
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 10

3/9/09 CIS/TCOM 551 2

Announcements

•  Plan for Today:
–  Return briefly to finish up attacker reconnaissance
–  Access Control

•  Project 2 reminder
–  Due: Friday, March 6th (right before Spring Break)

Midterm 1 Statistics

3/9/09 CIS/TCOM 551 3

(Out of 80)
Max: 77
Min: 29
Avg: 62
Std Dev: 8

3/9/09 CIS/TCOM 551 4

Detecting Attacks
•  Attacks (against computer systems) usually consist of several stages:

–  Finding software vulnerabilities
–  Exploiting them
–  Hiding/cleaning up the exploit

•  Attackers care about finding vulnerabilities:
–  What machines are available?
–  What OS / version / patch level are the machines running?
–  What additional software is running?
–  What is the network topology?

•  Attackers care about not getting caught:
–  How detectible will the attack be?
–  How can the attacker cover her tracks?

•  Programs can automate the process of finding/exploiting vulnerabilities.
–  Same tools that sys. admins. use to audit their systems…
–  A worm is just an automatic vulnerability finder/exploiter…

3/9/09 CIS/TCOM 551 5

Attacker Reconnaissance
•  Network Scanning

–  Existence of machines at IP addresses
–  Attempt to determine network topology
–  ping, tracert

•  Port scanners
–  Try to detect what processes are running on which ports, which ports are

open to connections.
–  Typical machine on the internet gets 10-20 port scans per day!
–  Can be used to find hit lists for flash worms

•  Web services
–  Use a browser to search for CGI scripts, Javascript, etc.

3/9/09 CIS/TCOM 551 6

Determining OS information
•  Gives a lot of information that can help an attacker carry

out exploits
–  Exact version of OS code can be correlated with vulnerability

databases

•  Sadly, often simple to obtain this information:
–  Just try telnet

playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)

login:

3/9/09 CIS/TCOM 551 7

Determining OS
•  Or ftp:

$ ftp ftp.netscape.com 21
Connected to ftp.gftp.netscape.com.
220-36
220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):
331 Password required for stevez.
Password:
530 Login incorrect.
ftp: Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8 Version: SUNOS
ftp>

3/9/09 CIS/TCOM 551 8

Determining OS
•  Exploit different implementations of protocols

–  Different OS’s have different behavior in some cases
•  Consider TCP protocol, there are many flags and options, and some

unspecified behavior
–  Reply to bogus FIN request for TCP port

(should not reply, but some OS’s do)
–  Handling of invalid flags in TCP packets

(some OS’s keep the invalid flags set in reply)
–  Initial values for RWS, pattern in random sequence numbers, etc.
–  Can narrow down the possible OS based on the combination of

implementation features
•  Tools can automate this process

3/9/09 CIS/TCOM 551 9

Auditing: Remote auditing tools
•  Several utilities available to “attack” or gather information

about services/daemons on a system.
–  SATAN (early 1990’s):

Security Administrator Tool for Analyzing Networks
–  SAINT - Based on SATAN utility
–  SARA - Also based on SATAN
–  Nessus - Open source vulnerability scanner

•  http://www.nessus.org
–  Nmap

•  Commercial:
–  ISS scanner
–  Cybercop

3/9/09 CIS/TCOM 551 10

Nmap screen shot

http://www.insecure.org/nmap
http://www.insecure.org/nmap/nmap-fingerprinting-article.html

3/9/09 CIS/TCOM 551 11

Today's Plan
•  We've seen how worms and viruses spread.
•  What can we do about it?

–  Proactive:
•  Produce good software (eliminate vulnerabilities)
•  Limit the damages that can be done

–  Reactive: install filtering configure firewalls to drop packets

•  Restrict access to OS resources?
–  If one could prevent a worm or virus from tampering with the

file system or restrict their access to other functionality, the
damage they can do is limited.

•  Today: access control more generally

3/9/09 CIS/TCOM 551 12

Authorization
•  A principal is an entity that has a bearing on the security

properties of a system.
–  Example principals: Users, Hosts, Processes, “the Attacker”, etc.

•  Authorization is the process of determining whether a
principal is permitted to perform a particular action.

•  Access control is necessary at many levels of abstraction
in a computing system:
–  Firewalls are one example of an access control mechanism.
–  Others?

3/9/09 CIS/TCOM 551 13

The “Gold” Standard
•  Authentication

–  Identify which principals take which actions

•  Authorization
–  Determine what actions are permissible

•  Audit
–  Recording the security relevant actions

•  We discussed auditing in one context – there’s more to
say about that later.

•  This rest of this lecture is about authorization.
•  We'll get to authentication in a few lectures.

3/9/09 CIS/TCOM 551 14

Policy vs. Mechanism
•  Access control policy is a specification

–  Given in terms of a model of the system
–  Subjects: do things (i.e. a process writes to files)
–  Objects: are passive (i.e. the file itself)
–  Actions: what the subjects do (i.e. read a string from a file)
–  Rights: describe authority (i.e. read or write permission)

•  Mechanisms are used to implement a policy
–  Example: access control bits in Unix file system & OS checks
–  Mechanism should be general; ideally should not constrain the

possible policies.
–  Complete mediation: every access must be checked

3/9/09 CIS/TCOM 551 15

Access Control Matrices

{r,w,x} … {r,w,x} {x} SubjM

… … … … …

… … {} {w,x} Subj2

{} … {r,w} {r,w,x} Subj1

ObjN … Obj2 Obj1 A[s][o]

Each entry
contains
a set of
rights.

3/9/09 CIS/TCOM 551 16

Access Control Checks
•  Suppose subject s wants to perform action that requires

right r on object o:

•  If (r ∈ A[s][o]) then perform action
else access is denied

3/9/09 CIS/TCOM 551 17

Rights
•  Besides read, write, execute rights there are many others:
•  Ownership
•  Creation

–  New subjects (i.e. in Unix add a user)
–  New objects (i.e. create a new file)
–  New rights: Grant right r to subject s with respect to object o

(sometimes called delegation)
•  Deletion of

–  Subjects
–  Objects
–  Rights (sometimes called revocation)

3/9/09 CIS/TCOM 551 18

Access Control Examples
•  Assume OS is a subject with all rights
•  To create a file f owned by Alice:

–  Create object f
–  Grant own to Alice with respect to f
–  Grant read to Alice with respect to f
–  Grant write to Alice with respect to f

•  To start a login for Alice
–  Input and check password
–  Create a shell process p
–  Grant own_process to Alice with respect to p

3/9/09 CIS/TCOM 551 19

Reference Monitors

Subject
Monitor

(Action, Object)

Request

Granted

Denied ?

Consults policy to
make decision

3/9/09 CIS/TCOM 551 20

Reference Monitors
•  Criteria

–  Correctness
–  Complete mediation (all avenues of access must be protected)
–  Expressiveness (what policies are admitted)
–  How large/complex is the mechanism?

•  Trusted Computing Base (TCB)
–  The set of components that must be trusted to enforce a given

security policy
–  Would like to simplify/minimize the TCB to improve assurance of

correctness

3/9/09 CIS/TCOM 551 21

Software Mechanisms
•  Interpreters

–  Check the execution of
every instruction

–  Hard to mediate high-level
abstractions

•  Wrappers
–  Only “interpret” some of

the instructions
–  What do you wrap?
–  Where do you wrap?

(link-time?)
•  Operating Systems

–  Level of granularity?
–  Context switching overheads?

•  Example
–  Java and C# runtime systems

Program

Interpreter

Hardware

A[s][o]

OS

A[s][o]

A[s][o]

3/9/09 CIS/TCOM 551 22

Hardware Mechanisms
•  Multiple modes of operation

–  User mode (problem state)
–  Kernel mode (supervisor state)

•  Specialized hardware
–  Virtual memory support (TLB’s, etc.)
–  Interrupts

Hardware

OS A[s][o]

A[s][o]

3/9/09 CIS/TCOM 551 23

Protecting Reference Monitors
•  It must not be possible to circumvent the reference

monitor by corrupting it
•  Mechanisms

–  Type checking
–  Sandboxing: run processes in isolation
–  Software fault isolation: rewrite memory access instructions to

perform bounds checking
–  User/Kernel modes
–  Segmentation of memory (OS resources aren’t part of virtual

memory system)
–  Physical configuration (e.g. network topology)

•  Access control matrices
–  Subjects >> #users (say 1000s)
–  Objects >> #files (say 1,000,000s)
–  To specify “all users read f”

•  Change O(users) entries

•  Matrix is typically sparse
–  Store only non-empty entries

•  Special consideration for groups of users

Implementing Access Control

3/9/09 CIS/TCOM 551 25

Access Control Lists

{r,w,x} … {r,w,x} {x} SubjM

… … … … …

{r} … {} {w,x} Subj2

{} … {r,w} {r,w,x} Subj1

ObjN … Obj2 Obj1 A[s][o]

For each object, store a list of (Subject x Rights) pairs.

3/9/09 CIS/TCOM 551 26

Access Control Lists

● Resolving queries is linear in length of the list
● Revocation w.r.t. a single object is easy
● “Who can access this object?” is easy
- Useful for auditing

● Lists could be long
- Factor into groups (lists of subjects)
- Give permissions based on group
-  Introduces consistency question w.r.t. groups

● Authentication critical
- When does it take place? Every access would be

expensive.

3/9/09 CIS/TCOM 551 27

Representational Completeness
•  Access Control Lists

–  Can represent any access control matrix
–  Potentially very large
–  Used in windows file system, NTFS

•  Unix file permissions (next topic)
–  Fixed size
–  Can't naturally express some access control policies/matrices

3/9/09 CIS/TCOM 551 28

Unix file security
•  Each file has owner and group
•  Permissions set by owner

–  Read, write, execute
–  Owner, group, other
–  Represented by vector of
 four octal values

•  Only owner, root can change permissions
–  This privilege cannot be delegated or shared

•  Setid bits – Discuss in a few slides

rwx rwx rwx ---

owner group other

setid

3/9/09 CIS/TCOM 551 29

Question
•  "owner" can have fewer privileges than "other"

–  What happens?
•  User gets access?
•  User does not?

•  Prioritized resolution of differences
if user = owner then owner permission
 else if user in group then group permission
 else other permission

3/9/09 CIS/TCOM 551 30

Unix Policies Interact

/home/jeff/ jeff jeff -rwx --- ---
/home/jeff/.bashrc jeff jeff -rwx r-- r--

•  stevez cannot read /home/jeff/.bashrc
–  The confidentiality/availability of an object depends on policies

other than it's own.
–  Such interactions make specifying policies hard.
–  Problem is not limited to unix (or file systems).

3/9/09 CIS/TCOM 551 31

Setid bits on executable Unix file
•  Three setid bits

–  Sticky
•  Off: if user has write permission on directory, can rename or remove

files, even if not owner
•  On: only file owner, directory owner, and root can rename or remove

file in the directory
–  Setuid – set EUID of process to ID of file owner

–  passwd owned by root and setuid is true
–  Jeff executes passwd: “passwd runs as root”

–  Setgid – set EGID of process to GID of file

3/9/09 CIS/TCOM 551 32

Effective User ID (EUID)
•  Each process has three user IDs (more in Linux)

–  Real user ID (RUID)
•  same as the user ID of parent (unless changed)
•  used to determine which user started the process

–  Effective user ID (EUID)
•  from set user ID bit on program file, or system call
•  determines the permissions for process

–  file access and port binding
–  Saved user ID (SUID)

•  So previous EUID can be restored

•  Real group ID, effective group ID, used similarly

3/9/09 CIS/TCOM 551 33

Process Operations and IDs
•  Root

–  ID=0 for superuser root; can access any file
•  Fork and Exec

–  Inherit three IDs, except when executing a file with setuid bit on.
•  Setuid system calls

–  seteuid(newid) can set EUID to
•  Real ID or saved ID, regardless of current EUID
•  Any ID, if EUID=0

•  Details are actually more complicated
–  Several different calls: setuid, seteuid, setruid

3/9/09 CIS/TCOM 551 34

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

3/9/09 CIS/TCOM 551 35

Setuid programming
•  Can do anything that owner of file is allowed to do
•  Be Careful!

–  Root can do anything; don’t get tricked (no middle ground)
–  Principle of least privilege – change EUID when root privileges

no longer needed
–  Be sure not to

•  Take action for untrusted user
•  Return secret data to untrusted user

•  Setuid scripts
–  This is a bad idea
–  Historically, race conditions

•  Begin executing setuid program; change contents of program
before it loads and is executed

3/9/09 CIS/TCOM 551 36

Unix summary
•  We’re all very used to this …

–  So probably seems pretty good
–  We overlook ways it might be better

•  Good things
–  Some protection from most users
–  Flexible enough to make things possible

•  Main bad thing
–  Too tempting to use root privileges
–  No way to assume some root privileges without all root privileges

3/9/09 CIS/TCOM 551 37

Capabilities Lists
A[s][o] Obj1 Obj2 … ObjN

Subj1 {r,w,x} {r,w} … {}

Subj2 {w,x} {} … {r}

… … … … …

SubjM {x} {r,w,x} … {r,w,x}

For each subject, store a list of (Object x Rights) pairs.

3/9/09 CIS/TCOM 551 38

Capabilities
•  A capability is a (Object, Rights) pair

–  Used like a movie ticket e.g.:
(“Cloverfield”, {admit one, 7:00pm show})

•  Should be unforgeable
–  Otherwise, subjects could get illegal access

•  Authentication takes place when the capabilities are
granted (not needed at use)

•  Harder to do revocation (must find all tickets)
•  Easy to audit a subject, hard to audit an object

3/9/09 CIS/TCOM 551 39

Implementing Capabilities
•  Must be able to name objects
•  Unique identifiers

–  Must keep map of UIDs to objects
–  Must protect integrity of the map
–  Extra level of indirection to use the object
–  Generating UIDs can be difficult

•  Pointers
–  Name changes when the object moves
–  Remote pointers in distributed setting
–  Aliasing possible

3/9/09 CIS/TCOM 551 40

Unforgeability of Capabilities
•  Special hardware: tagged words in memory

–  Can’t copy/modify tagged words
•  Store the capabilities in protected address space
•  Could use static scoping mechanism of safe programming

languages.
–  Java’s “private” fields

•  Could use cryptographic techniques
–  OS kernel could sign (Object, Rights) pairs using a private key
–  Any process can verify the capability
–  Example: Kerberos

