CIS 551 / TCOM 401 Computer and Network Security

Spring 2008 Lecture 14

Announcements

- Reminder:
 - Project 2 is due *TOMORROW* Friday, March 7th at 11:59 pm

- Plan for today:
 - Finish discussing intrusion detection
 - Look at the background of cryptography
- After break (no class next week!):
 - Industrial strength crypto: DES / AES / RSA
 - Cryptographic protocols

Polymorphic Viruses/Worms

- Virus/worm writers know that signatures are the most effective way to detect such malicious code.
- Polymorphic viruses mutate themselves during replication to prevent detection
 - Virus should be capable of generating many different descendents
 - Simply embedding random numbers into virus code is not enough

Strategies for Polymorphic Viruses

- Change data:
 - Use different subject lines in e-mail
- Encrypt most of the virus with a random key
 - Virus first decrypts main body using random key
 - Jumps to the code it decrypted
 - When replicating, generate a new key and encrypt the main part of the replica
- Still possible to detect decryption portion of the virus using virus signatures
 - This part of the code remains unchanged
 - Worm writer could use a standard self-decompressing executable format (like ZIP executables) to cause confusion (many false positives)

Advanced Evasion Techniques

- Randomly modify the *code* of the virus/worm by:
 - Inserting no-op instructions: subtract 0, move value to itself
 - Reordering independent instructions
 - Using different variable/register names
 - Using equivalent instruction sequences:

y = x + x vs. y = 2 * x

- These viruses are sometimes called "metamorphic" viruses in the literature.
- There exist C++ libraries that, when linked against an appropriate executable, automatically turn it into a metamorphic program.
- Sometimes vulnerable software itself offers opportunities for hiding bad code.
 - Example: ssh or SSL vulnerabilities may permit worm to propagate over encrypted channels, making content filtering impossible.
 - If IPSEC becomes popular, similar problems may arise with it.

Other Evasion Techniques

- Observation: worms don't need to scan randomly
 - They won't be caught by internet telescopes
- Meta-server worm: ask server for hosts to infect (e.g., Google for "powered by php")
- Topological worm: fuel the spread with local information from infected hosts (web server logs, email address books, config files, SSH "known hosts")
 - No scanning signature; with rich interconnection topology, potentially very fast.
- Propagate slowly: "trickle" attacks
 - Also a very subtle form of denial of service attacks

Witty Worm

- Released March 19, 2004.
- Single UDP packet exploits flaw in the *passive analysis* of Internet Security Systems products.
- "Bandwidth-limited" UDP worm like Slammer.
- Vulnerable pop. (12K) attained in 75 minutes.
- Payload: slowly corrupt random disk blocks.

Witty, con't

- Flaw had been announced the *previous day*.
- Telescope analysis reveals:
 - Initial spread seeded via a *hit-list*.
 - In fact, targeted a U.S. military base.
 - Analysis also reveals "Patient Zero", a European retail ISP.
- Written by a Pro.

• "Zero-day" exploits are becoming more common

Broader View of Defenses

- Prevention -- make the monoculture hardier
 - Get the code right in the first place ...
 - ... or figure out what's wrong with it and fix it
 - Lots of active research (static & dynamic methods)
 - Security reviews now taken seriously by industry
 - E.g., ~\$200M just to *review* Windows Server 2003
 - But very expensive
 - And very large Installed Base problem
- Prevention -- *diversify the monoculture*
 - Via exploiting existing heterogeneity
 - Via creating artificial heterogeneity

Broader View of Defenses, con't

- Prevention -- keep vulnerabilities inaccessible
 - Cisco's Network Admission Control
 - Examine hosts that try to connect, block if vulnerable
 - Microsoft's Shield
 - Shim-layer blocks network traffic that fits known *vulnerability* (rather than known *exploit*)

Detecting Attacks

- Attacks (against computer systems) usually consist of several stages:
 - Finding software vulnerabilities
 - Exploiting them
 - Hiding/cleaning up the exploit
- Attackers care about finding vulnerabilities:
 - What machines are available?
 - What OS / version / patch level are the machines running?
 - What additional software is running?
 - What is the network topology?
- Attackers care about not getting caught:
 - How detectible will the attack be?
 - How can the attacker cover her tracks?
- Programs can automate the process of finding/exploiting vulnerabilities.
 - Same tools that sys. admins. use to audit their systems...
 - A worm is just an automatic vulnerability finder/exploiter...

Attacker Reconnaissance

- Network Scanning
 - Existence of machines at IP addresses
 - Attempt to determine network topology
 - ping, tracert
- Port scanners
 - Try to detect what processes are running on which ports, which ports are open to connections.
 - Typical machine on the internet gets 10-20 port scans per day!
 - Can be used to find hit lists for flash worms
- Web services
 - Use a browser to search for CGI scripts, Javascript, etc.

Determining OS information

- Gives a lot of information that can help an attacker carry out exploits
 - Exact version of OS code can be correlated with vulnerability databases
- Sadly, often simple to obtain this information:
 - Just try telnet

```
playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)
login:
```

Determining OS

• Or ftp:

```
$ ftp ftp.netscape.com 21
Connected to ftp.gftp.netscape.com.
220-36
220 ftpnscp.newaol.com FTP server (SunOS 5.8) ready.
Name (ftp.netscape.com:stevez):
331 Password required for stevez.
Password:
530 Login incorrect.
ftp: Login failed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8 Version: SUNOS
ftp>
```

Determining OS

- Exploit different implementations of protocols
 - Different OS's have different behavior in some cases
- Consider TCP protocol, there are many flags and options, and some unspecified behavior
 - Reply to bogus FIN request for TCP port (should not reply, but some OS's do)
 - Handling of invalid flags in TCP packets (some OS's keep the invalid flags set in reply)
 - Initial values for RWS, pattern in random sequence numbers, etc.
 - Can narrow down the possible OS based on the combination of implementation features
- Tools can automate this process

Auditing: Remote auditing tools

- Several utilities available to "attack" or gather information about services/daemons on a system.
 - SATAN (early 1990's): Security Administrator Tool for Analyzing Networks
 - SAINT Based on SATAN utility
 - SARA Also based on SATAN
 - Nessus Open source vulnerability scanner
 - <u>http://www.nessus.org</u>
 - Nmap
- Commercial:
 - ISS scanner
 - Cybercop

Nmap screen shot

	Nmap Front End v3.49		
<u>F</u> ile <u>V</u> iew		<u>H</u> elp	
Target(s): ww	w.insecure.org	Scan Exit	
Scan Discov	ver Timing Files Options		
Scan Type-		Scanned Ports	
SYN Steal	th Scan 👻	Most Important [fast] 👱	
Relay H	ost:	Range:	
BPC Sc:	an 🔄 Identd Info 🛛 🖓 OS Detection 🖓 Version Probe		
Starting nma Interesting (The 1212 pc PORT STAT 22/tcp oper 25/tcp oper 53/tcp oper 113/tcp clos Device type: Running: Lin OS details: Uptime 212.1	sntp qmail sntpd domain ISC Bind 9.2.1 http Apache httpd 2.0.39 ((Unix) mod_per ed auth general purpose ux 2.4.X12.5.X Linux Kernel 2.4.0 - 2.5.20 19 days (since Wed May 21 12:38:26 2003)	03-12-19 14:28 PST filtered) •1/1.99_07-dev Per1/v5.6.1)	
Starting nma Interesting (The 1212 pc PORT STAT 22/tcp oper 25/tcp oper 53/tcp oper 113/tcp clos Device type: Running: Lin OS details: Uptime 212.1	ports on www.insecure.org (205.217.153.53): mts scanned but not shown below are in state: E SERVICE VERSION ssh OpenSSH 3.1p1 (protocol 1.99) sntp qmail sntpd domain ISC Bind 9.2.1 http Apache httpd 2.0.39 ((Unix) mod_per red auth general purpose ux 2.4.XI2.5.X Linux Kernel 2.4.0 - 2.5.20	03-12-19 14:28 PST filtered) •1/1.99_07-dev Per1/v5.6.1)	
Starting nma Interesting (The 1212 po PORT STAT 22/tcp oper 25/tcp oper 53/tcp oper 113/tcp clos Device type: Running: Lin OS details: Uptime 212.1 Nmap run com	ports on www.insecure.org (205.217.153.53): mts scanned but not shown below are in state: E SERVICE VERSION ssh OpenSSH 3.1p1 (protocol 1.99) sntp qmail sntpd domain ISC Bind 9.2.1 http Apache httpd 2.0.39 ((Unix) mod_per med auth general purpose ux 2.4.X12.5.X Linux Kernel 2.4.0 - 2.5.20 19 days (since Wed May 21 12:38:26 2003)	03-12-19 14:28 PST filtered) 01/1.99_07-dev Per1/v5.6.1) 33.792 seconds	a-article htn

Κρυστογραφία (Cryptography)

- From the Greek "kryptos" and "graphia" for "secret writing"
- Confidentiality
 - Obscure a message from eaves-droppers
- Integrity
 - Assure recipient that the message was not altered
- Authentication
 - Verify the identity of the source of a message
- Non-repudiation
 - Convince a 3rd party that what was said is accurate

Terminology

- Cryptographer
 - Invents cryptosystems
- Cryptanalyst
 - Breaks cryptosystems
- Cryptology
 - Study of crypto systems
- Cipher
 - Mechanical way of encrypting text or data
- Code
 - Semantic translation: "eat breakfast tomorrow" = "attack on Thursday" (or use Navajo!)

Kinds of Cryptographic Analysis

- Goal is to recover the key (& algorithm)
- Ciphertext only attacks
 - No information about content or algorithm
 - Very hard
- Known Plaintext attacks
 - Full or partial plaintext available in addition to ciphertext
- Chosen Plaintext attacks
 - Know which plaintext has been encrypted
- Algorithm & Ciphertext attacks
 - Known algorithm, known ciphertext, recover key

The Caesar Cipher

- Purportedly used by Julius Caesar (c. 75 B.C.)
 - Add 3 mod 26
- Advantages
 - Simple
 - Intended to be performed in the field
 - Most people couldn't read anyway
- Disadvantages
 - Violates "no security through obscurity"
 - Easy to break (why?)

Monoalphabetic Ciphers

- Also called *substitution* ciphers
- Separate *algorithm* from the *key*
 - Add N mod 26
 - rot13 = Add 13 mod 26
- General monoalphabetic cipher
 - Arbitrary permutation π of the alphabet
 - Key is the permutation

a b c d

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow
 $\pi(a) \pi(b) \pi(c) \pi(d)$

Example Cipher

abcdefghijkl... π zdancewibfgh...

Plaintext: he lied Ciphertext: ic hbcn

Cryptanalysis of Monoalphabetic Ciphers

- Brute force attack: try every key
 - N! Possible keys for N-letter alphabet
 - 26! \approx 4 x 10²⁶ possible keys
 - Try 1 key per μ sec ... 10 trillion years
- ...but (!) monoalphabetic ciphers are *easy* to solve

- One-to-one mapping of letters is bad
- Frequency distributions of common letters

Order & Frequency of Single Letters

Monoalphabetic Cryptanalysis

- Count the occurrences of each letter in the cipher text
- Match against the statistics of English
- Most frequent letter likely to be "e"
- 2nd most frequent likely to be "t"
- etc.
- Longer ciphertext makes statistical analysis more likely to work...

Desired Statistics

- Problems with monoalphabetic ciphers
 - Frequency of letters in ciphertext reflects frequency of plaintext
- Want a single plaintext letter to map to multiple ciphertext letters

- "e" **→**"X", "C", "W"

• Ideally, ciphertext frequencies should be flat

Variance: Measure of "roughness"

Polyalphabetic Substitutions

- Pick k substitution ciphers
 - $\pi_1 \pi_2 \pi_3 \dots \pi_k$
 - Encrypt the message by rotating through the k substitutions

- Same letter can be mapped to multiple different ciphertexts
 - Helps smooth out the frequency distributions
 - Diffusion

Diffusion and Confusion

- Diffusion
 - Ciphertext should look random
 - Protection against statistical attacks
 - Monoalphabetic -> Polyalphabetic substitution; diffusion ↑
- Confusion
 - Make the relation between the key, plaintext and ciphertext complex
 - Lots off confusion -> hard to calculate key in a known plaintext attack
 - Polyalphabetic substitution: little confusion

Perfect Substitution Ciphers

- Choose a string of random bits the same length as the plaintext, XOR them to obtain the ciphertext.
- Perfect Secrecy
 - Probability that a given message is encoded in the ciphertext is unaltered by knowledge of the ciphertext
 - Proof: Give me any plaintext message and any ciphertext and I can construct a key that will produce the ciphertext from the plaintext.

One-time Pads

- Another name for Perfect Substitution
- Actually used by US agents in Russia
 - Physical pad of paper
 - List of random numbers
 - Pages were torn out and destroyed after use
 - "Numbers Stations"?
- Vernam Cipher
 - Used by AT&T
 - Random sequence stored on punch tape
- Not practical for computer security...

Problems with "Perfect" Substitution

- Key is the same length as the plaintext
 - Sender and receiver must agree on the same random sequence
 - Not any easier to transmit key securely than to transmit plaintext securely
- Need to be able to generate many truly random bits
 - Pseudorandom numbers generated by an algorithm aren't good enough for long messages
- Can't reuse the key
 - Not enough confusion

Computational Security

- Perfect Ciphers are *unconditionally secure*
 - No amount of computation will help crack the cipher (i.e. the only strategy is brute force)
- In practice, strive for *computationally security*
 - Given enough power, the attacker could crack the cipher (example: brute force attack)
 - But, an attacker with only *bounded resources* is extremely unlikely to crack it
 - Example: Assume attacker has only polynomial time, then encryption algorithm that can't be inverted in less than exponential time is secure.