
Optimizing Data-intensive Systems in Disaggregated Data
Centers with TELEPORT

Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian Angel, Ang Chen§,
Vincent Liu, Boon Thau Loo

University of Pennsylvania, §Rice University
{qizhen, cxinyic, sankhe, zhileiz, kezhong, sga001, liuv, boonloo}@seas.upenn.edu, §angchen@rice.edu

ABSTRACT

Recent proposals for the disaggregation of compute, memory, stor-
age, and accelerators in data centers promise substantial operational
benefits. Unfortunately, for resources like memory, this comes at
the cost of performance overhead due to the potential insertion of
network latency into every load and store operation. This effect is
particularly felt by data-intensive systems due to the size of their
working sets, the frequency at which they need to access memory,
and the relatively low computation per access. This performance
impairment offsets the elasticity benefit of disaggregated memory.

This paper presents Teleport, a compute pushdown framework
for data-intensive systems that run on disaggregated architectures;
compared to prior work on compute pushdown, Teleport is unique
in its efficiency and flexibility.We have developed optimization prin-
ciples for several popular systems including a columnar in-memory
DBMS, a graph processing system, and a MapReduce system. The
evaluation results show that using Teleport to push down simple
operators improves the performance of these systems on state-of-
the-art disaggregated OSes by an order of magnitude, thus fully
exploiting the elasticity of disaggregated data centers.

CCS CONCEPTS

• Information systems→Datamanagement systems; Parallel
and distributed DBMSs; • Networks→ Data center networks.

KEYWORDS

Memory disaggregation, Data processing, Compute pushdown
ACM Reference Format:

Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Se-
bastian Angel, Ang Chen§, Vincent Liu, Boon Thau Loo. 2022. Optimizing
Data-intensive Systems in Disaggregated Data Centers with TELEPORT.
In Proceedings of the 2022 International Conference on Management of Data
(SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3514221.3517856

1 INTRODUCTION

Resource disaggregation promises to fundamentally change the way
in which we design and operate cloud infrastructure. Unlike today’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3517856

 0.1

 1

 10

 100

 1000

9.3

39.5

Q
u
e
ry

 s
p
e
e
d
u
p

(l
o
g
 s

ca
le

)

NVMe SSD
Base DDC
TELEPORT

(a) The benefits of DDCs.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1.2

2.3

5.4

1.8

E
xe

cu
ti

o
n
 t

im
e

(n
o
rm

a
liz

e
d
)

SparkSQL
Vertica

MonetDB (Base DDC)
MonetDB (TELEPORT)

(b) The cost of scaling.

Figure 1: The benefits and cost of running DBMSs in DDCs.

data centers where each server contains enough compute, memory,
and storage to execute tasks autonomously, the hardware resources
of a disaggregated data center (DDC) are partitioned into physically
distinct resource pools (e.g., a pool of blades that houses the majority
of CPUs, a pool that houses the majority of DRAM/NVM, etc.) all
connected via a fast network fabric. This distribution is not only
beneficial to the operational and cost efficiency of data centers [49],
it also enables more elastic provisioning of resources that expand
beyond a singlemachine [56]. This, in particular, is attractive to data-
intensive systems in which the presence of a large memory pool can
reduce the amount of data that is spilled to secondary storage, hence
improving overall performance. Figure 1a demonstrates this benefit
empirically (using memory-intensive TPC-H queries): the ability
to spill an in-memory query execution to remote memory rather
than to a local SSD results in an order of magnitude of performance
improvement when memory is constrained.

There have been a number of recent proposals for resource dis-
aggregation [25, 32, 44]. Some of these propose the complete re-
design of applications using novel programming models or custom
DBMSs [9, 35, 40, 41, 57]. While these potentially provide good per-
formance in the face of disaggregation, they also typically require
radical modifications that block the use of legacy data, applications,
and libraries. In contrast, proposals for disaggregated operating
systems (OSes) distribute traditional OS responsibilities while em-
ulating the same API/ABI. Applications can, therefore, run with
minimal modification. While this, in principle, enables the reuse of
existing data-intensive systems like DBMSs and graph processing
systems, unfortunately, the performance effects of running these
systems unmodified can be significant, offsetting the operation,
efficiency, and elasticity benefits of disaggregation.

To demonstrate this issue, Figure 1b evaluates the cost of scal-
ing incurred by DDCs. Specifically, it shows the average execution
time of TPC-H queries on several data center configurations com-
pared to a purely local execution that uses same resources (i.e.,
the same amount of CPU, memory, and disks but all in a single

https://doi.org/10.1145/3514221.3517856
https://doi.org/10.1145/3514221.3517856

high-end server). For DDCs, we executed MonetDB [4], a single-
machine in-memory DBMS on two different disaggregated plat-
forms: LegoOS [43], the current state-of-the-art disaggregated OS,
and Teleport, our proposed platform. Both were configured with
compute-local memory as 10% of the entire working set. As a ref-
erence, we also show the ‘cost-of-scaling’ for two distributed in-
memory DBMSs—SparkSQL [12] and Vertica [1]—running on a
more traditional configuration that uses monolithic servers.

The cost of scaling in the above experiments is a result of the
insertion of network communication into execution—in the form
of paging to/from remote memory in the case of DDCs, and in
the form of message passing in the case of distributed execution.
Distributed data processing systems—having been thoroughly op-
timized over decades—successfully achieve a reasonable ‘cost of
scaling’ (average costs are 1.2× and 2.3× in SparkSQL and Vertica,
respectively). The cost of the unmodified execution in a state-of-
the-art DDC is, unfortunately, significantly higher: 5.4× on average.
As we show later in this paper, this cost can, in the worst case,
balloon to 52.4× for some common data analytics tasks. This is
despite OS-level optimizations in existing DDC platforms such as
caching and prefetching which, on their own, are insufficient.

How can we enable all of the operation, efficiency, and usability
benefits of DDCs while ensuring a comparable ‘cost-of-scaling’ to
traditional distributed architectures? Our answer is Teleport, a
novel OS kernel primitive for DDCs that enables—with a single
system call, minimal overhead, and no other application changes—
data-intensive systems to choose where to execute their application
logic. Conceptually, Teleport’s primitive resembles that of com-
pute pushdown: applications can choose to ship complete function
calls to remote memory where the functions can execute using local
data. For memory-bound tasks, proximity can improve performance
by orders of magnitude. For many such operations, minimal com-
putation is required, maintaining the disaggregation of compute
and data in the memory pool. As a preview of Teleport’s benefits,
Figure 1b shows that Teleport can significantly lower the cost of
scaling with DDCs and, as a result, can truly unlock the benefits of
DDCs (Figure 1a).

Teleport differs from prior work on compute pushdown [19, 20,
22, 30, 36, 38, 46] in its focus on the novel environment of memory
disaggregation, in which a process’s entire address space resides in
the remote memory pool, including the text segment, heap, stack,
and full page table—compute-local memory is nothing more than
a cache. Assuming a consistent instruction set architecture (ISA)
across the compute and the memory pools (but not necessarily
homogeneous hardware), applying Teleport to offload a piece of
computation to the memory pool is as straightforward as pointing a
process running in the memory pool to the correct program counter,
stack, and page table residing in the cache of the compute pool. Not
only is this more efficient than traditional pushdown mechanisms,
it allows for the use of pointers, complex data structures, and open
files—the capabilities of a local function—without additional user
effort. Teleport’s target level of flexibility and ease of use also
leads to new challenges unaddressed in prior compute pushdown
proposals. For instance, in order to achieve good performance and
correctness, updates must be propagated lazily, yet correctly, so
as to ensure memory consistency in the presence of distributed
execution over a shared process context.

fast network

compute
memory
storage

compute pool memory pool

storage pool

lo
ca

l c
ac

he

lo
ca

l c
on

tro
lle

r
lo

ca
l c

on
tro

lle
r

Figure 2: An illustration of resource disaggregation. Same

type of resources are centralized in a resource pool. Resource
pools are disaggregated and connected by a fast network.

In summary, this paper makes the following contributions:
• We introduce the design and implementation of Teleport, a
compute pushdown primitive in the OS kernel designed for
optimizing data-intensive systems for resource disaggrega-
tion. It presents a uniquely flexible and usable abstraction for
mitigating overheads from excessive remote memory accesses.
• To handle parallel threads, we describe a set of specialized
synchronization primitives (inspired by prior work on MESI
cache coherence [37]) that guarantees memory coherence of
a logical process context shared across resource pools and
multiple concurrent threads within each place.
• Finally, we present a set of pushdown-optimized data-intensive
systems (DBMS, graph processing, and MapReduce). Applying
Teleport only involved the selective wrapping of existing
function calls. These optimized systems are an order of mag-
nitude faster than a state-of-the-art disaggregated OS, even
when the memory pool has limited CPU capacity.

2 BACKGROUND AND MOTIVATION

Resource disaggregation is an architectural style in which the re-
sources of a data center, traditionally spread across every server, are
instead partitioned into physically distinct pools of resources con-
nected with a fast network fabric such as RDMA over InfiniBand,
as illustrated in Figure 2. While today’s data centers already disag-
gregate storage, a defining feature of DDCs is the more complete
disaggregation of resources including of memory. As mentioned in
prior work, these changes enable substantial operational benefits
including independent expansion, allocation, and failures as well
as increased density [10, 15, 18, 21, 43, 44, 49, 55, 56]. While pools
hosting each type of resource may also contain a small amount of
other resources (e.g., low-frequency CPUs in the memory/storage
pools that manage local resources and process accesses, or a mod-
est amount of DRAM in the compute pool that caches data), the
expectation is that any computation of sufficient size will require
coordination across pools spanning different resource types.

In exchange for those benefits, DDCs convert a subset of what
used to be local memory and device accesses to remote accesses.
While the latest InfiniBand networks are undoubtedly very fast
(sub-600 ns latency at 200Gb/s [5]) and some proposals have ad-
vocated for new network substrates [44], both are, nevertheless,
much slower than accessing resources on the same motherboard.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Disaggregated Operating Systems
	2.2 System Performance in DDCs
	2.3 Benefits of Compute Pushdown

	3 Design of TELEPORT
	3.1 The TELEPORT Abstraction
	3.2 TELEPORTing the Computation

	4 Data Synchronization
	4.1 On-demand Memory Synchronization
	4.2 Alternative Coherence Mechanisms

	5 Applying TELEPORT
	5.1 In-memory Database
	5.2 Graph Processing
	5.3 MapReduce

	6 Implementation
	7 Evaluation
	7.1 The Effectiveness of Teleport
	7.2 The Benefits of Memory Disaggregation
	7.3 Varying the Degree of Disaggregation
	7.4 Varying the Level of Pushdown
	7.5 Teleport Execution Breakdown
	7.6 Coherence Protocol Efficiency

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

