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of Neural Network Controllers
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Recent advances in deep learning have enabled data-driven controller design for autonomous systems. However,

verifying safety of such controllers, which are often hard-to-analyze neural networks, remains a challenge.

Inspired by compositional strategies for program verification, we propose a framework for compositional

learning and verification of neural network controllers. Our approach is to decompose the task (e.g., car

navigation) into a sequence of subtasks (e.g., segments of the track), each corresponding to a different mode of

the system (e.g., go straight or turn). Then, we learn a separate controller for each mode, and verify correctness

by proving that (i) each controller is correct within its mode, and (ii) transitions between modes are correct.

This compositional strategy not only improves scalability of both learning and verification, but also enables

our approach to verify correctness for arbitrary compositions of the subtasks. To handle partial observability

(e.g., LiDAR), we additionally learn and verify a mode predictor that predicts which controller to use. Finally,

our framework also incorporates an algorithm that, given a set of controllers, automatically synthesizes the

pre- and postconditions required by our verification procedure. We validate our approach in a case study

on a simulation model of the F1/10 autonomous car, a system that poses challenges for existing verification

tools due to both its reliance on LiDAR observations, as well as the need to prove safety for complex track

geometries. We leverage our framework to learn and verify a controller that safely completes any track

consisting of an arbitrary sequence of five kinds of track segments.
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systems; • Computing methodologies→ Reinforcement learning.
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1 INTRODUCTION
Deep reinforcement learning is a promising approach to solving challenging control problems, such

as control from perception [46], multi-agent planning problems [43], autonomous driving while

interacting with humans [15], or planning through contact such as walking [17] or grasping [10].

The basic premise is to learn a neural network (NN) controller directly mapping observations

to actions. However, ensuring safety in these settings is challenging due to the complexity in
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formally reasoning about NN models. For instance, small perturbations in their inputs can lead to
unexpected changes in their output [66] and this can adversely a�ect control performance [42].
Thus, it is critical to formally verify the safety of the NN controller to guarantee safety under a
wide range of inputs and operating conditions. Even learning NN controllers for complex tasks
remains challenging [41, 45, 51], since existing approaches do not scale beyond tasks with short
planning horizons.

As a consequence, there has been a great deal of interest in safe reinforcement learning [4, 12, 18]
and verifying that the learned NN controller satis�es a given safety property [38, 42]. We focus
on closed-loop safety, where the goal is to ensure that the controller, composed with a model of
the robot dynamics and its environment, is safe over the entire planning horizon�e.g., that an
autonomous car does not run into an obstacle, or a walking robot does not fall over. We consider
the setting where the NN controller is learned in simulation, and the goal is to verify the learned
controller.

Fig. 1. An overview of our compositional learning and verification framework.

A key challenge in achieving this goal is proving safety for the full closed-loop system. One
approach is to unroll the safety property over a �nite horizon [38]. However, this approach becomes
intractable as the planning horizon becomes large. In particular, existing veri�cation algorithms
rely on overapproximating the dynamics [16], and the approximation error accumulates over
the horizon. Thus, very precise abstractions are required to verify safety for long horizons. An
alternative approach is to establish the existence of an inductive invariant such as a Lyapunov
function [18, 67] or a control barrier function [5, 57]. This strategy reduces the problem to a
veri�cation problem over a single step, since it su�ces to prove that a candidate invariant is
inductive and that it implies safety. However, establishing such an invariant can be intractable
for high-dimensional state spaces, especially when using neural network controllers with many
parameters.

These challenges are further exacerbated for real-world robotics systems, which are typically
only partially observable (e.g., the inputs to the NN are LiDAR scans), and the geometry of the
environment is a priori unknown (e.g., the robot is acting in a building with an unknown layout of
hallways).

To address these challenges, we propose a framework for compositional learning and veri�cation
of NN controllers1 (Figure 1). Our framework is inspired by classical techniques such as Hoare
logic [34] for compositional program veri�cation. The idea is to verify a program by decomposing
it into modular components, devising veri�cation conditions (VCs) for all components that su�ce
to prove safety, and then proving that each VC holds for its respective component.
1Although the proposed framework can be used with any veri�cation tool, we use Verisig [38] for closed-loop veri�cation.
Since Verisig supports fully-connected NNs with sigmoid/tanh activations, we focus on this class of NNs as well.
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In particular, our framework leverages this strategy to both learn an NN controller to solve a
given control task and verify the learned controller. First, we decompose the task into a sequence
of sub-tasks, where each sub-task is associated with a precondition (e.g., the region of the state
space where the robot starts) and a postcondition (e.g., the region where the robot ends up). This
decomposition is designed to satisfy two properties:

� Mode safety and progress: For any single sub-task, using the NN controller from any
state satisfying the precondition should safely transition the system to a state satisfying the
postcondition within some bounded number of steps.

� Switching safety: The postcondition of one sub-task should imply the precondition of the
next.

As long as these two properties are satis�ed, the NN controller is guaranteed to be safe for the entire
planning horizon. Furthermore, these two properties are su�cient to guarantee a particular liveness
property which states that any �nite sequence of sub-tasks will be completed eventually. Intuitively,
our strategy combines veri�cation over a �nite horizon (i.e., mode safety) with establishing inductive
invariants (i.e., switching safety), except that the inductive invariants are established at the level of
sub-tasks rather than individual steps in the system. Formally, we model the system as a hybrid
automaton [5, 7, 53]�i.e., a model of the system is a set of modes of operation, with di�erential
equations specifying the state dynamics of each mode; in our approach, the discrete transitions
encode switching from one sub-task to the next. Many practical control tasks can be decomposed
in such a way�e.g., navigation problems can be decomposed into sequences of sub-goals.

Given a hybrid automaton, our framework performs the following steps:

� Compositional learning: First, it learns a separate NN controller for each mode, using
shaped rewards to encourage it to satisfy mode safety and progress. An added advantage of
this approach is that we can use simpler NNs that are easier to both train and verify.

� Pre/postcondition synthesis: Next, it synthesizescandidate pre/postconditions(i.e., a can-
didate pair of pre- and postconditions for each mode) that satisfy switching safety and are
consistent with a set of traces obtained by simulating the system with the learned controllers.

� Compositional veri�cation: Finally, it uses hybrid systems veri�cation tools [16, 38] to
independently check mode safety and progress for each mode.

The second step builds on recent work on invariant synthesis [31]. In particular, our synthesis
algorithm uses testing to identifyimplication examplesthat connect the di�erent (pre/postcondition)
sets, and then tries to synthesize candidate pre/postconditions consistent with these examples.

One challenge is that in partially observed environments, the controller may not know when one
sub-task has been completed and/or what the next sub-task is. To address this issue, we additionally
train a mode predictor, which is a separate NN that predicts whether the postcondition for the
current sub-task holds in the current state and if so, predicts the next sub-task. This mode predictor
is incorporated into the overall controller. To ensure correctness, the safety and progress conditions
are veri�ed with respect to the full compositional controller (including the mode predictor). For
instance, consider a robot navigating in a building with an unknown layout; then, it may not know
if the next segment is to go straight, turn left, or turn right. Our approach naturally handles this
setting since it proves safety for arbitrary compositions of the sub-tasks as long as the switching
safety property is satis�ed. Thus, the sequence of sub-tasks can be chosen dynamically based on
observations of the environment�e.g., if a robot comes to a left turn at the end of a hallway, then
the mode predictor would determine that the next sub-task is to make that left turn. Therefore, our
framework enables us to learn and verify a controller that generalizes to multiple tasks composed
of the same set of sub-tasks.
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Fig. 2. Di�erent types of track segments.

(a) (b) (c)

Fig. 3. Example tracks decomposed into segments.

We evaluate our approach on a challenging benchmark�namely, a simulation model of the F1/10
autonomous racing system [1], where the goal is for an NN-controlled car to complete a track
without crashing into the walls. Verifying safety for this system has received recent attention [38];
however, these approaches do not scale to verifying safety beyond short time horizons on a single,
prede�ned track, due to two main reasons. First, the controller must rely on high-dimensional
LiDAR observations of the environment, which poses challenges for scalability. Second, we ideally
want to ensure safety for a wide variety of complex track geometries. As a consequence, this system
is beyond the reach of existing state-of-the-art veri�cation techniques.

We demonstrate that our framework can successfully learn and verify an NN controller for this
system, by decomposing tracks into sequences of individual segments. In particular, we consider
sub-tasks that include going straight or executing four di�erent kinds of turns, and verify safety
for any sequence of such sub-tasks. We also provide evidence that training a monolithic controller
for an example track is signi�cantly harder than our compositional learning approach.

In summary, our contributions are:

� A framework for compositional veri�cation of NN controllers for hybrid systems (Section 3).
� An algorithm for automatically inferring pre/postconditions given a controllerc , as well as a

compositional learning algorithm for trainingc .
� An extensive evaluation2 via a case study based on a model of the F1/10 autonomous car

(Sections 5 & 6).

2 OVERVIEW

In this section, we give a brief overview of our approach using the F1/10 autonomous racing system
as a motivating example.

F1/10 car.The objective is to safely navigate the autonomous F1/10 car along a racing track to
complete a lap as quickly as possible. The safety property states that the car should not crash into
the track walls. Ignoring modes for now, the state space isX � R4 (a stateG2 X denotes the 2D
position, speed, and angle of the car), the action space isU � R2 (an actionD 2 U consists of
acceleration and steering angle), and the dynamics are the bicycle dynamics [58].

We assume the track is decomposed into a sequence of segments, where each segment is either a
straight track, a left/right turn, or a sharp left/right turn as shown in Figure 2; these are the �ve

2Our implementation is available at https://github.com/keyshor/autonomous_car_veri�cation.
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(a) A LiDAR scan. (b) Di�erent regions in the segment.

Fig. 4. A sharp right turn.

modesof the system. Our goal is not to learn and verify a controller for a given speci�c track, but
rather to learn and verify a controller that works forall tracks constructed by composing these
segments. Some example tracks are shown in Figure 3.

The F1/10 car observes its environment with a LiDAR sensor, which uses laser rays to determine
the distance to the nearest obstacle along di�erent directions. In particular, it produces an obser-
vation> 2 O � R< , where each>8 2 R corresponds to an anglek 2 »� 135•135¼and denotes the
distance from the car position to the nearest wall in the directiono ¸ k , whereo is the angle the
car is currently facing. An example of a scan is shown in Figure 4a; each green point is the obstacle
observed by one of the< = 1081LiDAR rays.

Control problem.Our goal is to learn a controllerc : O ! U that maps LiDAR observations to
actions. Designing a safe controller for the F1/10 car is challenging due to the high-dimensional
observation space. One approach is to train a neural network (NN) controllerc using reinforcement
learning, and then verify post-hoc thatc is safe. This technique has been used to verify that the car
can safely navigate a right turn [39]. However, existing veri�cation approaches [22, 38, 68] do not
scale to more complex tasks such as the tracks in Figure 3�even when the track is known ahead of
time�due to the long planning horizon.

Compositional veri�cation (fully observed).For now, let us assume that the controllerc is given
and that the state is fully observed, and describe how we verify thatc is safe. We also assume
that we are given apre-regionand apost-regionfor each mode, which are subsets of the state
space such that the car always starts in the pre-region of the mode and ends in its post-region.
Intuitively, membership in the pre-region (resp., post-region) corresponds to the precondition (resp.,
postcondition) for that mode. An example of the pre- and post-regions for the sharp right turn
mode is shown in Figure 4b. These regions are chosen so that the system immediately and safely
transitions from the post-region of any mode@to the pre-region of some subsequent mode@0 (i.e.,
switching safety). If we know the sequence of track segments, then the choice of@0 is unique. In
our case, since we do not know the sequence of track segments a priori, we prove switching safety
for everypair of modes@•@0, which, together with mode safety and progress guarantees that the
car safely completesany track consisting of an arbitrary sequence of these �ve kinds of segments.
Finally, to prove mode safety and progress, it su�ces to verify thatc safely navigates the car from
the pre-region of each mode to the corresponding post-region without crashing.

Compositional veri�cation (partially observed).Veri�cation is more challenging when the state is
partially observed�e.g.,c only has access to LiDAR observations. We assumec is decomposed
into a mode predictor̀ together with a controllerc@for each mode@. Then,c usesc@, where@is
the predicted mode at the current step.

Importantly, we do not assume that the mode predictor is correct; thus,c may use the incorrect
controller. For example, in the case of the sharp right turn, if the LiDAR range is smaller than the
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distance of the corner from the entry region, there will be regions where the mode predictor cannot
distinguish the sharp turn segment from a straight segment using just LiDAR observations (see
Figure 4b). Thus, we need to prove that the full controllerc is correct, even if̀ is wrong. This
involves simultaneously reasoning about the controllersc@00

for all modes@00, along with the mode
predictor ` .

Compositional learning.We use deep reinforcement learning to train one neural network con-
troller c@ for each mode@to drive the car from the pre-region to the post-region. Since the
controller can only observe the LiDAR observations, we also train a mode predictor that predicts
the current mode from the observations. We can do so using supervised learning from observations
encountered while trainingc@.

Importantly, we �nd that our compositional approach bene�ts not only veri�cation but also
learning. In particular, we can train simpler neural networks with fewer parameters, and training
is less likely to get stuck at local maxima that are characteristic of long planning horizons.

Candidate pre/post-region synthesis.Finally, manually specifying the pre- and post-regions for
each mode can be challenging. We propose an algorithm for automatically inferring these regions.
Our algorithm, based on invariant inference [26, 31, 60], alternates between synthesizingcandidate
pre/post-regionsthat are consistent with all the example traces generated so far, and generating
new example traces usingc .

In particular, the synthesis algorithm uses the example traces to identify bothunsafe examplesI
from whichc is known to be unsafe, andimplication examplesI ! I 0, which say thatI 0 is reachable
from I usingc . Then, it represents the pre- and post-regions as boxes inR=, and infers a set of
boxes that are consistent with the identi�ed examples. Finally, it uses the inferred pre/post-regions
to try and verify that c is safe.

3 COMPOSITIONAL VERIFICATION

In this section, we describe our framework for compositional veri�cation of controllers. Our model
of the system is based on hybrid automata [7, 8, 53] tailored to our setting. We de�ne safety and
liveness in our context and show that we can reduce safety and liveness to a set of veri�cation
conditions (VCs) that are local to the modes of the hybrid automaton and can be checked using
existing veri�cation tools.

3.1 Problem Formulation

Dynamics.We consider a hybrid dynamical system with statesI 2 Z and actionsU � R: . We
assume the state space has structureZ = Q � X , whereQ is a �nite set of modesandX � R= is the
continuous component of the state space. We denote the states in mode@by Z @= f@g � X . Within
a mode@2 Q, the dynamics are given by a function5 : Z � U ! R=; in particular, the system
evolves according to the di�erential equation¤G¹Cº = 5¹I ¹Cº•D¹Cºº (with respect to timeC). When
there is no ambiguity, we simply write¤G= 5¹I•Dº. The mode transitions are given by a relation
T � Z � Z , where an edgeI ! I 0 2 T means the system can transition from stateI to stateI 0.
We letZ � = f I 2 Z j 9 I 0 2 Z s.t.I ! I 0 2 T g denote the set of states where mode transitions
can occur. The mode transitions are assumed to beurgent�i.e., a mode transition occurs as soon as
the system reaches someI 2 Z � ; we assume thatZ � is closed so this property is well-de�ned.

Intuitively, the corresponding discrete time dynamics are given byI ¸ = I 0 if I ! I 0 2 T
and I ¸ = ¹@• Ģ 5¹I•Dº � � Cº otherwise. Note that the mode transitions are nondeterministic,
since the conditionI ! I 0 2 T may be satis�ed by multipleI 0 2 Z . This nondeterminism is
needed to capture settings where the sequence of sub-tasks is a priori unknown. In our F1/10
example, at a stateI about to exit the current mode, transitionsI ! ¹ @0• G0º exist for all modes
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@0 2 f straight•left turn• ”””g. Finally, our goal is to control the system based on observations> 2
O � R< ; in particular, an observation function� : Z ! O maps states to observations. If the
system is fully observable,O can be taken to beZ with � ¹I º = I for all I 2 Z .

We formally represent the dynamical system as a hybrid automaton which is de�ned as:

De�nition 3.1. A hybrid automatonA is a tupleA = ¹Q•X•U •T •O• 5 • �º”

Control.A controller is a functionc : O ! U , whereD= c ¹� ¹I ºº speci�es the action to use in
stateI . We use5¹I• c• Cº 2 Z to denote the state reached at timeC2 R� 0 by evolving the system
according to¤G= 5¹I• c ¹� ¹I ººº. Furthermore, let� ¹I• c• Cº � Z denote the set of states visited until
time C�i.e., � ¹I• c• Cº = f 5¹I• c• C0º j 0 � C0 � Cg.

We decomposec into controllersc@: O ! U designed to be used in mode@2 Q, and amode
predictor` : O ! Q that predicts the current mode. Then, we havec ¹>º = c@¹>º where@= ` ¹>º.
We do not assume that the mode predictor is always correct�i.e., we may have` ¹>º = @even
though the current mode is@0 < @, in which casec would use the wrong controller.

Trajectories.Next, we describe the space of trajectories that may be generated by a given controller
c . Since the dynamics are continuous-time, the trajectory is a curve in the state space parameterized
by timeC2 R� 0. However, formally reasoning about this representation is di�cult. Instead, we

represent a trajectory as an in�nite sequenced = ¹I 0
C0�! I 1

C1�! � � � º , whereC8 2 R� 0 for all 82 N.

In particular, an edgeI 8
C8�! I 8̧ 1 in d says that the system transitions fromI 8 to I 8̧ 1 in time C8. For

clarity, we omit theC8's from d when it is not needed. There are two kinds of transitionsI 8 ! I 8̧ 1
that can occur:

� Continuous transition: This kind of transition occurs whenI 8 8 Z � . Then, the system
evolves according to the continuous dynamics5�i.e., I 8̧ 1 = 5¹I 8• c• C8º, whereC8 ¡ 0. We
assume that no mode transition is triggered�i.e.,5¹I 8• c• Cº 8 Z � for all C2 »0• C8º. We denote
such a transition byI 8 ! 5 I 8̧ 1.

� Mode transition: This kind of transition occurs whenI 8 2 Z � . Then, the system instan-
taneously transitions to someI 8̧ 1 such thatI 8 ! I 8̧ 1 2 T �i.e., C8 = 0. We denote such a
transition byI 8 ! T I 8̧ 1.

We assume all trajectories arenon-Zeno�i.e.,
Í 1

8=0C8 = 1 . It is only necessary to consider Zeno
trajectories if subsequent mode transitions can occur after arbitrarily small amounts of time, which
cannot happen if the system requires a minimum amount of time before triggering the next mode
transition. In our F1/10 example, the car must traverse an entire segment to trigger another mode
transition, which cannot happen arbitrarily quickly since velocity is bounded from above.

Correctness properties.We consider a safety property speci�ed as a regionZ safe � Z in which
we expect the system to stay. In addition, we assume given a set of initial statesZ 0 � Z safe from
which we want to ensure safety.

De�nition 3.2. A controller c is safefor a hybrid automatonA if for any trajectory d starting
from I 0 2 Z 0, for all 82 N, we have5¹I 8• c• Cº 2 Z safe for all C2 »0• C8¼.

That is, the system should be safe for the duration of any trajectory generated usingc from an
initial state. Next, liveness says the system should switch modes in�nitely often.

De�nition 3.3. A controller c is live for a hybrid automatonA if for any trajectory d starting
from I 0 2 Z 0, we haveI 8 ! T I 8̧ 1 for in�nitely many 82 N.
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3.2 Verification Conditions

Our veri�cation algorithm reduces the problem of verifying safety and liveness to a set of veri�cation
conditions (VCs).

Pre- and post-regions.Following our compositional approach, our VCs decompose the problem
into properties of individual modes or pairs of modes. For each mode@, we assume given apre-
regionX@

pre � X and apost-regionX@
post � X . In addition, we de�neZ @

pre = f@g � X @
pre and

Z @
post = f@g � X @

post. Intuitively, the precondition (resp., postcondition) for@is membership in
its pre-region (resp., post-region). We require that pre- and post-regions satisfy the following
conditions, which we callcompatibility conditions (CCs)since they are not checked by the veri�er,
but are directly enforced when we generate the pre/post regions.

De�nition 3.4 (CC 1). We haveZ 0 �
Ð

@2Q Z @
pre.

That is, every initial state is contained in a pre-region.

De�nition 3.5 (CC 2). We have
Ð

@2Q Z @
post � Z � .

That is, every state in the post-region triggers a mode transition; intuitively, the post-region
should only include states that �exit� the mode. Now, we have two kinds of VCs:

� Mode safety and progress: For each mode@2 Q, the system safely transitions fromZ @
pre

to Z @
post.

� Switching safety: For each pair of modes@•@0 2 Qwith a mode transition¹@• Gº ! ¹ @0• G0º 2
T , the system safely transitions fromZ @

post to Z @0

pre.

First, our VC for mode safety and progress is:

De�nition 3.6 (VC 1). For anyI 2 Z @
pre, there existsC 2 R¡ 0 such that 5¹I• c• Cº 2 Z @

post,
� ¹I• c• Cº � Z safe, and5¹I• c• C0º 8 Z � for all C0 2 »0• Cº.

That is,c safely transitions the system from any state in the pre-region of mode@to the post-
region of@. The last condition is needed to ensure that the system does not trigger a mode transition
I ! I 0 2 T at some stateI 8 Z @

post. That is,5¹I• c• Cº is the �rst state reached that triggers a mode
transition (such a state exists since we have assumedZ � is closed).

Remark 3.7.Although VC 1 is local to a mode@2 Q, it is a property of the full controllerc which
includes the mode predictor` and controllersc@0

for all @0 2 Q.

Next, our VC for switching safety is:

De�nition 3.8 (VC 2). For allI 2 Z @
post and allI ! I 0 2 T , we haveI 0 2 Z @0

pre for some@0 2 Q.

That is, for every stateI in a post-region and every mode transitionI ! I 0, the target stateI 0 is
contained in the pre-region of another mode@0.

Together, CCs 1 & 2 and VCs 1 & 2 imply thatc is safe and live forA . First, CC1 ensures that the
initial states satisfy the precondition of some mode@. Then, VC 1 says that the precondition of mode
@implies the postcondition of mode@. Next, VC 2 and CC 2 together say that the postcondition of
mode@implies the precondition of another mode@0.

Theorem 3.9.Given controllerc for hybrid automatonA , if CCs 1 & 2 and VCs 1 & 2 hold, thenc
is safe and live forA .

We give a proof in Appendix A, and describe how we use veri�cation tools [16, 38] to verify the
VCs in Appendix B.
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Algorithm 1 Compositional learning and synthesis.Inputs:Hybrid automatonA and initial
candidate pre/post-regions� 0. Output:A veri�ed controller c or FAIL. Hyperparameters:Number
of synthesis iterations 2 N.

1: procedure LearnController (A • � 0)
2: c  Learn¹A • � 0º
3: � c  Synthesize¹A • c• �0º
4: if � c = œthen return FAIL
5: if Verify¹A • c• �c º then return c
6: return FAIL
7: procedure Synthesize(A • c• � )
8: �  œ
9: for 82 f1• ” ” ” •  gdo

10: �  � [ Test¹A • c• � º
11: �  Infer¹� º
12: if � = œthen return œ
13: return �

4 COMPOSITIONAL LEARNING AND SYNTHESIS

Our overall framework is summarized in Algorithm 1. Suppose we are given initialpre/post-regions
� 0�i.e., a pre- and a post-region for every mode@2 Q. Then, the method consists of the following
steps:

� Learning: Train a controllerc that tries to drive the system from every state in the pre-region
of each mode@to the post-region of@, where we use the pre/post regions in� 0.

� Pre/post-region synthesis: Synthesize new candidate pre/post-regions� c for c .
� Veri�cation: Use the algorithm in Section 3 with� c to try and prove thatc is safe and live.

A natural choice for the initial pre/post-regions is to takeZ @
pre = Z 0 \ Z @andZ @

post = Z � \ Z @

for all @2 Q. The above procedure can fail because of two reasons: either synthesis fails (i.e., no
set of pre/post-regions consistent with the generated examples exists) or veri�cation fails. In either
case, we retry the above steps with modi�ed rewards for learning and/or a di�erent choice of initial
pre/post-regions. In our experiments, we retried our procedure (Algorithm 1) a few (3-4) times with
di�erent reward functions until we were able to verify the learned controller.

The subroutine for synthesizing a candidate set of pre/post-regions alternates between the
following two steps:

� Testing: Generate new examples using testing.
� Inference: Infer a candidate set of pre/post-regions� based on examples� generated so far.

The examples� include bothimplication examplesI ! I 0 2 Z 2 such thatI 0 is reachable fromI
usingc , andunsafe examplesI 2 Z that reach an unsafe state usingc .

Below, we describe our pre/post-region inference algorithm (Section 4.1) and our testing algorithm
(Section 4.2), as well as our compositional learning algorithm (Section 4.3).

4.1 Pre/Post-Region Inference

Problem formulation.We describe our algorithm for inferring pre- and post-regions given a set
of examples. First, we represent the regions using boxes�i.e., products of intervals.

De�nition 4.1. A box1 2 B in R= is de�ned by1 =
Î =

8=1»G8•~8¼ � R=, whereG8 � ~8 for all
82 f1• ”””•=g.
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We synthesize a set of boxes� = f1U j U 2 fpre•postg � &gdenoting the pre- and post-regions of
all the modes. For now, we assume givenlower and upper bounds1?

U•1>
U for all U 2 � = f pre•postg� &.

As discussed below, these bounds are used to enforce CCs 1 & 2. Then, our goal is to �nd boxes1U
for all U 2 � satisfying1?

U � 1U � 1>
U, such that takingX@

pre = 1¹pre•@º andX@
post = 1¹post•@º , VCs 1 &

2 are satis�ed. We denote the set of lower and upper bounds by� ? and� > respectively.
First, we describe the kinds of examples that are available. Examples are states (or pairs of states)

that encode anecessarycondition for the VCs to hold�i.e., if the invariant does not satisfy an
example, then it cannot possibly satisfy the VCs, but the converse is not true. First, we have states
from which usingc is unsafe.

De�nition 4.2. An unsafe exampleis a pair ¹U• Gº whereU = ¹pre•@º 2 � andG2 X such that
there existsC2 R� 0 with 5¹¹@• Gº• c• Cº 8 Z safeand5¹¹@• Gº• c• C0º 8 Z � for all C0 2 »0• Cº.

Next, we have examples that correspond to pairs of statesI andI 0 whereI 0 is reachable fromI .

De�nition 4.3. An implication exampleis a pair¹U• Gº ! ¹ U• G0º with U• U0 2 � andG• G0 2 X such
that either (i)U = ¹post•@º andU0 = ¹pre•@0º, with ¹@• Gº ! ¹ @0• G0º 2 T , or (ii) U = ¹pre•@º and
U0 = ¹post•@º, and there existsC2 R� 0 with ¹@• G0º = 5¹¹@• Gº• c• Cº 2 Z � , � ¹¹@• Gº• c• Cº � Z safe
and5¹¹@• Gº• c• C0º 8 Z � for all C0 2 »0• Cº.

Given these two kinds of examples, our goal is to synthesize a candidate set of boxes that is
consistent with them�i.e., it excludes examples that are inconsistent with our VCs.

De�nition 4.4. Given lower and upper bounds� ? • � > , unsafe examples� and implication examples
� , a candidate set of boxes� is consistentif the following hold:

� For all ¹U• Gº 2 � , we haveG8 1U.
� For all ¹U• Gº ! ¹ U0• G0º 2 � , G2 1U ) G0 2 1U0.
� For allU 2 � , we have1?

U � 1U � 1>
U.

Furthermore,� is minimal if for any candidate set of boxes~� satisfying these conditions,1U � ~1U
for all U 2 � .

Given bounds� ? , � > , unsafe examples� , and implication examples� , theInfer subroutine used
in Algorithm 1 returns a minimal consistent candidate set of boxes (if one exists, returningœ
otherwise).

Algorithm. Next, we describe our algorithm for synthesizing minimal set of boxes given a set
of examples. This algorithm is outlined in Algorithm 2. Our approach is to reduce the synthesis
problem to the following:

De�nition 4.5 (Consistent Box). Given positive examples- ¸ � R=, negative examples- � � R=

and boxes1? •1> , the(minimal) consistent boxis

1� = arg min
12B

=Ö

8=1

¹~8 � G8º subj. to - ¸ � 1• 1\ - � = œ• 1? � 1 � 1> ”

That is, the goal is to �nd the smallest box that includes- ¸ and excludes- � . This problem can
be solved e�ciently�in particular, let 1 =

Î =
8=1»G8•~8¼, whereG8 = minfG0

8 j G0 2 - ¸ g [ f G?
8 gand

~8 = maxfG0
8 j G0 2 - ¸ g [ f ~?

8 gwhere1? =
Î =

8=1»G?
8 •~?

8 ¼. Then, return1 if 1 \ - � = œand1 � 1> ;
otherwise, we returnœ(i.e., no such box exists).

Our synthesis algorithm initializes positive examples- ¸
U = œ, and negative examples- �

U to
be the unsafe examples, for eachU 2 � . Then, at each iteration, it independently synthesizes a
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Algorithm 2 Pre/post-region inference.Inputs:Implication & unsafe examples� .Output:Candidate
pre/post-regions� . Hyperparamters:� ? • � >

1: procedure Infer (� )
2: �• �  �
3: for U 2 � do
4: - ¸

U  œ
5: - �

U  f Gj ¹U• Gº 2 � g

6: while true do
7: for U 2 � do
8: 1U  ConsistentBox

�
- ¸

U• - �
U•1?

U•1>
U

�

9: if 1U = œthen return œ
10: k  true
11: for ¹U• Gº ! ¹ U0• G0º 2 � do
12: if G2 1U and G0 8 1U0 then
13: - ¸

U0  - ¸
U0 [ f G0g

14: k  false
15: if k then return f1U j U 2 � g

consistent box1U to be the minimal consistent box3 for positive examples- ¸
U, negative examples

- �
U , and boxes1?

U•1>
U. Next, it handles implication examples in� by expanding the sets- ¸

U for U 2 � .
In particular, it checks if any of the implication examples¹U• Gº ! ¹ U0• G0º 2 � violate the current
candidate invariant�i.e.,G2 1U but G0 8 1U0. If so, it requires thatG0 2 1U0 by addingG0 to - ¸

U0. It
continues the iterative process until either all examples in� are satis�ed, in which case it returns
the current candidate boxes� , or the consistent box subroutine fails, in which case it returnsœ.

Suppose there exists a set of minimal consistent boxesf1�
U j U 2 � g. Then, our algorithm

maintains the invariant that the current candidate boxesf1U j U 2 � g are contained in the
minimal consistent boxes�i.e.,1U � 1�

U for all U 2 � . Therefore, when dealing with an inconsistent
implication example¹U• Gº ! ¹ U0• G0º 2 � with G 2 1U, we can infer thatG0 2 1�

U0 and hence it
correctly addsG0 to - ¸

U0, forcing1U0 in the next iteration to includeG0. Since we deal with any
implication example at most once and we deal with at least one implication example in every
iteration (except the last iteration), we have:

Theorem 4.6.Algorithm 2 terminates after at mostj� j iterations and computes a set of minimal
consistent boxes if one exists and returnsœotherwise.

Choosing upper and lower bounds.Finally, we use the upper and lower bounds to handle CCs
1 & 2. First, CC 1 says that for every state¹@• Gº 2 Z 0, we haveG2 1U whereU = ¹pre•@º. Thus,
to ensure this condition holds, it su�ces to choose1?

U such thatX@
0 � 1?

U for all @2 Q. Similarly,
CC 2 says that for everyG2 1U with U = ¹post•@º, we have¹@• Gº 2 Z � ; thus, it su�ces to choose
1>

U � X @
� for all @2 Q.

4.2 Testing

Our testing subroutine takes as input candidate pre/post-regions� and uses simulated trajectories
from random start states to try and discover examples that are inconsistent with our VCs. Our
testing algorithm is summarized in Algorithm 3.

3Although - ¸
U is initialized toœ, 1U is not empty since it has to contain1?

U .
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Algorithm 3 Testing to check veri�cation conditions.Inputs:Hybrid automatonA , NN controller
c , and candidate pre/post-regions� . Output:Implication & unsafe examples� . Hyperparameters:
Horizon) 2 R¡ 0, iterations 2 N.

procedure Test(A • c• � )
�  œ
for 82 f1• ”””•  gdo

U  ¹ V•@º � Uniform¹� º
I  ¹ @• Gº whereG� P¹ 1Uº
if V = pre then

Z  � ¹I• c•) º (stop as soon asZ entersZ � )
I 0  ¹ @• G0º = 5¹I• c•) º
if Z * Z safe then �”�” Add¹¹U• Gºº
if I 0 8 Z @

post then �”� ”Add
�
¹U• Gº ! ¹¹ post•@º• G0º

�

else
I 0  ¹ @0• G0º � P¹f I 0 j I ! I 0 2 T gº
if I 0 8 Z @0

pre then �”� ”Add
�
¹U• Gº ! ¹¹ pre•@0º• G0º

�

return �

Algorithm 4 Compositional learning to try and satisfy veri�cation conditions.Inputs:Hybrid
automatonA , candidate pre/post-regions� . Output:Compositional controllerc .

procedure Learn(A • � )
for @2 Q do

?¹Gº = ?@¹Gº whereG� P¹ 1¹pre•@ºº
A¹Gº = A@¹G•1¹post•@ºº
c@ ReinforcementLearning¹5@• ?¹Gº•A¹Gºº

?¹@• Gº = ?¹@º?¹Gº where@� Uniform¹Qº, G� P c @

`  SupervisedLearning¹?¹I º• � ¹I ºº
return c

At a high level, it samples trajectoriesZ � Z starting from random statesI = ¹@• Gº, where
U = ¹V•@º � Uniform¹� º, andG� P¹ 1Uº�e.g., we can takeP¹1Uº to be the uniform distribution
over1U. Then, it checks whetherZ is an unsafe or an implication example that is inconsistent with
� ; if so, it addsI to �”� and/orI ! I 0 (I 0 is the last state inZ) to �”� , respectively. Finally, it returns
the set of examples� which is then used by our pre/post-region inference algorithm.

4.3 Controller & Mode Predictor Learning

We describe our approach for learning the compositional controllerc , which involves learning
the controllerc@for each mode@2 Q as well as learning the mode predictor` . Our approach is
summarized in Algorithm 4.

Controllers.First, we use reinforcement learning to learn the controllersc@for each mode@. We
parameterizec@= c@

\ as a neural networkc@
\ : O ! U mapping observations to actions. The

inputs to the reinforcement learning algorithm are the dynamics5@for mode@, a distribution?¹Gº
over initial statesG, and a reward functionA: X ! R. For the initial state distribution, we assume
given a distributionP¹1¹pre•@ºº over the pre-region of@�e.g., the uniform distribution. The reward
function should encourage the system to reach the next region. We can use any reinforcement
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learning algorithm in conjunction with these inputs to learnc@. We use the twin delayed deep
deterministic policy gradient (TD3) algorithm [28], which is a more stable variant of the popular
deep deterministic policy gradient (DDPG) algorithm [48].

Mode predictor.Next, we learn the mode predictor using supervised learning. To do so, we need
to construct a training set consisting of input-output examples¹>•@º 2 O � Q , where observation
> is the input and mode@is the ground truth mode. To do so, we sample statesI = ¹@• Gº, compute
the observations> = � ¹I º, and then construct the training examples¹>•@º. For the distribution
?¹I º = ?¹@• Gº over statesI , we use the uniform distribution over@and the distributionPc @ overG
visited by the controllerc@. The reason we use this distribution overGis that it is the distribution
of Gvalues that the mode predictor will encounter when runningc . Finally, we parameterizè
using a neural network̀ \ : O � Q ! » 0•1¼(i.e., predict the probabilitỳ \ ¹@j >º of mode@2 Q
given observation> 2 O).

5 SYSTEM MODELING

We brie�y describe the F1/10 car model used in our evaluation, and how we train the controllers
c@and the mode predictor̀ .

Dynamics model.We use the model in [39]. We use vector notations®G2 X and ®D 2 U for clarity.
The car dynamics are given by a kinematic bicycle model with 4D state space®G= ¹G•~• o• Eº 2 X �
R4, including 2D position¹G•~º, orientationo, and velocityE. The actions are®D= ¹0• qº 2 U � R2,
where0 denotes throttle andq is the orientation of the front wheels. We assume throttle is constant
at 0 = 16(resulting in a top speed of 2.4m/s), whereasq is set by the controller at a sampling rate
of 10Hz. The dynamics are governed by the following di�erential equations (with respect to time):

¤G= E� cos¹oº ¤E= � 20 � E¸ 20 � 2< � ¹0 � 2� º

¤~ = E� sin¹oº ¤o =
E
�

� tan¹qº
(1)

where20 = 1”633is the car's acceleration constant,2< = 0”2 is its motor constant,2� = 4 is its
hysteresis constant, and� = 0”45is the its length. We consider two di�erent observation models.

State-feedback system.First, we consider a variant of the F1/10 car with state-feedback�i.e.,
O = Z and the controllerc@: Z ! U has access to the true state of the car; similarly, the mode
predictor ` : Z ! Q outputs the true modè ¹@• Gº = @. This setting allows us to evaluate the
controllers in isolation of the mode detector.

LiDAR observation model.Next, we consider a LiDAR based observation model. A LiDAR scan
consists of a number of laser rays emanating at a range of degrees with respect to the car's
orientation. For each ray, the car receives the distance to the nearest object reached by the ray,
or the maximum LiDAR range of 5m if no obstacle is in that range. The controller has access to
the LiDAR measurements only and cannot observe the position, orientation or the velocity of the
car. Similar to prior work [39], we focus on a LiDAR scan with 21 rays since the complexity of the
veri�cation task increases exponentially with the number of rays. More details can be found in
Appendix C.

Tracks.We consider tracks consisting of a sequence of segments, each corresponding to one of
�ve modes: right and left 90-degree turns, right and left 120-degree turns, and straight segments.
Each segment is 1.5m wide and is of a �xed length. Straight segments can be of arbitrary lengths
but must be su�ciently long to allow for an inductive proof of our VCs; see Section 6. The segments
are lined up with the end of one segment meeting the start of the next one. We represent each
segment as having coordinates where the top-most corner is at the origin. Then, a mode transition
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Fig. 5. Regions for training the mode predictor

I ! I 0 2 T is an (instantaneous) a�ne change of coordinates4 to bring the car into this coordinate
system. Furthermore, there is a mode transition from any state at the end of any segment to a state
at the start of every segment, thereby modeling all possible tracks in a single hybrid automaton.

Safety.The safety property is that the car should not run into any of the walls. We model the car
as a square of sizeW= 0”15< and the walls as line segments. Then, the car should not intersect the
wall�i.e., X@

safe= f®G2 X j 8F 2 walls[@] ” k¹G•~º � ¹ FG•F~ºk1 � Wg.

Controller.For the state-feedback system, each controller has 5 inputs: theGand~ distances to
each of the two corners in the turn and the car's orientation relative to the segment. For LiDAR-
feedback, each controller has 21 inputs corresponding to the LiDAR rays. We use reinforcement
learning to train the controllersc@. We represent the policy as an NNc@ = c@

\ with two fully
connected layers with tanh activations and 16 neurons per layer for the state-feedback system and
64 neurons per layer for the LiDAR system. We use a uniform distribution on the pre-region as
the initial state distribution. We use a reward function that aims to achieve two goals: (i) stay in
the safe region, (ii) stay in regions where we can compose the di�erent veri�cation results. The
second goal is necessary for our compositional approach to work, since we need the car to visit
the post-region when started in the pre-region. To achieve this goal, we train controllers that stay
in the middle of each segment after turns, with the exception of the sharp turns, where it seems
challenging to train controllers to stay in the middle. More details can be found in Appendix D.

Mode predictor.We decompose the mode predictor into two parts: (i) anew mode predictor
` ? : O ! Q and (ii) anexit detector̀ @: O ! f 0•1g, one for each mode@. Intuitively, ` ? is used to
determine the mode@the system is about to enter; once@is determined, the corresponding̀@is
run until it predicts that system has exited mode@(at which point ` ? is run again). Since standard
control systems are sampled periodically, let>: denote the observation at sampling step: . Then,
the output of the overall mode predictor at step: , @: , is de�ned as follows:

@: = @: � 1 if ` @: � 1 ¹>: º = 0
@: = ` ? ¹>: º if ` @: � 1 ¹>: º = 1•

(2)

where@0 = ` ? ¹>0º. This decomposition simpli�es mode predictor training since each individual
NN is trained either only on data from one mode (in the case of` @) or on data from the pre-regions
of all the modes (in the case of` ?). Speci�cally, we divide each track segment into two regions: one
consisting of the 50cm at the beginning of the segment, and the other of the rest of the segment;
examples are shown in Figure 5. Each exit detector` @is trained to predict 0 (i.e., �not exited�) on
LiDAR scans taken in its own mode@(both in the beginning region and the remainder region) and 1
(i.e., �exited�) on scans from the beginning region of other modes@0 < @. The new mode detector̀?

4The post-region of one segment is contained within the pre-region of the next segment (after change of coordinates) since
mode transitions are instantaneous and do not involve movement of the car.
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(a) State-feedback system. (b) LiDAR-feedback system.

Fig. 6. Training evolution for state- and LiDAR-feedback controllers. The �Compositional" controller curve
shows the combined number of training steps for controllers trained on each individual turn, whereas the
�Monolithic" controllers are trained on the track from Figure 3c. All NNs have two fully connected layers,
with the number of neurons per layer indicated in the legend. Results are averaged over five runs per setup.

is trained to predict the mode in which the LiDAR scan was taken, with half the training examples
from beginning regions of each mode and half from remaining regions. This strategy allows the
mode predictor to recover from incorrect predictions by` ? �i.e., if @: = ` ? ¹>: º is an error, theǹ @:

should predict that@: is wrong at the next step (i.e.,` @: ¹>: ¸ 1º should be1) and ask̀ ? to update its
prediction. All NNs have two fully connected layers with tanh activations and 32 neurons per layer.
More details can be found in Appendix E.

Veri�cation. We use the Verisig tool [38] for veri�cation. Verisig veri�es neural networks with
smooth activation functions (e.g., sigmoid, tanh) by transforming the networks into hybrid systems.
The neural network hybrid system is then composed with the dynamics model, thereby converting
the closed-loop problem into a hybrid system veri�cation problem that is solved by Flow� [16].

6 EXPERIMENTAL RESULTS

We evaluate our framework on the F1/10 car, aiming to address the following research questions:

� Can our compositional learning strategy improve the scalability of reinforcement learning?
� Can our compositional veri�cation algorithm be used to prove that the learned controller

safe and live for arbitrary sequences of track segments?

6.1 Benefits of Compositional Learning

For both state-feedback and LiDAR systems, we trained two controllers: one for the 90-degree right
turn and one for the 120-degree right turn. Since left and right turns are symmetric, we use the
right-turn controller for a left turn by re�ecting the observations and negating the control input.
We also use the 90-degree controller in straight segments, since it is able to steer the car close to
the middle.

To illustrate the bene�t of compositional learning, we trained a single NN controller for the
full track in Figure 3c. We used increasingly larger NNs (with 32, 64, 128 neurons per layer for
state-feedback and 64, 128 and 256 neurons per layer for observation-feedback); however, none
safely completed a lap in the entire track. Figures 6a & 6b show the performance of these controllers
along with the performance of the compositional controller (the individual controllers combined
with a pre-trained mode predictor) on the full track, as a function of the number of training steps. As
expected, training is fast and stable for our compositional controller, whereas the monolithic ones
are unable to converge to a stable policy. While it may be possible to train a monolithic controller
using a larger NN or a di�erent reward function, our results provide evidence that the compositional
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(a) (b) (c)

Fig. 7. Example trajectories with LiDAR-feedback using the compositional controller. The color of each
position indicates the mode predictor output.

approach is simpler and requires less expert domain knowledge, both in reinforcement learning
and in the speci�c system.

Our compositional controller performs well (and can be veri�ed, as shown in the veri�cation
experiments below) onall tracks constructed using the �ve kinds of segments. Figure 7 shows the
simulated trajectories of the compositional controller on the tracks in Figure 3. While the mode
predictor sometimes predicts the wrong mode when far from the turn, it eventually switches to the
correct one selecting the appropriate controller for the remainder of the turn.

6.2 Pre/Post-Region Synthesis

Our synthesis algorithm is used to compute pre/post-regions for all the modes. We abuse notation
and use~ to denote the~-distance (in meters) from the start of the segment andGto denote the
distance from the left wall. The synthesized pre-region is the same for all the modes because we
have implication examples from the post-region of every mode to the pre-region of each mode.
The pre-region computed for the LiDAR-feedback system is given byG2 »0”75•0”83¼,~ 2 »0•0”24¼,
o 2 »c

2 � 0”0042• c
2 ¸ 0”002¼, andE2 »2”4•2”4¼. The post-regions are the corresponding boxes at the

end of each segment. For example, the post-region computed for the 90-degree right turn is given
by G2 »8•8”24¼,~ 2 »5”67•5”75¼, o 2 »� 0”0042•0”002¼andE2 »2”4•2”4¼.

6.3 Verification Results

We focus on veri�cation results for the LiDAR-feedback system; state-feedback is similar (see
Appendix G). Note that verifying safety for the LiDAR-feedback system is challenging due to
multiple discrete computations. First, the controllerc has a discrete internal state due to use of
the mode predictor, which creates additional modes in the hybrid automaton given to Flow� . In
addition, if a given LiDAR ray can reach multiple walls in a given reachable set of states, then
each case needs to be encoded as a di�erent mode of the hybrid automaton. During veri�cation, a
reachable set can get split into multiple reachable sets due to case analysis, generating multiple
brancheseach of which is a veri�cation instance of its own. The number of such branches can
be exponential in the number of modes since branching occurs dynamically as time progresses.
Thus, it is essential to keep the uncertainty as small as possible as reachable sets are propagated
through time. However, closed-loop veri�cation tools such as Verisig rely on overapproximating
the system's reachable set, and this approximation error can grow quickly over time. A standard
strategy is to partition the initial set and verify each subset separately. This process can also su�er
from exponential blowup, but it alleviates the compounding uncertainty issue. Another bene�t of
this partitioning is that we can parallelize veri�cation.
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