
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 12

3/3/09 CIS/TCOM 551 2

Announcements

•  Plan for Today:
–  Java & C# Access Control: Stack Inspection
–  Software certification

•  Project 2 reminder
–  Due: Friday, 11:59 pm

•  Project 3 will be up soon

•  TALK: “Securing Internet Routing”
–  Sharon Goldberg of Princeton University
–  3:00 *TODAY* (right after class)
–  Wu & Chen Auditorium, Levine

3/3/09 CIS/TCOM 551 3

Mobile Code
•  Modern languages like Java and C# have been designed

for Internet applications and extensible systems

•  PDAs, Cell Phones, Smart Cards, …

operating system

 web browser

applet applet applet

3/3/09 CIS/TCOM 551 4

Java and C# Security
•  Static Type Systems

–  Memory safety and jump safety
•  Run-time checks for

–  Array index bounds
–  Downcasts
–  Access controls

•  Virtual Machine / JIT compilation
–  Bytecode verification
–  Enforces encapsulation boundaries (e.g. private field)

•  Garbage Collected
–  Eliminates memory management errors

•  Library support
–  Cryptography, authentication, …

3/3/09 CIS/TCOM 551 5

Applet Security Problems
•  Protect OS & other valuable resources.
•  Applets should not:

–  crash browser or OS
–  execute “rm –rf /”
–  be able to exhaust resources

•  Applets should:
–  be able to access some system resources

(e.g. to display a picture)
–  be isolated from each other

•  Principles of least privileges and complete mediation
apply

3/3/09 CIS/TCOM 551 6

Access Control for Applets
•  What level of granularity?

–  Applets can touch some parts of the file system but not others
–  Applets can make network connections to some locations but not others

•  Different code has different levels of trustworthiness
–  www.l33t-hax0rs.com vs. www.java.sun.com

•  Trusted code can call untrusted code
–  e.g. to ask an applet to repaint its window

•  Untrusted code can call trusted code
–  e.g. the paint routine may load a font

•  How is the access control policy specified?
•  How is it enforced?

3/3/09 CIS/TCOM 551 7

Java Security Model

a.class
b.class
c.class
d.class
e.class

Domain A

Domain B

Permissions

Permissions

Security Policy VM Runtime

Classloader
SecurityManager

3/3/09 CIS/TCOM 551 8

Kinds of Permissions
•  java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission
…

3/3/09 CIS/TCOM 551 9

Code Trustworthiness
•  How does one decide what protection domain the

code is in?
–  Source (e.g. local or applet)
–  Digital signatures

•  C# calls this “evidence based”

•  How does one decide what permissions a
protection domain has?
–  Configurable – administrator file or command line

•  Enforced by the classloader

3/3/09 CIS/TCOM 551 10

Example Java Policy

grant codeBase “http://www.l33t-hax0rz.com/*” {
 permission java.io.FilePermission(“/tmp/*”, “read,write”);
}

grant codeBase “file://$JAVA_HOME/lib/ext/*” {
 permission java.security.AllPermission;
}

grant signedBy “trusted-company.com” {
 permission java.net.SocketPermission(…);
 permission java.io.FilePermission(“/tmp/*”, “read,write”);
 …
}

Policy information stored in:
 $JAVA_HOME/lib/security/java.policy
 $USER_HOME/.java.policy
 (or passed on command line)

3/3/09 CIS/TCOM 551 11

Example Trusted Code

void fileWrite(String filename, String s) {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 FilePermission fp = new FilePermission(filename,“write”);
 sm.checkPermission(fp);
 /* … write s to file filename (native code) … */
 } else {
 throw new SecurityException();
 }
}

public static void main(…) {
 SecurityManager sm = System.getSecurityManager();
 FilePermission fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

Code in the System protection domain

3/3/09 CIS/TCOM 551 12

Example Client

class UntrustedApplet {
 void run() {
 ...
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 ...
 s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);
 ...
 }
}

Applet code obtained from
http://www.l33t-hax0rz.com/

3/3/09 CIS/TCOM 551 13

Stack Inspection
•  Stack frames are annotated with their protection domains

and any enabled privileges.

•  During inspection, stack frames are searched from most
to least recent:
–  fail if a frame belonging to someone not authorized for privilege is

encountered
–  succeed if activated privilege is found in frame

3/3/09 CIS/TCOM 551 14

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 15

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 16

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 17

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
 fp = new FilePermission(“/tmp/foo.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 18

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
 fp = new FilePermission(“/tmp/foo.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

fp

Po
licy

 D
a
ta

b
a
se

 Succeed!

3/3/09 CIS/TCOM 551 19

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/home/stevez/important.tex”,
 “kwijibo”);
}

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 20

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void fileWrite(“…/important.txt”, “kwijibo”) {
 fp = new FilePermission(“important.txt”,
 “write”);
 sm.checkPermission(fp);

fp

Po
licy

 D
a
ta

b
a
se

void run() {
 …
 s.FileWrite(“/home/stevez/important.tex”,
 “kwijibo”);
}

Fail

3/3/09 CIS/TCOM 551 21

Other Possibilities
•  The fileWrite method could enable the write

permission itself
–  Potentially dangerous, should not base which file to write on data

provided by the applet
–  … but no enforcement in Java (information flow would help here)

•  A trusted piece of code could disable a previously granted
permission
–  Terminate the stack inspection early

3/3/09 CIS/TCOM 551 22

Stack Inspection Algorithm
checkPermission(T) {
 // loop newest to oldest stack frame
 foreach stackFrame {
 if (local policy forbids access to T by class executing in
 stack frame) throw ForbiddenException;

 if (stackFrame has enabled privilege for T)
 return; // allow access

 if (stackFrame has disabled privilege for T)
 throw ForbiddenException;
 }

 // end of stack
 if (Thunderbird || …) throw ForbiddenException;
 if (MS IE || JDK || …) return;
}

3/3/09 CIS/TCOM 551 23

Stack Inspection
•  Stack inspection seems appealing:

–  Fine grained, flexible, configurable policies
–  Distinguishes between code of varying degrees of trust

•  But…
–  How do we understand what the policy is?
–  Semantics tied to the operational behavior of the program (defined in

terms of stacks!)
–  Changing the program (e.g. optimizing it) may change the security policy
–  Policy is distributed throughout the software, and is not apparent from the

program interfaces.
–  Is it any good?

–  It's not complete!

3/3/09 CIS/TCOM 551 24

Problem with Stack Inspection

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 25

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Problem with Stack Inspection

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 26

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Problem with Stack Inspection

fp

Po
licy

 D
a
ta

b
a
se

String getFileName() {
 return "/home/stevez/important.txt";
}

3/3/09 CIS/TCOM 551 27

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

Problem with Stack Inspection

fp

Po
licy

 D
a
ta

b
a
se

3/3/09 CIS/TCOM 551 28

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

Problem with Stack Inspection

fp

Po
licy

 D
a
ta

b
a
se

void fileWrite(“/home/stevez/important.txt”, “xxxxxx”) {
 fp = new FilePermission("…/important.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

Succeed!

3/3/09 CIS/TCOM 551 29

Stack Inspection: Final thoughts
•  Question: How does taint tracking relate to this problem

with stack inspection?

•  Related Papers (not required reading):
–  A Systematic Approach to Static Access Control

François Pottier, Christian Skalka, Scott Smith
–  Stack Inspection: Theory and Variants

Cédric Fournet and Andrew D. Gordon
–  Understanding Java Stack Inspection

Dan S. Wallach and Edward W. Felten

3/3/09 CIS/TCOM 551 30

Question:
•  Suppose you have gone through the cost/benefit and risk

analysis to determine the securty requirements for a
computer system.

•  How do you know whether a system meets its security
requirements?

•  Class answers:

3/3/09 CIS/TCOM 551 31

Assurance methods
•  Testing

–  Regression testing, automation tools, etc.
–  Can demonstrate existence of flaw, not absence

•  Validation
–  Requirements checking
–  Design and code reviews

•  Sit around table, drink lots of coffee, …
–  Module and system testing

•  Formal verification
–  Develop a rigorous (mathematical) specification of the system
–  Prove (using tools or by hand) that the implementation meets the

specification
–  Time-consuming, painstaking process
–  Has been done for some systems. (See www.praxis-his.com)

3/3/09 CIS/TCOM 551 32

Rainbow Series

DoD Trusted Computer Sys Evaluation Criteria (Orange Book)
Audit in Trusted Systems (Tan Book)
Configuration Management in Trusted Systems (Amber Book)
Trusted Distribution in Trusted Systems (Dark Lavender Book)
Security Modeling in Trusted Systems (Aqua Book)
Formal Verification Systems (Purple Book)
Covert Channel Analysis of Trusted Systems (Light Pink Book)
… many more

http://www.fas.org/irp/nsa/rainbow.htm

3/3/09 CIS/TCOM 551 33

Orange Book Requirements (TCSEC)
•  TCSEC = Trusted Computer System Evaluation Criteria

•  Security Policy
•  Accountability
•  Assurance
•  Documentation

•  Next few slides: details not important …
–  Main point: Higher levels require more work …, documentation

and configuration management are part of the criteria

3/3/09 CIS/TCOM 551 34

Common Criteria
•  Three parts

–  CC Documents
•  Protection profiles: requirements for category of systems

–  Functional requirements
–  Assurance requirements

–  CC Evaluation Methodology
–  National Schemes (local ways of doing evaluation)

•  Endorsed by 14 countries
•  Replaces TCSEC

–  CC adopted 1998
–  Last TCSEC evaluation completed 2000

http://www.niap-ccevs.org/cc-scheme/
http://www.commoncriteriaportal.org/

3/3/09 CIS/TCOM 551 35

Protection Profiles
•  Requirements for categories of systems

–  Subject to review and certified

•  Example: Controlled Access PP (CAPP_V1.d)
–  Security functional requirements

•  Authentication, User Data Protection, Prevent Audit Loss
–  Security assurance requirements

•  Security testing, Admin guidance, Life-cycle support, …
–  Assumes non-hostile and well-managed users
–  Does not consider malicious system developers

3/3/09 CIS/TCOM 551 36

Evaluation Assurance Levels 1 – 4

EAL 1: Functionally Tested
–  Review of functional and interface specifications
–  Some independent testing

EAL 2: Structurally Tested
–  Analysis of security functions, including high-level design
–  Independent testing, review of developer testing

EAL 3: Methodically Tested and Checked
–  Development environment controls; configuration mgmt

EAL 4: Methodically Designed, Tested, Reviewed
–  Informal spec of security policy, Independent testing

3/3/09 CIS/TCOM 551 37

Evaluation Assurance Levels 5 – 7
EAL 5: Semiformally Designed and Tested

–  Formal model, modular design
–  Vulnerability search, covert channel analysis

EAL 6: Semiformally Verified Design and Tested
–  Structured development process

EAL 7: Formally Verified Design and Tested
–  Formal presentation of functional specification
–  Product or system design must be simple
–  Independent confirmation of developer tests

3/3/09 CIS/TCOM 551 38

Example: Windows 2000, EAL 4+
•  Evaluation performed by SAIC
•  Used “Controlled Access Protection Profile”
•  Level EAL 4 + Flaw Remediation

–  “EAL 4 … represents the highest level at which products not built
specifically to meet the requirements of EAL 5-7 ought to be
evaluated.”

 (EAL 5-7 requires more stringent design and development
procedures …)

–  Flaw Remediation
•  Evaluation based on specific configurations

–  Produced configuration guide that may be useful

3/3/09 CIS/TCOM 551 39

