
2/7/08 CIS/TCOM 551 1

CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 7

2/7/08 CIS/TCOM 551 2

Announcements

• Project 1 is due *this Friday* at 11:59

• Today: access control continued
– Mandatory access control
– Java / C# stack inspection model

2/7/08 CIS/TCOM 551 3

SELinux
• Security-enhanced Linux system (NSA)

– Enforce separation of information based on confidentiality and
integrity requirements

– Mandatory access control incorporated into the major subsystems
of the kernel

• Limit tampering and bypassing of application security mechanisms
• Confine damage caused by malicious applications

http://www.nsa.gov/selinux/

2/7/08 CIS/TCOM 551 4

SELinux Security Policy Abstractions
• Security-Encanced Linux

– Built by NSA
• Type enforcement

– Each process has an associated domain
– Each object has an associated type (label)
– Configuration files specify

• How domains are allowed to access types
• Allowable interactions and transitions between domains

• Role-based access control
– Each process has an associated role

• Separate system and user processes
– Configuration files specify

• Set of domains that may be entered by each role

2/7/08 CIS/TCOM 551 5

Two Other MAC Policies
• "Chinese Wall" policy: [Brewer & Nash '89]

– Object labels are classified into "conflict classes"
– If subject accesses one object with label L1 in a conflict class, all

access to objects labeled with other labels in the conflict class are
denied.

– Policy changes dynamically

• "Separation of Duties":
– Division of responsibilities among subjects
– Example: Bank auditor cannot issue checks.

2/7/08 CIS/TCOM 551 6

Covert Channels & Information Hiding
• A covert channel is a means by which two components of a system that are

not permitted to communicate do so anyway by affecting a shared resource.

• Information hiding: Two components of the system that are permitted to
communicate about one set of things, exchange information about disallowed
topics by encoding contraband information in the legitimate traffic.

• Not that hard to leak a small amount of data
– A 64 bit encryption key is not that hard to transmit
– Even possible to encode relatively large amounts of data!

• Example channels / information hiding strategies
– Program behavior
– Adjust the formatting of output:

use the “\t” character for “1” and 8 spaces for “0”
– Vary timing behavior based on key
– Use "low order" bits to send signals
– Power consumption
– Grabbing/releasing a lock on a shared resource

2/7/08 CIS/TCOM 551 7

Mobile Code
• Modern languages like Java and C# have been designed

for Internet applications and extensible systems

• PDAs, Cell Phones, Smart Cards, …

operating system

 web browser

applet applet applet

2/7/08 CIS/TCOM 551 8

Java and C# Security
• Static Type Systems

– Memory safety and jump safety
• Run-time checks for

– Array index bounds
– Downcasts
– Access controls

• Virtual Machine / JIT compilation
– Bytecode verification
– Enforces encapsulation boundaries (e.g. private field)

• Garbage Collected
– Eliminates memory management errors

• Library support
– Cryptography, authentication, …

2/7/08 CIS/TCOM 551 9

Applet Security Problems
• Protect OS & other valuable resources.
• Applets should not:

– crash browser or OS
– execute “rm –rf /”
– be able to exhaust resources

• Applets should:
– be able to access some system resources (e.g. to display a

picture)
– be isolated from each other

• Principles of least privileges and complete mediation
apply

2/7/08 CIS/TCOM 551 10

Access Control for Applets
• What level of granularity?

– Applets can touch some parts of the file system but not others
– Applets can make network connections to some locations but not others

• Different code has different levels of trustworthiness
– www.l33t-hax0rs.com vs. www.java.sun.com

• Trusted code can call untrusted code
– e.g. to ask an applet to repaint its window

• Untrusted code can call trusted code
– e.g. the paint routine may load a font

• How is the access control policy specified?
• How is it enforced?

2/7/08 CIS/TCOM 551 11

Java Security Model

a.class
b.class
c.class
d.class
e.class

Domain A

Domain B

Permissions

Permissions

Security PolicyVM Runtime

Classloader
SecurityManager

2/7/08 CIS/TCOM 551 12

Kinds of Permissions
• java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission
…

2/7/08 CIS/TCOM 551 13

Code Trustworthiness
• How does one decide what protection domain the

code is in?
– Source (e.g. local or applet)
– Digital signatures

• C# calls this “evidence based”

• How does one decide what permissions a
protection domain has?
– Configurable – administrator file or command line

• Enforced by the classloader

2/7/08 CIS/TCOM 551 14

Classloader Hierarchy

ClassLoader

SecureClassLoader URLClassLoader

AppletClassLoader

Primordial
ClassLoader

2/7/08 CIS/TCOM 551 15

Classloader Resolution
• When loading the first class of an application, a new instance of the

URLClassLoader is used.
• When loading the first class of an applet, a new instance of the

AppletClassLoader is used.
• When java.lang.Class.ForName is directly called, the primordial class

loader is used.
• If the request to load a class is triggered by a reference to it from an

existing class, the class loader for the existing class is asked to load
the class.

• Exceptions and special cases… (e.g. web browser may reuse applet
loader)

2/7/08 CIS/TCOM 551 16

Example Java Policy

grant codeBase “http://www.l33t-hax0rz.com/*” {
 permission java.io.FilePermission(“/tmp/*”, “read,write”);
}

grant codeBase “file://$JAVA_HOME/lib/ext/*” {
 permission java.security.AllPermission;
}

grant signedBy “trusted-company.com” {
 permission java.net.SocketPermission(…);
 permission java.io.FilePermission(“/tmp/*”, “read,write”);
 …
}

Policy information stored in:
 $JAVA_HOME/lib/security/java.policy
 $USER_HOME/.java.policy
 (or passed on command line)

2/7/08 CIS/TCOM 551 17

Example Trusted Code

void fileWrite(String filename, String s) {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 FilePermission fp = new FilePermission(filename,“write”);
 sm.checkPermission(fp);
 /* … write s to file filename (native code) … */
 } else {
 throw new SecurityException();
 }
}

public static void main(…) {
 SecurityManager sm = System.getSecurityManager();
 FilePermission fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

Code in the System protection domain

2/7/08 CIS/TCOM 551 18

Example Client

class UntrustedApplet {
 void run() {
 ...
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 ...
 s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);
 ...
 }
}

Applet code obtained from
http://www.l33t-hax0rz.com/

2/7/08 CIS/TCOM 551 19

Stack Inspection
• Stack frames are annotated with their protection domains

and any enabled privileges.

• During inspection, stack frames are searched from most
to least recent:
– fail if a frame belonging to someone not authorized for privilege is

encountered
– succeed if activated privilege is found in frame

2/7/08 CIS/TCOM 551 20

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 21

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 22

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 23

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
 fp = new FilePermission(“/tmp/foo.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 24

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/tmp/foo.txt”, “Hello!”);
 …
}

void fileWrite(“/tmp/foo.txt”, “Hello!”) {
 fp = new FilePermission(“/tmp/foo.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

fp

P
o
licy

 D
a
ta

b
a
se

Succeed!

2/7/08 CIS/TCOM 551 25

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void run() {
 …
 s.FileWrite(“/home/stevez/important.tex”,
 “kwijibo”);
}

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 26

Stack Inspection Example

main(…){
 fp = new FilePermission(“/tmp/*”,“write,…”);
 sm.enablePrivilege(fp);
 UntrustedApplet.run();
}

void fileWrite(“…/important.txt”, “kwijibo”) {
 fp = new FilePermission(“important.txt”,
 “write”);
 sm.checkPermission(fp);

fp

P
o
licy

 D
a
ta

b
a
se

void run() {
 …
 s.FileWrite(“/home/stevez/important.tex”,
 “kwijibo”);
}

Fail

2/7/08 CIS/TCOM 551 27

Other Possibilities
• The fileWrite method could enable the write

permission itself
– Potentially dangerous, should not base which file to write on data

provided by the applet
– … but no enforcement in Java (information flow would help here)

• A trusted piece of code could disable a previously granted
permission
– Terminate the stack inspection early

2/7/08 CIS/TCOM 551 28

Stack Inspection Algorithm
checkPermission(T) {
 // loop newest to oldest stack frame
 foreach stackFrame {
 if (local policy forbids access to T by class executing in
 stack frame) throw ForbiddenException;

 if (stackFrame has enabled privilege for T)
 return; // allow access

 if (stackFrame has disabled privilege for T)
 throw ForbiddenException;
 }

 // end of stack
 if (Thunderbird || …) throw ForbiddenException;
 if (MS IE || JDK || …) return;
}

2/7/08 CIS/TCOM 551 29

Two Implementations
• On demand –

– On a checkPermission invocation, actually crawl down the stack,
checking on the way

– Used in practice

• Eagerly –
– Keep track of the current set of available permissions during

execution (security-passing style Wallach & Felten)
+ more apparent (could print current perms.)
- more expensive (checkPermission occurs infrequently)

2/7/08 CIS/TCOM 551 30

Stack Inspection
• Stack inspection seems appealing:

– Fine grained, flexible, configurable policies
– Distinguishes between code of varying degrees of trust

• But…
– How do we understand what the policy is?
– Semantics tied to the operational behavior of the program (defined in

terms of stacks!)
– Changing the program (e.g. optimizing it) may change the security policy
– Policy is distributed throughout the software, and is not apparent from the

program interfaces.
– Is it any good?

– It's not complete!

2/7/08 CIS/TCOM 551 31

Problem with Stack Inspection

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 32

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Problem with Stack Inspection

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 33

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Problem with Stack Inspection

fp

P
o
licy

 D
a
ta

b
a
se

String getFileName() {
 return "/home/stevez/important.txt";
}

2/7/08 CIS/TCOM 551 34

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

Problem with Stack Inspection

fp

P
o
licy

 D
a
ta

b
a
se

2/7/08 CIS/TCOM 551 35

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

Problem with Stack Inspection

fp

P
o
licy

 D
a
ta

b
a
se

void fileWrite(“/home/stevez/important.txt”, “xxxxxx”) {
 fp = new FilePermission("…/important.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

Succeed!

2/7/08 CIS/TCOM 551 36

Stack Inspection: Final thoughts
• Question: How does taint tracking relate to this problem

with stack inspection?

• Related Papers (not required reading):
– A Systematic Approach to Static Access Control

François Pottier, Christian Skalka, Scott Smith
– Stack Inspection: Theory and Variants

Cédric Fournet and Andrew D. Gordon
– Understanding Java Stack Inspection

Dan S. Wallach and Edward W. Felten

