CIS 551 / TCOM 401
Computer and Network

Security

Spring 2006
Lecture 5

Access Control

« Last time: Unix/Windows access control at the OS level.

« Today: Stack Inspection

« What are the security issues in mobile code?

1/27/06 CIS/TCOM 551

Mobile Code

 Modern languages like Java and C# have been designed
for Internet applications and extensible systems

applet applet applet

N _/
Y

web browser

e PDAs, Cell Phones, Smart Cards, ...

1/27/06 CIS/TCOM 551

Java and C# Security

« Static Type Systems

— Memory safety and jump safety
* Run-time checks for

— Array index bounds

— Downcasts

— Access controls
» Virtual Machine / JIT compilation

— Bytecode verification

— Enforces encapsulation boundaries (e.g. private field)
 Garbage Collected

— Eliminates memory management errors
« Library support

— Cryptography, authentication, ...

1/27/06 CIS/TCOM 551

Applet Security Problems

 Protect OS & other valuable resources.
* Applets should not:

— crash browser or OS
— execute ‘rm —rf /”
— be able to exhaust resources

* Applets should:

— be able to access some system resources (e.g. to display a
picture)

— be isolated from each other

* Principles of least privileges and complete mediation
apply

1/27/06 CIS/TCOM 551

Access Control for Applets

« What level of granularity?
— Applets can touch some parts of the file system but not others
— Applets can make network connections to some locations but not others
» Different code has different levels of trustworthiness
— www.l33t-hax0rs.com vs. www.java.sun.com
« Trusted code can call untrusted code
— e.g. to ask an applet to repaint its window
« Untrusted code can call trusted code
— e.g. the paint routine may load a font
 How is the access control policy specified?

1/27/06 CIS/TCOM 551

Java Security Model

VM Runtime Security Policy

— bomain

o o = = = = = = = = = = = = = = = = -]

Classloader
SecurityManager

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-specTOC.fm.html

1/27/06 CIS/TCOM 551 7

Kinds of Permissions

« java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt. AWTPermission
java.io.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission

1/27/06 CIS/TCOM 551

Code Trustworthiness

 How does one decide what protection domain the code is
in?
— Source (e.g. local or applet)
— Digital signatures
— C# calls this “evidence based”

 How does one decide what permissions a protection
domain has?
— Configurable — administrator file or command line

« Enforced by the classloader

1/27/06 CIS/TCOM 551

Classloader Hierarchy

Primordial

ClasslLoader

1/27/06 CIS/TCOM 551

10

Classloader Resolution

When loading the first class of an application, a new instance of the
URLClassLoader is used.

When loading the first class of an applet, a new instance of the
AppletClassLoader is used.

When java.lang.Class.ForName is directly called, the primordial class
loader is used.

If the request to load a class is triggered by a reference to it from an
existing class, the class loader for the existing class is asked to load
the class.

Exceptions and special cases... (e.g. web browser may reuse applet
loader)

1/27/06 CIS/TCOM 551 11

Example Java Policy

grant codeBase “http://www.I33t-hax0rz.com/*” {
permission java.io.FilePermission(“/tmp/*”, “read,write”);

}

grant codeBase “file://$JAVA_HOME/lib/ext/*” {
permission java.security.AllPermission;

}

grant signedBy “trusted-company.com” {
permission java.net.SocketPermission(...);
permission java.io.FilePermission(“/tmp/*”, “read,write”);

Policy information stored In:

$JAVA HOME/lib/security/java.policy
$USER _HOME/.java.policy
(or passed on command line)

1/27/06 CIS/TCOM 551

12

Example Trusted Code

Code in the System protection domain

1/27/06 CIS/TCOM 551

13

Example Client

Applet code obtained from
http://www.|133t-hax0rz.com/

class UntrustedApplet {
void run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

s.FileWrite(“/home/stevez/important.tex”, “kwijibo”);

}...

}

1/27/06 CIS/TCOM 551

14

Stack Inspection

« Stack frames are annotated with their protection domains
and any enabled privileges.

« During inspection, stack frames are searched from most
to least recent:

— fail if a frame belonging to someone not authorized for privilege is
encountered

if activated privilege is found in frame

1/27/06 CIS/TCOM 551 15

Stack Inspection Example

asegeleq Aaljod

1/27/06 CIS/TCOM 551

16

Stack Inspection Example

_fp

asegeleq Aaljod

1/27/06 CIS/TCOM 551

17

Stack Inspection Example

o
O
void run() { o)
s.FileWrite(“/tmp/foo.txt”, “Hello!”); O
Q)
} O
O
QO
02
D
fp
1/27/06 CIS/TCOM 551 18

Stack Inspection Example

void run() {

s.FileWrite(“/tmp/foo.txt”, “Hello!”);

}...

aseqgeleq Aaljod

1/27/06 CIS/TCOM 551

Stack Inspection Example

o
O
void run() { o)
s.FileWrite(“/tmp/foo.txt”, “Hello!”); O
Q)
} O
O
QO
7 02
D
Succeed!
1/27/06 CIS/TCOM 551 20

Stack Inspection Example

o
O
void run() { o)
s.FileWrite(“/home/stevez/important.tex”, O
“kwijibo”); Q)
} O
O
QO
02
D
fp
1/27/06 CIS/TCOM 551 21

Stack Inspection Example

o
O
void run() { ?)
s.FileWrite(“/home/stevez/important.tex”, O
“kwijibo”); Fa” 9_1
} | Q
O
QO
02
D
fp
1/27/06 CIS/TCOM 551 22

Other Possibilities

* The fileWrite method could enable the write permission
itself

— Potentially dangerous, should not base which file to write on data
provided by the applet

— ... but no enforcement in Java (information flow would help here)

« A trusted piece of code could disable a previously granted
permission

— Terminate the stack inspection early

1/27/06 CIS/TCOM 551 23

Stack Inspection Algorithm

checkPermission(T) {
// loop newest to oldest stack frame
foreach stackFrame {
if (local policy forbids access to T by class executing in
stack frame) throw ForbiddenException;

if (stackFrame has enabled privilege for T)
return; // allow access

if (stackFrame has disabled privilege for T)
throw ForbiddenException;

}

// end of stack
if (Netscape || ...) throw ForbiddenException;
if (MS IE4.0 || JDK || ...) return;

}

1/27/06 CIS/TCOM 551

24

Two Implementations

e On demand —

— On a checkPermission invocation, actually crawl down the stack,
checking on the way

— Used in practice
- Eagerly —
— Keep track of the current set of available permissions during
execution (security-passing style Wallach & Felten)
+ more apparent (could print current perms.)
- more expensive (checkPermission occurs infrequently)

1/27/06 CIS/TCOM 551

25

Stack Inspection

« Stack inspection seems appealing:

— Fine grained, flexible, configurable policies

— Distinguishes between code of varying degrees of trust
 But...

— How do we understand what the policy is?

— Semantics tied to the operational behavior of the program (defined in
terms of stacks!)

— Changing the program (e.g. optimizing it) may change the security policy

— Policy is distributed throughout the software, and is not apparent from the
program interfaces.

— Is it any good?

1/27/06 CIS/TCOM 551 26

Stack Inspection Research

« A Systematic Approach to Static Access Control
Francois Pottier, Christian Skalka, Scott Smith

« Stack Inspection: Theory and Variants
Cédric Fournet and Andrew D. Gordon

« Understanding Java Stack Inspection
Dan S. Wallach and Edward W. Felten

— Formalize Java Stack Inspection using ABLP logic

1/27/06 CIS/TCOM 551

27

