
Probabilistic Resource Failure in Real-Time

Process Algebra?

Anna Philippou1, Rance Cleaveland2, Insup Lee1,
Scott Smolka3, and Oleg Sokolsky4

1 University of Pennsylvania, USA. fannap, leeg@saul.cis.upenn.edu
2University of North Carolina, USA. rance@eos.ncsu.edu

3SUNY at Stony Brook, USA. sas@cs.sunysb.edu
4Computer Command and Control Company, USA. sokolsky@cccc.com

Abstract. PACSR, a probabilistic extension of the real-time process al-
gebra ACSR, is presented. The extension is built upon a novel treatment
of the notion of a resource. In ACSR, resources are used to model con-
tention in accessing physical devices. Here, resources are invested with
the ability to fail and are associated with a probability of failure. The re-
sulting formalism allows one to perform probabilistic analysis of real-time
system speci�cations in the presence of resource failures. A probabilistic
variant of Hennessy-Milner logic with until is presented. The logic fea-
tures an until operator which is parameterized by both a probabilistic
constraint and a regular expression over observable actions. This style
of parameterization allows the application of probabilistic constraints to
complex execution fragments. A model-checking algorithm for the pro-
posed logic is also given. Finally, PACSR and the logic are illustrated
with a telecommunications example.

1 Introduction

A common high-level view of a distributed real-time system is that the compo-
nents of the system compete for access to shared resources, communicating with
each other as necessary. To capture this view explicitly in formal speci�cations,
a real-time process algebra ACSR [17] has been developed. ACSR represents a
real-time system as a collection of concurrent processes. Each process can en-
gage in two kinds of activities: communication with other processes by means of
instantaneous events and computation by means of timed actions. Executing an
action requires access to a set of resources and takes a non-zero amount of time
measured by an implicit global clock. Resources are serially reusable, and access
to them is governed by priorities. A process that attempts to access a resource
currently in use by a higher-priority process is blocked from proceeding.

The notion of a resource, which is already important in the speci�cation of
real-time systems, additionally provides a convenient abstraction mechanism for

? This work was supported in part by grants AFOSR F49620-95-1-0508, ARO
DAAH04-95-1-0092, NSF CCR-9415346, NSF CCR-9619910, and ONR N00014-97-
1-0505 (MURI).

probabilistic aspects of systems behavior. A major source of behavioral variation
in a process is failure of physical devices, such as processors, memory units, and
communication links. These are exactly the type of objects that are captured as
resources in ACSR speci�cations. Therefore, it is natural to use resources as a
means of exploring the impact of failures on a system's performance.

In this paper, we present PACSR, a process algebra that extends the resource
model of ACSR with the ability to reason about resource failures. Each resource
used by the system is associated with a probability of failure. If a process at-
tempts to access a failed resource, it is blocked. Resource failures are assumed
to be independent. Then, for each execution step that requires access to a set of
resources, we can compute the probability of being able to take the step. This
approach allows us to reason quantitatively about a system's behavior.

Previous work on extending process algebra with probability information
(discussed below) typically associates probabilities with process terms. An ad-
vantage of associating probabilities with resources, rather than with process
terms, is that the speci�cation of a process does not involve probabilities di-
rectly. In particular, a speci�cation simply refers to the resources required by a
process. Failure probabilities of individual resources are de�ned separately and
are used only during analysis. This makes the speci�cation simpler and ensures
a more systematic way of applying probabilistic information. In addition, this
approach allows one to explore the impact of changing probabilities of failures
on the overall behavior, without changing the speci�cation.

We are also interested in being able to specify and verify high-level require-
ments for a PACSR speci�cation. Temporal logics are commonly used to express
such high-level requirements. In the probabilistic setting, the requirements usu-
ally include probabilistic criteria that apply to large fragments of the system's
execution. We present a simple temporal logic suitable for expressing properties
of PACSR expressions. As is common with probabilistic extensions of temporal
logics, we associate probabilistic constraints with temporal operators. The novel
feature of the logic is that we allow temporal operators to be parameterized with
regular expressions over the set of observable actions. Such parameterization al-
lows us to apply probabilistic constraints to complex execution fragments.

For example, consider a communication protocol in which a sender inquires
about the readiness of a receiver, obtains an acknowledgement, and sends data.
A reasonable requirement for the system would be that this exchange happens
with a certain probability. To express this property, one usually needs two nested
temporal until operators. Since probabilistic constraints are associated with tem-
poral operators, the single constraint has to be arti�cially split in two to apply to
each of the operators. With the proposed extension, we need only one temporal
operator, and the property is expressed naturally. A model-checking algorithm
for the logic, suitable for �nite-state PACSR speci�cations, is also given.

In terms of related work, a number of process algebras have been proposed
that extend process terms with probability information, including [12, 21, 2, 10,
16, 20]. The approach of [12] is particularly relevant as it also adds probability
to a real-time process algebra. It does not, however, consider the notions of

resource and resource probability, nor use priorities to control communication
and resource access. In [18], an automata-based formalism that combines the
notions of real-time and probabilities is presented. It employs a di�erent notion
of time in that transitions can have variable durations. Also, probabilities are
associated with instantaneous events.

Since a PACSR speci�cation typically consists of several parallel processes,
concurrent events in these processes are the source of non-deterministic behavior,
which cannot be resolved through probabilities. To provide for both probabilistic
and non-deterministic behavior, the semantics of PACSR processes are given via
labeled concurrent Markov chains [22]. This model has also been employed in [12],
and variations of it appeared in [18, 6].

Regarding previous work on model checking for probabilistic systems, a
closely related approach involves associating a probability threshold with the un-
til operator of the temporal logic CTL [7]. For example, see [13, 4, 6, 14]. We �nd
that this approach can become problematic when expressing properties that re-
quire multiple, nested untils. Our proposed extension of the until operator, which
uses regular expressions and probability, serves to alleviate this de�ciency.

The rest of the paper is organized as follows: the next section presents the
syntax of PACSR and its semantics is given in Section 3. Section 4 discusses
the temporal logic and the model-checking algorithm. In Section 5, we present
an application of PACSR for the analysis of a probabilistic telecommunications
system. We conclude with some �nal remarks and discussion of future work.

2 The Syntax of PACSR

2.1 Resource Probabilities and Actions

PACSR (Probabilistic ACSR) extends the process algebra ACSR by associating
with each resource a probability. This probability captures the rate at which the
resource may fail. PACSR also has two types of actions: instantaneous events
and timed actions, the latter of which speci�es access to a (possibly empty) set
of resources. We discuss these three concepts below.

Instantaneous events. PACSR instantaneous actions are called events. Events
provide the basic synchronization primitives in the process algebra. An event is
denoted as a pair (a; p), where a is the label of the event and p, a natural number,
is the priority. Labels are drawn from the set L = L [L [f�g, where if a is a
given label, a is its inverse label. The special label � arises when two events with
inverse labels are executed concurrently. We let a, b range over labels. Further,
we use DE to denote the domain of events.

Timed actions. We assume that a system contains a �nite set of serially reusable
resources drawn from the set Res. We also consider set Res that contains, for
each r 2 Res, an element r, representing the failed resource r. We write R for
Res[Res. An action that consumes one tick of time is drawn from the domain
PP (R�NN) with the restriction that each resource is represented at most once. For

example the singleton action f(r; p)g denotes the use of some resource r 2 Res at
priority level p. Such an action cannot happen if r has failed. On the other hand,
action f(r; q)g takes place with priority q given that resource r has failed. This
construct is useful for specifying recovery from failures. The action ; represents
idling for one unit of time, since no resource is consumed.

We let DR denote the domain of timed actions and we let A, B range over
DR. We de�ne �(A) to be the set of the resources used by action A; for example
�(f(r1; p1); (r2; p2)g) = fr1; r2g.

Resource Probabilities In PACSR we associate each resource with a probability
specifying the rate at which the resource may fail. In particular, for all r 2 Res
we denote by p(r) 2 [0; 1] the probability of resource r being up, while p(r) =
1 � p(r) denotes the probability of r failing. Thus, the behavior of a resource-
consuming process has certain probabilistic aspects to it which are reected in
the operational semantics of PACSR. For example, consider process f(cpu; 1)g :
NIL, where resource cpu has probability of failure 1=3, i.e. p(cpu) = 2=3. Then
with probability 2=3, resource cpu is available and thus the process may consume
it and become inactive, while with probability 1=3 the resource fails and the
process deadlocks. This is discussed in detail in Section 3.

2.2 Processes

We let P , Q range over PACSR processes and we assume a set of process con-

stants each with an associated de�nition of the kind X
def
= P . The following

grammar describes the syntax of PACSR processes.

P ::= NIL j (a; n): P j A : P j P + P j PkP j
P 4

a

t (P; P; P) j PnF j [P]I j PnnI j rec X:P j X

The process NIL represents the inactive process. There are two pre�x oper-
ators, corresponding to the two types of actions. The �rst, (a; n): P , executes
the instantaneous event (a; n) and proceeds to P . When it is not relevant for
the discussion, we omit the priority of an event in a process. The second, A : P ,
executes a resource-consuming action during the �rst time unit and proceeds
to process P . The process P + Q represents a nondeterministic choice between
the two summands. The process PkQ describes the concurrent composition of
P and Q: the component processes may proceed independently or interact with
one another while executing events, and they synchronize on timed actions.

The scope construct, P 4
a

t (Q;R; S), binds the process P by a temporal
scope and incorporates the notions of timeout and interrupts. We call t the time
bound, where t 2 NN [f1g and require that P may execute for a maximum of t
time units. The scope may be exited in one of three ways: First, if P terminates
successfully within t time-units by executing an event labeled a, where a 2 L,
then control is delegated to Q, the success-handler. On the other hand, if P
fails to terminate within time t then control proceeds to R. Finally, throughout
execution of this process construct, P may be interrupted by process S. In PnF ,

where F � L, the scope of labels in F is restricted to process P : components of P
may use these labels to interact with one another but not with P 's environment.
The construct [P]I , I � R, produces a process that reserves the use of resources
in I for itself, extending every action A in P with resources in I��(A) at priority
0. PnnI hides the identity of resources in I so that they are not visible on the
interface with the environment. Finally, the process rec X:P denotes standard
recursion. We write Proc for the set of PACSR processes.

The operator PnnI binds all free occurrences of the resources of I in P . This
binder gives rise to the sets of free and bound resources of a process P . In what
follows, we work up to �-conversion on resources. In this way, bound resources in
a process are assumed to be di�erent from each other and from the free resources,
and �-equivalent processes are assumed to have the same transitions.

Note that the syntax of PACSR processes is the same as that of ACSR. The
only extension concerns the appearance of failed resources in timed actions. This
allows us to perform probabilistic analysis of existing ACSR speci�cations, and
non-probabilistic analysis of PACSR speci�cations.

The informal account of behavior just given is made precise via a family
of rules that de�ne the labeled transition relations �!� and 7�! on processes.
This is presented in the next section. First we have some useful de�nitions. The
function imr(P), de�ned inductively below, associates each PACSR process with
the set of resources on which its behavior immediately depends:

imr(NIL) = ; imr(P1kP2) = imr(P1) [imr(P2)
imr(a: P) = ; imr(PnF) = imr(P)
imr(A : P) = �(A) imr([P]I) = imr(P) [I
imr(P1 + P2) = imr(P1) [imr(P2) imr(PnnI) = imr(P)

imr(P 4
a

t (Q;R; S)) =

�
imr(P + S), if t > 0
imr(R), if t = 0

imr(rec X:P) = imr(P)

De�nition 1. Let Z = fc1; : : : ; cng � R. We write

{ p(Z) = �1�i�np(ci),
{ W(Z) = fZ 0 � Z [Z j x 2 Z 0 i� x 62 Z 0g, and
{ res(Z) = fr 2 Res j r 2 Z or r 2 Zg. 2

Thus W(Z) denotes the set of all possible worlds involving the set of resources
Z, that is the set of all combinations of the resources in Z being up or down. For
example, W(fr1; r2g) = ffr1; r2g;fr1; r2g;fr1; r2g; fr1; r2gg. Note that p(;) = 1
and W(;) = f;g.

3 Operational Semantics

The semantics of PACSR processes is given in two steps. At the �rst level, a
transition system captures the nondeterministic and probabilistic behavior of
processes, ignoring the presence of priorities. Subsequently, this is re�ned via a
second transition system which takes action priorities into account.

We begin with the unprioritized semantics. A con�guration is a pair of the
form (P;W) 2 Proc�2R, representing a PACSR process P in worldW . We write
S for the set of con�gurations. The semantics is given in terms of a labeled tran-
sition system whose states are con�gurations and whose transitions are either
probabilistic or nondeterministic. The intuition for the semantics is as follows:
for a PACSR process P , we begin with the con�guration (P; ;). As computa-
tion proceeds, probabilistic transitions are performed to determine the status of
resources which are immediately relevant for execution (as speci�ed by imr(P))
but for which there is no knowledge in the con�guration's world. Once the status
of a resource is determined by some probabilistic transition, it cannot change
until the next timed action occurs. Timed actions erase all previous knowledge of
the con�guration's world (see law (Act2)). Nondeterministic transitions may be
performed from con�gurations that contain all necessary knowledge regarding
the state of resources. With this view of computation in mind, we partition S
as follows:

Sn = f(P;W) 2 S j res(imr(P))� res(W) = ;g, the set of nondetermin-
istic con�gurations, and
Sp = f(P;W) 2 S j res(imr(P)) � res(W) 6= ;g, the set of probabilistic
con�gurations.

Let 7�!� Sp � [0; 1] � Sn be the probabilistic transition relation. A triple

in 7�!, written (P;W)
p
7�! (P 0;W 0), denotes that process P in world W may

become P 0 and enter world W 0 with probability p. Furthermore, let �!� Sn �
Act�S be the nondeterministic transition relation where Act, the set of actions,
is given by DE [DR. A triple in �! is written (P;W)

�
�! (P 0;W 0), capturing

that process P in world W may nondeterministically perform � and become
(P 0;W 0).

The probabilistic transition relation is given by the following rule:

(PROB)
(P;W) 2 Sp; Z1 = res(imr(P))� res(W); Z2 2 W(Z1)

(P;W)
p(Z2)
7�! (P;W [Z2)

Thus, given a probabilistic con�guration (P;W), with Z1 the immediate re-
sources of P for which the state is not yet determined in W , and Z2 2 W(Z1),
P enters the world extended by Z2 with probability p(Z2). Note that con�gura-
tion (P;W) evolves into (P;W [Z2) which is, by de�nition, a nondeterministic
con�guration.

For example, given resources r1 and r2 such that p(r1) = 1=2 and p(r2) = 1=3,

P
def
= f(r1; 2); (r2; 3)g : Q has exactly the following transitions:

(P; ;)
1=6
7�! (P; fr1; r2g) (P; ;)

1=6
7�! (P; fr1; r2g)

(P; ;)
1=3
7�! (P; fr1; r2g) (P; ;)

1=3
7�! (P; fr1; r2g)

Lemma 1. For all s 2 Sp, �fjp j (s; p; s0) 2 7�! jg = 1, where fj and jg are
multiset brackets and the summation over the empty multiset is 1. 2

The nondeterministic transition relation is given in Table 1. Note that the
symmetric versions of rules (Sum) and (Par1) have been omitted. Consider in
particular rules (Act1) and (Act2): instantaneous events preserve the world of
a con�guration while timed actions re-initialize it to ;. Thus, by rule (Act2)

we have (P; fr1; r2g)
f(r1;2);(r2;3)g

�! (Q; ;), whereas (P; fr1; r2g), (P; fr1; r2g), and
(P; fr1; r2g) have no transitions. Except for the appearance of worlds in con-
�gurations, the rules of Table 1 are essentially identical to the ones for ACSR.
It is worth pointing out that all processes in a parallel composition need to
synchronize on a timed action (Par3).

(Act1) ((a; n):P; B)
(a;n)
�! (P;B) (Act2) (A : P; B)

A
�! (P; ;), if �(A) � B

(Sum)
(P1; B)

�
�! (P;B0)

(P1 + P2; B)
�
�! (P;B0)

(Par1)
(P1; B)

(a;n)
�! (P 01; B

0)

(P1kP2; B)
(a;n)
�! (P 01kP2; B

0)

(Par2)
(P1; B)

(a;n)
�! (P 02; B

0); (P2; B)
(a;m)
�! (P 02; B

0)

(P1kP2; B)
(�;n+m)
�! (P 01kP

0
2; B

0)

(Par3)
(P1; B)

A1�! (P 01; B
0); (P2; B)

A2�! (P 02; B
0)

(P1kP2; B)
A1[A2�! (P 01kP

0
2; B

0)
, �(A1) \ �(A2) = ;

(Res1)
(P;B)

A
�! (P 0; B0); A0 = f(r; n) 2 A j r =2 Ig

(PnnI; B)
A0

�! (P 0nnI; B0)

(Res2)
(P;B)

�
�! (P 0; B0); l(a) 62 F

(PnF;B)
�
�! (P 0nF; B0)

(Cl1)
(P;B)

(a;n)
�! (P 0; B0)

([P]I ; B)
(a;n)
�! ([P 0]I ; B

0)

(Cl2)
(P;B)

A1�! (P 0; B0); A2 = f(r; 0) j r 2 B \ (I [I)g

([P]I ; B)
A1[A2�! ([P 0]I ; B

0)

(Sc1)
(P;B)

(a;n)
�! (P 0; B0); a 6= b; t > 0

(P 4
b

t (Q;R;S); B)
(a;n)
�! (P 0 4

b

t (Q;R;S); B
0)

(Sc2)
(P; B)

(b;n)
�! (P 0; B0); t > 0

(P 4
b

t (Q;R; S); B)
(�;n)
�! (Q;B0)

(Sc3)
(R;B)

�
�! (R0; B0); t = 0

(P 4
b

t (Q;R; S); B)
�
�! (R0; B0)

(Sc4)
(P;B)

A
�! (P 0; B0); t > 0

(P 4
b

t (Q;R;S); B)
A
�! (P 0 4

b

t�1 (Q;R; S); B
0)

(Sc5)
(S;B)

�
�! (S0; B0); t > 0

(P 4
b

t (Q;R; S); B)
�
�! (S0; B0)

(Rec)
(P [rec X:P=X]; B)

�
�! (P 0; B0)

(rec X:P; B)
�
�! (P 0; B0)

Table 1. The nondeterministic relation

The prioritized transition system is based on the notion of preemption and
re�nes the nondeterministic transition relation �! by taking priorities into ac-
count. It is given by the pair of transition systems associated with the relations
7�! and �!�, the latter of which is de�ned below. The preemption relation �
on Act is de�ned as for ACSR, specifying when two actions are comparable with
respect to priorities. For example, the idle action ; is preemptable by all other
timed actions. The basic idea behind �!� is that a nondeterminstic transition
of the form (P;W)

�
�!� (P 0;W 0) is permitted if and only if there are no higher-

priority transitions enabled in (P;W), that is � � � for all � enabled in (P;W).
Thus we have that the prioritized nondeterministic transition system is obtained
from the unprioritized one by pruning away preemptable transitions.

De�nition 2. The prioritized labeled transition system �!� is de�ned as
follows: (P;W)

�
�!� (P 0;W 0) if and only if (1) (P;W)

�
�! (P 0;W 0) is an unpri-

oritized nondeterministic transition, and (2) there is no unprioritized transition

(P;W)
�
�! (P 00;W 00) such that � � �. 2

We conclude this section with an example. The following process describes a
faulty channel that, on receipt of an input, may either produce an output with
probability 0:99 or lose the message with probability 0:01, depending on the
state of resource channel, where p(channel) = 0:99.

FCh
def
= (in: P + ; : FCh)nnfchannelg

P
def
= fchannelg: out:FCh + fchannelg:FCh :

Figure 1 exhibits the transition system of process FCh in world ;, that is, without
initial knowledge about the status of resource channel. Note that state (P; ;) is
probabilistic, while all other states are non-deterministic.

0 0

0(P,)

out

0

{(P,)channel } (P,{)channel}

0

(0)out. FCh,

()

π

π FCh,

in

π

π

0.99 0.01

π

Fig. 1. Transition system of process FCh

4 Model Checking for PACSR

Model checking is a veri�cation technique aimed at determining whether a sys-
tem speci�cation satis�es a property typically expressed as a temporal logic
formula. To allow model checking on PACSR speci�cations, we introduce in this
section a probabilistic temporal logic that allows one to associate probabilistic
constraints with fragments of behaviors. The associated model-checking algo-
rithm, also presented in this section, is used to check that these constraints
are satis�ed. Behavioral fragments of interest are expressed in terms of regular
expressions over Act, the set of observable actions.

Before presenting the logic, we introduce the structure that we use as the
model for formulas of the logic and introduce some notation. Logical formulas
are interpreted with respect to a given Labeled Concurrent Markov Chain.

De�nition 3. A Labeled Concurrent Markov Chain (LCMC) is a tuple hSn; Sp;
Act;�!n;�!p; s0i, where Sn is the set of nondeterministic states, Sp is the set
of probabilistic states, Act is the set of labels, �!n� Sn�Act� (Sn [Sp) is the
nondeterministic transition relation, �!p� Sp � (0; 1]� Sn is the probabilistic
transition relation, satisfying �(s;�;t)2�!p

� = 1 for all s 2 Sp, and s0 2 Sn [Sp
is the initial state. 2

It is easy to see that the operational semantics of PACSR yields transition sys-
tems that are LCMCs.

In what follows, we let �; � range over Act and ` over Act [[0; 1]. In ad-
dition, when it is clear from the context, we will simply refer to an LCMC
hSn; Sp;Act;�!n;�!p; s0i by s0. Given s; s0 2 S, pr(s; s0) denotes the proba-
bility that s may perform at most one probabilistic transition to become s0:

pr(s; s0) =

8<
:
1, if s = s0; s 2 Sn
�, if s

�
�!p s

0

0, otherwise

Computations of LCMCs arise by resolving the nondeterministic and prob-
abilistic choices: a computation in T = hSn; Sp;Act;�!n;�!p; s0i is either a
�nite sequence c = s0 `1 s1 : : : `k sk, where sk has no transitions, or an in�nite
sequence c = s0 `1 s1 : : : `k sk : : : , such that si 2 S, `i+1 2 Act [[0; 1] and
(si; `i+1; si+1) 2�!p [�!n, for all 0 � i. We denote by comp(T) the set of all
computations of T and by Pcomp(T) the set of all partial computations of T , i.e.
Pcomp(T) = fs0`1 : : : `ksk j 9c 2 comp(T): c = s0`1 : : : `ksk : : : and sk 2 Sng.
Given c = s0`1 : : : `ksk 2 Pcomp(T), we de�ne trace (c) = `1 : : : `kj�Act � f�g,
states (c) = fs1; : : : skg, time (c) = #(`1 : : : `kj�DR), init c = s0 : : : sk�1 and
last c = sk.

To de�ne probability measures on computations of an LCMC the nondeter-
minism present must be resolved. To achieve this, the notion of a scheduler has
been employed [22, 12, 19]. A scheduler is an entity that, given a partial com-
putation ending in a nondeterministic state, chooses the next transition to be
executed.

De�nition 4. A scheduler of an LCMC T is a partial function � : Pcomp(T) 7!
�!n, such that if pc 2 Pcomp(T) and �(pc) = (s; �; s0), then s = last pc. We use
Sched(T) to denote the set of all schedulers of T . 2

Sched(T) is potentially an in�nite set. We let � range over schedulers. For
an LCMC T and a scheduler � 2 Sched(T) we de�ne the set of scheduled com-
putations Scomp(T; �) � comp(T) to be the computations c = s0 `1 : : : `k sk : : :
such that for all si 2 Sn, �(s0`1 : : : `isi) = (si; `i+1; si+1).

Each scheduler � induces a probability space [11] on Scomp(T; �). We de�ne
Scompfin(T; �) to be the set of all partial computations that are a pre�x of
some c 2 Scomp(T; �), and A�(T) to be the sigma-algebra generated by the
basic cylinders C(!) = fc 2 Scomp(T; �) j ! is a pre�x of cg, where ! 2
Scompfin(T; �). Then the probability measure P onA�(T) is the unique measure
such that if ! = s0`1s1 : : : `ksk then P(C(!)) = �fj`i 2 [0; 1] j 1 � i � kjg.

4.1 Probabilistic HML with until

We now introduce our logic for PACSR which is based on the Hennessy-Milner
Logic (HML) with until [9]. Our logic extends the work of [9] in two ways.
First it allows for quantitative analysis of probabilistic properties of a system by
associating a probabilistic condition with the until operator. The condition takes
the form of � p or � p for a constant p. Intuitively, until expresses a property of
an execution of the system, which we expect to hold with a probability satisfying
the condition of the operator.

The second extension allows us to parameterize until operators with regular
expressions over event names, instead of a single name. Using this construct, we
can express, with a single temporal operator, a property of an execution that
contains a series of events, rather than only one event. In the non-probabilistic
setting, there is no need for such extension, since one can always express this
property by using several nested until operators. In the probabilistic setting,
however, nesting of operators would preclude us from associating a single prob-
abilistic condition with the whole execution.

Additionally, in order to be able to capture real-time aspects of PACSR
speci�cations, we o�er a time-bounded version of the until operator.

De�nition 5. (Probabilistic HML with until) The syntax of LprHMLu is de�ned
by the following grammar, where f; f 0 range over LprHMLu-formulas, � is a regular
expression over Act, and ./2 f�;�g:

f ::= tt j :f j f ^ f 0 j fh�i./pf
0 j fh�it./pf

0

2

In order to present the semantics of the logic, we introduce the following
de�nitions. Let � � Act�, M; A � S, and � 2 Sched(T). We de�ne

FPathsA(T; �;M) = fc 2 Pcomp(T) j last c 2 M; trace (c) 2 �; states (init (c)) � Ag,
FPaths0A(T; �; t;M) = fc 2 FPathsA(T; �;M) j time (c) � tg,
SPathsA(T; �;M; �) = fc 2 Scomp(T; �) j c = c1c2; c1 2 FPathsA(T; �;M)g,
SPaths0A(T; �;M; t; �) = fc 2 Scomp(T; �) j c = c1c2; c1 2 FPaths0A(T; �; t;M)g.

Thus, FPathsA(T; �;M) denotes the set of partial computations of T that
lead to a state in M via a sequence of actions in � and pass only via states in
A, while FPaths0A(T; �; t;M) denotes the subset of such computations that take
at most t units of time. Moreover, SPathsA(T; �;M; �) denotes the set of (com-
plete) computations in Scomp(T; �) that are extensions of partial computations
in FPathsA(T; �;M), and similarly for SPaths0A(T; �;M; t; �). It is easy to see
that these sets are measurable in A�(T) as, for example, SPathsA(T; �;M; �) =S
! C(!), where ! 2 FPathsA(T; �;M) \ Scompfin(T; �).

The probability PrA(T; �;M; �; s0) = P(SPathsA(T; �;M; �)) is given as the
smallest solution to the following set of equations:

PrA(P; �;M; �; c) =

8>><
>>:

1 if " 2 �; P 2 M
�Q pr(P;Q) � PrA(Q;�;M; �; c pr(P;Q)Q) if P 2 Sp \A
PrA(Q;�� �;M; �; c �Q) if P 2 Sn \A; �(c) = (P; �;Q)
0 otherwise

where ��� is f� j �� 2 �g if � 6= � and �, otherwise. Thus PrA(P; �;M; �; s0)
denotes the probability of performing from P , under scheduler �, a sequence
in � to reach a state in M while passing only via states in A. Probability
Pr0A(T; �;M; t; �; T) = P(SPaths0A(T; �;M; t; �)) denotes the probability of achiev-
ing the same e�ect within t time units and it can be similarly computed.

Finally, the satisfaction relation j= � (Sn [Sp)�L
pr
HMLu is de�ned induc-

tively as follows. Let T = (Sn; Sp;Act;�!n;�!p; s0), be an LCMC. Then:

s j= tt always
s j= :f i� s 6j= f
s j= f ^ f 0 i� s j= f and s j= f 0

s j= fh�i./pf
0 i� there is � 2 Sched(s) such that PrA(s; �;B; �; s) ./ p,

where A = fs0 j s0 j= fg and B = fs0 j s0 j= f 0g
s j= f h�it./pf

0 i� there is � 2 Sched(s) such that Pr0A(s; �;B; t; �; s) ./ p,
where A = fs0 j s0 j= fg, B = fs0 j s0 j= f 0g

4.2 The Model-Checking Algorithm

Let closure(f) denote the set of formulas f f 0 [:f 0 j f 0 is a subformula of f g.
Our model-checking algorithm is similar to the CTL model-checking algorithm
of [8]. In order to check that LCMC T satis�es some formula f 2 LprHMLu, the
algorithm labels each state s of T with a set F � closure(f), such that for every
f 0 2 F , s j= f 0. T satis�es f if and only if s0, the initial state of T , is labeled
with f . The algorithm starts with the atomic subformulas of f and proceeds
to more complex subformulas. The labeling rules are straightforward from the
semantics of the operators, with the exception of the until operator.

In order to decide whether a state s satis�es fh�i�pf 0 (fh�i�pf 0), we com-
pute the maximum (minimum) probability of the speci�ed behavior. The maxi-
mum value of PrA(s; �;B; �; s) over all � is computed as the value of the variable
Xs
fh�if 0 in the smallest solution of the following set of equations:

Xs
fh�if 0 =

8>>>>><
>>>>>:

P
s

�
�!ps0

� �Xs0

fh�if 0 if s 2 Sp

max(fXs0

fh���if 0 j s
�

�!n s0g) if s 2 Sn; s j= f

1 if s 2 Sn; s j= f 0; " 2 �

0 otherwise

A solution for this set of equations can be computed by solving a linear pro-
gramming problem, in a manner similar to [6]. More precisely, for all equations
of the form X = maxfX1; : : : Xng, we introduce, the set of inequations X � Xi.
Our aim is to minimize the function

P
s2S X

s
fh�if 0 +Xs

fh"if 0 . Using algorithms
based on the ellipsoid method, this problem can be solved in time polynomial in
the number of variables (see, e.g. [15]).

The e�ciency of the algorithm can be improved in many obvious ways. In
particular, a symbolic version of the algorithm along the lines of [3] is possible.

5 A Telecommunications Application

In this section we present an application of PACSR for the speci�cation and
analysis of a probabilistic system. The example was inspired by the speci�ca-
tion of a telecommunications switching system presented in [1]. The system is
comprised of a number of interacting concurrent processes with real-time con-
straints. As we will demonstrate, PACSR enables a natural description of the
system in question, while the notion of priorities and their semantical treatment
makes the implementation of the scheduling algorithm straightforward.

Speci�cation. The structure of the system speci�cation is shown in Figure 2.
The subsystem in the dashed box is the monitor, which handles malfunctions
in other components of the switch by processing alarms. Alarms are modeled as
originating in the environment of the monitor (the solid-lined box).

The monitor consists of two processes: the alarm sampler which periodically
samples alarms and places them in a bounded-size bu�er, and the alarm handler
which removes and processes alarms from the bu�er. Process P represents low-
priority background computation performed on the same processor.

All processes in the system have �xed priorities, the alarm sampler having
the highest priority. Scheduling is non-preemptive and respects process priority.
Thus, whenever processes are ready to be scheduled the scheduler passes control
to the process with the highest priority. Once a process takes control, it is allowed
to run for some maximum allocated time. If it is not completed by the deadline,
it is killed by the operating system.

There are two sources of probabilistic behavior in the system. First, alarms
are delivered after a hardware failure is detected by some component. We repre-
sent each device as a resource which a certain probability of failure. Additionally,

Env

a
AS AH

Sched

. . .

P

tc
rc

tc
rc

killkill

in out

Fig. 2. Structure of the application

according to the scheduling requirements, all processes must relinquish control
within a maximum allocated time. However, in reality this is often not the case.
Thus, to analyze the system adequately, we take into account the probability
of processes exceeding their allocated time-slice by assuming that the execution
time of such processes is geometrically distributed.

Finally, the correctness requirement for the alarm handler is a probabilistic
property: the probability of overow in the alarm bu�er should not exceed a given
value. In our analysis of the model, we experimented with two instantiations of
the speci�cation involving di�erent values for the various constants (e.g., the
bu�er size, and the various probabilities). Consequently, on comparing the two
systems, we were able to show that one is better than the other, in terms of
the probability of bu�er overow. The speci�cation consists of the collection of
processes in the following table.

Sys
def
= (EnvkB0k; : SchedkASkAHkP)nFnnI

Env
def
= �1�i�N Pi

Pi
def
= frig : Pi + frig : (PikQi)

Qi
def
= a:NIL + ; : Qi

B0
def
= in: B1 + ; : B0

Bi
def
= in: Bi+1 + �1�j�idj : Bi�j + ; : Bi + outi: Bi

Bn
def
= in: overow :NIL + �1�j�ndj : Bn�j + ; : Bn + outn: Bn:

Sched
def
= (tc; 1): ;1 4

g

tmax (NIL; kill: Sched; rc: Sched) + ; : Sched

AS
def
= AS0k(;p : AS)

AS0
def
= (tc; 2) : AS00 + ; : AS0

AS00
def
= a: in: AS00 + ; : rc:NIL

AH
def
= �i outi: AHn(i) + ; : AH

AHi
def
= (tc; 1) : AHA

i + ; : AH

AHA
i

def
= ;pt(i) : di: rc: AH

P
def
= (tc; 0) : P 0 4

h

1 (NIL;NIL; kill: P) + ; : P

P 0
def
= (frg : P 0 + frg : h: rc: P)nnfrg

The system in its initial state is represented by process Sys, where F =
fa; up; tc; rc; g; h; in; killg[foutig[fdig, I = frig[frg, and Env represents the
environment, B0 the (empty) bu�er, Sched the scheduler, AS and AH the alarm
sampler and the alarm handler processes, respectively, and P the low-priority
background process.

The environment Env, responsible for providing alarms, is modeled as the
parallel composition of processes Pi each of which consumes a resource ri. We
assume that the probability of failure is the same for all ri. When resource ri
fails, an alarm is sent by process Qi. For the purpose of the example, we do not
distinguish between di�erent alarms and record only the fact of their arrival. The
number of processes Pi that determines the maximum number of alarms that
can arrive within one time unit, is one of the parameters of the speci�cation.

The bu�er is given by a collection of processes Bi. The capacity of the bu�er,
n, is another parameter of the speci�cation. An attempt to write to Bn, the
process representing a full bu�er, will result in the emission of the signal overow .
Each process Bi, except B0, can output the number of alarms it has using signal
outi, and also pass j (j � i) alarms to the handler by means of signal dj ,
becoming Bi�j .

Scheduler Sched allocates the next time slot to processes according to their
priorities, by means of channel tc (tc stands for \take control"). Note that, while
various components might attempt to access tc, the prioritized semantics of
PACSR ensures that the highest-priority process will succeed. Processes signal
their completion by means of signal rc (\relinquish control"), thus forcing the
scheduler to begin the next scheduling cycle. Finally, the scheduler is responsible
for killing a process should it exceed the maximum-allocated time, tmax.

The alarm sampler AS is a periodic process with period p. Every p time-
units it attempts to take control and sample all available alarms. The alarm
sampler receives alarms emitted by the environment via a and passes them to
the bu�er via in. It only executes for a single time-unit and on completing
execution it relinquishes control by signaling on rc. The alarm handler AH ,
upon being scheduled, checks how many alarms are in the bu�er. If the bu�er
is not empty, it takes as many alarms from the bu�er as it can process in its
allocated time slice. Thus n(i) = min(i; amax), with amax being a parameter of
the speci�cation. pt(i) is the time it takes to process i alarms.

Finally, process P represents a low-priority background process having schedul-
ing priority 0. To model variations in its execution time, we employ resource r,
failures of which represent termination of P . Therefore, P 's execution time is
geometrically distributed with parameter pr(r).

Veri�cation. We considered two versions of the system. In both cases the proba-
bility of an alarm is 0.9. The �rst version, S1, features the possibility of at most
one alarm per time unit and a bu�er of size 3. The alarm handler can process
two alarms per time slot, and each alarm requires one unit of processing time
(i.e., pt(i) = i). For the second version, S2, we assumed that the monitor runs
on faster hardware. Therefore, the handler can now process four alarms per time
slot, and pt(i) = i=2, appropriately rounded. At the same time, the workload of

Time units S1 (false) S2 (true)

10 2� 10�6 3� 10�10

20 5� 10�6 6� 10�10

30 9� 10�6 1:0� 10�9

40 1:2� 10�5 1:3� 10�9

50 1:5� 10�5 1:6� 10�9

60 1:9� 10�5 2:1� 10�9

70 2:2� 10�5 2:4� 10�9

80 2:5� 10�5 2:8� 10�9

90 2:9� 10�5 3:1� 10�9

100 3:2� 10�5 3:5� 10�9

Table 2. Results of analysis

the component has been increased by allowing up to two alarms per time unit
and the size of the bu�er has been doubled.

For both versions of the system we checked the property tthoverow it�qtt for
various values of t and q. Table 2 shows, for a range of t, the largest value of q
for which the property fails for S1, and the smallest value of q that makes the
property true for S2. It can be seen that S2 consistently outperforms S1.

6 Conclusions and Future Work

We have presented PACSR, a process algebra for speci�cation of resource-oriented
real-time systems. The formalism allows one to model resource failures and per-
form probabilistic analysis of a system's behavior. A temporal logic for express-
ing high-level probabilistic properties of PACSR speci�cations was introduced.
A simple model-checking algorithm was also given. We illustrated the utility of
the proposed approach using a telecommunications application.

Analysis of the example given in the paper has been performed manually.
We are currently implementing PACSR as part of the PARAGON toolset [5],
designed to handle large-scale speci�cations.

References

1. R. Alur, L. Jagadeesan, J. Kott, and J. V. Olnhausen. Model-checking of real-time
systems: a telecommunications application. In Proceedings of the International

Conference on Software Engineering, 1997.

2. J. Baeten, J. Bergstra, and S. Smolka. Axiomatizing probabilistic processes: ACP
with generative probabilities. Information and Computation, 121(2):234{255, Sept.
1995.

3. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Proceedings of ICALP '97,
volume 1256 of Lecture Notes in Computer Science, pages 430{440. Springer-
Verlag, July 1997.

4. C. Baier and M. Kwiatkowska. Automatic veri�cation of liveness properties of
randomized systems (extended abstract). In Proceedings of the 14th Annual ACM

Symposium on Principles of Distributed Computing, Santa Barbara, California,
Aug. 1997.

5. H. Ben-Abdallah, D. Clarke, I. Lee, and O. Sokolsky. PARAGON: A Paradigm
for the Speci�cation, Veri�cation, and Testing of Real-Time Systems. In IEEE

Aerospace Conference, pages 469{488, Feb 1-8 1997.
6. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. In Proceedings Foundations of Software Technology and Theoretical Com-

puter Science, volume 1026 of Lecture Notes in Computer Science, pages 499{513.
Springer-Verlag, 1995.

7. E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching Time Temporal Logic. LNCS 131, 1981.
8. E. Clarke, E. Emerson, and A. P. Sistla. Automatic veri�cation of �nite state

concurrent systems using temporal logic speci�cations. ACM Trans. Prog. Lang.

Syst., 8(2), 1986.
9. R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. In

Proceedings of LICS '90. IEEE Computer Society Press, 1990.
10. A. Giacalone, C. Jou, and S. Smolka. Algebraic reasoning for probabilistic con-

current systems. In Proceedings of Working Conference on Programming Concepts

and Methods, Sea of Gallilee, Israel, Apr. 1990. IFIP TC 2, North-Holland.
11. P. Halmos. Measure Theory. Springer Verlag, 1950.
12. H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD

thesis, Department of Computer Systems, Uppsala University, 1991. DoCS 91/27.
13. H. Hansson and B. Jonsson. A logic for reasoning about time and probability.

Formal Aspects of Computing, 6:512{535, 1994.
14. P. Iyer and M. Narasimha. `almost always' and `de�nitely sometime' are not

enough: Probabilistic quanti�ers and probabilistic model checking. Technical Re-
port TR-96-16, Department of Computer Science, North Carolina State University,
July 1996.

15. H. Karlo�. Linear Programming. Progress in Theoretical Computer Science.
Birkhauser, 1991.

16. J.-P. Katoen, R. Langerak, and D. Latella. Modeling systems by probabilistic
process algebra: An event structures approach. In Proceedings of FORTE '92 {

Fifth International Conference on Formal Description Techniques, pages 255{270,
Oct. 1993.

17. I. Lee, P. Br�emond-Gr�egoire, and R. Gerber. A process algebraic approach to the
speci�cation and analysis of resource-bound real-time systems. Proceedings of the
IEEE, pages 158{171, Jan 1994.

18. R. Segala. Modelling and Veri�cation of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1995.

19. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
B. Jonsson and J. Parrow, editors, Proceedings CONCUR 94, Uppsala, Sweden,
volume 836 of Lecture Notes in Computer Science, pages 481{496. Springer-Verlag,
1994.

20. K. Seidel. Probabilistic CSP. PhD thesis, Oxford University, 1992.
21. C. Tofts. Processes with probabilities, priorities and time. Formal Aspects of

Computing, 4:536{564, 1994.
22. M. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs.

In Proceedings 26 th Annual Symposium on Foundations of Computer Science,
pages 327{338. IEEE, 1985.

