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Announcements 
•  Plan for Today: 

–  RSA continued 
–  Dolev-Yao model of attackers 
–  Authentication protocols 

•  Project 3 is due 6 April 2009 at 11:59 pm 
–  Handout for SDES available by request… 
–  Please read the project description BEFORE looking at the code 

•  Midterm 2 is Thursday, April 2nd (next week!) in class 
•  Final exam has been scheduled:  

 Friday, May 8, 2009 
 9:00am – 11:00am, Moore 216 
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RSA at a High Level 
•  Public and private key are derived from secret prime 

numbers 
–  Keys are typically ≥ 1024 bits 

•  Plaintext message (a sequence of bits) 
–  Treated as a (large!) binary number 

•  Encryption is modular exponentiation 
•  To break the encryption, conjectured that one must be 

able to factor large numbers 
–  Not known to be in P  (polynomial time algorithms) 
–  Is known to be in BQP (bounded-error, quantum polynomial time – 

Shor’s algorithm) 
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RSA Key Generation 
•  Choose large, distinct primes p and q. 

–  Should be roughly equal length (in bits) 
•  Let n = p*q 
•  Choose a random encryption exponent e 

–  With requirement: e and (p-1)*(q-1) are relatively prime. 
•  Derive the decryption exponent d 

–  d = e-1 mod ((p-1)*(q-1)) 
–  d is e’s inverse mod ((p-1)*(q-1)) 

•  Public key: K = (e,n)       pair of e and n 
•  Private key: k = (d,n)  
•  Discard primes p and q (they’re not needed anymore) 
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RSA Encryption and Decryption 
•  Message: m 
•  Assume m < n 

–  If not, break up message into smaller chunks 
–  Good choice: largest power of 2 smaller than n 

•  Encryption:    E((e,n), m) = me mod n 
•  Decryption:    D((d,n), c) = cd mod n 
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Example RSA 
•  Choose p = 47, q = 71 
•  n = p * q = 3337 
•  (p-1)*(q-1) = 3220 
•  Choose e relatively prime with 3220: e = 79 

–  Public key is (79, 3337) 
•  Find d = 79-1 mod 3220 = 1019 

–  Private key is (1019, 3337) 
•  To encrypt m = 688232687966683 

–  Break into chunks < 3337 
–  688   232  687  966  683 

•  Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570 
•  Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688 
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•   φ(n) is the number of positive integers less than n that are 
relatively prime to n 
–   φ(12) = 4 
–  Relative primes of 12 (less than 12): {1, 5, 7, 11} 

•  For p a prime, φ(p) = p-1.  Why? 
•  For p,q two distinct primes, φ(p*q) = (p-1)*(q-1)  

–  There’s p*q-1 numbers less than p*q 
–  Factors of p*q = 

•  {1*p, 2*p, …, q*p}  for a total of q of them 
•  {1*q, 2*q, …, p*q}  for another p of them 
•  No other numbers 
•  φ(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)  

Euler’s totient function: φ(n) 

All #s ≤ p*q 

p many multiples of q 

q many multiples of p 

don’t double count p*q 
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Fermat’s Little Theorem 
•  Generalized by Euler. 

•  Theorem: If p is a prime then  ap ≡ a mod p. 

•  Corollary: If gcd(a,n) = 1 then aφ(n) ≡ 1 mod n. 

•  Easy to compute a-1 mod n 
–  a-1 mod n = aφ(n)-1 mod n 
–  Why?   a * aφ(n)-1 mod n 

         = aφ(n)-1+1 mod n  
         = aφ(n) mod n 
         ≡ 1 mod n 
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Chinese Remainder Theorem 
•  (Or, enough of it for our purposes…) 

•  Suppose: 
–  p and q are relatively prime 
–  a ≡ b (mod p)  
–  a ≡ b (mod q) 

•  Then: a ≡ b (mod p*q)  

•  Proof:  
–  p divides (a-b)  (because a mod p = b mod p) 
–  q divides (a-b) 
–  Since p, q are relatively prime, p*q divides (a-b) 
–  But that is the same as: a ≡ b (mod p*q)  
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Proof that D inverts E 
   cd mod n 
= (me)d mod n    (definition of c) 
= med mod n     (arithmetic) 
= mk*(p-1)*(q-1) + 1 mod n   (d inverts e mod φ(n) ) 
= m*mk*(p-1)*(q-1) mod n   (arithmetic) 
= m mod n     (C. R. theorem) 
= m      (m < n) 

e*d ≡ 1 mod (p-1)*(q-1) 
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Finished Proof 
•  Note: mp-1 ≡ 1 mod p    (if p doesn’t divide m) 

–  Why? Fermat’s little theorem. 

•  Same argument yields: mq-1 ≡ 1 mod q 

•  Implies: mk*φ(n)+1 ≡ m mod p 
•  And       mk*φ(n)+1 ≡ m mod q 

•  Chinese Remainder Theorem implies: 
    mk*φ(n)+1 ≡ m mod n 

•  Note: if p (or q) divides m, then mx ≡ 0 mod n 
–  Since m < n we must have m = 0. 
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How to Generate Prime Numbers 
•  Many strategies, but Rabin-Miller primality test is often used in 

practice. 
–  ap-1 ≡ 1 mod p 

•  Efficiently checkable test that, with probability ¾, verifies that a 
number p is prime. 

–  Iterate the Rabin-Miller primality test t times. 
–  Probability that a composite number will slip through the test is  

(¼)t  

–  These are worst-case assumptions. 
•  In practice (takes several seconds to find a 512 bit prime):  

1.  Generate a random n-bit number, p 
2.  Set the high and low bits to 1 (to ensure it is the right number of 

bits and odd) 
3.  Check that p isn’t divisible by any “small” primes 3,5,7,…,<2000 
4.  Perform the Rabin-Miller test at least 5 times. 
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Rabin-Miller Primality Test 
•  Is n prime? 
•  Write n as n = (2r)*s + 1 
•  Pick random number a, with 1 ≤ a ≤ n - 1 
•  If  

–  as ≡ 1 mod n     and  
–  for all j in {0 … r-1},   a2js ≡  -1 mod n 

•  Then return composite 
•  Else return probably prime 
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General Definition of “Protocol” 
•  A protocol is a multi-party algorithm 

–  A sequence of steps that precisely specify the actions required of 
the parties in order to achieve a specified objective. 

•  Important that there are multiple participants 
•  Typically a situation of heterogeneous trust 

–  Alice may not trust Bart 
–  Bart may not trust the network 
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Characteristics of Protocols 
•  Every participant must know the protocol and the steps in 

advance. 
•  Every participant must agree to follow the protocol 

–  Honest participants 

•  Big problem: How to deal with bad participants? 
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Cryptographic Protocols 
•  Consider communication over a network… 
•  What is the threat model? 

–  What are the vulnerabilities? 

S R T 

Sender Transmission Medium Receiver 

O 

Interceptor 
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What Can the Attacker Do? 
•  Intercept them (confidentiality) 
•  Modify them (integrity) 
•  Fabricate other messages (integrity) 
•  Replay them (integrity) 

•  Block the messages (availability) 
•  Delay the messages (availability) 
•  Cut the wire (availability) 
•  Flood the network (availability) 
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Dolev-Yao Model 
•  Simplifies reasoning about protocols  

–  doesn't require reduction to computational complexity 
•  Treat cryptographic operations as "black box" 
•  Given a message M = (c1,c2,c3,…)  attacker can 

deconstruct message into components c1 c2 c3 
•  Given a collection of components c1, c2, c3, … attacker 

can forge message using a subset of the components 
(c1,c2,c3) 

•  Given an encrypted object K{c}, attacker can learn c only 
if attacker knows decryption key corresponding to K 

•  Attacker can encrypt components by using:  
–  fresh keys, or  
–  keys they have learned during the attack 
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Formal Dolev-Yao Model 
•  A message is a finite sequence of : 

–  Atomic strings, nonces, Keys (public or private), Encrypted Submessages 
 M ::=  a  |   n  |  K   |  k  |   K{M}  |   k{M}   |   M,M 

•  The attacker's  (or observer's)  state is a set S of messages: 
–  The set of all message & message components that the attacker has 

seen -- the attacker's "knowledge" 
–  Seeing a new message sent by an honest participant adds the new 

message components to the attacker's knowledge 
–  If   M1, M2 ∈ S   then   M1 ∈ S   and   M2 ∈ S  
–  If   KA{M} ∈ S   and   KA ∈ S   then   M ∈ S  
–  If   KA{M} ∈ S   and kA ∈ S   then  M ∈ S  
–  If   M ∈ S  and K ∈ S   then K{M} ∈ S  
–  If   M ∈ S   and k ∈ S   then k{M} ∈ S  
–  If   k is a “fresh” key, then k ∈ S 

S closed under these 
operations 



3/24/09 CIS/TCOM 551 20 

Using the Dolev-Yao model 
•  Given a description of a protocol: 

–  Sequence of messages to be exchanged among honest parties. 

•  "Simulate" an attacked version of the protocol: 
–  At each step, the attacker's knowledge state is the (closure of the)  
    knowledge of the prior state plus the new message 
–  An active attacker can create (and insert into the communication 

stream) any message M composed from the knowledge state S: 
•  M = M1,M2,…,Mn   such that Mi ∈ S  

•  See if the "attacked" protocol leads to any bad state 
–  Example:    if K is supposed to be kept secret but K ∈ S at some 

point, the attacker has learned the key. 
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Authentication 
•  For honest parties, the claimant A is able to 

authenticate itself to the verifier B.  That is, B will 
complete the protocol having accepted A’s identity. 

Alice Bart 
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Shared-Key Authentication 

•  Assume Alice & Bart already share a key KAB. 
–  The key might have been decided upon in person or 

obtained from a trusted 3rd party. 

•  Alice & Bart now want to communicate over a 
network, but first wish to authenticate to each other 

Alice Bart 

KAB KAB 
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Solution 1: Weak Authentication 

•  Alice sends Bart KAB. 
–  KAB acts as a password. 

•  The secret (key) is revealed to passive observers. 
•  Only works one-way. 

–  Alice doesn’t know she’s talking to Bart. 

Alice Bart 

KAB KAB 

KAB 
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Solution 2: Strong Authentication 

•  Protocol doesn’t reveal the secret. 
•   Challenge/Response 

–  Bart requests proof that Alice knows the secret 
–  Alice requires proof from Bart 
–  RA and RB are randomly generated numbers 

Alice Bart 

KAB KAB 

I’m Alice 

Challenge: Encrypt RB 

Response: KAB{RB} 

Challenge: Encrypt RA 

Response: KAB{RA} 
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(Flawed) Optimized Version 

•  Why not send more information in each message? 
•  This seems like a simple optimization. 
•  But, it’s broken…  how? 

Alice Bart 

KAB KAB 

Alice, RA 

        RB, KAB{RA} 

        KAB{RB} 
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Attack: Marvin can Masquerade as Alice 

•  Marvin pretends to take the role of Alice in two runs of the 
protocol. 
–  Tricks Bart into doing Alice’s part of the challenge! 
–  Interleaves two instances of the same protocol. 

Bart 

KAB 

Alice, RA 

        RB, KAB{RA} 

        KAB{RB} 

Alice, RB 

        R’B, KAB{RB} 
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Lessons 
•  Protocol design is tricky and subtle 

–  “Optimizations” aren’t necessarily good 

•  Need to worry about: 
–  Multiple instances of the same protocol running in parallel 
–  Intruders that play by the rules, mostly 

•  General principle: 
–  Don’t do anything more than necessary until confidence is built. 
–  Initiator should prove identity before responder takes action (like 

encryption) 
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Threats 
•  Transferability: B cannot reuse an identification exchange 

with A to successfully impersonate A to a third party C. 

•  Impersonation: The probability is negligible that a party C 
distinct from A can carry out the protocol in the role of A 
and cause B to accept it as having A’s identity. 



3/24/09 CIS/TCOM 551 29 

Assumptions 
•  A large number of previous authentications between A 

and B may have been observed. 

•  The adversary C has participated in previous protocol 
executions with A and/or B. 

•  Multiple instances of the protocol, possibly instantiated by 
C, may be run simultaneously. 
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Primary Attacks 
•  Replay. 

–  Reusing messages (or parts of messages) inappropriately 
•  Interleaving. 

–  Mixing messages from different runs of the protocol. 
•  Reflection. 

–  Sending a message intended for destination A to B instead. 
•  Chosen plaintext. 

–  Choosing the data to be encrypted  
•  Forced delay. 

–  Denial of service attack -- taking a long time to respond 
–  Not captured by Dolev Yao model 
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Primary Controls 
•  Replay:  

–  use of challenge-response techniques  
–  embed target identity in response. 

•  Interleaving 
–  link messages in a session with chained nonces. 

•  Reflection: 
–  embed identifier of target party in challenge response 
–  use asymmetric message formats 
–  use asymmetric keys. 

•  Chosen text:  
–  embed self-chosen random numbers (“confounders”) in 

responses 
–  use “zero knowledge” techniques. 

•  Forced delays: 
–  use nonces with short timeouts 
–  use timestamps in addition to other techniques. 
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Replay 
•  Replay: the threat in which a transmission is observed by 

an eavesdropper who subsequently reuses it as part of a 
protocol, possibly to impersonate the original sender. 
–  Example: Monitor the first part of a telnet session to obtain a 

sequence of transmissions sufficient to get a log-in.   

•  Three strategies for defeating replay attacks 
–  Nonces 
–  Timestamps 
–  Sequence numbers. 



3/24/09 CIS/TCOM 551 33 

Nonces: Random Numbers 
•  Nonce: A number chosen at random from a range of 

possible values. 
–  Each generated nonce is valid only once. 

•  In a challenge-response protocol nonces are used as 
follows. 
–  The verifier chooses a (new) random number and provides it to 

the claimant. 
–  The claimant performs an operation on it showing knowledge of a 

secret. 
–  This information is bound inseparably to the random number and 

returned to the verifier for examination. 
–  A timeout period is used to ensure “freshness”. 
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Time Stamps 
•  The claimant sends a message with a timestamp. 
•  The verifier checks that it falls within an acceptance 

window of time. 
•  The last timestamp received is held, and identification 

requests with older timestamps are ignored. 
•  Good only if clock synchronization is close enough for 

acceptance window. 
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Sequence Numbers 
•  Sequence numbers provide a sequential or monotonic 

counter on messages. 
•  If a message is replayed and the original message was 

received, the replay will have an old or too-small 
sequence number and be discarded. 

•  Cannot detect forced delay. 
•  Difficult to maintain when there are system failures. 


