
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2005
Lecture 4

1/27/06 CIS/TCOM 551 2

Access Control: The Big Picture
• Objects - resources being

protected
– E.g. files, devices, etc.

• Subjects - active entities
– E.g. processes, machines

• Permissions (or Rights) - Kinds
of access requests that are
monitored
– E.g. read, write, execute

• Reference monitor - mediates
requests made by subjects
– Permits or denies access

Reference Monitor

Obj
Obj

Obj
Obj

Obj
Obj

Obj

Sub Sub Sub

request

1/27/06 CIS/TCOM 551 3

Outline
• Access Control Concepts

– Matrix, ACL, Capabilities

• OS Mechanisms
– Multics

• Ring structure
– Amoeba

• Distributed, capabilities
– Unix

• File system, Setuid
– Windows

• File system, Tokens, EFS

• Next time:
 Java / C# access control

– Privileges & Stack inspection

• Some slides courtesy of
John Mitchell

1/27/06 CIS/TCOM 551 4

Multics
• Operating System

– Designed 1964-1967
• MIT Project MAC, Bell Labs, GE

– At peak, ~100 Multics sites
– Last system, Canadian Department of

Defense, Nova Scotia
shut down October, 2000

• Extensive Security Mechanisms
– Influenced many subsequent systems

http://www.multicians.org/security.html

E.I. Organick, The Multics System: An Examination of Its Structure, MIT Press, 1972

1/27/06 CIS/TCOM 551 5

Multics time period
• Timesharing was new concept

– Serve Boston area with one 386-based PC
F.J. Corbato

1/27/06 CIS/TCOM 551 6

Multics Innovations
• Segmented, Virtual memory

– Hardware translates virtual address to real address

• High-level language implementation
– Written in PL/1, only small part in assembly language

• Shared memory multiprocessor
– Multiple CPUs share same physical memory

• Relational database
– Multics Relational Data Store (MRDS) in 1978

• Security
– Designed to be secure from the beginning
– First B2 security rating (1980s), only one for years

• More about government certification levels later

1/27/06 CIS/TCOM 551 7

Multics Access Model
• Ring structure

– A ring is a domain in which a process executes
– Numbered 0, 1, 2, … ; Kernel is ring 0
– Graduated privileges

• Processes at ring i have privileges of every ring j > i

• Segments
– Each data area or procedure is called a segment
– Segment protection 〈b1, b2, b3〉 with b1 ≤ b2 ≤ b3

• Process/data can be accessed from rings b1 … b2
• A process from rings b2 … b3 can only call segment at restricted

entry points

1/27/06 CIS/TCOM 551 8

Multics processes

• Multiple segments
– Segments are dynamically linked
– Linking process uses file system to find segment
– A segment may be shared by several processes

• Multiple rings
– Procedure, data segments each in specific ring
– Access depends on two mechanisms

• Per-Segment Access Control
– File author specifies the users that have access to it

• Concentric Rings of Protection
– Call or read/write segments in outer rings
– To access inner ring, go through a “gatekeeper”

• Interprocess communication through “channels”

1/27/06 CIS/TCOM 551 9

Amoeba
• http://www.cs.vu.nl/pub/amoeba/amoeba.html
• Distributed system

– Multiple processors, connected by network
– Process on A can start a new process on B
– Location of processes designed to be transparent

• Capability-based system
– Each object resides on server
– Invoke operation through message to server

• Send message with capability and parameters
• Sever uses object # to indentify object
• Sever checks rights field to see if operation is allowed
• Check field prevents processes from forging capabilities

Server port Check fieldObj # Rights

1/27/06 CIS/TCOM 551 10

Capabilities
• Owner capability

– When server creates object, returns owner cap.
• All rights bits are set to 1 (= allow operation)
• Check field contains 48-bit rand number stored by server

• Derived capability
– Owner can set some rights bits to 0
– Calculate new check field

• XOR rights field with random number from check field
• Apply one-way hash function to calculate new check field

– Server can verify rights and check filed
• Without owner capability, cannot forge derived capability

Protection by user-process at server; no special OS support needed

Server port Check fieldObj # Rights

1/27/06 CIS/TCOM 551 11

Unix file security
• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of
 four octal values

• Only owner, root can change permissions
– This privilege cannot be delegated or shared

• Setid bits – Discuss in a few slides

rwx rwxrwx---

owner group other

setid

1/27/06 CIS/TCOM 551 12

Question
• "owner" can have fewer privileges than "other"

– What happens?
• User gets access?
• User does not?

• Prioritized resolution of differences
if user = owner then owner permission
 else if user in group then group permission
 else other permission

1/27/06 CIS/TCOM 551 13

Effective User ID (EUID)

• Each process has three user IDs (+ more under Linux)
– Real user ID (RUID)

• same as the user ID of parent (unless changed)
• used to determine which user started the process

– Effective user ID (EUID)
• from set user ID bit on the file being executed, or sys call
• determines the permissions for process

– file access and port binding

– Saved user ID (SUID)
• So previous EUID can be restored

• Real group ID, effective group ID, used similarly

1/27/06 CIS/TCOM 551 14

Process Operations and IDs
• Root

– ID=0 for superuser root; can access any file

• Fork and Exec
– Inherit three IDs, except when executing a file with setuid bit on.

• Setuid system calls
– seteuid(newid) can set EUID to

• Real ID or saved ID, regardless of current EUID
• Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setruid

1/27/06 CIS/TCOM 551 15

Setid bits on executable Unix file
• Three setid bits

– Setuid – set EUID of process to ID of file owner
– Setgid – set EGID of process to GID of file
– Sticky

• Off: if user has write permission on directory, can rename or remove
files, even if not owner

• On: only file owner, directory owner, and root can rename or remove
file in the directory

1/27/06 CIS/TCOM 551 16

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

1/27/06 CIS/TCOM 551 17

Setuid programming
• Can do anything that owner of file is allowed to do
• Be Careful!

– Root can do anything; don’t get tricked (no middle ground)
– Principle of least privilege – change EUID when root privileges no

longer needed
– Be sure not to

• Take action for untrusted user
• Return secret data to untrusted user

• Setuid scripts
– This is a bad idea
– Historically, race conditions

• Begin executing setuid program; change contents of program before
it loads and is executed

1/27/06 CIS/TCOM 551 18

Unix summary
• We’re all very used to this …

– So probably seems pretty good
– We overlook ways it might be better

• Good things
– Some protection from most users
– Flexible enough to make things possible

• Main bad thing
– Too tempting to use root privileges
– No way to assume some root privileges without all root privileges

1/27/06 CIS/TCOM 551 19

Access control in Windows (NTFS)

• Some basic functionality similar to Unix
– Specify access for groups and users

• Read, modify, change owner, delete

• Some additional concepts
– Tokens
– Security attributes

• Generally
– More flexibility than Unix

• Can define new permissions
• Can give some but not all administrator privileges

1/27/06 CIS/TCOM 551 20

Sample permission options

• SID
– Identity (replaces UID)

• SID revision number
• 48-bit authority value
• variable number of Relative

Identifiers (RIDs), for
uniqueness

– Users, groups, computers,
domains, domain members
all have SIDs

1/27/06 CIS/TCOM 551 21

Permission Inheritance

• Static permission inheritance (Win NT)
– Initially, subfolders inherit permissions of folder
– Folder, subfolder changed independently
– Replace Permissions on Subdirectories command

• Eliminates any differences in permissions

• Dynamic permission inheritance (Win 2000)
– Child inherits parent permission, remains linked
– Parent changes are inherited, except explicit settings
– Inherited and explicitly-set permissions may conflict

• Resolution rules
– Positive permissions are additive (take union of all permissions)
– Negative permission (deny access) takes priority

1/27/06 CIS/TCOM 551 22

Tokens
• Security Reference Monitor

– uses tokens to identify the security context of a process or thread

• Security context
– privileges, accounts, and groups associated with the process or

thread

• Impersonation token
– thread uses temporarily to adopt a different security context,

usually of another user

• Related to the EUID used in Unix.

1/27/06 CIS/TCOM 551 23

Security Descriptor

• Access Control List associated with an object
– Specifies who can perform what actions on the object

• Several fields
– Header

• Descriptor revision number
• Control flags, attributes of the descriptor

– E.g., memory layout of the descriptor

– SID of the object's owner
– SID of the primary group of the object
– Two attached optional lists:

• Discretionary Access Control List (DACL) – users, groups, …
• System Access Control List (SACL) – system logs, ..

1/27/06 CIS/TCOM 551 24

Example access request
User: Mark
Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer
 Deny
 Writers
 Read, Write
 Allow
 Mark
 Read, Write

Owner SID

Revision Number

Access
token

Security
descriptor

Access request: write
Action: denied

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request

1/27/06 CIS/TCOM 551 25

Impersonation Tokens
• Windows equivalent of setuid
• Process uses security attributes of another

– Client passes impersonation token to server

• Client specifies impersonation level of server
– Anonymous

• Token has no information about the client

– Identification
• server obtain the SIDs of client and client's privileges, but server

cannot impersonate the client
– Impersonation

• server identify and impersonate the client
– Delegation

• lets server impersonate client on local, remote systems

