
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 17

3/24/09 CIS/TCOM 551 2

Announcements
•  Plan for Today:

–  RSA continued
–  Dolev-Yao model of attackers
–  Authentication protocols

•  Project 3 is due 6 April 2009 at 11:59 pm
–  Handout for SDES available by request…
–  Please read the project description BEFORE looking at the code

•  Midterm 2 is Thursday, April 2nd (next week!) in class
•  Final exam has been scheduled:

 Friday, May 8, 2009
 9:00am – 11:00am, Moore 216

3/24/09 CIS/TCOM 551 3

RSA at a High Level
•  Public and private key are derived from secret prime

numbers
–  Keys are typically ≥ 1024 bits

•  Plaintext message (a sequence of bits)
–  Treated as a (large!) binary number

•  Encryption is modular exponentiation
•  To break the encryption, conjectured that one must be

able to factor large numbers
–  Not known to be in P (polynomial time algorithms)
–  Is known to be in BQP (bounded-error, quantum polynomial time –

Shor’s algorithm)

3/24/09 CIS/TCOM 551 4

RSA Key Generation
•  Choose large, distinct primes p and q.

–  Should be roughly equal length (in bits)
•  Let n = p*q
•  Choose a random encryption exponent e

–  With requirement: e and (p-1)*(q-1) are relatively prime.
•  Derive the decryption exponent d

–  d = e-1 mod ((p-1)*(q-1))
–  d is e’s inverse mod ((p-1)*(q-1))

•  Public key: K = (e,n) pair of e and n
•  Private key: k = (d,n)
•  Discard primes p and q (they’re not needed anymore)

3/24/09 CIS/TCOM 551 5

RSA Encryption and Decryption
•  Message: m
•  Assume m < n

–  If not, break up message into smaller chunks
–  Good choice: largest power of 2 smaller than n

•  Encryption: E((e,n), m) = me mod n
•  Decryption: D((d,n), c) = cd mod n

3/24/09 CIS/TCOM 551 6

Example RSA
•  Choose p = 47, q = 71
•  n = p * q = 3337
•  (p-1)*(q-1) = 3220
•  Choose e relatively prime with 3220: e = 79

–  Public key is (79, 3337)
•  Find d = 79-1 mod 3220 = 1019

–  Private key is (1019, 3337)
•  To encrypt m = 688232687966683

–  Break into chunks < 3337
–  688 232 687 966 683

•  Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570
•  Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688

3/24/09 CIS/TCOM 551 7

•  φ(n) is the number of positive integers less than n that are
relatively prime to n
–  φ(12) = 4
–  Relative primes of 12 (less than 12): {1, 5, 7, 11}

•  For p a prime, φ(p) = p-1. Why?
•  For p,q two distinct primes, φ(p*q) = (p-1)*(q-1)

–  There’s p*q-1 numbers less than p*q
–  Factors of p*q =

•  {1*p, 2*p, …, q*p} for a total of q of them
•  {1*q, 2*q, …, p*q} for another p of them
•  No other numbers
•  φ(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)

Euler’s totient function: φ(n)

All #s ≤ p*q

p many multiples of q

q many multiples of p

don’t double count p*q

3/24/09 CIS/TCOM 551 8

Fermat’s Little Theorem
•  Generalized by Euler.

•  Theorem: If p is a prime then ap ≡ a mod p.

•  Corollary: If gcd(a,n) = 1 then aφ(n) ≡ 1 mod n.

•  Easy to compute a-1 mod n
–  a-1 mod n = aφ(n)-1 mod n
–  Why? a * aφ(n)-1 mod n

 = aφ(n)-1+1 mod n
 = aφ(n) mod n
 ≡ 1 mod n

3/24/09 CIS/TCOM 551 9

Chinese Remainder Theorem
•  (Or, enough of it for our purposes…)

•  Suppose:
–  p and q are relatively prime
–  a ≡ b (mod p)
–  a ≡ b (mod q)

•  Then: a ≡ b (mod p*q)

•  Proof:
–  p divides (a-b) (because a mod p = b mod p)
–  q divides (a-b)
–  Since p, q are relatively prime, p*q divides (a-b)
–  But that is the same as: a ≡ b (mod p*q)

3/24/09 CIS/TCOM 551 10

Proof that D inverts E
 cd mod n
= (me)d mod n (definition of c)
= med mod n (arithmetic)
= mk*(p-1)*(q-1) + 1 mod n (d inverts e mod φ(n))
= m*mk*(p-1)*(q-1) mod n (arithmetic)
= m mod n (C. R. theorem)
= m (m < n)

e*d ≡ 1 mod (p-1)*(q-1)

3/24/09 CIS/TCOM 551 11

Finished Proof
•  Note: mp-1 ≡ 1 mod p (if p doesn’t divide m)

–  Why? Fermat’s little theorem.

•  Same argument yields: mq-1 ≡ 1 mod q

•  Implies: mk*φ(n)+1 ≡ m mod p
•  And mk*φ(n)+1 ≡ m mod q

•  Chinese Remainder Theorem implies:
 mk*φ(n)+1 ≡ m mod n

•  Note: if p (or q) divides m, then mx ≡ 0 mod n
–  Since m < n we must have m = 0.

3/24/09 CIS/TCOM 551 12

How to Generate Prime Numbers
•  Many strategies, but Rabin-Miller primality test is often used in

practice.
–  ap-1 ≡ 1 mod p

•  Efficiently checkable test that, with probability ¾, verifies that a
number p is prime.

–  Iterate the Rabin-Miller primality test t times.
–  Probability that a composite number will slip through the test is

(¼)t

–  These are worst-case assumptions.
•  In practice (takes several seconds to find a 512 bit prime):

1.  Generate a random n-bit number, p
2.  Set the high and low bits to 1 (to ensure it is the right number of

bits and odd)
3.  Check that p isn’t divisible by any “small” primes 3,5,7,…,<2000
4.  Perform the Rabin-Miller test at least 5 times.

3/24/09 CIS/TCOM 551 13

Rabin-Miller Primality Test
•  Is n prime?
•  Write n as n = (2r)*s + 1
•  Pick random number a, with 1 ≤ a ≤ n - 1
•  If

–  as ≡ 1 mod n and
–  for all j in {0 … r-1}, a2js ≡ -1 mod n

•  Then return composite
•  Else return probably prime

3/24/09 CIS/TCOM 551 14

General Definition of “Protocol”
•  A protocol is a multi-party algorithm

–  A sequence of steps that precisely specify the actions required of
the parties in order to achieve a specified objective.

•  Important that there are multiple participants
•  Typically a situation of heterogeneous trust

–  Alice may not trust Bart
–  Bart may not trust the network

3/24/09 CIS/TCOM 551 15

Characteristics of Protocols
•  Every participant must know the protocol and the steps in

advance.
•  Every participant must agree to follow the protocol

–  Honest participants

•  Big problem: How to deal with bad participants?

3/24/09 CIS/TCOM 551 16

Cryptographic Protocols
•  Consider communication over a network…
•  What is the threat model?

–  What are the vulnerabilities?

S R T

Sender Transmission Medium Receiver

O

Interceptor

3/24/09 CIS/TCOM 551 17

What Can the Attacker Do?
•  Intercept them (confidentiality)
•  Modify them (integrity)
•  Fabricate other messages (integrity)
•  Replay them (integrity)

•  Block the messages (availability)
•  Delay the messages (availability)
•  Cut the wire (availability)
•  Flood the network (availability)

3/24/09 CIS/TCOM 551 18

Dolev-Yao Model
•  Simplifies reasoning about protocols

–  doesn't require reduction to computational complexity
•  Treat cryptographic operations as "black box"
•  Given a message M = (c1,c2,c3,…) attacker can

deconstruct message into components c1 c2 c3
•  Given a collection of components c1, c2, c3, … attacker

can forge message using a subset of the components
(c1,c2,c3)

•  Given an encrypted object K{c}, attacker can learn c only
if attacker knows decryption key corresponding to K

•  Attacker can encrypt components by using:
–  fresh keys, or
–  keys they have learned during the attack

3/24/09 CIS/TCOM 551 19

Formal Dolev-Yao Model
•  A message is a finite sequence of :

–  Atomic strings, nonces, Keys (public or private), Encrypted Submessages
 M ::= a | n | K | k | K{M} | k{M} | M,M

•  The attacker's (or observer's) state is a set S of messages:
–  The set of all message & message components that the attacker has

seen -- the attacker's "knowledge"
–  Seeing a new message sent by an honest participant adds the new

message components to the attacker's knowledge
–  If M1, M2 ∈ S then M1 ∈ S and M2 ∈ S
–  If KA{M} ∈ S and KA ∈ S then M ∈ S
–  If KA{M} ∈ S and kA ∈ S then M ∈ S
–  If M ∈ S and K ∈ S then K{M} ∈ S
–  If M ∈ S and k ∈ S then k{M} ∈ S
–  If k is a “fresh” key, then k ∈ S

S closed under these
operations

3/24/09 CIS/TCOM 551 20

Using the Dolev-Yao model
•  Given a description of a protocol:

–  Sequence of messages to be exchanged among honest parties.

•  "Simulate" an attacked version of the protocol:
–  At each step, the attacker's knowledge state is the (closure of the)
 knowledge of the prior state plus the new message
–  An active attacker can create (and insert into the communication

stream) any message M composed from the knowledge state S:
•  M = M1,M2,…,Mn such that Mi ∈ S

•  See if the "attacked" protocol leads to any bad state
–  Example: if K is supposed to be kept secret but K ∈ S at some

point, the attacker has learned the key.

3/24/09 CIS/TCOM 551 21

Authentication
•  For honest parties, the claimant A is able to

authenticate itself to the verifier B. That is, B will
complete the protocol having accepted A’s identity.

Alice Bart

3/24/09 CIS/TCOM 551 22

Shared-Key Authentication

•  Assume Alice & Bart already share a key KAB.
–  The key might have been decided upon in person or

obtained from a trusted 3rd party.

•  Alice & Bart now want to communicate over a
network, but first wish to authenticate to each other

Alice Bart

KAB KAB

3/24/09 CIS/TCOM 551 23

Solution 1: Weak Authentication

•  Alice sends Bart KAB.
–  KAB acts as a password.

•  The secret (key) is revealed to passive observers.
•  Only works one-way.

–  Alice doesn’t know she’s talking to Bart.

Alice Bart

KAB KAB

KAB

3/24/09 CIS/TCOM 551 24

Solution 2: Strong Authentication

•  Protocol doesn’t reveal the secret.
•  Challenge/Response

–  Bart requests proof that Alice knows the secret
–  Alice requires proof from Bart
–  RA and RB are randomly generated numbers

Alice Bart

KAB KAB

I’m Alice

Challenge: Encrypt RB

Response: KAB{RB}

Challenge: Encrypt RA

Response: KAB{RA}

3/24/09 CIS/TCOM 551 25

(Flawed) Optimized Version

•  Why not send more information in each message?
•  This seems like a simple optimization.
•  But, it’s broken… how?

Alice Bart

KAB KAB

Alice, RA

 RB, KAB{RA}

 KAB{RB}

3/24/09 CIS/TCOM 551 26

Attack: Marvin can Masquerade as Alice

•  Marvin pretends to take the role of Alice in two runs of the
protocol.
–  Tricks Bart into doing Alice’s part of the challenge!
–  Interleaves two instances of the same protocol.

Bart

KAB

Alice, RA

 RB, KAB{RA}

 KAB{RB}

Alice, RB

 R’B, KAB{RB}

3/24/09 CIS/TCOM 551 27

Lessons
•  Protocol design is tricky and subtle

–  “Optimizations” aren’t necessarily good

•  Need to worry about:
–  Multiple instances of the same protocol running in parallel
–  Intruders that play by the rules, mostly

•  General principle:
–  Don’t do anything more than necessary until confidence is built.
–  Initiator should prove identity before responder takes action (like

encryption)

3/24/09 CIS/TCOM 551 28

Threats
•  Transferability: B cannot reuse an identification exchange

with A to successfully impersonate A to a third party C.

•  Impersonation: The probability is negligible that a party C
distinct from A can carry out the protocol in the role of A
and cause B to accept it as having A’s identity.

3/24/09 CIS/TCOM 551 29

Assumptions
•  A large number of previous authentications between A

and B may have been observed.

•  The adversary C has participated in previous protocol
executions with A and/or B.

•  Multiple instances of the protocol, possibly instantiated by
C, may be run simultaneously.

3/24/09 CIS/TCOM 551 30

Primary Attacks
•  Replay.

–  Reusing messages (or parts of messages) inappropriately
•  Interleaving.

–  Mixing messages from different runs of the protocol.
•  Reflection.

–  Sending a message intended for destination A to B instead.
•  Chosen plaintext.

–  Choosing the data to be encrypted
•  Forced delay.

–  Denial of service attack -- taking a long time to respond
–  Not captured by Dolev Yao model

3/24/09 CIS/TCOM 551 31

Primary Controls
•  Replay:

–  use of challenge-response techniques
–  embed target identity in response.

•  Interleaving
–  link messages in a session with chained nonces.

•  Reflection:
–  embed identifier of target party in challenge response
–  use asymmetric message formats
–  use asymmetric keys.

•  Chosen text:
–  embed self-chosen random numbers (“confounders”) in

responses
–  use “zero knowledge” techniques.

•  Forced delays:
–  use nonces with short timeouts
–  use timestamps in addition to other techniques.

3/24/09 CIS/TCOM 551 32

Replay
•  Replay: the threat in which a transmission is observed by

an eavesdropper who subsequently reuses it as part of a
protocol, possibly to impersonate the original sender.
–  Example: Monitor the first part of a telnet session to obtain a

sequence of transmissions sufficient to get a log-in.

•  Three strategies for defeating replay attacks
–  Nonces
–  Timestamps
–  Sequence numbers.

3/24/09 CIS/TCOM 551 33

Nonces: Random Numbers
•  Nonce: A number chosen at random from a range of

possible values.
–  Each generated nonce is valid only once.

•  In a challenge-response protocol nonces are used as
follows.
–  The verifier chooses a (new) random number and provides it to

the claimant.
–  The claimant performs an operation on it showing knowledge of a

secret.
–  This information is bound inseparably to the random number and

returned to the verifier for examination.
–  A timeout period is used to ensure “freshness”.

3/24/09 CIS/TCOM 551 34

Time Stamps
•  The claimant sends a message with a timestamp.
•  The verifier checks that it falls within an acceptance

window of time.
•  The last timestamp received is held, and identification

requests with older timestamps are ignored.
•  Good only if clock synchronization is close enough for

acceptance window.

3/24/09 CIS/TCOM 551 35

Sequence Numbers
•  Sequence numbers provide a sequential or monotonic

counter on messages.
•  If a message is replayed and the original message was

received, the replay will have an old or too-small
sequence number and be discarded.

•  Cannot detect forced delay.
•  Difficult to maintain when there are system failures.

