
Specifying Failures and Recoveries in PACSR �

Anna Philippou1, Oleg Sokolsky2, Insup Lee1,

Rance Cleaveland3, and Scott Smolka4

1University of Pennsylvania, USA. fannap,leeg@saul.cis.upenn.edu
2Computer Command and Control Company, USA. sokolsky@cccc.com

3University of North Carolina, USA. rance@eos.ncsu.edu
4SUNY at Stony Brook, USA. sas@cs.sunysb.edu

Abstract

The paper presents PACSR, a probabilistic extension of a real-time process algebra
ACSR. The extension is built upon a novel treatment of the notion of a resource. In
ACSR, resources are used to model contention in accessing physical devices such as
processors, memory modules, and communication links, or any other reusable resource
of limited capacity. Here, we invest resources with an ability to fail and associate,
with every resource, a probability of its failure. The resulting formalism allows us
to perform probabilistic analysis of real-time system speci�cations in the presence of
resource failures. An attractive feature of PACSR is the ability to express failure-
recovery actions easily.

We perform probabilistic reachability analysis for PACSR speci�cations that allows
us to compute the probability of occurrence of an undesirable event. We illustrate
PACSR speci�cation and analysis by means of a telecommunications example.

1 Introduction

Process algebras such as CCS [11] have proved to be e�ective for speci�cation and analysis
of distributed systems. Numerous real-time [18, 12, 8] and probabilistic [16] extensions of
process algebras exist. We propose an approach that allows one to perform probabilistic
analysis for real-time systems.

A common high-level view of a distributed real-time system is that its components
compete for access to shared resources, communicating with each other as necessary. To
capture this view explicitly in formal speci�cations, a real-time process algebra ACSR [10]
has been developed. ACSR represents a real-time system as a collection of concurrent
processes. Each process can engage in two kinds of activities: communication with other
processes by means of instantaneous events and computation by means of timed actions.
Executing an action requires access to a set of resources and takes a non-zero amount of
time measured by an implicit global clock. Resources are serially reusable, and access to
them is governed by priorities. A process that attempts to access a resource currently in
use by a higher-priority process is blocked from proceeding.

�This work was supported in part by grants AFOSR F49620-95-1-0508, ARO DAAH04-95-1-0092, NSF
CCR-9415346, NSF CCR-9619910, and ONR N00014-97-1-0505 (MURI).

The notion of a resource, which is important in speci�cation of real-time systems, is
even more critical to capture the probabilistic aspects of real-time systems behavior. A
major source of behavioral variations in a process is failure of physical devices, such as
processors, memory units, and communication links, that the process utilizes during its
execution. These are exactly the type of objects that are captured as resources in ACSR
speci�cations. Therefore, it is natural to use resources as a means of exploring the impact
of failures on a system's performance.

In this paper, we present PACSR, a process algebra that extends the resource model of
ACSR with the ability to reason about resource failures. With each resource used by the
system, we associate a �xed probability of failure. If a process attempts to access a failed
resource, it is blocked. Resource failures are assumed to be independent. Then, for each
execution step that requires access to a set of resources, we can compute the probability
of being able to take the step. This approach allows us to reason quantitatively about a
system's behavior.

An advantage of associating probabilities with resources, rather than with process
terms, is that the speci�cation of a process does not involve probabilities directly. In
particular, a speci�cation simply refers to the resources required by a process. Failure
probabilities of individual resources are de�ned separately and are used only during anal-
ysis. This makes the speci�cation simpler and ensures a more systematic way of applying
probabilistic information. In addition, this approach allows one to explore the impact of
changing probabilities of failures on the overall behavior, without changing the speci�ca-
tion.

A related approach that combines probabilistic speci�cation with the notion of time is
presented in [6]. The main distinguishing features of PACSR are the notion of resources
and their use to capture probabilistic data, and the use of priorities to control communi-
cation and resource access.

A synchronous probabilistic process algebra WCCS is presented in [15]. There, each
choice is assigned a weight. Weights are treated as priorities of the corresponding compu-
tation path. Furthermore, weights provide for probabilistic analysis of the speci�cation.
Time is measured in WCCS by counting the number of actions performed by a process,
and no high-level temporal constructs such as timeouts are provided.

In [13], an automata-based formalism that combines the notions of real-time and prob-
abilities is presented. It employs a di�erent notion of time in that transitions can have
variable durations. Also, probabilities are associated with instantaneous events.

Since a PACSR speci�cation typically consists of several parallel processes, concurrent
events in these processes are the source of non-deterministic behavior, which cannot be
resolved through probabilities. To provide for both probabilistic and non-deterministic be-
havior, semantics of PACSR processes are given via labeled concurrent Markov chains [17].
This model has also been employed in [6], and variations of it appeared in [13, 4].

We employ probabilistic reachability as means of analysis of PACSR speci�cations.
The method allows us to perform quantitative analysis of safety properties by computing
the probability of observing an undesirable event. Another popular method of analysis is
probabilistic model checking [7, 2, 4].

The rest of the paper is organized as follows: In the next section we present the syntax
of PACSR and then we proceed with its semantics in Section 3. In Section 4, we discuss
probabilistic reachability for PACSR terms. In Section 5, we present an application of
PACSR for the analysis of a probabilistic system. We conclude with some �nal remarks

and discussion of future work.

2 The Syntax of PACSR

2.1 Actions

PACSR extends the process algebra ACSR with probability by enriching the notion of
resource, associating each resource with a probability. This probability captures the rate
at which the resource may fail. PACSR has three types of actions: timed actions, events
and probabilistic actions. We discuss these below:

Timed actions. We assume that a system contains a �nite set of serially-reusable re-
sources drawn from the set Res. We also consider set Res that contains, for each r 2 Res,
an element r, representing the failed resource r. Finally, we write R for Res [Res. An
action that consumes one tick of time is drawn from the domain PP (R � NN) with the re-
striction that each resource is represented at most once. For example the singleton action
f(r; p)g denotes the use of some resource r 2 Res at priority level p. Such action cannot
happen if r has failed. On the other hand, action f(r; q)g takes place with priority q given
that resource r has failed. This construct is useful for specifying recovery from failures.
The action ; represents idling for one unit of time, since no resource is consumed.

We let DR to denote the domain of timed actions and we let A, B, to range over
DR. We de�ne �(A) to be the set of the resources used by action A, for example
�(f(r1; p1); (r2; p2)g) = fr1; r2g.

Instantaneous events. PACSR instantaneous actions are called events. Events provide
the basic synchronization primitives in the process algebra. An event is denoted as a pair
(a; p), where a is the label of the event and p is the priority. Labels are drawn from the
set L = L [L [f�g, where if a is a given label, a is its inverse label. The special label � ,
arises when two events with inverse labels are executed concurrently. We let a, b, range
over labels. Further, we use DE to range over the domain of events.

Probabilistic actions. As mentioned earlier, in PACSR we associate each resource,
with a probability capturing the rate at which the resource may fail. In particular, for
all r 2 Res we denote by p(r) 2 [0; 1] the probability of resource r being up, while
p(r) = 1 � p(r) denotes the probability of r failing. Thus, the behavior of a resource-
consuming process has probabilistic aspects that are captured by probabilistic actions.
For example, consider process f(cpu; 1)g : NIL where resource cpu has probability of
failure 1=3, i.e. p(cpu) = 2=3. Then with probability 2=3, resource cpu is available and
thus the process may consume it and become inactive, while with probability 1=3 the
resource may fail, in which case the process deadlocks. This will be discussed in more
detail in Section 3.

2.2 Processes

We let P , Q range over PACSR processes and we assume a set of process constants each

with an associated de�nition of the kind X
def
= P . The following grammar describes the

syntax of PACSR processes.

P ::= NIL j A : P j (a; n): P j P + P j PkP j
P 4

a

t (P; P; P) j PnF j [P]I j PnnI j rec X:P j X

The process NIL represents the inactive process. There are two pre�x operators,
corresponding to the two types of actions. The �rst, A : P , executes a resource-consuming
action during the �rst time unit and proceeds to process P . On the other hand (a; n): P ,
executes the instantaneous event (a; n) and proceeds to P . Sometimes, when it is not
relevant for the discussion, we omit the priority of an event in a process. The process
P +Q represents a nondeterministic choice between the two summands. The process PkQ
describes the concurrent composition of P and Q: the component processes may proceed
independently or interact with one another while executing instantaneous events, and they
synchronize on timed actions. The scope construct, P 4

a

t (Q;R; S), binds the process P
by a temporal scope and incorporates the notions of timeout and interrupts. We call t
the time bound, where t 2 NN [f1g and require that P may execute for a maximum
of t time units. The scope may be exited in one of three ways: First, if P terminates
successfully within the time bound t by executing an event labeled a, where a 2 L, then
control is delegated to process Q, the success-handler. On the other hand, if P fails to
terminate within time t then control proceeds to R. Finally, throughout execution of this
process construct, P may be interrupted by process S. In PnF , where F � L, the scope
of labels in F is restricted to process P : components of P may use these labels to interact
with one another but not with P 's environment. The construct [P]I , I � R, produces a
process that reserves the use of resources in I for itself, extending every action A in P
with resources in I � �(A) at priority 0. PnnI hides the identity of resources in I so that
they are not visible on the interface with the environment. Finally, the process rec X:P
denotes standard recursion. We write Proc for the set of PACSR processes.

The operator PnnI binds all free occurrences of the resources of I in P . This binder
gives rise to the sets of free and bound resources of a process P . In what follows, we work
up to �-conversion on resources so as to avoid tedious side conditions. In this way, bound
resources in a process are assumed to be di�erent from each other and from the other free
resources, and �-equivalent processes are assumed to have the same transitions.

Note that the syntax of PACSR processes is the same as that of ACSR. The only
extension concerns the appearance of failed resources in timed actions. This allows us to
perform probabilistic analysis of existing ACSR speci�cations without any modi�cations,
as well as use non-probabilistic analysis of PACSR processes (without failure recovery
actions).

The informal account of behavior just given is made precise via a family of rules that
de�ne the labeled transition relations �!� and 7�! on processes. This is presented in the
next section. First we have some useful de�nitions.

The function imr(P), de�ned inductively below, associates each PACSR process with

the set of resources (either up or down) on which its behavior immediately depends:

imr(NIL) = ;
imr(A : P) = �(A)
imr(a: P) = ;

imr(P1 + P2) = imr(P1) [imr(P2)
imr(P1kP2) = imr(P1) [imr(P2)

imr(P 4
a

t (Q;R; S)) =

�
imr(P) [imr(S), if t > 0
imr(R), if t = 0

imr(PnF) = imr(P)
imr([P]I) = imr(P) [I
imr(PnnI) = imr(P)

imr(rec X:P) = imr(P)

De�nition 2.1 Let Z = fc1; : : : ; cng � R. We write

� p(Z) = �1�i�np(ci),

� W(Z) = fZ 0 � Z [Z j x 2 Z 0 i� x 62 Z 0g, and

� res(Z) = fr 2 Res j r 2 Z or r 2 Zg.

Thus W(Z) denotes the set of all possible worlds involving the set of resources Z, that
is the set of all combinations of the resources in Z being up or down. For example,
W(r1; r2) = f(r1; r2);(r1; r2);(r1; r2); (r1; r2)g. Note that p(;) = 1 and W(;) = f;g.

3 Operational Semantics

The semantics of PACSR processes is given in two steps. At the �rst level, a transition
system captures the nondeterministic and probabilistic behavior of processes ignoring the
presence of priorities. Subsequently, this is re�ned via a second transition system to take
account of action priorities.

We begin with the unprioritized semantics of PACSR processes. A con�guration is a
pair of the form (P;W) 2 Proc�W(R), representing a PACSR process P in worldW . We
write S for the set of con�gurations. The semantics is given with the aid of two labeled
transition systems, whose states are con�gurations and transitions capture probabilistic
and nondeterministic transition relations, respectively.

The intuition for the semantics is as follows: for a PACSR process P , we begin with the
con�guration (P; ;). As computation proceeds, probabilistic transitions are performed to
determine the status of resources which are immediately relevant for execution (as speci�ed
by imr(P)) but for which there is no knowledge in the con�guration's world. Once the
status of the resource is determined by some probabilistic transition, it cannot change
until the next timed action occurs. Timed actions erase all previous knowledge of the
con�guration's world (see law (ActT)). Nondeterministic transitions may be performed
from con�gurations that contain all necessary knowledge regarding the state of resources.
With this in mind we partition S into the following two sets:

Sn = f(P;W) 2 S j res(imr(P)) � res(W) = ;g, the set of nondeterministic
con�gurations, and

Sp = f(P;W) 2 S j res(imr(P)) � res(W) 6= ;g, the set of probabilistic
con�gurations.

Let 7�!� Sp � [0; 1] � Sn be the probabilistic transition relation. A triple in 7�! is writ-

ten (P;W)
p
7�! (P 0;W 0), denoting that process P in world W may become P 0 and enter

world W 0 with probability p. Furthermore, let �!� Sn�Act�S be the nondeterministic
transition relation where Act, the set of actions, is given by DE [DR. A triple in �! is
written (P;W)

�
�! (P 0;W 0), capturing that process P in world W may nondeterministi-

cally perform action � and become (P 0;W 0).
The probabilistic transition relation is given by the following rule:

(PROB)
(P;W) 2 Sp; Z1 = res(imr(P))� res(W); Z2 2 W(Z1)

(P;W)
p(Z2)
7�! (P;W [Z2)

Thus, given a probabilistic con�guration (P;W), with Z1 the immediate resources of P for
which the state is not yet determined inW , and Z2 2 W(Z1), P enters the world extended
by Z2 with probability p(Z2). For example, given resources r1 and r2 such that p(r1) = 1=2

and p(r2) = 1=3, P
def
= f(r1; 2); (r2; 3)g : Q has exactly the following transitions:

(P; ;)
1=6
7�! (P; fr1; r2g)

(P; ;)
1=6
7�! (P; fr1; r2g)

(P; ;)
1=3
7�! (P; fr1; r2g)

(P; ;)
1=3
7�! (P; fr1; r2g)

Lemma 3.1 For all s 2 Sp, �fjp j (s; p; s
0) 2 7�! jg = 1.

The nondeterministic transition relation is given in Table 1. Note in particular, rules
(ActT) and (ActI): instantaneous events preserve the world of a con�guration while timed
actions re-initialize it to ;. Thus, by rule (ActT) we have

(P; fr1; r2g)
f(r1;2);(r2;3)g

�! (Q; ;)

whereas (P; fr1; r2g), (P; fr1; r2g), (P; fr1; r2g) have no transitions.
The prioritized transition system is based on the notion of preemption and it extends

the unprioritized semantics by re�ning the nondeterministic transition relation �! to
take account of priorities. It is given by the pair of transition systems associated with the
relations 7�! and �!�, the latter of which is de�ned below. The preemption relation �
on Act is de�ned as for ACSR, specifying when two actions are comparable with respect
to priorities. We refer to [10] for the precise de�nition. The prioritized nondeterministic
transition system is obtained from the unprioritized one by prunning away preemptable
transitions:

De�nition 3.2 The labeled transition system �!� is de�ned as follows: (P;W)
�

�!�

(P 0;W 0) if and only if

1. (P;W)
�
�! (P 0;W 0) is an unprioritized nondeterministic transition, and

2. there is no unprioritized transition (P;W)
�
�! (P 00;W 00) such that � � �. 2

We conclude this section with a couple of examples.

(ActT) (A : P; B)
A
�! (P; ;), provided �(A) � B (ActI) ((a; n):P; B)

(a;n)
�! (P;B)

(ChoiceL)
(P1; B)

�
�! (P;B0)

(P1 + P2; B)
�
�! (P;B0)

(ChoiceR)
(P2; B)

�
�! (P;B0)

(P1 + P2; B)
�
�! (P;B0)

(ParT)
(P1; B)

A1�! (P 0

1; B
0); (P2; B)

A2�! (P 0

2; B
0)

(P1kP2; B)
A1[A2�! (P 0

1kP
0

2; B
0)

, �(A1) \ �(A2) = ;

(ParIL)
(P1; B)

(a;n)
�! (P 0

1; B
0)

(P1kP2; B)
(a;n)
�! (P 0

1kP
0

2; B
0)

(ParIR)
(P2; B)

(a;n)
�! (P 0

2; B
0)

(P1kP2; B)
(a;n)
�! (P1kP

0

2; B
0)

(ParI)
(P1; B)

(a;n)
�! (P 0

2; B
0); (P2; B)

(a;m)
�! (P 0

2; B
0)

(P1kP2; B)
(�;n+m)
�! (P 0

1kP
0

2; B
0)

(ResI)
(P;B)

A
�! (P 0; B0); A0 = f(r; n) 2 A j r =2 Ig

(PnnI; B)
A0

�! (P 0nnI; B0)
(ResF)

(P;B)
�
�! (P 0; B0); l(a) 62 F

(PnF; B)
�
�! (P 0nF;B0)

(CloseT)
(P;B)

A1�! (P 0; B0); A2 = f(r; 0) j r 2 B \ (I \ I)g

([P]I ; B)
A1[A2�! ([P 0]I ; B

0)
(CloseI)

(P;B)
(a;n)
�! (P 0; B0)

([P]I ; B)
(a;n)
�! ([P 0]I ; B

0)

(ScopeCI)
(P;B)

(a;n)
�! (P 0; B0); a 6= b; t > 0

(P 4
b

t (Q;R; S); B)
(a;n)
�! (P 0 4

b

t (Q;R; S); B
0)

(ScopeE)
(P;B)

(b;n)
�! (P 0; B0); t > 0

(P 4
b

t (Q;R; S); B)
(�;n)
�! (Q;B0)

(ScopeCT)
(P; B)

A
�! (P 0; B0); t > 0

(P 4
b

t (Q;R; S); B)
A
�! (P 0 4

b

t�1 (Q;R;S); B
0)

(ScopeT)
(R;B)

�
�! (R0; B0); t = 0

(P 4
b

t (Q;R; S); B)
�
�! (R0; B0)

(ScopeI)
(S;B)

�
�! (S0; B0); t > 0

(P 4
b

t (Q;R; S); B)
�
�! (S0; B0)

(Rec)
(P [rec X:P=X]; B)

�
�! (P 0; B0)

(rec X:P; B)
�
�! (P 0; B0)

Table 1: The nondeterministic relation

Example 1: A faulty channel The following process describes a faulty channel which,
on receipt of an input, may either produce an output with probability 0:99 or lose the
message with probability 0:01, depending on the state of resource channel.

FCh
def
= (in: P + ; : FCh)nnfchannelg

P
def
= fchannelg: out:FCh + fchannelg:FCh

where p(channel) = 0:99. Figure 1, exhibits the transition system of process FCh, in
world ;, that is, without initial knowledge about the status of resource channel. Note
that state (P; ;) is probabilistic, while other states are non-deterministic.

Example 2: A Fault-Tolerant Computer System In this example we consider a
fault-tolerant system, consisting of a number of processors each associated with a watchdog
responsible for monitoring the processor and notifying a controller in case of its failure. The
controller then reactivates the processor via a restart procedure. The PACSR speci�cation

0 0

0(P,)

out

0

{(P,)channel } (P,{)channel}

0

(0)out. FCh,

()

π

π FCh,

in

π

π

0.99 0.01

π

Figure 1: Transition system of process FCh

of the system is given below as the parallel composition Sys, where

Sys
def
= �i2I((PikWi)kC)nfwi; ai; bi; resigi2I

and

Pi
def
= P 04

bi

n (Crashi; wi: Pi;NIL)

P 0
i

def
= [cpui] : P

0
i + [cpui] : bi:NIL

Crashi
def
= ; : Crashi + resi: wi: Pi

Wi
def
= I 4

b

n (NIL; ai:W
0
i ; wi:Wi)

W 0
i

def
= ; : W 0

i + wi:Wi

C
def
= �i ai: resi: C + ; : C:

Process Pi represents a processor. To model the possibility of resource failure and
recovery, we employ for each Pi a resource cpui, where pr(cpui) is the probability that the
processor fails during a time unit. Thus, as long as resource cpui is up, process Pi emits
the signal wi every n time units. On the other hand, if cpui fails, the process enters state
Crashi, where it remains down (idles) until the fault is detected and dealt with by the
controller. When the processor is restarted via channel resi, it emits a signal via channel
wi and resumes its initial state.

Process Wi represents the watchdog of processor Pi, where I is the idling process,

I
def
= ; : I. Every n time units Wi is ready to receive a message via the processor it

monitors via name bi. If such a message fails to arrive, it noti�es the controller via channel
ai and enters state W 0

i . In this state, it waits to be noti�ed via wi that the processor has
been restarted. Thus, no alarms are generated between the failure and recovery of the
processor.

Finally, process C represents the controller that, on receiving an alarm ai from one of
the watchdogs, sends a restart command to the appropriate processor via channel resi.

4 Reachability Analysis for PACSR

In this section we consider reachability analysis of PACSR processes. In particular given
a process P , we compute the probability that P reaches a set of desired states.

We begin by presenting the de�nition and some background material for the structure
that we use as the model for our reachability analysis: Labeled Concurrent Markov Chains.

De�nition 4.1 A Labeled Concurrent Markov Chain (LCMC) is a tuple

hSn; Sp;Act;�!n;�!p; s0i;

where Sn is the set of nondeterministic states, Sp is the set of probabilistic states, Act is
the set of labels,�!n� Sn � Act � (Sn [Sp) is the nondeterministic transition relation,
�!p� Sp� (0; 1]�Sn is the probabilistic transition relation, satisfying �(s;�;t)2�!p

� = 1
for all s 2 Sp, and s0 2 Sn [Sp is the initial state. 2

It is straightforward to see that the SOS rules of PACSR yield transition systems that
de�ne LCMC's.

In what follows we let �; � range over Act and ` over Act [[0; 1]. In addition, when
it is clear from the context, we will simply refer to an LCMC hSn; Sp;Act;�!n;�!p; s0i
by s0. Given s; s0 2 S, pr(s; s0) denotes the probability that s may perform at most one
probabilistic transition to become s0:

pr(s; s0) =

8<
:

1, if s = s0; s 2 Sn
�, if s

�
�!p s

0

0, otherwise

Computations of LCMC's arise by resolving the nondeterministic and probabilistic
choices: a computation in T = hSn; Sp;Act;�!n;�!p; s0i is either a �nite sequence c =
s0 `1 s1 : : : `k sk, where sk has no transitions, or an in�nite sequence c = s0 `1 s1 : : : `k sk : : : ,
such that si 2 S, `i 2 Act [[0; 1] and (si; `i; si+1) 2�!p [�!n, for all 0 � i. We denote
by comp(T) the set of all computations of T and by Pcomp(T) the set of all partial compu-
tations of T , i.e. Pcomp(T) = fs0`1 : : : `ksk j 9c 2 comp(T): c = s0`1 : : : `ksk : : : and sk 2
Sng. Given c = s0`1 : : : `ksk 2 Pcomp(T), we de�ne time (c) = #(`1 : : : `kj�DR), and
last c = sk. Note that, by the de�nition of Pcomp(T), last c is a nondeterministic state.

To de�ne probability measures on computations, it is necessary to resolve the non-
determinism present. To achieve this, the notion of a scheduler (or adversary) has been
employed [17, 6, 14]. A scheduler is an entity that, given a partial computation ending in
a nondeterministic state, chooses the next transition to be executed.

De�nition 4.2 A scheduler of an LCMC T is a partial function sched : Pcomp(T) 7!�!n,
such that if pc 2 Pcomp(T) and sched(pc) = (s; �; s0), then s = last pc. We use Sched(T)
to denote the set of all schedulers of T . 2

Note that Sched(T) is potentially an in�nite set. We let � range over schedulers. For
an LCMC T and a scheduler � 2 Sched(T) we de�ne the set of scheduled computations

Scomp(T; �) � comp(T), to be the computations c = s0 `1 : : : `k sk : : : such that for all si,
�(s0`1 : : : `isi) = (si; `i; si+1).

Each scheduler � induces a probability space [5] on Scomp(T; �). Let Scompfin(T; �)
be the set of all partial computations that are a pre�x of some c 2 Scomp(T; �), and let
A�(T) be the sigma-algebra generated by the basic cylinders C(!) = fc 2 Scomp(T; �) j !

is a pre�x of cg, where ! 2 Scompfin(T; �). Then the probability measure P on A�(T) is
the unique measure such that if ! = s0`1s1 : : : `ksk then

P(C(!)) = �fj`i 2 [0; 1] j 1 � i � kjg:

We are interested in performing reachability analysis for PACSR processes. In par-
ticular we would like to reason about the probability that a PACSR process P reaches a
state in which certain actions � are enabled. Given a scheduler � of P we denote this
by Pr(P ; �; �). Additionally, in order to be able to capture the real-time aspect of
PACSR speci�cations, we o�er a time-bounded version of this operator, which we denote
by Pr(P ; �; t; �). In order to compute these probabilities we introduce the following
de�nitions.

Let � � Act, t 2 NN , and � 2 Sched(T). We de�ne

FPaths(T;�) = fc 2 Pcomp(T) j last c
�

�!n; where � 2 �g;

FPaths0(T;�; t) = fc 2 FPaths(T;�) j time (c) � tg;

SPaths(T;�;M; �) = fc 2 Scomp(T; �) j c = c1c2, where c1 2 FPaths(T;�)g;

SPaths0(T;�;M; t; �) = fc 2 Scomp(T; �) j c = c1c2, where c1 2 FPaths0(T;�; t)g:

Thus, FPaths(T;�) denotes the set of partial computations of T that lead to a state
which is capable of performing an action in �, while FPaths0(T;�; t) denotes the sub-
set of such computations that take at most t units of time. Moreover, SPaths(T;�; �)
denotes the set of (in�nite) computations in Scomp(T; �) which are extensions of com-
putations in FPaths(T;�;M), and similarly for SPaths0(T;�; t; �). It is easy to see that
these sets are measurable in A�(T) as, for example, SPaths(T;�; �) =

S
! C(!), where

! 2 FPaths(T;�) \ Scompfin(T; �). The probabilities Pr(T;�; �; �) = P(SPaths(T;�; �)),
Pr0(T;�; t; �; �) = P(SPaths0(T;�; t; �)) are given as the smallest solutions to the following
sets of equations:

Pr(P;�; �; c) =

8>><
>>:

1, if P 2 Sn; �(c) = (P; �;Q); � 2 �
�Q pr(P;Q) � Pr(Q;�; �; c pr(P;Q)Q), if P 2 Sp
Pr(Q;�; �; c �Q), if P 2 Sn; �(c) = (P; �;Q); � =2 �
0, otherwise

Pr0(P;�; t; �; c) =

8>>>><
>>>>:

1, if P 2 Sn; �(c) = (P; �;Q); � 2 �
�Q pr(P;Q) � Pr0(Q;�; t; �; c pr(P;Q)Q), if P 2 Sp
Pr0(Q;�; t; �; c �Q), if P 2 Sn; �(c) = (P; �;Q); � =2 � [DR

Pr0(Q;�; t� 1; �; c �Q), if P 2 Sn; �(c) = (P; �;Q); � 2 DR � �
0, otherwise

Thus Pr(P;�; �; �) and Pr0(P;�; t; �; �) denote the desired Pr(P ; �; �) and Pr0(P ;
�; t; �) respectively.

Given a system P and the set of probabilities fPr(P ; �; �) j � 2 Sched(P)g, the
threshold values of this set, that is max�2SchedP Pr(P ; �; �) and min�2SchedP Pr(P ;
�; �), are of the greatest interest for the veri�cation of the system. The maximum prob-
ability being signi�cant in the case where � captures undesirable system behavior and
the minimum probability if the opposite is true. The same holds for the probabilities
Pr(P ; �; t; �). We continue by explaining how max�2SchedP Pr(P ; �; �) can be com-
puted. The rest of the probabilities can be computed similarly.

The maximum value of Pr(s ; �; �) over all schedulers is computed as the value of
the variable Xs

� in the solution for the following set of equations:

Xs
� =

8>>>>><
>>>>>:

P
s

�
�!ps0

� �Xs0

� ; s 2 Sp

max(fXs0

� j s
�

�!n s
0g); � =2 � [DR

1; s
�

�!n s
0; � 2 �

0; otherwise

We can �nd a solution for this set of equations by solving a linear programming problem,
in a way similar to [4]. More precisely, for all equations of the form X = maxfX1; : : : Xng,
we introduce, the set of inequations X � Xi. Consequently, our aim is to minimize the
function

P
s2SX

s
�. Using algorithms based on the ellipsoid method, this problem can be

solved in time polynomial to the number of variables (see, e.g. [9]).

5 A Telecommunications Application

In this section we present an application of PACSR for the speci�cation and analysis of a
probabilistic system. The example was inspired by the speci�cation of a switching system
presented in [1]. The system is comprised of a number of interacting concurrent processes
with real-time constraints. As we will demonstrate, PACSR enables a natural description
of the system in question, while the notion of priorities and their semantical treatment
makes the implementation of the scheduling algorithm straightforward.

AS

Sched

tc

tc

rc

rc

kill

kill

in

out

a

AH

P

Env

Figure 2: The structure of the application

Speci�cation. The structure of the speci�cation is shown in Figure 2. The subsystem
in the dashed box is the monitor, which handles malfunctions in other components of
the switch by processing alarms. Alarms are modeled as originating in the environment

of the monitor. The monitor itself consists of two processes: the alarm sampler, AS,
which periodically samples alarms and places them in a bounded-size bu�er, and the
alarms handler, AH, which removes alarms from the bu�er and processes them. Process
P represents low-priority background computation performed on the same processor.

All processes in the system have �xed priorities, the alarm sampler having the highest
priority. Scheduling is non-preemptive and respects process priority. Thus, whenever
processes are ready to be scheduled the scheduler passes control to the process with the
highest priority. Once a process takes control, it is allowed to run for some maximum
allocated time. If a process is not completed by the deadline, it is killed by the operating
system.

There are two sources of probabilistic behavior in the system. First, alarms are deliv-
ered after a hardware failure is detected by some component. We represent each device as
a resource which a certain probability of failure. Additionally, according to the schedul-
ing requirements, all processes must relinquish control within a maximum allocated time.
However, in reality this is often not the case. Thus, to analyze the system adequately,
we take into account the probability of processes exceeding their allocated time-slice by
assuming that the execution time of such processes is geometrically distributed.

Finally, the correctness requirement for the alarm handler that we analyze is the reach-
ability of a state where overow in the alarm bu�er is possible: we compute the maximum
probability of overow in the alarm bu�er. In our analysis of the model we experimented
with two instantiations of the speci�cation involving di�erent values for the various con-
stants (e.g., the bu�er size, and the various probabilities). Thus on comparing the systems
we are able to show that one is better than the other, in terms of the probability of bu�er
overow.

The speci�cation of is represented by the following collection of processes:

Sys
def
= (EnvkB0k; : SchedkASkAHkP)nFnnI

Env
def
= �1�i�N Pi

Pi
def
= frig : Pi + frig : (PikQi)

Qi
def
= a:NIL + ; : Qi

B0
def
= in:B1 + ; : B0

Bi
def
= in:Bi+1 + �1�j�idj : Bi�j + ; : Bi + outi: Bi

Bn
def
= in: overow :NIL + �1�j�ndj : Bn�j + ; : Bn + outn: Bn:

Sched
def
= (tc; 1): ;14

g

tmax
(NIL; kill: Sched; rc: Sched) + ; : Sched

AS
def
= AS0k(;p : AS)

AS0
def
= (tc; 2): AS00 + ; : AS0

AS00
def
= a: in:AS00 + ; : rc:NIL

AH
def
= �i outi: AHn(i) + ; : AH

AHi
def
= (tc; 1) : AHA

i + ; : AH

AHA
i

def
= ;pt(i) : di: rc: AH

P
def
= (tc; 0): P 04

h

1 (NIL;NIL; kill: P) + ; : P

P 0
def
= (frg : P 0 + frg: rc: P)nnfrg

The system in its initial state is represented by the process Sys, where F = fa; up; tc; rc; g; h;
in; killg[foutig[fdig, I = frig[frg, and Env represents the environment, B0 the (empty)

bu�er, Sched the scheduler, AS and AH the alarm sampler and the alarm handler pro-
cesses respectively, and P a low-priority background process.

The environment Env, responsible for providing alarms, is modeled as the parallel
composition of processes Pi each of which consumes a resource ri. We assume that the
probability of failure is the same for all ri. Upon the failure of resource ri, the alarm
is sent by process Qi. For the purpose of the example, we do not distinguish between
di�erent alarms and record only the fact of their arrival. The number of processes Pi that
determines the maximum number of alarms that can arrive within one time unit, is one
of the parameters of the speci�cation.

The bu�er is given by a collection of processes Bi, each representing the bu�er with
i alarms. The capacity of the bu�er, n, is another parameter of the speci�cation. Each
process Bi, except Bn, can accept a new alarm and become Bi+1. An attempt to write to
Bn, the process representing a full bu�er, will result in the emission of the signal overow .
Each process Bi, except B0, can output the information on the number of alarms it has
using signal outi, and also pass j (j � i) alarms to the handler by means of signal dj ,
becoming Bi�j.

Scheduler Sched allocates the next time slot to processes according to their priorities,
by means of channel tc. Note that, while various components might attempt to access tc,
the prioritized semantics of PACSR ensures that the highest-priority process will succeed.
Processes signal their completion by means of signal rc, thus making the scheduler begin
the next scheduling cycle. Finally, the scheduler is responsible for killing the process in
question should it exceed the maximum-allocated time, tmax.

The alarm sampler AS is a periodic process with period p. Every p time-units it
attempts to take control and sample all available alarms. The alarm sampler receives
alarms emitted by the environment via a and passes them to the bu�er via in. Note that
it only executes for a single time-unit and on completing execution it relinquishes control
by signaling on rc.

The alarm handler AH, upon being scheduled, begins by checking how many alarms
exist in the bu�er. If the bu�er is not empty, it takes as many alarms from the bu�er
as it can process in its allocated time slot. Thus n(i) = max(i; amax), with amax being a
parameter of the speci�cation. pt(i) is the time it takes to process i alarms. Note that
there is no need for AH to accept kill signal from the scheduler, since we limit the number
of alarms and the handler always completes within the allocated slot.

Finally, process P represents a low-priority background process having the scheduling
priority 0. To model variations in its execution time, we employ resource r, failures of which
represent termination of P . Therefore, P 's execution time is geometrically distributed with
parameter p = pr(r).

Veri�cation. We considered two versions of the system. In both cases the probability
of an alarm is 0.9. The �rst version features the possibility of at most one alarm per time
unit and a bu�er of size 3. The alarm handler can process two alarms per time slot, and
each alarm requires one unit of processing time (i.e., pt(i) = i). For the second version, we
assumed that the component runs on a faster hardware. Therefore, the handler can now
process four alarms per time slot, and pt(i) = i=2, appropriately rounded. At the same
time, the bu�er size has been doubled, i.e.the bu�er can hold 6 alarms and the workload
of the component has been increased by allowing up to two alarms per time unit.

We have checked reachability of the set of states, Sof , from which overow is possible,

Time units S1 (probability) S2 (probability)

10 2:02 10�6 2:18 10�10

20 5:11 10�6 5:46 10�10

30 9:21 10�6 9:83 10�10

40 1:23 10�5 1:31 10�9

50 1:54 10�5 1:64 10�9

60 1:95 10�5 2:08 10�9

70 2:26 10�5 2:40 10�9

80 2:56 10�5 2:73 10�9

90 2:97 10�5 3:17 10�9

100 3:28 10�5 3:50 10�9

Table 2: Results of analysis

that is states where action overow is enabled. We have done this for various values of t.
Table 2 shows, for each t, the probability of reaching a state in Sof , within t time units.
We can see that for all checked intervals the faster version of the system performs better
than the other one, despite the increased workload.

6 Conclusions and Future Work

We have presented PACSR, a process-algebraic formalism for speci�cation of resource-
oriented real-time systems. The formalism allows one to model resource failures and
perform probabilistic analysis of the system's behavior. We have performed probabilistic
reachability analysis of PACSR that allows us to compute the probability of occurrence of
undesirable events. We illustrated the utility of the proposed approach using a telecom-
munications application.

Analysis of the example given in the paper has been performed manually. We are
currently working to implement PACSR as part of the PARAGON toolset [3], designed to
handle large-scale speci�cations. At the same time, we are extending the analysis method
from simple probabilistic reachability to model checking for a probabilistic temporal logic.

References

[1] R. Alur, L. Jagadeesan, J. Kott, and J. V. Olnhausen. Model-checking of real-time systems: a
telecommunications application. In Proceedings of the International Conference on Software

Engineering, 1997.

[2] C. Baier and M. Kwiatkowska. Automatic veri�cation of liveness properties of randomized
systems (extended abstract). In Proceedings of the 14th Annual ACM Symposium on Principles

of Distributed Computing, Santa Barbara, California, Aug. 1997.

[3] H. Ben-Abdallah, D. Clarke, I. Lee, and O. Sokolsky. PARAGON: A Paradigm for the
Speci�cation, Veri�cation, and Testing of Real-Time Systems. In IEEE Aerospace Conference,
pages 469{488, Feb 1-8 1997.

[4] A. Bianco and R. de Alfaro. Model checking of probabilistic and nondeterministic systems. In
Proceedings Foundations of Software Techonology ans Theoretical Computer Science, volume
1026 of Lecture Notes in Computer Science, pages 499{513. Springer-Verlag, 1995.

[5] P. Halmos. Measure Theory. Springer Verlag, 1950.

[6] H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD thesis,
Department of Computer Systems, Uppsala University, 1991. DoCS 91/27.

[7] H. Hansson and B. Jonsson. A logic for reasoning about time and probability. Formal Aspects

of Computing, 6:512{535, 1994.

[8] M. Hennessy and T. Regan. A process algebra for timed systems. Technical Report 5/91, CS,
University of Sussex, 1991.

[9] H. Karlo�. Linear Programming. Progress in Theoretical Computer Science. Birkhauser, 1991.

[10] I. Lee, P. Br�emond-Gr�egoire, and R. Gerber. A process algebraic approach to the speci�cation
and analysis of resource-bound real-time systems. Proceedings of the IEEE, pages 158{171,
Jan 1994.

[11] R. Milner. Communication and Concurrency. Prentice Hall Intl., 1989.

[12] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proceedings of

CONCUR'90. LNCS 458, 1990.

[13] R. Segala. Modelling and Veri�cation of Randomized Distributed Real-Time Systems. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 1995.

[14] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In B. Jonsson
and J. Parrow, editors, Proceedings CONCUR 94, Uppsala, Sweden, volume 836 of Lecture
Notes in Computer Science, pages 481{496. Springer-Verlag, 1994.

[15] C. Tofts. Processes with probabilities, priorities and time. Formal Aspects of Computing,
4:536{564, 1994.

[16] R. J. van Glabbeek, S. A. Smolka, and B. Ste�en. Reactive, generative and strati�ed models
of probabilistic processes. Information and Computation, 121(1):59{80, 15 Aug. 1995.

[17] M. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs. In Pro-

ceedings 26 th Annual Symposium on Foundations of Computer Science, pages 327{338. IEEE,
1985.

[18] W. Yi. A Calculus of Real Time Systems. PhD thesis, Chalmers University of Technology,
1991.

