
Symbolic Schedulability Analysis of Real-time Systems�

Hee-Hwan Kwak, Insup Lee, and Anna Philippou
Department of Computer and Information Science

University of Pennsylvania, USA
fheekwak,annapg@saul.cis.upenn.edu, lee@cis.upenn.edu

Jin-Young Choi
Department of Computer Science and Engineering

Korea University, Korea
choi@formal.korea.ac.kr

Oleg Sokolsky
Computer Command and Control Company, USA

sokolsky@cccc.com

Abstract

We propose a unifying method for analysis of schedul-
ing problems in real-time systems. The method is based on
ACSR-VP, a real-time process algebra with value-passing
capabilities. We use ACSR-VP to describe an instance of a
scheduling problem as a process that has parameters of the
problem as free variables. The specification is analyzed by
means of a symbolic algorithm. The outcome of the analysis
is a set of equations, a solution to which yields the values
of the parameters that make the system schedulable. Equa-
tions are solved using integer programming or constraint
logic programming. The paper presents specifications of
two scheduling problems as examples.

1. Introduction

The desire to automate or incorporate intelligent con-
trollers into control systems has lead to rapid growth in the
demand for real-time software systems. Moreover, these
systems are becoming increasingly complex and require
careful design analysis to ensure reliability before imple-
mentation. Recently, there has been much work on for-
mal methods for the specification and analysis of real-time
systems [8, 10]. Most of the work assumes that various

�This research was supported in part by NSF CCR-9415346, NSF
CCR-9619910, AFOSR F49620-95-1-0508, AFOSR F49620-96-1-0204
(AASERT), ARO DAAG55-98-1-0393, and ONR N00014-97-1-0505
(MURI).

real-time systems attributes, such as execution time, release
time, priorities, etc., are fixeda priori and the goal is to de-
termine whether a system with all these known attributes
would meet required safety properties. One example of
safety property is schedulability analysis; that is, to deter-
mine whether or not a given set of real-times tasks under
a particular scheduling discipline can meet all of its timing
constraints.

The pioneering work by Liu and Layland [16] de-
rives schedulability conditions for rate-monotonic schedul-
ing and earliest-deadline-first scheduling. Since then, much
work on schedulability analysis has been done which in-
cludes various extensions of these results [11, 24, 22, 4,
23, 20, 17, 3]. Each of these extensions expands the ap-
plicability of schedulability analysis to real-time task mod-
els with different assumptions. In particular, there has been
much advance in scheduling theory to address uncertain
nature of timing attributes at the design phase of a real-
time system. This problem is complicated because it is
not sufficient to consider the worst case timing values for
schedulability analysis. For example, scheduling anoma-
lies can occur even when there is only one processor and
jobs have variable execution times and are nonpreemptable.
Also for preemptable jobs with one processor, scheduling
anomalies can occur when jobs have arbitrary release times
and share resources. These scheduling anomalies make the
problem of validating a priority-driven system hard to per-
form. Clearly, exhaustive simulation or testing is not prac-
tical in general except for small systems of practical inter-
est. There have been many different heuristics developed
to solve some of these general schedulability analysis prob-

System
Described with
ACSR-VP

Symbolic
Weak
Bisimulation

Predicate
Equation
System

Solution Space
(Range of Free Variables)

Linear-programmig

Constraint
Logic
Programming

Theorem
Prover

Figure 1. Overview

lems. However, each algorithm is problem specific and thus
when a problem is modified, one has to develop new heuris-
tics.

In this paper, we describe a framework that allows one to
model scheduling analysis problems with variable release
and execution times, relative timing constraints, precedence
relations, dynamic priorities, multiprocessors etc. Our ap-
proach is based on ACSR-VP and symbolic bisimulation
algorithm.

ACSR (Algebra of Communicating Shared Re-
sources) [13], is a discrete real-time process algebra. ACSR
has several notions, such as resources, static priorities,
exceptions, and interrupts, which are essential in modeling
real-time systems. ACSR-VP is an extension of ACSR with
value-passing and parameterized processes to be able to
model real-time systems with variable timing attributes and
dynamic priorities. In addition, symbolic bisimulation for
ACSR-VP has been defined. ACSR-VP without symbolic
bisimulation has been applied to the simple schedulability
analysis problem [5], by assuming that all parameters
are ground, i.e., constants. However, it is not possible
to use the technique described in [5] to solve the general
schedulability analysis problem with unknown timing
parameters.

Figure 1 shows the overall structure of our approach. We
specify a real-time system with unknown timing or prior-
ity parameters in ACSR-VP. For the schedulability analy-
sis of the specified system, we check symbolically whether
or not it is bisimilar to a process idling forever. The re-
sult is a set of predicate equations, which can be solved
using widely available linear-programming or constraint-
programming techniques. The solution to the set of equa-
tions identifies, if exists, under what values of unknown pa-
rameters the system becomes schedulable.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 overview the theory of the underlying formal
method, ACSR-VP, and introduce symbolic bisimulation
for ACSR-VP expressions. Section 4 gives specifications
of two scheduling problems, namely theperiod assignment
problemand thestart-time assignment problem. Section 5
illustrates analysis of two instances of these problems. We

conclude with a summary and an outline of future work in
Section 6.

2. ACSR-VP

ACSR-VP extends the process algebra ACSR [13] by al-
lowing values to be communicated along communication
channels. In this section we present ACSR-VP concentrat-
ing on its value-passing capabilities. We refer to the above
papers for additional information on ACSR.

We assume a set of variablesX ranged over byx, y,
a set of valuesV ranged over byv, and a set of labelsL
ranged over byc, d. Moreover, we assume a setExpr of
expressions (which includes arithmetic expressions) and we
let BExpr � Expr be the subset containing boolean ex-
pressions. We lete andb range overExpr andBExpr re-
spectively, and we write~z for a tuplez1; : : : zn of syntactic
entities.

ACSR-VP has two types of actions: instantaneous com-
munication and timed resource access. Access to resources
and communication channels is governed by priorities. A
priority expressionp is attached to every communication
event and resource access. A partial order on the set of
events and actions, the preemption relation, allows one to
model preemption of lower-priority activities by higher-
priority ones.

Instantaneous actions, calledevents, provide the basic
synchronization and communication primitives in the pro-
cess algebra. An event is denoted as a pair(i; ep) repre-
senting execution of actioni at priority ep, wherei ranges
over � , the idle action,c?x, the input action, andc!e, the
output action. We useDE to denote the domain of events
and let� range over events. We usel(�) and�(�) to rep-
resent the label and priority, respectively, of the event�;
e.g., l((c!x; p)) = c! and l((c?x; p)) = c?. To model re-
source access, we assume that a system contains a finite set
of serially-reusable resources drawn from some setR. An
action that consumes one tick of time is drawn from the do-
mainPP (R�Expr) with the restriction that each resource is
represented at most once. For example the singleton action
f(r; ep)g denotes the use of some resourcer 2 R at priority

levelep. The action; represents idling for one unit of time,
since no resource is consumed. We letDR to denote the
domain of timed actions withA, B, to range overDR. We
define�(A) to be the set of the resources used by actionA,
for example�(f(r1; p1); (r2; p2)g) = fr1; r2g. We also use
�r(A) to denote the priority level of the use of the resource
r in the actionA; e.g.,�r1(f(r1; p1); (r2; p2)g) = p1, and
write �r(A) = 0 if r 62 �(A). The entire domain of actions
is denoted byD = DR[DE , and we let�, � range overD.
We letP;Q range over ACSR-VP processes and we assume
a set of process constants ranged over byC. The following
grammar describes the syntax of ACSR-VP processes:

P ::= NIL j A : P j �:P j P + P j PkP j
b! P j PnF j [P]I j C(~x):

In the input-prefixed process(c?x; e):P the occurrences of
variablex is bound. We writefv(P) for the set of free
variables ofP . Each agent constantC has an associated

definitionC(~x)
def
= P wherefv(P) � ~x and~x are pairwise

distinct. We note that in an input prefix(c?x; e):P , e should
not contain the bound variablex, althoughx may occur in
P .

An informal explanation of ACSR-VP constructs fol-
lows: The processNIL represents the inactive process.
There are two prefix operators, corresponding to the two
types of actions. The first,A : P , executes a resource-
consuming action during the first time unit and proceeds to
processP . On the other hand�: P , executes the instanta-
neous event� and proceeds toP . The processP +Q repre-
sents a nondeterministic choice between the two summands.
The processPkQ describes the concurrent composition of
P andQ: the component processes may proceed indepen-
dently or interact with one another while executing instan-
taneous events, and they synchronize on timed actions. Pro-
cessb ! P represents the conditional process: it performs
asP if boolean expressionb evaluates totrue and asNIL
otherwise. InPnF , whereF � L, the scope of labels inF
is restricted to processP : components ofP may use these
labels to interact with one another but not withP ’s environ-
ment. The construct[P]I , I � R, produces a process that
reserves the use of resources inI for itself, extending every
actionA in P with resources inI � �(A) at priority 0.

The semantics of ACSR-VP processes may be provided
as a labeled transition system, similarly to that of ACSR.
It additionally makes use of the following ideas: Process
(c!e1; e2):P transmits the value obtained by evaluating ex-
pressione1 along channelc, with priority the value of ex-
pressione2, and then behaves likeP . Process(c?x; p):P
receives a valuev from communication channelc and then
behaves likeP [v=x], that isP with v substituted for variable
x. In the concurrent composition(c?x; p1):P1k(c!v; p2):P2,
the two components of the parallel composition may syn-

chronize with each other on channelc resulting in the trans-
mission of valuev and producing an event(�; p1 + p2).

3. Semantics and Analysis

3.1. Unprioritized Symbolic Graphs with Assign-
ment

Consider the simple ACSR-VP processP
def
=

(in?x; 1):(out!x; 1):NIL that receives a value along chan-
nel in and then outputs it on channelout, and wherex
ranges over integers. According to traditional methods for
providing semantic models for concurrent processes, using
transition graphs, processP in infinite branching, as it can
engage in the transition(in?n; 1) for every integern. As a
result standard techniques for analysis and verification can-
not be applied to such processes.

Several approaches have been proposed to deal with
this problem for various subclasses of value-passing pro-
cesses [9, 15, 19, 12]. One of these advocates the use of
symbolicsemantics for providing finite representations of
value-passing processes. This is achieved by taking a more
conceptual view of value-passing than the one employed
above. More specifically consider again processP . A de-
scription of its behavior can be sufficiently captured by ex-
actly two actions: an input of an integer followed by the
ouput of this integer. Based on this idea the notion of sym-
bolic transition graphs [9] and transition graphs with assign-
ment [15] were proposed and shown to capture a consider-
able class of processes.

In this section we present symbolic graphs with assign-
ment for ACSR-VP processes. As it is not the intention of
the paper to present in detail the process-calculus theory of
this work, we only give an overview of the model and we
refer to [12] for a complete discussion.

3.2. Symbolic Transition Graphs with Assignment

A substitution, or assignmentis a function� : X !
Expr, such that�(x) 6= x for a finite number ofx 2 X .
Given a substitution�, domainof � is the set of variables
D(�) = fx j �(x) 6= xg: A substitution whose domain is
empty is called theidentity substitution, and is denoted by
Id. WhenjD(�)j = 1, we use[�(x)=x] for the substitution
�. Given two substitutions� and�, the compositionof �
and� is the substitution denoted by�;� such that for every
variablex, �;�(x) = �(�(x)). We often write�� for �;�.

An SGA is a rooted directed graph where each noden
has an associated finite set of free variablesfv(n) and each
edge is labeled by a guarded action with assignment. Note
that a node in SGA is a ACSR-VP term. Furthermore, we
use� to denote the empty action the purpose of which is
explained later.

Definition 3.1 (SGA) A Symbolic Graph with Assignment
(SGA) for ACSR-VP is a rooted directed graph where each
noden has an associated ACSR-VP term and each edge
is labeled by boolean, action, assignment,(b; �; �) or by
boolean, the empty action and assignment,(b; �; �). �

Given an ACSR-VP process, the corresponding SGA can
be generated using the rules in Figure 2. Note that the pur-
pose of action� is to decorate transitions that involve no
action, but are nonetheless necessary for registering substi-

tutions, see Rule (3). TransitionP
b;�;�
7�! P 0 denotes that

given the truth of boolean expressionb, P can evolve toP 0

by performing action� and putting into effect the assign-
ment�. The interpretation of these rules is straightforward
and we explain them by an example: Consider the following
process.

P (x)
def
=(x < 2) ! (a!1; 1):P 0(x+ 1)

P 0(x)
def
=(x < 3) ! P (1)

ProcessP (1) can outputa!1 infinitely many times. Apply-
ing the rules above gives rise to the SGA in Figure 3(a).

One possible interpretation of our SGA can be given
along the lines of programming languages: ProcessP can
be thought of as a procedure, so thatP (1) represents a call
of P with actual parameter 1 which is accepted byP with
formal parameterx declared inP ’s body. According to its
definition,P checks ifx < 2 and if this boolean expres-
sion holds,P outputsa!1 and calls processP 0 with actual
parameterx + 1. ProcessP 0 then checks the validity of
conditionx < 3. If this is satisfied, processP 0 callsP with
actual parameter1.

Although introduction of the empty action� appears use-
ful in constructing SGA’s from process terms it is possible
to remove them by means of a fixpoint of a normalization
function. For example, given the SGA in Figure 3(a), by ap-
plying the normalization process the NSGA in Figure 3(b)
is obtained.

We say that an a normalizedSGA (NSGA) (N;E; 7!)
is finite if jN j is finite. For the remainder of the paper we
only consider finite NSGA’s.

3.3. The prioritized Symbolic Transition System

We have illustrated how ACSR-VP processes can be
given finite representations as SGA’s via the symbolic tran-
sition relation 7!. However, this relation makes no arbi-
tration between actions with respect to their priorities. To
achieve this, we refine the relation7! to obtain the priori-
tized symbolic transition system7!�. This is based on the
notion of preemptionwhich incorporates our treatment of
priority, and in particular on relation�, thepreemptive re-
lation, a transitive, irreflexive relation on actions [2]. Then

for two actions� and�, � � � denotes that� preempts
�, which implies that in any real-time system, if there is a
choice between the two actions,� will always be executed.
For example(c?x; 2) � (c?x; 1) andf(r; 2)g � f(r; 0)g.

Extending the notion of preemption in the value-passing
setting involves dealing with the presence of free variables
in process descriptions. For example, given actions� =
(c?x; y1) and� = (c?x; y2), whether� � � or � � �
depends on the values to which variablesy1 andy2 are in-
stantiated. This idea can easily be incorporated to yield the
prioritized transition relation7!�. For the precise defini-
tion we refer the reader to [12]. We illustrate this with an
example. Consider processP :

P (x)
def
=(a?y; 1):P 0(x; y)

P 0(x; y)
def
=(y � 1) ! (a!(x+ y); y):NIL

+ (y � 2) ! (a!(x+ y); 2):NIL

The unprioritized NSGA forP and its prioritized
version, Q are shown in Figure 4. Note that tran-

sition P 0
y�1;(a!(x+y);y);Id

7�! NIL is preempted by

P 0
(y�2;(a!(x+y);2);Id

7�! NIL since whenever the former is en-
abled, the latter is also enabled with a higher priority (that
is, whenevery � 1, y � 2 andy < 2).

3.4. Weak Bisimulation

Various methods have been proposed for the verification
of concurrent processes. Central among them is observa-
tional equivalence that allows to compare an implementa-
tion with a specification of a given system. Observational
equivalence is based on the idea that two equivalent systems
exhibit the same behavior at their interfaces with the envi-
ronment. This requirement was captured formally through
the notion ofbisimulation [18], a binary relation on the
states of systems. Two states are bisimilar if for each single
computational step of the one there exists an appropriate
matching (multiple) step of the other, leading to bisimilar
states.

In this setting, bisimulation for symbolic transition
graphs is defined in terms of relations parametrized on
boolean expressions, of the form'b, wherep 'b q if and
only if, for each interpretation satisfying booleanb, p andq
are bisimilar in the traditional notion. In [12] the authors
have proposed weak version of bisimulations for SGA’s,
that is observational equivalences that abstract away from
internal system behavior (both for late and early seman-
tics). Furthermore, algorithms were presented for comput-
ing these equivalences. Given two closed processes whose
symbolic transition graphs are finite, the algorithm con-
structs a predicate equation system that corresponds to the
most general condition for the two processes to be weakly
bisimilar.

(1)
�

�:P
true;�;Id
7�! P

(2)
C(~v)

b;�;�
7�! C

�:C(~v)
b;�;�
7�! C

(3)
�

C(~v)
true;�;~x:=~v

7�! C
C(~x)

def
= P (4) P

b;�;�
7�! P 0

C
b;�;�
7�! P 0

C(~x)
def
= P

(5)
P

b;�;�
7�! P 0

b0 ! P
b^b0;�;�
7�! P 0

(6) P
b;�;�
7�! P 0

P + Q
b;�;�
7�! P 0

(7) P
b;�;�
7�! P 0

Q + P
b;�;�
7�! P 0

(8) P
b;�;�
7�! P 0

PnF
b;�;�
7�! P 0nF

� =2 F
l(�) =2 F (9) P

b;A;�
7�! P 0

PnF
b;A;�
7�! P 0nF

(10) P
b;�;�
7�! P 0

[P]I
b;�;�
7�! [P 0]I

(11) P
b;A1;�7�! P 0

[P]I
b;A1[A2;�7�! [P 0]I

A2 = f(r; 0) j r 2 I � �(A1)g

(12) P
b1;A1;�17�! P 0 Q

b2;A2;�27�! Q0

PkQ
b1^b2;A1[A2;�1[�27�! P 0kQ0

�(A1) \ �(A2) = ;

(13) P
b;�;~x:=~e
7�! P 0

PkQ
b;�;~x;~y:=~e;~y

7�! P 0kQ
fv(Q) = f~yg (14) P

b;�;~x:=~e
7�! P 0

QkP
b;�;~x;~y:=~e;~y

7�! QkP 0
fv(Q) = f~yg

(15) P
b1;(c?z;e1);�1

7�! P 0 Q
b2;(c!e2;e3);�2

7�! Q0

PkQ
b1^b2;(�;e1+e3);(�1[�2);fz:=e2g

7�! P 0kQ0
z 62 fv(P) [fv(Q)

Figure 2. Rules for constructing Symbolic Graphs with Assignment

P(1) P P’
true, ε ,x:=1

x<3, ε ,x:=1

P(1) P’
x<2, (a!1,1), x:=x+1 1<2, (a!1,1), x:=2

x<3 & 1<2, (a!1,1), x:=2

(a) (b)

Figure 3. SGA (a) and Normalized SGA (b)

Recall processP (x) from section 3.3. Furthermore, con-
sider the following process with bound variablex0:

R(x0)
def
=(a?y0; 1):R0(x0; y0)

R0(x0; y0)
def
=(y0 � 2) ! (a!(x0 + y0 + 1); 2):NIL

The prioritized NSGA forR is similar toQ with the ex-
ception that after receiving a value via channela,R outputs
valuex0 + y0 + 1. Applying the symbolic bisimulation al-
gorithm for processesP andR, we obtain the following
predicate equation system.

X00(x; x
0) = 8zX11(z; x; x

0)
X11(z; x; x

0) = z � 2 ! z � 2 ^ x+ z = x0 + z + 1
^ z � 2 ! z � 2 ^ x0 + z + 1 = x+ z

This equation system can easily be reduced to the equa-
tionX00(x; x

0) � x = x0 + 1, which allows us to conclude
thatP (x) andR(x0) are bisimilar if and only ifx = x0 + 1
holds. In general, since we are dealing with a domain of
linear expressions, predicate equations obtained from the
bisimulation algorithm can be solved using integer pro-
gramming techniques [21].

4. Real-time System Scheduling

In this section, we show how several problems of real-
time system scheduling can be specified and analyzed using
ACSR-VP. According to [25], real-time scheduling prob-
lems can be categorized into the following three groups: pri-
ority assignment, execution synchronization, and schedu-

P �
�
�

�
�
�

��
��
��
��

y<=2 ,

true , y<=1 ,(a?y , 1) , Id (a ! (x+y) , y) , Id

Id(a ! (x+y) , 2) ,

P ’ Q
��
��
��

��
��
��

Idtrue , (a?y , 1) , Id

Q ’
y<=2 , (a ! (x+y) , 2) ,

Figure 4. SGA of P and Q

lability analysis problems. The priority assignment prob-
lem requires assigning priorities to jobs so that the system
schedulability is maximized. The execution synchroniza-
tion problem is the problem of deciding when and how to
release jobs so that the precedence constraints are satisfied
and the system schedulability, as well as other performance
concerns, are optimized. Schedulability analysis problem
is the problem of verifying that a system is schedulable,
given a certain priority assignment method and execution
synchronization method.

Classic examples of solutions to these problems include
the rate-monotonic priority assignment problem on a sin-
gle processor [16]. It uses static priority assignment, where
the priority of each job is assigned in the inverse order of
period; the job with shortest period has the highest prior-
ity. Deadline-monotonic priority assignment was proposed
by [14], where the system has jobs with arbitrary relative
deadlines. Dynamic priority assignment problem has been
addressed by earliest-deadline first algorithms.

The same groups of problems can be considered in the
presence of end-to-end scheduling constraints. Gerberet
al. [6] proposed the method to guarantee a system’s end-
to-end requirements of real-time systems. In [27], Tindell
et al. attempted to compute upper bounds on the end-to-
end response time. They also proposed priority assignment
in distributed system where jobs have end-to-end deadlines.
In [1], Bettati studied the problem of scheduling a set of
jobs with arbitrary release times and end-to-end deadlines.

We propose to address real-time scheduling problems by
means of analysis based on ACSR-VP. In this approach, a
specific instance of a problem is specified as an ACSR-VP
expression and symbolically analyzed. In this paper, we
illustrate our approach by giving general solutions to two
scheduling problems. The first problem is theperiod as-
signment problem(Section 4.1). It can be viewed as an vari-
ant of schedulability analysis problem. The second problem
is thestart-time assignment problem(Section 4.2). It is a
version of the execution synchronization problem with end-
to-end scheduling. Our methods of solving these problems
are optimal in the sense that if the method can not find the
period or start-time assignment, then the system can not be
scheduled for any assignment of periods (respectively, start
times).

4.1. Shortest Job First Scheduling

We define theperiod assignment problemas follows.
Consider a set ofn preemptable periodic jobs sharing a
processor. We apply the shortest job first scheduling al-
gorithm to schedule thesen jobs. Each job is charac-
terized by two parameters: execution time and period.
We assume that the deadline for each task is the same
as its period. Execution timesE1; : : : ; En, and periods
P1; : : : ; Pk�1; Pk+1; : : : ; Pn are known. We have to deter-
mine the period of thekth job.

We model each job in the set as the following ACSR-VP
process:

Jobi(ei; pi; si; ti)
def
=

(si <ei) ^ (ti < pi) !
f(cpu;MAX � ei)g : Jobi(ei; pi; si + 1; ti + 1)
+ ; : Jobi(ei; pi; si; ti + 1)

+ (si = ei) ^ (ti � pi) !Wait(ei; pi; ti)

Waiti(ei; pi; ti)
def
=

(ti < pi) ! ; : Waiti(ei; pi; ti + 1)
+ (ti = pi) ! Jobi(ei; pi; 0; 0)

ProcessJobi(ei; pi; si; ti) represents a job with execu-
tion timeei and periodpi, which has accumulatedsi units
of processing time in the current period. The current pe-
riod has startedti time units ago. As long as the job is
not finished (si < ei) and the current period is not over
(ti < pi), the job competed with other job for access to
the CPU, which is represented by resourcecpu. The pri-
ority of the job isMAX � ei, whereMAX = max(Ei).
That is, the shortest job has the highest priority. If the job
is preempted by a higher-priority process, it idles in that
time unit. alternatively, if the job has completed (si = ei),
it turns into processWaiti(ei; pi; ti), which idles until the
end of the current period and restarts itself.

Assuming that, initially, all jobs are started at time 0, we
can capture behavior of the whole system as

SJF (prd)
def
=[Job1(E1; P1; 0; 0) k � � � k Jobk(Ek; prd; 0; 0)
k � � � k Jobn(En; Pn; 0; 0)]fcpug.

The free variableprd represents the period ofJobk,
which has to be determined. Notice thatClosureoperator
is used inSJF(prd)process to prevent resourcecpu from
being idle when there is a job waiting to be executed.

Note that processJobi(ei; pi; si; ti) will deadlock if it
has not finished executing by the end of its period. The

composite processSJF (prd) will also deadlock when one
of its constituent processes deadlocks. We can use this prop-
erty of the specification to determine admissible range for
values ofprd. We can apply the symbolic weak bisimula-
tion algorithm to analyze the equivalence ofSJF (prd) and
process;1, which never deadlocks. This gives us a set of
conditions onprd. These conditions, when satisfied, will
guarantee thatSJF (prd) never deadlocks, that is, that no
job misses its deadline.

4.2. Scheduling with Constraints

In this section, we use ACSR-VP to specify an end-to-
end scheduling problem introduced in [7]. We are given a
set of jobs running on a single processor, and the order of
execution of jobs is fixed. The system is non-preemptable;
that is, a job always finishes before the next one is started.
The order of job execution is assumed to be fixed and
known. Jobs have variable execution times denoted, forith

job, [e�i ; e
+
i]. Additionally, there is a set of constraints on

absolute and relative times of initiation and completion of
jobs. The goal is to statically determine the range of start
times for each job so that there are no conflicts between the
jobs and all constraints are satisfied. We call this problem
thestart-time assignment problem.

Constraints that we consider in this problem are linear
inequalities over start times and execution times of the jobs.
Examples of constraints are “Joba should start no earlier
than timet (sa � t);” “Job a should be finished before time
t (sa + ea � t);” “Job a should be finished withint time
units after jobb finishes (sb+eb � sa+ea+t).” A concrete
example of this problem is shown in Section 5.2.

Deriving the start-time assignments for arbitrary con-
straints is an NP-hard problem [7]. The complexity of a
brute-force search is exponential with respect to the bounds
of execution times and the number of jobs [26], making
this approach impractical for most real-life systems. As
in [7], we limit ourselves to constraints with at most two
variables. A natural approach for solving this problem is
to employ linear programming. However, applying linear-
programming techniques to start-time assignment problem
directly requires us to encode the scheduling algorithm into
the linear constraints.

Our method lets us circumvent this problem. We con-
struct an ACSR-VP specification of the set of jobs together
with their constraints. The symbolic semantics of ACSR-
VP allows us to produce a predicate equation system that
can be solved by well-known techniques such as linear pro-
gramming or constraint logic programming.

EachJobi; i 2 f1; : : : ; ng, is specified as follows:

Jobi(ti; si)
def
=

(ti < si) ! ; : Jobi(ti + 1; si)
+ (Start!; n + 1� i):(ti = si ! Job0i(0; ti; si))

Job0i(ri; ti; si)
def
=

(ri < e�i) ! f(cpu; 1)g : Job0i(ri + 1; ti + 1; si)
+ (ri = e�i) ! Job00i (0; ti; si)

Job00i (ei; ti; si)
def
=

(ei < e+i � e�i) ! f(cpu; 1)g : Job00i (ei + 1; ti + 1; si)
+ (ei � e+i � e�i) ! (Finished!; 1):IDLE

The job process uses signalsStart andFinish to com-
municate with the constraint process discussed below.Jobi
represents behavior of the job before its start timesi comes.
At that moment,Jobi sends an eventStart to synchronize
with Constrainti, and becomesJob0i. Job

0
i represents the

mandatory execution time of the job, that is, until the lower
bound on its execution timee�i arrives. ThenJob0i becomes
Job00i , which continually offers the choice between complet-
ing the job by sending eventFinished to the correspond-
ing constraint, or continuing the execution until the upper
bound of execution time(e+i) is reached. After the exe-
cution is completed, the job becomes idle, represented by

ACSR-VP processIDLE
def
= ; : IDLE.

Constraints are represented by a collection of pro-
cessesConstrainti, i 2 f1; : : : ; ng. Constrainti mod-
els the state of the system thatJobi�1 is finished but
Jobi is not started yet. Upon eventStart, it becomes
Constraint0i, which models the state of the system that
Jobi is in execution. EventFinished turnsConstraint0i
intoConstraint00i , which represents the state of the system
after Jobi is finished. Constraint00i checks if the timing
conditions related toJobi are satisfied and deadlocks if the
condition fails.

Constraint(t)
def
= Constraint1(t)

Constraint1(t)
def
= (Start?; 1):Constraint01(t)
+ ; : Constraint1(t+ 1)

Constraint01(t)
def
= (Finished?; 1):Constraint001 (t)
+ ; : Constraint01(t+ 1)

Constraint001 (t)
def
= b1 ! ; : Constraint2(t; 1)
...

Constraintn(t; ~v)
def
= (Start?; 1):Constraint0n(t; ~v)
+ ; : Constraintn(t+ 1; ~v)

Constraint0n(t; ~v)
def
= (Finished?; 1):Constraint00n(t; ~v)
+ ; : Constraint0n(t+ 1; ~v)

Constraint00n(t; ~v)
def
= bn ! ; : IDLE

To perform the analysis of the problem, we compose the
job processes together with the constraint process:

System(Start1; � � � ; Start2)
def
=

(Constraint(0) k Job1(0; Start1) k � � �
k Jobn(0; Startn))nfStart; F inishedg

The resulting system will deadlock if the constraints are
not satisfied. Again, we can apply the symbolic algorithm to

this ACSR-VP process to obtain the set of predicate equa-
tions. The solution to these equations will give us the range
of admissible start times for each of the jobs.

The proposed technique gives, to our knowledge, the
first static algorithm for the problem. The method proposed
in [7] contains a static component that analyzes constraints,
and a dynamic component. The static component produces
a calendar, a set of functions that is used by the dynamic
component to compute start times.

Moreover, ACSR-VP specification allows us to remove
the requirement of a fixed total order on job execution. A
slightly more complex specification of the constraints can
be constructed that will use the partial order induced by the
constraints instead. The resulting specification still yields
to analysis in many practical cases.

5. Examples

In this section, we present results of analysis of the two
scheduling problems outlined in Section 4. To make exam-
ples manageable, we consider small instances of the prob-
lems.

5.1. Shortest Job First Scheduling

Consider the system containing two jobs. The first job
has execution time 1 and period 2. The execution time of
the second job is 2 and the admissible range of its period
has to be determined by the algorithm. Job 1, therefore, has
the higher priority of the two. The ACSR-VP specifications
of the jobs are as follows:

Job1
def
= f(cpu; 2)g : ; : Job1

Job2(t; p)
def
= (t < p) ! (f(cpu; 1)g : Job02(t+ 1; p)

+ ; : Job2(t+ 1; p))

Job02(t; p)
def
= (t < p) ! (f(cpu; 1)g : Job002 (t+ 1; p)

+ ; : Job02(t+ 1; p))

Job002 (t; p)
def
= (t = p) ! Job2(0; p)
+ (t < p) ! ; : Job002 (t+ 1; p)

We simplified the specification forJob1, since it has the
highest priority in the system and will never need idling.
Job2(t; p) represent the job that has not have access to
the processor in the current period,Job02(t; p) is the same
job after it has used the processor for one time units, and
Job002(t; p) represent its idling state.

The whole system is specified asSJF (prd)
def
=

[Job1kJob2(0; prd)]fcpug. When we analyze this specifi-
cation, the symbolic algorithm produces the following set
of equations:

X00(prd)= 0 < prd ^X12(1; prd)
X12(t; p) = t < p ^X01(t+ 1; p)

X01(t; p) = t < p ^X11(t+ 1; p)
X11(t; p) = t < p ^X03(t+ 1; p)
X03(t; p) = ((t < p ^X13(t+ 1; p))

_(t = p ^ 0 < p ^X12(1; p)))
^ (t < p! X13(t+ 1; p))
^ ((t = p ^ 0 < p)! X12(1; p))

X13(t; p) = ((t = p ^ 0 < p ^X01(1; p))
_(t < p ^X03(t+ 1; p)))

^ ((t = p ^ 0 < p)! X01(1; p))
^ (t < p! X03(t+ 1; p))

When the predicate variableX00 is true, we can con-
clude thatSJF(prd)is schedulable. Since all the boolean
expression in the predicate equations are linear, we can use
a constraint solver or a constraint logic programming tool
to solve the predicate equations. We used SICStus tool to
conclude that the system is schedulable whenprd � 4.

5.2. Scheduling with Constraints

Consider a system with two jobs,Job1 andJob2, shown
in Figure 5. Lete1 ande2 be respective execution times of
Job1 andJob2, ands1 ands2, their start times. The bounds
on execution times ofJob1 andJob2 are5 � e1 � 7 and
3 � e2 � 4. There are four timing constraints:

1. Job1 should be finished before or at 12 (s1+e1 � 12).

2. Job2 should be finished within 10 time units afterJob1
finishes (s2 + e2 � s1 + e1 + 10).

3. Job2 should be finished before or at 25 (s2+e2 � 25).

4. Job2 should start after or at 14 (s2 � 14).

2Job1

s1 + e11s 2 + e2s2s

Job

[5,7] [3,4]

<= 10<= 12

>= 14

<= 25

Figure 5. An Instance of the Start-time As-
signment Problem

Since the order of the tasks is clear from the constraints
and the constraints themselves are simple enough, we chose
to incorporate them directly into the ACSR-VP specifica-
tions of the jobs instead. The resulting specification is as
follows:

System(t; s1; s2)
def
=

(t �12� 7)!

((t < s1) ! ; : System(t+ 1; s1; s2)
+(t = s1) ! f(cpu; 1)g : Job1(0; t+ 5; s2))

Job1(e; t; s2)
def
=

(e < 7� 5)! f(cpu; 1)g : Job1(e+ 1; t+ 1; s2)
+ (e � 7� 5) ! System0(t; 14; s2)

System0(f1; t; s2)
def
=

(f1 �12 ^ t � 25� 4) !
((t < s2) ! ; : System0(f1; t+ 1; s2)
+(t = s2) ! f(cpu; 1)g : Job2(f1; 0; t+ 3; s2))

Job2(f1; e; t; s2)
def
=

(e < 4� 3) ! f(cpu; 1)g : Job2(f1; e+ 1; t+ 1; s2)
+ (e � 4� 3) ! End(f1; t; s2)

End(f1; t; s2)
def
=

(f1 � 12 ^ t� f1 � 10 ^ s2 � 14) ! IDLE

ProcessSystem represents the system, in which the jobs
are scheduled to start at timess1 ands2 but has not been
started yet. The process evolves intoJob1 at times1. After
Job1 completes at timef1, processSystem0 is idle until it’s
time to startJob2. Finally, the processEnd checks that all
end-to-end constraints are satisfied. The system is started at
time 0 and will be deadlock-free for the admissible values
of s1 ands2. The symbolic weak bisimulation algorithm
generates the predicate equations system shown below. The
equations were solved with the help of SICStus tool. The
generated solutions are listed in Table 1.

X0(t; s1; s2) =
(t � 5 ^ t < s1) ! X1(t+ 1; s1; s2)
^ (t < 5 ^ t = s1) ! X2(0; t+ 5; s2)
^ ((t � 5 ^ t < s1 ^X1(t+ 1; s1; s2))

_(t < 5 ^ t = s1 ^X2(0; t+ 5; s2)))
X1(t; s1; s2) =

(t � 5 ^ t < s1) ! X1(t+ 1; s1; s2)
^ (t � 5 ^ t = s1) ! X2(0; t+ 5; s2)
^ ((t � 5 ^ t < s1 ^X1(t+ 1; s1; s2))

_(t � 5 ^ t = s1 ^X2(0; t+ 5; s2)))
X2(e; s1; s2) =

(e < 2) ! X2(e+ 1; t+ 1; s2)
^ (e � 2 ^ t � 12 ^ 14 < s2) ! X3(t; 15; s2)
^ (e � 2 ^ t � 12 ^ 14 = s2) ! X4(t; 0; 17; s2)
^ ((e < 2 ^X2(e+ 1; t+ 1; s2))

_(e � 2 ^ t � 12 ^ 14 < s2 ^X3(t; 15; s2))
_(e � 2 ^ t � 12 ^ 14 = s2 ^X4(t; 0; 17; s2)))

X3(f1; t; s2) =
(f1 � 12 ^ t � 21 ^ t < s2) ! X3(f1; t+ 1; s2)
^ (f1 � 12 ^ t � 21 ^ t = s2) ! X4(f1; 0; t+ 3; s2)
^ ((f1 � 12 ^ t � 21 ^ t < s2 ^X3(f1; t+ 1; s2))

_(f1 � 12 ^ t � 21 ^ t = s2 ^X4(f1; 0; t+ 3; s2)))
X4(f1; e; t; s2)=

(e < 1 ! X4(f1; e+ 1; t+ 1; s2)
^ (e � 1 ^ f1 � 12 ^ t� f1 � 10 ^ s2 � 14) ! X5

^ ((e < 1 ^X4(f1; e+ 1; t+ 1; s2))
_(e � 1 ^ f1 � 12 ^ t� f1 � 10 ^ s2 � 14 ^X5))

X5 = true

s1 3 4 4 5 5 5
s2 14 14 15 14 15 16

Table 1. Solutions of Start-time Assignment
Problem

6. Conclusions

We have described a formal framework for the specifi-
cation and analysis of real-time scheduling problems. Our
framework is based on ACSR-VP and symbolic bisimula-
tion. The major advantage of our approach is that the same
framework can be used for scheduling problems with dif-
ferent assumptions and parameters. In other scheduling-
theory based approaches, new analysis algorithms need to
be devised for problems with different assumptions since
applicability of a particular algorithm is limited to specific
system characteristics.

We believe that ACSR-VP is expressive enough to model
any real-time system. In particular, our method is appro-
priate to model many complex real-time systems and can
be used to solve thepriority assignment problem, execu-
tion synchronization problem, andschedulability analysis
problem. It is, in most cases, efficient in the sense that re-
sulting predicate equation systems can be solved with ex-
isting techniques such as linear programming or constraint
programming, which can solving linear equation constraints
efficiently in practice [21].

The novel aspect of our approach is that schedulability of
real-time systems can be described formally and analyzed
automatically, all within a process-algebraic framework. It
has often been noted that scheduling work is not adequately
integrated with other aspects of real-time system develop-
ment [3]. Our work is a step toward such an integration,
which helps to meet our goal of making the timed process
algebra ACSR a useful formalism for supporting the devel-
opment of reliable real-time systems. Our approach allows
the same specification to be subjected to the analysis of both
schedulability and functional correctness.

There are several issues that we need to address to make
our approach practical. We showed that resulted predicate
equation systems can be solved with constraint logic pro-
gramming or linear programming. We plan to investigate
when resulting equation systems are simple or difficult to
solve. In general, we may have to use a more powerful
technique such as theorem prover; however, it is not clear
whether any reasonable real-time system scheduling prob-
lem can result in such a complex equation system. We are
currently augmenting PARAGON, the toolset for ACSR, to
support the full syntax of ACSR-VP directly and imple-

menting a symbolic bisimulation algorithm. This toolset
will allow us to experimentally evaluate the effectiveness
of our approach with a number of large scale real-time sys-
tems.

References

[1] R. Bettati. End-to-end Scheduling to Meet Deadlines in
Distributed Systems. PhD thesis, University of Illinois at
Urbana-Champaign, 1994.

[2] P. Brémond-Grégoire, I. Lee, and R. Gerber. ACSR: An
Algebra of Communicating Shared Resources with Dense
Time and Priorities. InProc. of CONCUR ’93, 1993.

[3] A. Burns. Preemptive priority-based scheduling: An appro-
priate engineering approach. In S. H. Song, editor,Advances
in Real-Time Systems, chapter 10, pages 225–248. Prentice
Hall, 1995.

[4] M. Chen and K. Lin. Dynamic Priority Ceilings: A Concur-
rency Control Protocol for Real-Time Systems.Real-Time
Systems, 2(4):325–346, 1990.

[5] J.-Y. Choi, I. Lee, and H.-L. Xie. The Specification and
Schedulability Analysis of Real-Time Systems using ACSR.
In Proc. of IEEE Real-Time Systems Symposium, December
1995.

[6] R. Gerber, D. Kang, S. Hong, and M. Saksena. End-to-End
Design of Real-Time Systems. In D. Mandrioli and C. Heit-
meyer, editors,Formal Methods in Real-Time Computing.
John Wiley & Sons, 1996.

[7] R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatch-
ing of Hard Real-Time Tasks.IEEE Transactions on Com-
puters, 44(3), March 1995.

[8] C. Heitmeyer and D. Mandrioli.Formal Methods for Real-
Time Computing. Jonh Wiley and Sons, 1996.

[9] M. Hennessy and H. Lin. Symbolic bisimulations.Theoret-
ical Computer Science, 138:353–389, 1995.

[10] M. Joseph. Real-Time Systems: Specification, Verification
and Analysis. Prentice Hall Intl., 1996.

[11] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System.Computer Journal, 29(5):390–395, 1986.

[12] H. Kwak, J. Choi, I. Lee, and A. Philippou. Symbolic weak
bisimulation for value-passing calculi.Technical Report,
MS-CIS-98-22, Department of Computer and Information
Science, University of Pennsylvania, 1998.

[13] I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process
Algebraic Approach to the Specification and Analysis of
Resource-Bound Real-Time Systems.Proceedings of the
IEEE, pages 158–171, Jan 1994.

[14] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance
Evaluation, pages 2:237–250, 1982.

[15] H. Lin. Symbolic graphs with assignment. In U.Montanari
and V.Sassone, editors,Proceedings CONCUR 96, volume
1119 ofLecture Notes in Computer Science, pages 50–65.
Springer-Verlag, 1996.

[16] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multi-programming in A Hard-Real-Time Environ-
ment.Journal of the Association for Computing Machinery,
20(1):46 – 61, January 1973.

[17] J. W. S. Liu and R. Ha. Efficient methods of validating tim-
ing constraints. In S. H. Song, editor,Advances in Real-Time
Systems, chapter 9, pages 199–233. Prentice Hall, 1995.

[18] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[19] P. Paczkowski. Characterizing bisimilarity of value-passing
parameterised processes. InProceedings of the Infinity
Workshop on Verification of Infinite State Systems, pages 47–
55, 1996.

[20] R. Rajikumar, L. Sha, and J. Lehoczky. Real-Time Synchro-
nization Protocols for Multiprocessors. InProc. of IEEE
Real-Time Systems Symposium, pages 259–272, 1989.

[21] R. Saigal. Linear Programming : A Modern Integrated
Analysis. Kluwer Academic Publishers, 1995.

[22] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheri-
tance Protocols: An Approach to Real-time Synchroniza-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

[23] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham.
Mode change Protocols for Priority Driven Preemptive
Scheduling.Real-Time Systems: The International Journal
of Time Critical Computing Systems, 1(3), December 1989.

[24] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Schedul-
ing for Hard-Real-Time Systems.Real-Time Systems: The
International Journal of Time Critical Computing Systems,
1(1):27–60, 1989.

[25] J. Sun.Fixed-priority End-to-end Scheduling in Distributed
Real-time Systems. PhD thesis, University of Illinois at
Urbana-Champaign, 1997.

[26] J. Sun and J. W. Liu. Bounding Completion Times of Jobs
with Arbitrary Release Times and Variable Execution Times.
In Proceedings of 17th IEEE Real-Time Systems Sympo-
sium, December 1996.

[27] K. Tindell and J. Clark. Holistic Schedulability Analysis for
Distributed Hard Real-time Systems.Microprogramming,
50(2):117–134, April 1994.

