
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2006
Lecture 6

2/6/06 CIS/TCOM 551 2

Announcements
• Reminder:

– Project 1 is due TODAY
– Mail your .tar file to Karl by midnight tonight.

• Some of today's slides are adapted from slides by John
Mitchell

2/6/06 CIS/TCOM 551 3

Recap from last time
• We've been studying Acess Control Mechanisms

– Access control lists
– Capabilities
– Unix/Windows OS access control
– Stack inspection

• Today:
– Discretionary access control (DAC)
– Mandatory access control (MAC)
– Information-flow security

2/6/06 CIS/TCOM 551 4

Access Control
• Discretionary: The individual user may, at his own

discretion, determine who is authorized to access the
objects he creates.

• Mandatory: The creator of an object does not necessarily
have the ability to determine who has authorized access
to it.
– Typically policy is governed by some central authority
– The policy on an object in the system depends on what

object/information was used to create the object.
– Examples?

2/6/06 CIS/TCOM 551 5

Multilevel Security
• Multiple levels of confidentiality ratings
• Military security policy

• Classification involves sensitivity levels, compartments
• Do not let classified information leak to unclassified files

• Group individuals and resources
– Use some form of hierarchy to organize policy

• Trivial example: Public ≤ Secret

• Information flow
– Regulate how information is used throughout entire system
– A document generated from both Public and Secret information

must be rated Secret.
– Intuition: "Secret" information should not flow to "Public" locations.

2/6/06 CIS/TCOM 551 6

Military security policy

• Sensitivity levels

Top Secret
Secret
Confidential
Restricted
Unclassified

• Compartments

Satellite data
Afghanistan

Middle East
Israel

2/6/06 CIS/TCOM 551 7

Military security policy

• Classification of personnel and data
– Class D = 〈rank, compartment〉

• Dominance relation
– D1 ≤ D2 iff rank1 ≤ rank2
 and compartment1 ⊆ compartment2

– Example: 〈Restricted, Israel〉 ≤ 〈Secret, Middle East〉

• Applies to
– Subjects – users or processes: C(S) = "clearance of S"
– Objects – documents or resources: C(O) = "classification of O"

2/6/06 CIS/TCOM 551 8

Bell-LaPadula Confidentiality Model

• “No read up, no write down.”
– Subjects are assigned clearance levels drawn from the lattice of

security labels.
C(S) = "clearance of the subject S"

– A principal may read objects with lower (or equal) security label.
• Read: C(O) ≤ C(S)

– A principal may write objects with higher (or equal) security label.
• Write: C(S) ≤ C(O)

• Example:
A user with Secret clearance can:
– Read objects with label Public and Secret
– Write/create objects with label Secret

2/6/06 CIS/TCOM 551 9

Multilevel Security Policies
• In general, security levels form a "join semi-lattice"

– There is an ordering ≤ on security levels
– For any pair of labels L1 and L2 there is an "join" operation:

L1 ⊕ L2 is a label in the lattice such that:
(1) L1 ≤ L1 ⊕ L2 and L2 ≤ L1 ⊕ L2 "upper bound"
(2) If L1 ≤ L3 and L2 ≤ L3 then L1 ⊕ L2 ≤ L3 "least bound"

• For example: Public ⊕ Secret = Secret
• Labeling rules:

– Classification is a function C : Object → Lattice
– If some object O is "created from" objects O1,…,On

then C(O) = C(O1) ⊕ … ⊕ C(On)

2/6/06 CIS/TCOM 551 10

Picture: Confidentiality

S

Public

Secret

Read below, write above

S

Public

Secret

Read above, write below

2/6/06 CIS/TCOM 551 11

Picture: Integrity

S

Untainted

Tainted

Read below, write above

S

Untainted

Tainted

Read above, write below

2/6/06 CIS/TCOM 551 12

Problem with Stack Inspection

main(…){
 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

Policy D
atabase

2/6/06 CIS/TCOM 551 13

Problem with Stack Inspection

fp

Policy D
atabasemain(…){

 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

2/6/06 CIS/TCOM 551 14

Problem with Stack Inspection

String getFileName() {
 return "/home/stevez/important.txt";
}

fp

Policy D
atabasemain(…){

 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite(UntrustedApplet.getFileName(), "xxxxxx");
}

2/6/06 CIS/TCOM 551 15

Problem with Stack Inspection

fp

Policy D
atabasemain(…){

 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

2/6/06 CIS/TCOM 551 16

Problem with Stack Inspection

fp

Policy D
atabasemain(…){

 fp = new FilePermission(“/home/stevez/*”,“write,…”);
 sm.enablePrivilege(fp);
 fileWrite("/home/stevez/important.txt", "xxxxxx");
}

void fileWrite(“/home/stevez/important.txt”, “xxxxxx”) {
 fp = new FilePermission("…/important.txt”,“write”)
 sm.checkPermission(fp);
 /* … write s to file filename … */

Succeed!

2/6/06 CIS/TCOM 551 17

Implementing Multilevel Security
• Dynamic:

– Tag all values in memory with their security level
– Operations propagate security levels
– Must be sure that tags can’t be modified
– Expensive, and approximate

• Classic result: Information-flow policies cannot be
enforced purely by a reference monitor!
– Problem arises from implicit flows

• Static:
– Program analysis
– May be more precise
– May have less overhead

2/6/06 CIS/TCOM 551 18

Information Flows through Software

Implicit Flows:

int{Secret} X = f();
int{Public} Y = 0;
int{Public} Z = 0;

if (X > 0) then {
 Y = 1;
} else {
 Z = 1;
}

Explicit Flows:

int{Secret} X = f();
int{Public} Y = 0;

Y = X;

2/6/06 CIS/TCOM 551 19

Perl's Solution (for Integrity)
• The problem: need to track the source of data
• Examples: Format string, SQL injection, etc.

$arg = shift;
system ("echo $arg");

•Give this program the argument "; rm *"
•Perl offers a taint checking mode

– Tracks the source of data (trusted vs. tainted)
– Ensure that tainted data is not used in system calls
– Tainted data can be converted to trusted data by pattern matching
– Doesn't check implicit flows

2/6/06 CIS/TCOM 551 20

SELinux
• Security-enhanced Linux system (NSA)

– Enforce separation of information based on confidentiality and
integrity requirements

– Mandatory access control incorporated into the major subsystems
of the kernel

• Limit tampering and bypassing of application security mechanisms
• Confine damage caused by malicious applications

http://www.nsa.gov/selinux/

2/6/06 CIS/TCOM 551 21

SELinux Security Policy Abstractions
• Security-Encanced Linux

– Built by NSA

• Type enforcement
– Each process has an associated domain
– Each object has an associated type (label)
– Configuration files specify

• How domains are allowed to access types
• Allowable interactions and transitions between domains

• Role-based access control
– Each process has an associated role

• Separate system and user processes
– configuration files specify

• Set of domains that may be entered by each role

2/6/06 CIS/TCOM 551 22

Two Other MAC Policies
• "Chinese Wall" policy: [Brewer & Nash '89]

– Object labels are classified into "conflict classes"
– If subject accesses one object with label L1 in a conflict class, all

access to objects labeled with other labels in the conflict class are
denied.

– Policy changes dynamically

• "Separation of Duties":
– Division of responsibilities among subjects
– Example: Bank auditor cannot issue checks.

