Linear Logic

Intuitionistic Linear Logic

\[\begin{array}{c}
\text{A, B ::= } \alpha \mid b \mid A \rightarrow B \mid \top \mid \bot \mid \exists \alpha. A \\
\mid A \otimes B \mid \bot \mid A \oplus B \mid \top \mid \forall \alpha. A \mid \! \! A
\end{array} \]

Classical Logic

Excluded Middle : \(A \lor \neg A \)

LK - Gentzen's Classical Sequent Calculus

\(\Gamma \vdash \Delta \)

"and" \(\Gamma, A \vdash \Delta \)

"or" \(\Gamma, A \lor B \vdash \Delta \)

"multiple conclusion" \(\Gamma, A \rightarrow \Delta \)

(1) restrict to single conclusion \(\Rightarrow \) intuitionistic

(2) restrict weakening & contraction \(\Rightarrow \) linear logic
\[\Gamma, A \vdash A \]
\[\text{(Axiom)} \]

\[A \vdash A \]
\[\text{(Axiom)} \]

\[\vdash \neg A, A \]
\[\text{(neg)} \]

\[\vdash A \lor A, A \]
\[\text{(lin \ "or")} \]

\[\vdash A, \neg A \lor A \]
\[\text{(exchange)} \]

\[\vdash \neg A \lor A, \neg A \lor A \]
\[\text{(lin \ "or")} \]

\[\vdash \neg A \lor A \]
\[\text{(contraction)} \]

\[A \& B \vdash \text{unit for } \& \]

\[A, B ::= \alpha \mid b \mid A \rightarrow B \mid \perp \mid A \& B \mid \top \mid \exists \alpha. A \mid ?A \]

\[b^\perp \mid A \& B \mid \perp \mid A \oplus B \mid 0 \mid \forall \alpha. A \mid !A \]

\[A \nrightarrow B \overset{\text{def}}{=} A^\perp \& B \]

\[\vdash A \nrightarrow \perp, A^\perp \& \perp \]

\[\Gamma, A, B \vdash \Delta \]

\[\Gamma, A \& B \vdash \Delta \]

\[\Gamma, A \& B \vdash \Delta \]

\[\Gamma, A \& B \vdash \Delta \]

\[(b^\perp) = b^\perp \]

\[(A \& B)^\perp = A^\perp \& B^\perp \]

\[(A \nrightarrow B)^\perp = A^\perp \oplus B^\perp \]

\[(\exists \alpha. A)^\perp = \forall \alpha. A^\perp \]

\[(\perp)^\perp = \top \]

\[(\top)^\perp = \perp \]

\[(?A)^\perp = ! (A^\perp) \]
• Add \mathcal{B}, 1 to recover multiconclusion
• Work with A^\top to recover negation

$A \to 1 = A^\top \quad A \to 0$

In linear logic $\vdash A \otimes A^\top \leq$

but $\not\vdash A \oplus A \otimes 0$

$\begin{array}{c}
\begin{array}{c}
A \otimes A^\top \\
\hline
A \to B \overset{\text{def}}{=} A^\top \otimes B \\
\hline
A^\top \oplus B
\end{array}
\end{array}$
Full Classical Linear Logic

$\Gamma \vdash \Delta$

$\Gamma \vdash \Delta$ is a multiset of L.L. propositions

$\Gamma, A \vdash A^\perp, \Delta$

$\Gamma, A \vdash \Delta$

$\Gamma, A \vdash \Delta, B$

$\Gamma, A \otimes B, \Delta$

$\Gamma, A \otimes B$

$\Gamma, A \otimes B$
\textbf{\[\Gamma, \tau \]
\[\vdash \Gamma, A \quad \vdash \Gamma, B \]
\[\vdash \Gamma, A \& B \]
\[\vdash \Gamma, A \quad \vdash \Gamma, A \oplus B \]
\[\vdash \Gamma, A \& B \]
\[\vdash \Gamma, A [B/\alpha] \]
\[\vdash \Gamma, \exists \alpha. A \]
\[\vdash ? \Gamma, A \quad \vdash ? \Gamma, ! A \]
\[\vdash \Gamma, \exists \alpha. A \quad \vdash \Gamma, ! A \]
\[\vdash \Gamma, ? A \quad \vdash \Gamma, ? A \]
\[\vdash \Gamma, \exists \alpha. A \]
\[(A^\perp)^\perp = A\]

\[\Gamma, A, A^\perp \vdash \Gamma, A, A^\perp, \Delta\]

Inductive Type:

- **Positive base**: \((s : \text{String})\)
- **Negative base**: \((s : \text{String})\)
- **One**, **Zero**, **Tensr**

Fixpoint dual

\[(A : \text{Type}) : \text{Type} :=\]

Inductive judgments:

- **List**: \([\text{Type} \Rightarrow \text{Prop}]\)
- **Identity**: \(\forall (A : \text{Type}), \Gamma A, \text{dual } A\]
- \(\vdash\)
\[\Gamma + \Delta \]

\[x : A, y : A' \ldots \vdash (s : A), (t : B), (u : C) \]

\[A \rightarrow B = A^t \rightarrow B \]

\[\Gamma, x : A \vdash s : B, \Delta \]

\[\Gamma, \vdash (\lambda x : S) : A \rightarrow B, \Delta \]