CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 7

2/7/08 CIS/TCOM 551

Announcements

* Project 1 is due *this Friday™ at 11:59

* Today: access control continued
— Mandatory access control
— Java / C# stack inspection model

2/7/08 CIS/TCOM 551

SELinux

« Security-enhanced Linux system (NSA)
— Enforce separation of information based on confidentiality and
integrity requirements
— Mandatory access control incorporated into the major subsystems

of the kernel
 Limit tampering and bypassing of application security mechanisms

« Confine damage caused by malicious applications

http://www.nsa.gov/selinux/

2/7/08 CIS/TCOM 551

SELinux Security Policy Abstractions

« Security-Encanced Linux
— Built by NSA

« Type enforcement
— Each process has an associated domain
— Each object has an associated type (label)

— Configuration files specify
 How domains are allowed to access types
» Allowable interactions and transitions between domains

* Role-based access control
— Each process has an associated role
« Separate system and user processes
— Configuration files specify
» Set of domains that may be entered by each role

2/7/08 CIS/TCOM 551

Two Other MAC Policies

« "Chinese Wall" policy: [Brewer & Nash '89]

— Object labels are classified into "conflict classes”

— If subject accesses one object with label L1 in a conflict class, all
access to objects labeled with other labels in the conflict class are

denied.
— Policy changes dynamically

« "Separation of Duties":
— Division of responsibilities among subjects
— Example: Bank auditor cannot issue checks.

2/7/08 CIS/TCOM 551

Covert Channels & Information Hiding

« A covert channel is a means by which two components of a system that are
not permitted to communicate do so anyway by affecting a shared resource.

« Information hiding: Two components of the system that are permitted to
communicate about one set of things, exchange information about disallowed
topics by encoding contraband information in the legitimate traffic.

* Not that hard to leak a small amount of data
— A 64 bit encryption key is not that hard to transmit
— Even possible to encode relatively large amounts of data!

« Example channels / information hiding strategies
— Program behavior

— Adjust the formatting of output:
use the “\t” character for “1” and 8 spaces for “0”

— Vary timing behavior based on key

— Use "low order” bits to send signals

— Power consumption

— Grabbing/releasing a lock on a shared resource

2/7/08 CIS/TCOM 551 6

Mobile Code

 Modern languages like Java and C# have been designed
for Internet applications and extensible systems

applet| |applet| |applet

N /
\/

web browser

e PDAs, Cell Phones, Smart Cards, ...

2/7/08 CIS/TCOM 551

Java and C# Security

« Static Type Systems

— Memory safety and jump safety
* Run-time checks for

— Array index bounds

— Downcasts

— Access controls
* Virtual Machine / JIT compilation

— Bytecode verification

— Enforces encapsulation boundaries (e.g. private field)
 Garbage Collected

— Eliminates memory management errors
« Library support

— Cryptography, authentication, ...

2/7/08 CIS/TCOM 551

Applet Security Problems

 Protect OS & other valuable resources.
* Applets should not:

— crash browser or OS
— execute ‘rm —rf /”
— be able to exhaust resources

* Applets should:

— be able to access some system resources (e.g. to display a
picture)

— be isolated from each other

* Principles of least privileges and complete mediation
apply

2/7/08 CIS/TCOM 551

Access Control for Applets

What level of granularity?
— Applets can touch some parts of the file system but not others
— Applets can make network connections to some locations but not others
Different code has different levels of trustworthiness
— www.I33t-hax0rs.com vs. www.java.sun.com
Trusted code can call untrusted code
— e.g. to ask an applet to repaint its window
Untrusted code can call trusted code
— e.g. the paint routine may load a font
How is the access control policy specified?
How is it enforced?

2/7/08 CIS/TCOM 551 10

Java Security Model

VM Runtime Security Policy
—; Domain A~ Pernissions
" Domain B~ Pernissions -
Classloader ¢+
SecurityManager T

2/7/08 CIS/TCOM 551 11

Kinds of Permissions

« java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc", "read");
java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission

2/7/08 CIS/TCOM 551

Code Trustworthiness

 How does one decide what protection domain the
code is in?
— Source (e.g. local or applet)

— Digital signatures
o C# calls this “evidence based”

 How does one decide what permissions a
protection domain has?

— Configurable — administrator file or command line

« Enforced by the classloader

2/7/08 CIS/TCOM 551 13

Classloader Hierarchy

Primordial

ClassLoader

2/7/08 CIS/TCOM 551

14

Classloader Resolution

When loading the first class of an application, a new instance of the
URLClassLoader is used.

When loading the first class of an applet, a new instance of the
AppletClassLoader is used.

When java.lang.Class.ForName is directly called, the primordial class
loader is used.

If the request to load a class is triggered by a reference to it from an
existing class, the class loader for the existing class is asked to load
the class.

Exceptions and special cases... (e.g. web browser may reuse applet
loader)

2/7/08 CIS/TCOM 551 15

Example Java Policy

grant codeBase “http://www.133t-hax0rz.com/*"” {
permission java.io.FilePermission(“/tmp/*”, “read,write”);

}

grant codeBase “file://$JAVA HOME/lib/ext/*" {
permission java.security.AllPermission;

}

grant signedBy “trusted-company.com” {
permission java.net.SocketPermission(..);

permission java.io.FilePermission(“/tmp/*"”, “read,write”);
}
Policy information stored in:
$JAVA HOME/lib/security/java.policy
$USER HOME/.java.policy
(or passed on command line)
2/7/08 CIS/TCOM 551 16

Example Trusted Code

Code in the System protection domain

2/7/08 CIS/TCOM 551

17

Example Client

Applet code obtained from
http://www.|33t-hax0rz.com/

class UntrustedApplet {
void run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);

2/7/08 CIS/TCOM 551

Stack Inspection

« Stack frames are annotated with their protection domains
and any enabled privileges.

« During inspection, stack frames are searched from most
to least recent:

— fail if a frame belonging to someone not authorized for privilege is
encountered

if activated privilege is found in frame

2/7/08 CIS/TCOM 551 19

Stack Inspection Example

aseqgeleq Adljod

2/7/08 CIS/TCOM 551

20

Stack Inspection Example

_fp

aseqgeleq Adljod

2/7/08 CIS/TCOM 551

21

Stack Inspection Example

void run() {

s.FileWrite("“/tmp/foo.txt”, “Hello!”);

}m

aseqgeleq Adljod

2/7/08 CIS/TCOM 551

Stack Inspection Example

-
o
void run() { 5}
<
s.FileWrite("“/tmp/foo.txt”, “Hello!”); O
Q
} —+
Q
O
Q
n
(D

2/7/08 CIS/TCOM 551 23

Stack Inspection Example

-
o

void run E
() { <
s.FileWrite(“/tmp/foo.txt”, “Hello!”); ﬁ O
Q)
—

} Q)
&

L |

Succeed!

2/7/08 CIS/TCOM 551 24

Stack Inspection Example

-
o
void run() { 5}
<
s.FileWrite(“/home/stevez/important.tex”, W)
“kKwijibo”); Q)
} —t
Q
O
Q
n
(D

2/7/08 CIS/TCOM 551 25

Stack Inspection Example

-
o
void run() { é
s.FileWrite(“/home/stevez/important.tex”, W)
“kKwijibo”); i Q
, Fail Q
! Q
O
Q
n
(D
2/7/08 CIS/TCOM 551 26

Other Possibilities

« The fileWrite method could enable the write
permission itself

— Potentially dangerous, should not base which file to write on data
provided by the applet

— ... but no enforcement in Java (information flow would help here)

« A trusted piece of code could disable a previously granted
permission

— Terminate the stack inspection early

2/7/08 CIS/TCOM 551 27

Stack Inspection Algorithm

checkPermission(T) {
// loop newest to oldest stack frame
foreach stackFrame {
if (local policy forbids access to T by class executing in
stack frame) throw ForbiddenException;

if (stackFrame has enabled privilege for T)
return; // allow access

if (stackFrame has disabled privilege for T)
throw ForbiddenException;

}

// end of stack
if (Thunderbird || ...) throw ForbiddenException;

if (MS IE || JDK || ...) return;

2/7/08 CIS/TCOM 551

28

Two Implementations

e On demand —

— On a checkPermission invocation, actually crawl down the stack,
checking on the way

— Used in practice
- Eagerly —
— Keep track of the current set of available permissions during
execution (security-passing style Wallach & Felten)
+ more apparent (could print current perms.)
- more expensive (checkPermission occurs infrequently)

2/7/08 CIS/TCOM 551

29

Stack Inspection

« Stack inspection seems appealing:

Fine grained, flexible, configurable policies
Distinguishes between code of varying degrees of trust

o But...

How do we understand what the policy is?

Semantics tied to the operational behavior of the program (defined in
terms of stacks!)

Changing the program (e.g. optimizing it) may change the security policy

Policy is distributed throughout the software, and is not apparent from the
program interfaces.

Is it any good?

It's not complete!

2/7/08

CIS/TCOM 551 30

Problem with Stack Inspection

aseqgeleq Adljod

2/7/08 CIS/TCOM 551

31

Problem with Stack Inspection

aseqgeleq Adljod

-

2/7/08 CIS/TCOM 551

32

Problem with Stack Inspection

-
O
=

String getFileName() { <
return "/home/stevez/important. txt"; O

} Q)
—t

Q)

O

Q

n

™D

2/7/08 CIS/TCOM 551 33

Problem with Stack Inspection

aseqgeleq Adljod

"/home/stevez/important. txt",

2/7/08 CIS/TCOM 551

34

Problem with Stack Inspection

“/home/stevez/important.txt”
"../important.txt”

e

aseqgeleq Adljod

Succeed!

"/home/stevez/important. txt",

2/7/08 CIS/TCOM 551

35

Stack Inspection: Final thoughts

* Question: How does taint tracking relate to this problem
with stack inspection?

* Related Papers (not required reading):

— A Systematic Approach to Static Access Control
Francois Pottier, Christian Skalka, Scott Smith

— Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

— Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

2/7/08 CIS/TCOM 551

36

