CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 10

Announcements

* Plan for Today:
— Return briefly to finish up attacker reconnaissance
— Access Control

* Project 2 reminder
— Due: Friday, March 6! (right before Spring Break)

3/9/09 CIS/TCOM 551

Midterm 1 Statistics

2.5
j (Out of 80)
2] Max: 77
| Min: 29
sl Avg: 62
! Std Dev: 8
05
S I U NS R
0 20 40 60 80

3/9/09 CIS/TCOM 551

Detecting Attacks

Attacks (against computer systems) usually consist of several stages:
— Finding software vulnerabilities
— Exploiting them
— Hiding/cleaning up the exploit

Attackers care about finding vulnerabilities:
— What machines are available?
— What OS / version / patch level are the machines running?
— What additional software is running?
— What is the network topology?

Attackers care about not getting caught:
— How detectible will the attack be?
— How can the attacker cover her tracks?

Programs can automate the process of finding/exploiting vulnerabilities.
— Same tools that sys. admins. use to audit their systems...
— A worm is just an automatic vulnerability finder/exploiter...

3/9/09 CIS/TCOM 551

Attacker Reconnaissance

* Network Scanning
— Existence of machines at IP addresses
— Attempt to determine network topology
— ping, tracert

« Port scanners

— Try to detect what processes are running on which ports, which ports are
open to connections.

— Typical machine on the internet gets 10-20 port scans per day!
— Can be used to find hit lists for flash worms

 Web services
— Use a browser to search for CGl scripts, Javascript, etc.

3/9/09 CIS/TCOM 551

Determining OS information

« Gives a lot of information that can help an attacker carry
out exploits

— Exact version of OS code can be correlated with vulnerability
databases

« Sadly, often simple to obtain this information:
— Just try telnet

playground~> telnet hpux.u-aizu.ac.]jp
Trying 163.143.103.12 ...

Connected to hpux.u-aizu.ac.]jp.
Escape character is '*]'.

HP-UX hpux B.10.01 A 9000/715 (ttyp2)

login:

3/9/09 CIS/TCOM 551

Determining OS

« Or ftp:

$ ftp ftp.netscape.com 21

Connected to ftp.gftp.netscape.com.
220-36

220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):

331 Password required for stevez.
Password:

530 Login incorrect.

ftp: Login failed.

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> system

215 UNIX Type: L8 Version: SUNOS
ftp>

3/9/09

CIS/TCOM 551

Determining OS

» Exploit different implementations of protocols

Different OS’s have different behavior in some cases

« Consider TCP protocol, there are many flags and options, and some
unspecified behavior

Reply to bogus FIN request for TCP port
(should not reply, but some OS’s do)

Handling of invalid flags in TCP packets
(some OS’s keep the invalid flags set in reply)

Initial values for RWS, pattern in random sequence numbers, etc.

Can narrow down the possible OS based on the combination of
implementation features

* Tools can automate this process

3/9/09

CIS/TCOM 551

Auditing: Remote auditing tools

« Several utilities available to “attack” or gather information
about services/daemons on a system.

— SATAN (early 1990’s):
Security Administrator Tool for Analyzing Networks

— SAINT - Based on SATAN utility
— SARA - Also based on SATAN

— Nessus - Open source vulnerability scanner
 http://www.nessus.org

— Nmap
e Commercial:

— 1SS scanner
— Cybercop

3/9/09 CIS/TCOM 551

File View Help

Target(s):’W.insecure.org H scan || Exit |

Scan | Discover | Timing | Files | Options

Scan Type Scanned Ports
SYN Stealth Scan v Most Important [fast] v
Relay Host: | Range:

Scan Extensions

[(JRPC Scan []ldentd Info OS Detection Yersion Probe

| »

Starting nmap 3.49 { http://uuwu.insecure,org/nnap/ !} at 2003-12-19 14:28 PST
Interesting ports on www,insecure,org (205,217,153,53):

{The 1212 ports scanned but not shown below are in state: filtered?

PORT STATE SERYICE YERSION

22/tcp open ssh OpenSSH 3,1pl {(protocol 1,99)

25/tcp open sntp gqmail sntpd

53/tcp open domain ISC Bind 9.2.1

80/tcp open http Apache httpd 2.0,39 {{Unix} mod_perl/1,99_07-dev Perl/v5,6,1)
113/tcp closed auth

Device type: general purpose

Running: Linux 2,4,K12.5.X

0S details: Linux Kernel 2.4,0 - 2,5,20

Uptime 212,119 days {(since Med May 21 12:38:26 2003}

Nmap run completed -- 1 IP address (1 host up) scanned in 33,792 seconds

|

'

conmand NEP://WWW.iNnSecure.org/nmap

3/9/09

http://www.insecure.org/nmap/nmap-fingerprinting-article.htmi
CIS/ITCON 5571 10

Today's Plan

We've seen how worms and viruses spread.

What can we do about it?

— Proactive:
« Produce good software (eliminate vulnerabilities)

« Limit the damages that can be done
— Reactive: install filtering configure firewalls to drop packets

Restrict access to OS resources?

— If one could prevent a worm or virus from tampering with the
file system or restrict their access to other functionality, the
damage they can do is limited.

* Today: access control more generally

3/9/09 CIS/TCOM 551 11

Authorization

* A principal is an entity that has a bearing on the security
properties of a system.

— Example principals: Users, Hosts, Processes, “the Attacker”, etc.

« Authorization is the process of determining whether a
principal is permitted to perform a particular action.

* Access control is necessary at many levels of abstraction
In @ computing system:

— Firewalls are one example of an access control mechanism.
— Others?

3/9/09 CIS/TCOM 551 12

The " Standard

thentication
— Identify which principals take which actions

thorization
— Determine what actions are permissible

dit

— Recording the security relevant actions

* We discussed auditing in one context — there's more to
say about that later.

* This rest of this lecture is about authorization.
+ We'll get to authentication in a few lectures.

3/9/09 CIS/TCOM 551

13

Policy vs. Mechanism

* Access control policy is a specification
— Given in terms of a model of the system
— Subjects: do things (i.e. a process writes to files)
— Objects: are passive (i.e. the file itself)
— Actions: what the subjects do (i.e. read a string from a file)
— Rights: describe authority (i.e. read or write permission)

« Mechanisms are used to implement a policy
— Example: access control bits in Unix file system & OS checks

— Mechanism should be general; ideally should not constrain the
possible policies.

— Complete mediation: every access must be checked

3/9/09 CIS/TCOM 551

14

Access Control Matrices

Als][o] | Obj; | Obj, Objy
Subj, | {rw,x} | {r,w} {}
_— Each entry
Subj, | {w,x} {} = contains
a set of
rights.
Subjy, | 3 | {rwx} {r,w,x}

3/9/09

CIS/TCOM 551

15

Access Control Checks

* Suppose subject s wants to perform action that requires
right r on object o:

« If (r € A[s][0]) then perform action
else access is denied

3/9/09 CIS/TCOM 551

16

Rights

Besides read, write, execute rights there are many others:
Ownership

Creation

— New subjects (i.e. in Unix add a user)

— New objects (i.e. create a new file)

— New rights: Grant right r to subject s with respect to object o
(sometimes called delegation)

Deletion of

— Subjects

— Objects

— Rights (sometimes called revocation)

3/9/09 CIS/TCOM 551 17

Access Control Examples

« Assume OS is a subject with all rights

* To create a file f owned by Alice:
— Create object f
— Grant own to Alice with respect to f
— Grant read to Alice with respect to f
— Grant write to Alice with respect to f

« To start a login for Alice
— Input and check password
— Create a shell process p
— Grant own_process to Alice with respect to p

3/9/09 CIS/TCOM 551

18

Reference Monitors

Monitor

Subject Request

Q (Action, Object)

onsults policy to
make decision

> Denied

Granted

3/9/09 CIS/TCOM 551 19

Reference Monitors

* Criteria
— Correctness
— Complete mediation (all avenues of access must be protected)
— Expressiveness (what policies are admitted)
— How large/complex is the mechanism?

* Trusted Computing Base (TCB)

— The set of components that must be trusted to enforce a given
security policy

— Would like to simplify/minimize the TCB to improve assurance of
correctness

3/9/09 CIS/TCOM 551

Software Mechanisms

Interpreters

— Check the execution of
every instruction

— Hard to mediate high-level
abstractions

Wrappers

— Only “interpret” some of
the instructions

— What do you wrap?
— Where do you wrap?
(link-time?)

Operating Systems

— Level of granularity?

— Context switching overheads?
Example

— Java and C# runtime systems

Program [—

Als][o]

|

I|nterprete} —

Als][o]

|

Als][o]

|

Hardware

3/9/09 CIS/TCOM 551

21

Hardware Mechanisms

« Multiple modes of operation
— User mode (problem state)
— Kernel mode (supervisor state)
« Specialized hardware
— Virtual memory support (TLB’s, etc.)
— Interrupts

Als][o]

|

Hardware |~—'

Als][o]

3/9/09 CIS/TCOM 551

22

Protecting Reference Monitors

It must not be possible to circumvent the reference
monitor by corrupting it

* Mechanisms

Type checking
Sandboxing: run processes in isolation

Software fault isolation: rewrite memory access instructions to
perform bounds checking

User/Kernel modes

Segmentation of memory (OS resources aren'’t part of virtual
memory system)

Physical configuration (e.g. network topology)

3/9/09

CIS/TCOM 551 23

Implementing Access Control

» Access control matrices
— Subjects >> #users (say 1000s)
— Objects >> #files (say 1,000,000s)
— To specify “all users read "
« Change O(users) entries

« Matrix is typically sparse
— Store only non-empty entries
« Special consideration for groups of users

Access Control Lists

A[s][o] | Obj, Obj,, ... Objy,
@ {r,w,x} {r,w} . {}
,S\ubjz {w,x} {} .. {r}
@ {x} {r,w,x} .. {r,w,x}

For each object, store a list of (Subject x Rights) pairs.

3/9/09 CIS/TCOM 551 25

Access Control Lists

e Resolving queries is linear in length of the list
e Revocation w.r.t. a single object is easy

e "\Who can access this object?” is easy
— Useful for auditing

e Lists could be long
— Factor into groups (lists of subjects)
— Give permissions based on group
— Introduces consistency question w.r.t. groups

e Authentication critical

- When does it take place? Every access would be
expensive.

3/9/09 CIS/TCOM 551 26

Representational Completeness

« Access Control Lists
— Can represent any access control matrix
— Potentially very large
— Used in windows file system, NTFS
« Unix file permissions (next topic)
— Fixed size
— Can't naturally express some access control policies/matrices

3/9/09 CIS/TCOM 551 27

Unix file security

Each file has owner and group

« Permissions set by owner Selt'd
— Read, write, execute - PWX rwx rwx
— Owner, group, other g{ J \ J
— Represented by vector of ownerg rou I)ther

four octal values
Only owner, root can change permissions
— This privilege cannot be delegated or shared

Setid bits — Discuss in a few slides

3/9/09 CIS/TCOM 551

Question

« "owner" can have fewer privileges than "other"

— What happens?
» User gets access?
» User does not?

 Prioritized resolution of differences
If user = owner then owner permission
else if user in group then group permission
else other permission

3/9/09 CIS/TCOM 551

29

Unix Policies Interact

/home/jeft/ jeff jeff -rwx --—- ---
/homel/jeff/.bashrc jeff jeff -rwx r--r--

« stevez cannot read /home/jeff/.bashrc

— The confidentiality/availability of an object depends on policies
other than it's own.

— Such interactions make specifying policies hard.
— Problem is not limited to unix (or file systems).

3/9/09 CIS/TCOM 551 30

Setid bits on executable Unix file

* Three setid bits
— Sticky
 Off: if user has write permission on directory, can rename or remove
files, even if not owner
« On: only file owner, directory owner, and root can rename or remove
file in the directory
— Setuid — set EUID of process to ID of file owner
— passwd owned by root and setuid is true
— Jeff executes passwd: “passwd runs as root”

— Setgid — set EGID of process to GID of file

3/9/09 CIS/TCOM 551 31

Effective User ID (EUID)

« Each process has three user IDs (more in Linux)

— Real user ID (RUID)

« same as the user ID of parent (unless changed)

« used to determine which user started the process
— Effective user ID (EUID)

« from set user ID bit on program file, or system call

» determines the permissions for process
— file access and port binding

— Saved userID (SuUID)
» So previous EUID can be restored

« Real group ID, effective group ID, used similarly

3/9/09 CIS/TCOM 551

32

Process Operations and |IDs

Root

— |ID=0 for superuser root; can access any file

Fork and Exec
— Inherit three IDs, except when executing a file with setuid bit on.

Setuid system calls

— seteuid(newid) can set EUID to

» Real ID or saved ID, regardless of current EUID
 Any ID, if EUID=0

Details are actually more complicated
— Several different calls: setuid, seteuid, setruid

3/9/09 CIS/TCOM 551

Example

Owner 18
RUID 25 SetUID
" / program
exec(); Owner 18
-FW-r--I-- o
fil read/write i RUID 25
e » o *t01 EUID 18
i=getruid() |+
Owner 25 setuid(i);
pl bl rcac/write | RUID 25
file e |EUID 25

3/9/09 CIS/TCOM 551 34

Setuid programming

« Can do anything that owner of file is allowed to do

« Be Careful!
— Root can do anything; don't get tricked (no middle ground)

— Principle of least privilege — change EUID when root privileges
no longer needed

— Be sure not to
* Take action for untrusted user
 Return secret data to untrusted user

« Setuid scripts
— This is a bad idea
— Historically, race conditions

« Begin executing setuid program; change contents of program
before it loads and is executed

3/9/09 CIS/TCOM 551 35

Unix summary

 We're all very used to this ...
— So probably seems pretty good
— We overlook ways it might be better

* Good things
— Some protection from most users
— Flexible enough to make things possible

* Main bad thing

— Too tempting to use root privileges
— No way to assume some root privileges without all root privileges

3/9/09 CIS/TCOM 551

36

Capabilities Lists

Al[s][o] ﬂ)beN / Objy ;
Subj, &w WU {}
Subj, {w,x} {r}
Subjy, {x} {r,w,x} {r,w,x}

For each subject, store a list of (Object x Rights) pairs.

3/9/09

CIS/TCOM 551

37

Capabilities

« A capability is a (Object, Rights) pair
— Used like a movie ticket e.g.:
(“Cloverfield”, {admit one, 7:00pm show})

« Should be unforgeable
— Otherwise, subjects could get illegal access

* Authentication takes place when the capabillities are
granted (not needed at use)

« Harder to do revocation (must find all tickets)
« Easy to audit a subject, hard to audit an object

3/9/09 CIS/TCOM 551 38

Implementing Capabilities

 Must be able to name objects

« Unique identifiers
— Must keep map of UIDs to objects
— Must protect integrity of the map
— Extra level of indirection to use the object
— Generating UIDs can be difficult

* Pointers
— Name changes when the object moves
— Remote pointers in distributed setting
— Aliasing possible

3/9/09 CIS/TCOM 551

39

Unforgeability of Capabilities

« Special hardware: tagged words in memory
— Can’t copy/modify tagged words
« Store the capabilities in protected address space
« Could use static scoping mechanism of safe programming
languages.
— Java’s “private” fields
« Could use cryptographic techniques
— OS kernel could sign (Object, Rights) pairs using a private key
— Any process can verify the capability
— Example: Kerberos

3/9/09 CIS/TCOM 551

40

