants from variables.
Later, however, we introduce strong (non-ground) equivalence N; it will be
simply defined as strong bisimilarity under all substitutions. This relation
is preserved by substitution, and moreover we find the following (more
general) equation true:

x.PI.v.Q-i.(PIy.Q)+y.(i.PJQ,+[x=.v]z.(PIQ,. (41)

Our equational axioms use a kind of head normal form. In order to
define this form we need a new abbreviation:

X(Y). P means (y).i$. P if x and y are distinct. (42)

This special case of restriction may be thought of as the simultaneous crea-
tion and transmission of a new private name; it is a name which cannot
have been “used before” because it only occurs within P, which only
becomes active after the transmission. The importance of this form is that,
as our equational theory shows, every use of restriction can be reduced (up
to bisimilarity) to this special case.

We now have four kinds of prefix, and we shall allow a, 0, . . . to range
over them. The syntax of prefixes is

II ::=tlx(y)lxyIx(y),

where, of course, the first three are primitive forms and the last is derived.

DEFINITION 1. An agent P is in head normal form if it is a sum of
prefixes:

Pipl,.P,.

CALCULUS OF MOBILE PROCESSES, I 29

5.1. Strong Bisimilarity

We now give an equational theory for strong bisimilarity. It turns out
that this theory is complete over finite agents, but incomplete over all
agents (necessarily since A is not recursively enumerable). We state the
rules using the standard equality symbol =, rather than the symbol A; the
reason for this is that, both in this paper and in later work, we wish to
consider the validity of a rule when = is interpreted by other equivalence
relations. For example, Proposition 4 below asserts that several-but not
all-of the rules are valid when = stands for strong equivalence, -.

The reader may wonder why we first axiomatize L, rather than -, even
though the latter is preserved by aZl substitutions (i.e., is a congruence) and
is therefore a more natural candidate for the “equality” of agents. In fact,
in Proposition 9 below we do axiomatize -, but that second axiomatiza-
tion, as we shall see, depends upon the present one.

We omit the standard rules for an equivalence relation, taking them as
given. On the other hand = will not always stand for a congruence rela-
tion; in fact the congruence rule CO asserts that = is preserved by all
operators except the positive prefix, while Cl asserts a weaker property for
positive prefix.

Alpha-conversion.

A From P z Q infer P = Q,

Congruence.

co From P = Q infer

e.P=t.Q Xy.P=Xy.Q

P+R=Q+R PIR=QlR

(x)P = (x,Q [x= y]P= [x= y]Q.

Cl From P(z/y} = Q{z/y}, for all names zefn(P, Q) u (y}, infer

x(Y).P=x(Y).Q.

Summation.

so P+O=P

Sl P+P=P

s2 P+Q=Q+P

s3 P+(Q+R)=(P+Q,+R.

30 MILNER, PARROW, AND WALKER

Restriction.

RO

Rl

R2

R3

R4

(x)P= P if x#fn(P)

C~)(Y)P = (Y)(X)P

b)(P + Q, = (XV’+ (x,Q
(x)tX.P=cr.(x)P if x is not in a

(x)cr.P=O if x is the subject of c(.

Match.

MO [x=y]P=O if x and y are distinct

Ml [x=x]P=P.

Expansion.

E Assume P = Cj cli. Pi and Q = 1, /?,. Q,, where no aj (resp. pi) binds
a name free in Q (resp. P); then infer

PIQ=~~i.(PiIQ)+CBi.(PIQj)+~~~~41i.R~,
I J

where the relation cli camp flj (a, complements bj) holds in four cases:

1. cli is XU and /Ii is x(u); then R, is PiI Qj{ u/u}.

2. tli is X(U) and pi is x(v); then R, is (w)(P,{w/u} IQ,{w/u}),
where w is not free in (u)P, or in (u)Q,.

3. cli is x(v) and fij is XU; then R, is P, {u/u}) Q,.

4. cli is x(v) and /?, is X(U); then R, is (w)(P,{w/u}~Qj{w/u)),
where w is not free in (u)P, or in (u)Q,.

Identifier.

I From A(1) =def P infer A(j) = P{ j/:/a}.

We call this axiomatic theory SGE (for Strong Ground Equivalence); if
P = Q can be proved in SGE we write

SGE+P=Q

or just + P = Q if no ambiguity arises. Note some important points:

1. The last clause of rule CO, namely

From P=Q infer [x=y]P=[x=y]Q,

CALCULUS OF MOBILE PROCESSES, I 31

is redundant in the presence of MO and Ml, since any case of it can be
deduced from them. But CO will be needed when = is interpreted as N,
since MO is invalid in that interpretation.

2. Rule Cl cannot be strengthened to

From P=Q infer x(y).P=x(y).Q

as we can see by considering Eq. 38 above; we have in fact

because y is a place-holder for any received name, and the received name
may be x. Thus the hypothesis of rule Cl must account for all substitu-
tions; for this purpose, however, only finitely many of them need to be
verified.

3. By means of CO, Ml, and Ml all occurrences of a match operator
which are not within an input-prefix form can be eliminated from an
agent. However, [y = z] cannot be removed from the input-prefix form
x(y). [y = z] P. (See also the previous point.)

4. In rule R3 note that c(includes in its range the derived prefix Z(y).

5. In rule E, cases 2 and 4 are crucial; they represent the communica-
tion of a new private name, resulting in a restriction (w) which embraces
both sender and receiver in its scope.

The following results are all proved in the companion paper (Milner,
Parrow, and Walker, 1989), for the definition of A which is given there.

PROPOSITION 1 (Soundness). All the laws of SGE are valid when = is
interpreted as strong bisimilarity, A.

A natural constraint upon defined agents is the following:

DEFINITION 2. An agent identifier B is weakly guarded in P if every
occurrence of B in P is within a prefix form. The agent identifier A is
weakly-guardedly defined if every agent identifier is weakly guarded in the
right-hand side of the definition of A.

The following now shows the importance of head normal form:

PROPOSITION 2. If every agent identifier is weakly-guardedly defined
then, for any agent P, there is a head normal form H such that

SGEI-P=H.

ProoJ An easy case-analysis upon the structure of P. 1

643/100/l-3

32 MILNER, PARROW, AND WALKER

From this, it is not hard to show that SGE is complete for strong
bisimilarity of finite agents.

PROPOSITION 3 (Completeness for finite agents). For all finite agents P
andQ,ifPkQthenSGE+-P=Q.

Proof. Given in the companion paper (Milner, Parrow, and Walker,
1989). 1

5.2. Strong Equivalence

The definition of strong equivalence is now straightforward.

DEFINITION 3. A substitution is a function from JV to JV. We use u to
stand for a substitution, and postfix substitutions in application.
$dx4xih,” :/;otes th e substitution 0 for which xi0 = yi, 1~ i < n, and

DEFINITION 4. P and Q are strongly equivalent, written P- Q, if
PCT k Qa for all substitutions (T.

Now, when the equality symbol = is interpreted as strong equivalence
-, all the laws of SGE hold except for rules MO and E. The failure of MO
is clear; Eqs. (38) and (39) indicate why E fails. On the other hand, a
stronger form of rule Cl is valid:

Cl’ From P=Q infer x(y).P=x(y).Q.

It may also be shown that recursive definition preserves - (though not L)
in an appropriate sense; thus strong equivalence is truly a congruence
relation.

Matching can be employed to yield a new form E’ of the expansion law
which is valid for N:

E’ Assume P = Cj cl;. Pi and Q = & /Ij.Qj, where no ai (resp. b,) binds
a name free in Q (resp. P); then infer

PIQ=Cai,(PiIQ)+CB,.(PlQj)+ C Cxi=YiI~~R~,
I i 1, OPP s,

where the relation a, opp j?, (cli opposes lJi) holds in four cases:

1. cx, is qu and flj is yj(v); then R, is PiIQj{u/u}.

2. ai is q(u) and /I, is y,(u); then R, is (w)(P,{w/u}I
Qj{w/v}), where w is not free in (u)P, or in (v)Qj.

3. ai is xi(v) and /Ii is Eu; then R, is P,(u/v} 1 Qj.

CALCULUS OF MOBILE PROCESSES, I 33

4. ai is xi(u) and flj is s(u); then R, is (w)(Pi{w/u}l
Q,(w/u}), where w is not free in (u)P, or in (u)Qi.

We summarize these facts as follows:

PROPOSITION 4 (Soundness). The laws of SGE - {Cl, MO, E} u
{Cl’, E’} are valid when = is interpreted as strong equivalence, - .

This system is not complete for - over finite agents. It may be possible
to make it so by adding reasonable laws for matching, but we have not yet
succeeded in this. An alternative and perhaps simpler way to axiomatise
strong equivalence is given in Proposition 9 below.

In Proposition 5 we give further useful laws of strong equivalence; they
are important in the sense that, in exploring alternatives for the semantic
definition, we have found them-particularly the last two-a stringent test.
It is no exaggeration to say that, without these laws, we would not feel
justified in proposing the calculus.

PROPOSITION 5. 1. PIO-P

2. PIQ-QlJ’
3. f’l(QlW-(PlQ,lR
4. (x)(PlQ)-Pl(x)Q ifx#fn(f’).

Proof: In the companion paper (Milner, Parrow, and Walker,
1989). 1

5.3. Recursion

We record here the properties which we would expect of recursive defmi-
tions, by analogy with CCS (Milner, 1989). First, if we transform the right-
hand sides of definitions, respecting N, then the agent defined is the same
up to -. Second, if two agents satisfy the same (recursive) equation, then
they are the same up to -, provided the equation satisfies a standard
condition. Both properties fail for A, strong bisimilarity.

In order to state these results, we need a few preliminaries. We assume
a set of schematic identifiers, each having a nonnegative arity. In the
following, X and Xi will range over schematic identifiers. An agent
expression is like an agent, but may contain schematic identifiers in the
same way as identifiers; in this section E, F will range over agent
expressions.

DEFINITION 5. Let X have arity n, let 2 = x,, x, be distinct names,
and assume that fn(P) E (xi, x, }. The replacement of X(Z) by P in E,
written E{X(I) := P}, means the result of replacing each subterm X(j) in

34 MILNER, PARROW, AND WALKER

E by P{ j/Z}. This extends in the obvious way to simultaneous replacement
of several schematic identifiers, E{ X,(ZI) := P,, X,(2,) := P,}.

As an example,

(fY.WX, xl + (Y) X(x, Y))lW u, w) :=Ilw.O} -.fy.xx.o+ (y)Xy.O.

In what follows, we assume the indexing set I to be either { 1, m} for
some m z 1, or else w. We write w for a sequence X,, X2, . . . indexed by I;
similarly p, etc. We use i, j to range over I. When a sequence z of
schematic identifiers is implied by context, each with an associated name
sequence fi, then it is convenient to write E{X,(.?-,) := P,, X,(2,,,) := P,}
simply as E(PI, P,, . ..). or as E(p). If each Pi is A i(.?i), we also write
E(A,, A,, . ..) or E(A”).

It is natural to define strong equivalence between agent expressions as
equivalence under all replacements of schematic identifiers by agents:

DEFINITION 6. Let E and F be two agent expressions containing only
the schematic identifiers Xi, each with associated name sequence 2;. Then
E - F means that

E(p) - F(p)

for all p such that fn(Pi) c Pi for each i.

We can now state our first result, that recursive definition preserves
strong equivalence:

PROPOSITION 6. Assume that E and F are agent expressions containing
only the schematic identifiers Xi, each with associated name sequence Ei.
Assume that A” and B are identifiers such that for each i the arities of Ai, B,,
and Xi are equal. Assume that for all i

AJ.2,) z’E,(A)

Bi(2;) ‘%‘FJi(B).

Then Ai - B,(li) for all i.

If A is weakly guarded in E then intuitively, from the definition A =def E,
we can unfold the behaviour of A uniquely. The next result makes this
precise in the general case:

PROPOSITION 7. Assume that E are agent expressions containing only the
schematic identifiers X,, each with associated name sequence Zi, and that

CALCULUS OF MOBILE PROCESSES, I 35

each Xi is weakly guarded in each Ej. Assume that P and 0 are agents such
that fn(P,) c Zi and fn(Qi) - c 2 jf or each i. Assume that for all i

Pi- Ei(p)

Qi ‘V Ei(Q).

Then Pi- Qi for all i.

5.4. Distinctions

Having looked at the theories of both strong bisimilarity and strong
equivalence, we now address the task of combining them into one.

DEFINITION 7. A distinction is a symmetric irreflexive relation between
names. We let D range over distinctions. A substitution a respects a
distinction D if, for all (x, y) E D, xo # yo.

DEFINITION 8. P and Q are strongly D-equivalent, written p-D Q, if
Pa A QO for all substitutions o respecting D.

Now it is quite natural to record, for certain pairs of agents, the distinc-
tion under which they are equivalent; D need involve only the names which
are free in the agents. As a simple example, Eq. (38) can be strengthened
to

XIY-{.YI.}X*Y+Y-f. (43)

Here we have used a natural abbreviation, allowing ourselves to write a set
A E M when we mean the distinction A x A - Id-,-, which keeps all
members of A distinct from each other. (It may turn out that we only
need distinctions of this simpler form, but we have not been able to assure
ourselves of this.) Clearly, then, we have the two extreme cases

A=- .+. and w=-~.

There are two useful operations upon distinctions. First, we define

This removes any constraint in D upon the substitution for x. Also, for any
set A E J of names, we define

D rAefDn(AxA).

PROPOSITION 8. The following properties hold for strong equivalence
indexed by distinctions:

36 MILNER, PARROW, AND WALKER

1. I~DcD’ then PwDQ implies PwDcQ

2. [x=y]P-(,,.) 0

3. Zf PwD Q then (.x)P-~~,,~ (x)Q

4. VP-D,, Q then ~(x).P-~., y(x).Q

5. IfP-J, Q and A=fn(P, Q) then P-, lA Q.

Proposition 8.1 needs little comment. Proposition 8.2 is the proper
strengthening of rule MO in SGE. It also combines pleasantly with the
modified expansion law E’; by using it, we can remove summands from
an expansion provided we strengthen the distinction. As a very simple
example, note first that Equation (41),

is an instance of E’; then using Proposition 8.2 we can deduce

.~.PIJ?.Q-,,,,.,~~.(P~~.Q)+~.(~.PIQ). (44)

Propositions 8.3 and 8.4 neatly contrast the two kinds of name-binding.
Proposition 8.3 indicates that since a restriction (x) itself preserves x
distinct from other variables, there is no need to enforce the distinction by
other means. On the other hand, Proposition 8.4 indicates the obligation,
in proving equality of positive prefix forms, to allow the bound variable to
range over all names. Note that, using Proposition 8.3, we can deduce from
(44) that

(x)(X.PI y.Q)-, (xNX.(PI y.Q)+ y.(f.PI Q,,.

This is a fdl equivalence, and compared with (41) it does not require the
[x = r] term because the restriction (x) enforces the distinction between x
and y. (In passing, note that this expression simplifies further to
y.(x)(X.PI Q) by R2, R3, and R4,) In contrast, using Proposition 8.4 with
D=@, we deduce from (41)

and the match cannot be discarded.
Proposition 8.5 merely asserts that, in an equation P-D Q, only the free

names in P and Q have any relevance in D.
While Proposition 8 provides useful working laws, we do not need it

to obtain a complete axiomatization of strong equivalence indexed by
distinctions. This can trivially be done by adding the following law:

D From PO = QG, for all 0 respecting D, infer P =D Q.

CALCULUS OF MOBILE PROCESSES, I 37

(A more refined formulation of rule D actually confines the hypothesis to
ifinitely many distinct a.)

PROPOSITION 9. SGE u {D } is sound, and complete over finite agents,
when = and = n are interpreted as k and -b respectively.

Proof: Directly from Definition 8. 1

5.5. Weak Bisimilarity and Equivalence

We now turn briefly to weak bisimilarity. Analogously with CCS, there
is a notion of weak bisimilarity &:, also called weak ground equivalence,
which ignores the silent r actions; it will be treated in a subsequent paper.
As in CCS, this equivalence is not preserved by summation; also, like A,
it is not preserved by positive prefix (since it is not preserved by substitu-
tion). These two defects can be remedied either separately or together; we
thus arrive at three further equivalences, the third of which is a congruence:

DEFINITION 9. 1. The agents P and Q are (weakly) ground-equal,
written P & Q, if P + R & Q + R for all agents R.

2. The agents P and Q are (weakly) equivalent, written P z Q, if
Pa & Qa for all substitutions a.

3. The agents P and Q are (weakfy) equal, written P N Q, if Pa & Qa
for all substitutions a.

(Of course the last two may also be distinction-indexed, by constraining
a.) We shall not pursue these now, but merely point out that the z laws of
CCS are valid for weak ground equality. The r laws are as follows:

Prefix.

PO cc.r.P=cr.P

Pl P+z.P=t.P

P2 a.(P+t.Q)+cl.Q=a.(P+z.Q).

PROPOSITION 10. SGE u {PO, Pl, P2) is sound, when = is interpreted
as &.

We conjecture that this axiomatization is also complete for finite agents,
but the details remain to be checked.

5.6. Constants

We tinish with a brief discussion of constants. In our examples in Section
4 we introduced constant names, and we now need to see how they are best
handled. The key property of constants, in the general understanding of the

38 MILNER, PARROW, AND WALKER

term, is that they “stand for themselves.” In our context, this means simply
that they are never instantiated. In particular, we therefore take the
liberty-as in (23, 24) for example-not to include them among the
parameters of an agent identifier A which uses them in its definition. They
could be so included, to meet the condition imposed on defining equations
in Section 2; then one would simply include them also in the parameter list
of every use of A in agent expressions.

More important is that, since constants will never be instantiated, they
never run the risk of being identified with one another. Thus, while
working in the theory, one may prove equations among agents which use
certain constant names, say i? = (u, , u,}, and one may take advantage of
their “constanthood” by proving equations indexed by the distinction D = v"
(or, more explicitly, fi x 6 - Id, ,.). In this working, one may by convention
choose to omit the index D from equations. Later, one may wish to
abstract from the particular choice of constant names. But this is the
essence of Proposition 8.3 (or its analogue for 2:); from any D-indexed
equation P = D Q, with D = i?, one can infer

(C)P=,, (C)Q.

Thus the calculus reflects the idea that the difference between constants and
variables should not be sharply drawn.

6. CONCLUSION

An algebraic process calculus with mobility has been long in maturing.
In 1979, before CCS was published, one of us (Milner) discussed with
Mogens Nielsen at Aarhus the possibility of including such a notion at the
outset, but we failed to see how to do it. It was not until the paper by
Engberg and Nielsen (1986) that the possibility was established; their
semantic rules represent our starting point. In two ways it has been
fortunate that the various process algebras-for example CSP (Hoare,
1985), ACP (Bergstra and Klop, 1985), and CCS (Milner, 1989)--did not
include mobility: First, they were thereby simpler, and yet presented many
problems which were better tackled in a simpler setting; second, the situa-
tions in which mobility is needed have become more sharply defined, and
therefore the need more sharply felt, through experimental use of these
algebras.

There have been a number of formalisms which allow mobility, but have
not developed its algebraic theory. The first was Hewitt’s Actor formalism.
Hewitt’s ideas on the changing configuration among actors were developed
in the early 1970s; a semantic treatment is given by Clinger in his Ph.D.
thesis (Clinger, 1981). More recently, Kennaway and Sleep invented their

CALCULUS OF MOBILE PROCESSES, I 39

LNET and DyNe formalisms specifically to describe parallel graph reduc-
tion processes, such as we present in Section 4, in the context of a project
to design a parallel processor (Sleep and Kennaway, 1984). Also Astesiano
and Zucca (1984) have extended CCS to include parametric channels.

Engberg and Nielsen (1986) did not publish their report, and it has not
received due attention, probably because its treatment of constants,
variables, and names is somewhat difficult. Many features of the z-calculus
are due to them, in particular the replacement of CCS relabeling by syntac-
tic substitution (crucial for formulation of the semantic rules); the semantic
treatment of scope extrusion; the extension of the definition of bisimulation
to account for name parameters; the definition of strong bisimilarity (which
they call simply “strong equivalence”); and the soundness of most algebraic
laws. We made many failed attempts to depart from their formulation. Our
contribution has been to remove all discrimination among constant names,
variable names, and values, yielding a more basic calculus; to discriminate
between ground and non-ground equivalence (needed to replace the
constant-variable discrimination); to strengthen the algebraic laws-in
particular the expansion law-in order to achieve complete equational
theories; to encode value-computations in the calculus in a tractable way
(with the help of a new match construct); and to provide rather simple
encodings of functional calculi-the l-calculus and combinatory algebra.

RECEIVED December 18, 1989; FINAL MANUSCRIPT RECEIVED October 26, 1990

REFERENCES

ABRAMSKY, S. (1988), The Lazy Lambda Calculus, in “Declarative Programming” (D. Turner,
Ed.), Addison-Wesley, Reading, MA.

ASTESIANO, E., AND ZUCCA, E. (1984), Parametric channels via label expressions in CCS,
Theoret. Comput. Sci. 33, 4564.

BERGSTRA, J. A., AND KLOP, J.-W. (1985). Algebra of Communicating Processes with
Abstraction, Theoret. Comput. Sci. 33, 77-121.

BOUDOL, G. (1988), private communication.
CLINGER, W. D. (1981), “Foundations of Actor Semantics,” AI-TR-633, MIT Artificial

Intelligence Laboratory.
ENGBERG, U., AND NIELSEN, M. (1986), “A Calculus of Communicating Systems with Label-

Passing,” Report DAIMI PB-208, Computer Science Department, University of Aarhus.
HOARE, C. A. R. (1985), “Communicating Sequential Processes,” Prentice-Hall, Englewood

Cliffs, NJ.
LEINWAND, S., GOGUEN, J. A., AND WINKLER, T. (1988), Cell and ensemble architecture

for the rewrite rule machine, in “Proc. International Conference on Fifth Generation
Computing Systems, ICOT,” pp. 869-878.

MILNER, R. (1989), “Communication and Concurrency,” Prentice-Hall, Englewood Cliffs, NJ.
MILNER, R. (1990), “Functions as Processes,” Research Report 1154, INRIA, J. Math. Stud.

Comput. Sci., to appear.

40 MILNER, PARROW, AND WALKER

MILNER, R., PARROW, J. G., AND WALKER, D. J. (1989). “A Calculus of Mobile Processes,
Part II,” Report ECS-LFCS-89-86, Laboratory for Foundations of Computer Science,
Computer Science Department, Edinburgh University, and (1992) Informafion and
Computation 100, 41-77.

NIELSEN, F. (1989). “The Typed I-Calculus with First-Class Processes,” in Proc. PARLE.

Vol. 366. Lecture Notes in Computer Science, Springer-Verlag.
ONG, C.-H. L. (1988) Fully abstract models of the lazy lambda calculus, in “Proc.

29th Symposium on Foundations of Computer Science,” pp. 368-376.
REISIG, W. (1983), “Petri Nets,” EATCS Monographs on Theoretical Computer Science,

Springer-Verlag, Berlin/New York.
SLEEP, M. R., AND KENNAWAY, J. R. (1984), The Zero Assignment Parallel Processor

(ZAPP) project, in “The Distributed Computing Systems Programme” (D. A. Duce, Ed.),
pp. 25&269, Peter Peregrinus.

THOMSEN, B. (1989) A calculus of higher-order communicating systems, in “Proc. POPL
Conference.”

