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ABSTRACT

Recent proposals for the disaggregation of compute, memory, stor-
age, and accelerators in data centers promise substantial operational
benefits. Unfortunately, for resources like memory, this comes at
the cost of performance overhead due to the potential insertion of
network latency into every load and store operation. This effect is
particularly felt by data-intensive systems due to the size of their
working sets, the frequency at which they need to access memory,
and the relatively low computation per access. This performance
impairment offsets the elasticity benefit of disaggregated memory.

This paper presents Teleport, a compute pushdown framework
for data-intensive systems that run on disaggregated architectures;
compared to prior work on compute pushdown, Teleport is unique
in its efficiency and flexibility.We have developed optimization prin-
ciples for several popular systems including a columnar in-memory
DBMS, a graph processing system, and a MapReduce system. The
evaluation results show that using Teleport to push down simple
operators improves the performance of these systems on state-of-
the-art disaggregated OSes by an order of magnitude, thus fully
exploiting the elasticity of disaggregated data centers.
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1 INTRODUCTION

Resource disaggregation promises to fundamentally change the way
in which we design and operate cloud infrastructure. Unlike today’s
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(a) The benefits of DDCs.
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(b) The cost of scaling.

Figure 1: The benefits and cost of running DBMSs in DDCs.

data centers where each server contains enough compute, memory,
and storage to execute tasks autonomously, the hardware resources
of a disaggregated data center (DDC) are partitioned into physically
distinct resource pools (e.g., a pool of blades that houses the majority
of CPUs, a pool that houses the majority of DRAM/NVM, etc.) all
connected via a fast network fabric. This distribution is not only
beneficial to the operational and cost efficiency of data centers [49],
it also enables more elastic provisioning of resources that expand
beyond a singlemachine [56]. This, in particular, is attractive to data-
intensive systems in which the presence of a large memory pool can
reduce the amount of data that is spilled to secondary storage, hence
improving overall performance. Figure 1a demonstrates this benefit
empirically (using memory-intensive TPC-H queries): the ability
to spill an in-memory query execution to remote memory rather
than to a local SSD results in an order of magnitude of performance
improvement when memory is constrained.

There have been a number of recent proposals for resource dis-
aggregation [25, 32, 44]. Some of these propose the complete re-
design of applications using novel programming models or custom
DBMSs [9, 35, 40, 41, 57]. While these potentially provide good per-
formance in the face of disaggregation, they also typically require
radical modifications that block the use of legacy data, applications,
and libraries. In contrast, proposals for disaggregated operating
systems (OSes) distribute traditional OS responsibilities while em-
ulating the same API/ABI. Applications can, therefore, run with
minimal modification. While this, in principle, enables the reuse of
existing data-intensive systems like DBMSs and graph processing
systems, unfortunately, the performance effects of running these
systems unmodified can be significant, offsetting the operation,
efficiency, and elasticity benefits of disaggregation.

To demonstrate this issue, Figure 1b evaluates the cost of scal-
ing incurred by DDCs. Specifically, it shows the average execution
time of TPC-H queries on several data center configurations com-
pared to a purely local execution that uses same resources (i.e.,
the same amount of CPU, memory, and disks but all in a single
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high-end server). For DDCs, we executed MonetDB [4], a single-
machine in-memory DBMS on two different disaggregated plat-
forms: LegoOS [43], the current state-of-the-art disaggregated OS,
and Teleport, our proposed platform. Both were configured with
compute-local memory as 10% of the entire working set. As a ref-
erence, we also show the ‘cost-of-scaling’ for two distributed in-
memory DBMSs—SparkSQL [12] and Vertica [1]—running on a
more traditional configuration that uses monolithic servers.

The cost of scaling in the above experiments is a result of the
insertion of network communication into execution—in the form
of paging to/from remote memory in the case of DDCs, and in
the form of message passing in the case of distributed execution.
Distributed data processing systems—having been thoroughly op-
timized over decades—successfully achieve a reasonable ‘cost of
scaling’ (average costs are 1.2× and 2.3× in SparkSQL and Vertica,
respectively). The cost of the unmodified execution in a state-of-
the-art DDC is, unfortunately, significantly higher: 5.4× on average.
As we show later in this paper, this cost can, in the worst case,
balloon to 52.4× for some common data analytics tasks. This is
despite OS-level optimizations in existing DDC platforms such as
caching and prefetching which, on their own, are insufficient.

How can we enable all of the operation, efficiency, and usability
benefits of DDCs while ensuring a comparable ‘cost-of-scaling’ to
traditional distributed architectures? Our answer is Teleport, a
novel OS kernel primitive for DDCs that enables—with a single
system call, minimal overhead, and no other application changes—
data-intensive systems to choose where to execute their application
logic. Conceptually, Teleport’s primitive resembles that of com-
pute pushdown: applications can choose to ship complete function
calls to remote memory where the functions can execute using local
data. For memory-bound tasks, proximity can improve performance
by orders of magnitude. For many such operations, minimal com-
putation is required, maintaining the disaggregation of compute
and data in the memory pool. As a preview of Teleport’s benefits,
Figure 1b shows that Teleport can significantly lower the cost of
scaling with DDCs and, as a result, can truly unlock the benefits of
DDCs (Figure 1a).

Teleport differs from prior work on compute pushdown [19, 20,
22, 30, 36, 38, 46] in its focus on the novel environment of memory
disaggregation, in which a process’s entire address space resides in
the remote memory pool, including the text segment, heap, stack,
and full page table—compute-local memory is nothing more than
a cache. Assuming a consistent instruction set architecture (ISA)
across the compute and the memory pools (but not necessarily
homogeneous hardware), applying Teleport to offload a piece of
computation to the memory pool is as straightforward as pointing a
process running in the memory pool to the correct program counter,
stack, and page table residing in the cache of the compute pool. Not
only is this more efficient than traditional pushdown mechanisms,
it allows for the use of pointers, complex data structures, and open
files—the capabilities of a local function—without additional user
effort. Teleport’s target level of flexibility and ease of use also
leads to new challenges unaddressed in prior compute pushdown
proposals. For instance, in order to achieve good performance and
correctness, updates must be propagated lazily, yet correctly, so
as to ensure memory consistency in the presence of distributed
execution over a shared process context.

fast network

compute
memory
storage

compute pool memory pool

storage pool

lo
ca

l c
ac

he

lo
ca

l c
on

tro
lle

r
lo

ca
l c

on
tro

lle
r

Figure 2: An illustration of resource disaggregation. Same

type of resources are centralized in a resource pool. Resource
pools are disaggregated and connected by a fast network.

In summary, this paper makes the following contributions:
• We introduce the design and implementation of Teleport, a
compute pushdown primitive in the OS kernel designed for
optimizing data-intensive systems for resource disaggrega-
tion. It presents a uniquely flexible and usable abstraction for
mitigating overheads from excessive remote memory accesses.
• To handle parallel threads, we describe a set of specialized
synchronization primitives (inspired by prior work on MESI
cache coherence [37]) that guarantees memory coherence of
a logical process context shared across resource pools and
multiple concurrent threads within each place.
• Finally, we present a set of pushdown-optimized data-intensive
systems (DBMS, graph processing, and MapReduce). Applying
Teleport only involved the selective wrapping of existing
function calls. These optimized systems are an order of mag-
nitude faster than a state-of-the-art disaggregated OS, even
when the memory pool has limited CPU capacity.

2 BACKGROUND AND MOTIVATION

Resource disaggregation is an architectural style in which the re-
sources of a data center, traditionally spread across every server, are
instead partitioned into physically distinct pools of resources con-
nected with a fast network fabric such as RDMA over InfiniBand,
as illustrated in Figure 2. While today’s data centers already disag-
gregate storage, a defining feature of DDCs is the more complete
disaggregation of resources including of memory. As mentioned in
prior work, these changes enable substantial operational benefits
including independent expansion, allocation, and failures as well
as increased density [10, 15, 18, 21, 43, 44, 49, 55, 56]. While pools
hosting each type of resource may also contain a small amount of
other resources (e.g., low-frequency CPUs in the memory/storage
pools that manage local resources and process accesses, or a mod-
est amount of DRAM in the compute pool that caches data), the
expectation is that any computation of sufficient size will require
coordination across pools spanning different resource types.

In exchange for those benefits, DDCs convert a subset of what
used to be local memory and device accesses to remote accesses.
While the latest InfiniBand networks are undoubtedly very fast
(sub-600 ns latency at 200Gb/s [5]) and some proposals have ad-
vocated for new network substrates [44], both are, nevertheless,
much slower than accessing resources on the same motherboard.



2.1 Disaggregated Operating Systems

A disaggregated OS inherits all traditional OS concepts (program
contexts, resource allocation, file systems, and isolation) and the
original API/ABI. Underneath, the OS implements these function-
alities using disaggregated hardware resources. It hides the com-
plexity of infrastructure changes from the data center applications,
hence ensuring backward compatibility for big software systems
like DBMSs [4, 6, 12] and graph processing systems [17, 23], which
have been developed over many years and consist of up to million
lines of code [2, 4, 6]. The OS approach is thus more appealing
compared to alternatives that either require new programming
models [9, 35, 40, 41] or only share subsets of memory [25, 32].

Regardless of the specific architecture, disaggregated OSes allow
the complete decoupling of compute and data. Application data in
virtual memory spaces resides in the memory pool. The compute
pool schedules and executes worker threads/processes with its local
memory caching data from the memory pool. This clean separation
enables a great benefit—independent elasticity, where programs can
use an arbitrary number of CPU cores and, independently, allocate
arbitrary amounts of memory and storage. For example, DBMSs
can create a database of any size in the storage pool, allocate a
buffer pool of any size to hold the working set in the memory pool,
and spawn any number of query execution workers in the compute
pool. Thus, to read a new piece of data from persistent storage,
the user-level process in the compute pool will trigger a page fault
on its local cache. This page fault is forwarded to the controller
in the memory pool, which checks the process’s full page table
and triggers a recursive page fault that forwards the request to the
storage pool. Finally, the requested page will flow back to the CPU
node in the reverse direction: the memory controller will page in
the data and update the process’s page table, and the CPU node will
bring that page into its local cache. The whole process is mediated
by the disaggregated OS. Traditional OSes would execute these
operations in a single machine.

An example of this approach is LegoOS [43], which proposes
a splitkernel OS. It ‘splits’ kernel responsibilities across resource-
disaggregated nodes, e.g., the piece of the kernel on each compute
node manages the process and scheduling of a traditional Linux
server, while the pieces on each memory node, focus primarily on
memory management. While our Teleport prototype is imple-
mented on top of LegoOS, its core ideas can apply to any disaggre-
gated OS that provides complete compute and data decoupling.

2.2 System Performance in DDCs

Figure 1 shows the benefits of DDCs’ large disaggregated mem-
ory pools but also their ‘cost of scaling.’ This cost is particularly
pronounced for data-intensive systems due to frequent memory
accesses and the fact that local DRAM accesses are an order of
magnitude faster than network communications such as RDMA.
Consider the following examples:

Database systems. DBMSs are designed to execute SQL queries
with low latency and high throughput. Data that is actively used is
kept in an in-memory buffer pool to avoid slow disk I/O. In DDCs,
however, query execution happens in the compute pool while the
buffer pool data lives in remote memory. This arrangement can be
expensive. For example, aggregate queries require all of the data

 1

 10

 100

 1000

 10000

Q9 Q3 Q6 SSSP RE CC WC Grep

E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d
)

Local Execution
DDC

PhoenixPowerGraphMonetDB

Figure 3: DDC performance overhead compared to a mono-

lithic server. For DBMS (MonetDB), we show three TPC-

H queries that have the highest disaggregation cost; for

graph processing (PowerGraph) and MapReduce (Phoenix),

we showpopular benchmark queries (details are in Section 7).

to be brought to the compute-local cache; selections suffer from
a similar bottleneck. A more complex example is a binary hash
join, which (1) scans the tuples in the outer table, (2) probes the
hash index of the inner table, and (3) generates the join results. The
random accesses in step (2) can result in substantial cache misses,
while step (1) and (3) are a poor fit for typical LRU-based caching
strategies [47]. Previous studies [14, 55, 56] show that queries can
take up to two orders of magnitude longer to complete (compared
to a purely local-memory deployment) for precisely these reasons
when the degree of compute-memory disaggregation is high.

Graph processing. Systems like Pregel [31] and PowerGraph [24]
process structured pointer-based graph datasets that lead to un-
predictable memory access to different parts of the input graphs
depending on the query and data characteristics. In PowerGraph,
for example, every gather-apply-scatter iteration requires a vertex
to communicate with its neighboring vertices to exchange local
data for the next round. In a traditional server, this is simply a set of
local accesses; in a DDC, each iteration requires expensive remote
memory accesses for large graph states.

Data-parallel frameworks.MapReduce-like systems such as Phoe-
nix [28] have interleaved stages of memory-intensive operations.
After each processing stage, workers exchange their results with
the next set of workers. When co-located on the same server, the
communication is fast; however, in a DDC, intermediate results
must all be written just to be fetched back for the next iteration [10].

Summary. In short, data-intensive systems have a set of core pro-
cessing primitives that are computationally lightweight but involve
a high degree of memory accesses. Figure 3 shows the results of
running typical data-intensive queries in a DDC testbed managed
by a state-of-the-art disaggregated OS. Slowdowns range from 5×
up to 52.4×. Similar to prior work [56], we find that remote memory
accesses dominate the slowdowns of these systems, and argue that
the slowdowns are unavoidable with a constrained cache size in the
compute pool. Our position is that, by optimizing the placement of
computation, Teleport can dramatically improve performance.

2.3 Benefits of Compute Pushdown

In this paper, we focus on alleviating the memory bottleneck by se-
lectively performing operator pushdown from compute to memory
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Figure 4: Example of running a data-intensive relational op-

erator, selection, in DDCs. Pushing this simple operator to

the memory pool speeds up overall query execution.

pools. To understand the potential benefits, consider the ‘selection’
operator. Using MonetDB [4], a production in-memory database
system as an example, the implementation of selection takes as
input (1) a table, (2) the filter to be applied on the tuples in the
table, and (3) an optional candidate list that is the result of previous
selections. It performs a scan of the table and applies the filter. Ev-
ery tuple that passes the filter is then materialized to a temporary
table. Figure 4a depicts how this process would unfold in a DDC:
assuming that the working set does not fit in compute-local cache,
the selection process needs to bring all tuples in the original table
from the buffer pool in the memory pool, resulting in massive data
migration and thus significant execution time increase.

If, instead, we were to migrate this simple, but data-intensive
compute operation to the memory pool (Figure 4b), the accesses to
the original table are all in situ, resulting in minimal communication.
Even if the computational power of the memory pool is low, most
selection filters are computationally inexpensive to run. Hence,
the pushdown of the operator would ensure a performance benefit.

3 DESIGN OF TELEPORT

Teleport introduces a new system call for applications to push
down arbitrary functions at runtime in a memory-disaggregated
architecture. This avoids expensive data movements.

The key observation behind Teleport is that the memory pool
(as the backing store for the process context in a disaggregated OS)
already has the majority of the data and metadata necessary for
executing the user process—the compute pool is merely a cache
and forwards all new memory allocations, page faults, and file I/O
through the memory pool. In principle, pushdown is, thus, as sim-
ple as launching a new thread in the memory pool and reusing the
existing page table. In practice, inconsistencies between the data in
the compute/memory pools before and after pushdown, memory ac-
cesses by concurrent threads, and the overhead of creating process

contexts all introduce significant technical challenges to realizing
this goal. We now describe how to overcome these challenges.

3.1 The TELEPORT Abstraction

Using Teleport, user applications running in the compute pool in a
DDC can push arbitrary functions to the memory pool. While prior
work has explored, extensively, the concept of compute pushdown
in various contexts (see Section 8), Teleport is unique in its ability
to provide, to pushdown code, unfettered access to the process
context of the original program in the memory pool, including
the program stack, page table mappings, and code pages. Among
other benefits, this allows pushdown code the ability to use arbitrary
function pointers and leverage large, complex data structures freely.

In order to migrate execution from the compute pool to the
memory pool, we introduce a new system call:

pushdown(fn, arg, flags)

With a C-library wrapper, the call takes three parameters: fn is a
pointer to the function to be executed on the memory pool con-
troller. arg is a pointer to an argument vector that is to be passed to
fn, which can be implemented as an array of values or a structure of
arbitrary type. In both cases, all pointers and contained pointers can
be left in terms of the current virtual address space. Also included
in the parameters to the syscall is an optional flags parameter that
activates or deactivates features of the syscall, as appropriate.

Semantically, a pushdown function works just like a local func-
tion. The thread that calls pushdown blocks until the function com-
pletes, but other threads can continue their execution. When the
pushed function runs in the memory pool, Teleport guarantees
that all data involved is up to date, even in the presence of concur-
rent threads in the compute pool.

3.2 TELEPORTing the Computation

In this subsection, we describe the operation of Teleport assuming
perfect synchronization of memory stores between the compute
pool and memory pool. Later in Section 4, we describe how syn-
chronization is implemented in Teleport.

Figure 5 shows the process of migrating a function. When the
application calls the pushdown syscall (❶), the application thread
stalls and both pointers (fn and arg) are passed to the compute-
pool instance of Teleport in the kernel space. The instance then
packs the parameters into a pushdown request and sends it to the
memory pool’s controller using an RDMA write operation that
implements a low-latency RPC mechanism (❷).

The RPC server on the memory controller waits for incoming
messages and, upon receiving one, enqueues it to the workqueue of
the memory-pool instance of Teleport and wakes up the thread if
it is sleeping (❸) (when its workqueue is empty, the instance sleeps
to save the scarce compute resource in the memory pool). The
Teleport instance dequeues a request and instantiates a temporary
user context with a new kernel thread (❹).

Teleport attaches the temporary user context to the virtual
memory space of the caller application by borrowing the page table
of the caller and setting it as the table of the newly created user
context. This procedure is akin to the POSIX vfork function in that
it creates a new process but the virtual address space, file descriptor
table, and other parts of the process image are not cloned—rather,
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Figure 5: Teleport architecture.

the new process shares the resources of the original. Compared to
a traditional fork, this procedure is more efficient as the memory
pages are neither copied nor set to read-only. Furthermore, memory
modifications are supported through the techniques in Section 4
and returning from a function simply returns execution to the
Teleport stub. The end result is that the temporary context is able
to access any code and data of the caller, specifically fn, arg, and
any data processed by fn. Inside the context, fn is called with arg
as the input. Internally, the function dereferences the parameters
from the argument pointer and starts the execution.

After fn returns, the temporary context is recycled (❺). The
memory-pool instance of Teleport notifies the RPC server of the
completion (❻), which then either processes the next request in its
workqueue or sleeps to free compute resources. Finally, the RPC
server responds to the request with the completion (❼) so that the
compute instance of Teleport returns back to the application (❽),
which continues execution.

Handling concurrent pushdown requests. Depending on the
computation capabilities of the memory pool, multiple pushdown
requests can potentially execute in parallel. Teleport implements
this by maintaining a pool of instances that each polls the request
queue managed by the RPC server. Note that if multiple requests
arrive from the same process (two or more threads in the pro-
cess called pushdown concurrently), these memory-side threads
share the same page table and context. If the compute resource is
limited in the memory pool and only one Teleport instance is al-
lowed, then the concurrent requests are serialized in the instance’s
workqueue and processed one after another.

Exception and fault handling. Teleport must handle several
types of exceptions and failure scenarios. Teleported functions
are allowed to throw and catch C++ exceptions. The stub function
that wraps the call to fn in the temporary user context contains an
exception handler that the C++ runtime will detect during the stack
unwinding phase. The handler catches the exception structure and

passes it back to be rethrown by the compute pool context. General
protection faults (e.g., segfaults) are also handled this way.

In Teleport, the pushdown function is blocking and does not
time out by default. However, applications can specify a timeout.
In the event of a timeout, Teleport issues a try_cancel request
to the memory pool. If the request succeeds, the application is free
to execute fn directly in the compute pool, re-execute the call to
pushdown, or call some other function. Cancellation is easy if the
memory pool has not yet started working on the computation, as
the request can simply be removed from the workqueue. However,
if the pushed function is already running, cancellation requires care.
In particular, the process’s memory pages need to be flushed back
to the cache in the compute pool, and the instruction pointer needs
to be set accordingly. In our implementation, however, the memory
pool declines to cancel requests that are running, and instead forces
the application to wait until they complete.

Pushdown code that is buggy and fails to complete in the mem-
ory pool within a conservative timeout is killed by Teleport to
avoid indefinitely blocking other pushdown requests. The corre-
sponding pushdown function in the compute pool triggers an abort
signal. Finally, Teleport detects when the memory pool becomes
unreachable due to a network or memory hardware failure with a
background thread that runs in the compute pool and issues heart-
beats. In the event of such failures, Teleport triggers a kernel panic
since the main memory is lost. We leave the handling of partial
resource failures that are introduced in DDCs to future work.

4 DATA SYNCHRONIZATION

A critical challenge in Teleport is keeping the cache in the compute
pool and themainmemory in thememory pool synchronized. There
are a few points at which the two may diverge.

(1) Before pushdown, where the compute pool may have modifi-
cations in its local memory that have not yet been flushed to
the memory pool. Changes must be synchronized to ensure
that pushdown operates on fresh data.
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(2) After pushdown, where the compute pool’s cache may be stale.
When execution returns to the compute pool, modified pages
should be synchronized back as well.

(3) During pushdown, concurrent threads may continue to modify
pages in the compute pool; these need to be kept coherent
with the memory pool.

Without synchronization, two distinct threads 𝑇comp and 𝑇push
running in the compute andmemory pools, respectively, may access
the same memory pages (because the compute pool caches pages in
the main memory) without observing each other’s updates (at least
until a natural page fault). This can happen even if the threads utilize
atomic operations, memory fences, and proper lock discipline.

We note that a naïve approach to guaranteeing consistency for
all threads is to migrate the entire process and clear all memory in
the compute node. While correct, this may be a substantial overkill.
For multi-threaded applications, this may result in too much com-
putation pushed to the memory pool, particularly if the threads
handle unrelated requests. Even for single-threaded applications,
it still requires, before pushdown, the synchronous transfer of all
dirty pages from the compute node back to the memory pool and,
after pushdown, the page-by-page re-fetching of every piece of
data to the compute pool (as it now contains no cached pages).

Teleport instead minimizes the amount of data transmitted
before, during, and after pushdown. By default, Teleport does not
transfer any pageswhen initiating a pushdown. Instead, consistency
is kept between the compute and temporary-context page tables
with a write-invalidate coherence protocol inspired by MESI [37].
Applications can also instruct Teleport to use weaker memory
consistency models via optional flag parameters.

To illustrate the importance of Teleport’s techniques, we con-
sider a microbenchmark involving an application with two threads:
a compute-intensive thread performing arithmetic calculations (e.g.,
expression evaluation in a database query) and a memory-intensive
thread randomly accessing a 50GB memory space (e.g., probing a
hash table). The results of the ablation study are in Figure 6. When
the application runs locally in Linux, each thread finishes in 1s.
In the baseline DDC, however, execution slows to 23s because of
the memory-intensive thread. Pushdown using the above naïve,
full-process approach can speed this up by 2.9×. Separating the two
threads and only pushing the memory-intensive thread (and only
evicting its memory) does slightly better with a 3.8× speedup over

// Runs in the memory pool
1 Function Invalidate(pte, write):
2 if write then
3 pte.present← False
4 else

5 pte.writable← False
6 Function MemorySetup(tmp_context, compute_pgs):
7 𝑡_𝑚𝑚 ← Clone of the caller’s full page table
8 foreach pte in 𝑡_𝑚𝑚 do

9 c_pte← compute_pgs[pte.address]
10 if not c_pte.present then
11 Continue
12 Invalidate(𝑝𝑡𝑒 , 𝑐_𝑝𝑡𝑒 .writable)
13 end

14 Set 𝑡_𝑚𝑚 as the active page table of tmp_context

Figure 8: Preparation of the page tables before pushdown ex-

ecution in the memory pool. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑔𝑠 is the transmitted

list of pages from the compute pool.

the baseline DDC. With Teleport’s default coherence, however,
the synchronization overhead and the gap between local execution
and DDCs are minimized, resulting in a jump up to an 11× speedup.

In this section, we describe the default protocol in detail and then
expand on Teleport’s memory consistency and its relaxations.

4.1 On-demand Memory Synchronization

Teleport’s protocol for synchronizing data between the compute
and memory pools draws inspiration from MESI cache coherence
protocols—a classic approach in write-back caches. Rather than
processors and cache lines, however, Teleport implements the
MESI-style protocol through careful management of the page tables
in both the original compute process and the temporary context
such that, at any point in time, if there is a writable copy of the
page between the two contexts, then it is the only such copy.

Temporary-context page table construction.When the push-
down function is called, the compute pool begins by building a
list of memory pages that are either currently in local memory or
that have an outstanding page fault request. This list of memory
pages and their write permissions are sent to the memory pool as
parameters to the pushdown RPC call.

When Teleport instantiates the temporary context in the mem-
ory pool, it uses the list in the procedure outlined in Figure 8.
Specifically, when building the context, Teleport clones the page
table of the caller thread. This cloned page table is identical to the
process’s page table, except that any writable page in the compute
pool is excluded (Figure 8, line 3) and any read-only page in the
compute pool is also set to read-only locally (Figure 8, line 5). In
effect, this guarantees that the system begins with the invariant
stated at the beginning of this subsection: for each page, (a) the page
is writable and only in the compute pool, (b) the page is writable
and only in the temporary context in the memory pool, or (c) the
page is read-only and can exist in any context.

Online data synchronization. Teleport maintains the above in-
variant throughout pushdown execution even as the compute pool
process and the temporary context execute concurrently. When
either side tries to read or write to a memory page without proper
permissions, a page fault is triggered to obtain the permissions.



// Compute-pool page faults
1 Function ComputeOnPageFault(address, write):
2 Send request to the memory pool
3 Function MemoryOnPageRequest(address, write):
4 𝑚𝑚 ← process’s full page table
5 𝑡_𝑚𝑚 ← temporary context’s page table
6 if not mm[address].present

or (write and not mm[address].writable) then
7 Page fault to storage, copy to𝑚𝑚 and 𝑡_𝑚𝑚

8 pte← 𝑡_𝑚𝑚[address]
9 Invalidate(pte, write)

10 Send *pte to the compute pool

//Memory-pool page faults
11 Function MemoryOnPageFault(address, write):
12 𝑚𝑚 ← process’s full page table
13 𝑡_𝑚𝑚 ← temporary context’s page table
14 if not mm[address].present

or (write and not mm[address].writable) then
15 Page fault to storage, copy to𝑚𝑚 and 𝑡_𝑚𝑚

16 else

17 Send request to the compute pool
18 Function ComputeOnPageRequest(address, write):
19 𝑐_𝑚𝑚 ← local page table of the caller
20 pte← 𝑐_𝑚𝑚[address]
21 if write then
22 Evict pte
23 else

24 pte.writable← False
25 Notify the memory pool

Figure 9: Handling of page faults during pushdown in order

to guarantee write atomicity.

On a compute-pool page fault, the fault is forwarded immedi-
ately to the memory pool as normal; however, the corresponding
page fault handler in the memory controller changes slightly during
pushdown (Figure 9, lines 3–10). Specifically, after ensuring that the
page is in the temporary context page table, the controller executes
an operation similar to Figure 8, removing the page from the tem-
porary context if the compute pool requested write permissions, or
setting it to read-only if it requested only read permissions.

Temporary-context page faults are handled similarly, except that
we must distinguish between a ‘true’ page fault, which should
be forwarded to the storage pool and a pushdown-related page
fault, which invalidates the cached pages in the compute pool.
Teleport distinguishes this by checking the full page table and the
temporary context’s page table, both stored locally in the memory
pool. Evictions from the memory pool to the storage preserve the
correct page table entry (pte) dirty bits.

When pushdown completes, the dirty bits of the temporary con-
text’s page table should be merged back into the full page table but
no external communication is necessary.

Concurrent page faults. One key difference between Teleport’s
protocol and that of traditional MESI implementations is the lack
of either a common directory or a bus between the members of
the system, removing those components as serialization points for
permission requests. Teleport addresses concurrent page faults by
taking advantage of the fact that for a two-side protocol (compute
and memory), each side can deduce the current state of the system
locally, so a global coordinator is unnecessary.

Consider the possible states of the system. For every page, each
side can have one of three permissions: ∅ for an absent page, 𝑅 for

read-only, and𝑊 for writable. Let system state be denoted by the
tuple of pool permissions: (compute,memory). Note that we can
disregard any state with𝑊 in either position as there will never be
concurrent faults as long as RPCmessages are received and handled
in FIFO order (enforced using reliable RDMA connections). We can
further disregard any state with ∅. In (∅,∅) or (∅, 𝑅), the memory
pool does not need to contact the compute pool—both are true page
faults and any request from the compute pool will be handled after
the page fault is complete. (𝑅,∅) does not exist in our protocol.

The only state in which concurrent faults are possible is, there-
fore, (𝑅, 𝑅) where both the compute and memory pools try to ac-
quire exclusive write access. In this situation, both sides will note
that there is an outstanding request and break the tie by favoring
the memory pool. Specifically, the memory pool, upon receiving a
new page fault request before a response to its own request arrives,
will simply ignore the request. The compute pool, on the other
hand, will satisfy the memory pool’s request, wait for a predeter-
mined amount of time 𝑡 , and then reissue the request. We favor
the memory pool in order to complete the pushdown execution
as soon as possible, and we wait for 𝑡 time to allow some amount
of progress on the memory pool before taking write access back.
Note that in the case of thrashing when the compute and memory
pools contend on memory pages, additional backoff mechanisms
would ensure progress. However, applications should avoid data
contention between the two pools for pushdown performance.

Correctness. The correctness of our protocol follows directly from
our adherence to the Single-Writer-Multiple-Reader (SWMR) invari-
ant [34]. Just like MESI, writes in Teleport are serialized as there
is ever only a single writer in the system, and writes are propagated
when the other node explicitly invalidates the writer’s exclusive
‘lock.’ Cache coherence makes our system transparently compatible
with existing architectures and their memory consistency models.

4.2 Alternative Coherence Mechanisms

In addition to the above cache coherence protocol, Teleport pro-
vides support for certain user-applied optimizations. An important
optimization is an additional syncmem syscall that manually and
preemptively flushes dirty pages from the compute pool. This mech-
anism can be triggered before or during pushdown and is useful if
the user already knows which pages will be accessed by fn.

Teleport also provides options (specified via flags) for coher-
ence protocols that support weaker memory consistency models.
These improve performance, but should be used carefully by pro-
grammers to ensure correctness. One simple relaxation is to disable
the coherence entirely. This might be useful, for example, if the user
wants to manually synchronize pages. An example use is to han-
dle false sharing, which occurs when threads in the compute and
memory pool access data (either variables on the stack or allocated
memory on the heap) that are not shared but that reside on the same
page. Although false sharing is uncommon, Figure 7 shows that
when it occurs, it can negatively affect the pushdown performance.
In this case, users can disable the coherence protocol and manually
synchronize the data with syncmem at a finer granularity.

Another relaxation follows the default coherence mechanism.
Rather than removing pages when the other pool requests write
permissions, Teleport sets them as read-only. Effectively, this



maintains write serialization for individual memory locations, but
relaxes the guarantees of write propagation. Combined with typical
processor memory consistency models, this relaxation amounts to
an implementation of Partial Store Ordering (PSO) [26]. Again, for
applications that can take advantage of this relaxed consistency
model (e.g., by converting important reads to RMW instructions or
memory fences to explicit synchronization of modified page lists),
it may provide better performance. Section 7.6 provides a more
detailed evaluation of the coherence protocol and benefits of the
relaxations when the data contention rate is high.

5 APPLYING TELEPORT

In this section, we present three case studies to demonstrate the
benefits of Teleport for data processing: an in-memory database,
a graph processing system, and MapReduce. For each use case, we
will describe how we identify functionalities to be pushed down to
memory. We focus here on identifying the general rules of thumb to
determine the pushdown functionalities. We find that these heuris-
tics work well in practice, although cost-based approaches can
automate the decision-making; we leave this to future work.

5.1 In-memory Database

To evaluate database workloads with Teleport, we select Mon-
etDB [4], a columnar in-memory DBMS that provides high perfor-
mance processing for analytical queries.

Filtering/summarization operators. Several commonly used op-
erators such as projection, aggregation, and selection require simple
computation but process a large number of tuples. Further, the re-
sult set is typically much smaller than the input (projected column
in projection, matching tuples in selection, and sub-aggregates in
aggregation). Hence, users should push these operators down, par-
ticularly when they are highly selective; similar observations were
made in the context of disaggregated storage [33, 53]. In DDCs, how-
ever, they can be pushed to the memory pool so that the compute
pool only receives the summaries for further processing.

For example, consider the following database query, 𝑄 𝑓 𝑖𝑙𝑡𝑒𝑟 ,
which consists of a selection, an aggregation, and projections:

SELECT SUM(quantity) FROM Lineitem WHERE shipdate < $DATE

By pushing down the predicate shipdate < $DATE as well as the
projections of shipdate and quantity attributes, we avoid trans-
ferring the entire Lineitem table. Note that it is still required to
transfer the matching tuples to the compute node for the SUM aggre-
gation. Thus, in the extreme, one could imagine Teleporting all
operators of this query. Offloading all operators to the memory pool
would provide additional bandwidth savings, but at the potential
cost of pushdown overhead. In general, the final decision should
depend on the amount of data to be synchronized, the selectivity,
and the computational complexity of the operators.

Complex queries. A more complex case is Query 9, the most ex-
pensive query in the TPC-H benchmark in Figure 3. Figure 10 breaks
down its execution time in disaggregated execution (compute-local
memory is configured to be 1GB) with a scale factor of 50 into
its constituent operator types. We observe that in addition to the

memory-intensive projection operator, hash join also incurs signif-
icant remote memory accesses and bottlenecks the overall perfor-
mance. While hash join tends to have relatively high computational
requirements when run on a traditional OS, in a DDC, it becomes
severely memory-bound due to random accesses to the hash index.
As such, it is a strong candidate for pushdown, as the results in
Section 7 will later verify. Other operations such as merge join and
expressions also experienced degradation in disaggregation, but
they are not blockers to end-to-end query performance.

Code modification. Finally, an important criterion for pushdown
is the complexity of application changes. Figure 11 summarizes the
amount of changes required to support each operator pushdown
in MonetDB, as well as the size of the specific pushdown function.
We observe that modifications across all operators are negligible
relative to MonetDB’s code base (∼400K LoC), and the amount of
code executed in the memory pool is restricted under 100 lines.

Automatic query optimization. Automating the porting process
is achievable via static analysis and code transformation, given
the structured nature of relational operators. An interesting and
challenging task is to automatically decide which operators should
be pushed down at runtime. There are general trade-offs in apply-
ing compute pushdown in DDCs: offloading an operator close to
data can reduce the cost of data movement between pools, but it
can also incur pushdown overhead, including shipping the oper-
ator, potential data synchronization, and degraded computation
power. Section 7.4 evaluates the impact of these trade-offs and a
potential metric for determining the viability of an operator for
pushdown. We note, however, that the optimal plan of pushdown is
determined by various factors: operator characteristics, workloads,
and the DDC configuration. A potential solution is a DDC-aware
query optimizer that captures the resource constraints in different
resource pools and finds the optimal plan for operator placement.
This paper focuses on the Teleport mechanism and leaves a full
investigation of DDC query optimizer design to future work.

5.2 Graph Processing

To showcase another challenging data-intensive workload, we look
at PowerGraph [2], a high-performance in-memory graph process-
ing system. Similar to prior DDC settings [43, 51], we run Power-
Graph in the compute pool and utilize multiple threads as compute
workers. The main graph state is in the memory pool.

To execute a graph query, PowerGraph first loads the input graph
to the main memory, runs a finalize phase to partition and shuffle
the graph among multiple workers, and then iteratively executes
gather, apply, and scatter in sequence until the graph algorithm
terminates. We observe that the finalize, gather, and scatter phases
are data-intensive because the vertex and edge states in the working
set are frequently (and potentially randomly) accessed. Therefore
these three phases are often a bottleneck in our setting. Using
single-source shortest path (SSSP) as an example, the scatter phase
combines and sends the messages, which contain the distances to
the source, to vertices in their adjacency list for the next round of
execution. This scatter process is expensive when the working set
is larger than the local cache of the compute pool.

Figure 10 shows the time breakdown of this execution on a real-
world social network graph [52]. finalize and scatter account for
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System Operator Functionality
Code

Change

Pushed

Code

MonetDB

(400K LoC)

Projection Get a subset of columns from a
list of records. 117 51

Aggregation Apply an aggregate function
over tuples. 214 60

Selection Select tuples with filters from the
input table to a temporary table. 302 58

HashJoin Scan the outer table, probe hash
index, and generate join results. 75 42

PowerGraph

(150K LoC)

Finalize Partition and shuffle input graph
among the worker threads. 77 52

Scatter Exchange and combinemessages
between vertices. 82 39

Gather Aggregate messages and apply a
user-defined function. 82 39

Phoenix

(2K LoC) MapShuffle Shuffle map results (key-values)
to the buffers of reduce tasks. 173 28

Figure 11: The flexibility of Teleport enables the pushdown

of various memory-intensive operators in existing data pro-

cessing systems with minimal modification.

most of the overhead, although the gather phase can also bottleneck
other applications, e.g., PageRank. All three components can be
Teleported with fewer than 100 lines of code each (see Table 11).

5.3 MapReduce

Our third use case is Phoenix [28], a native, shared-memory MapRe-
duce system. In Phoenix, there are map, reduce, and merge phases.
The map phase performs the actual map computation, generates
key-value records, and shuffles the records to the reduce workers.
We observe that themap phase is normally the bottleneck in a DDC
because of the shuffle operation, a data-intensive sub-component.

Revisiting Figure 10 (the last group), we can examine the per-
formance breakdown of WordCount in Phoenix. In this figure, as a
point of comparison, we include reduce and merge execution times
as well. We observe that the map phase experienced much greater
remote memory accesses compared to other phases. Themap phase,
however, is computationally expensive as a whole. To push down
only data-intensive operations at a finer granularity, we further
divide the map phase into map-compute, which applies the user-
defined map function and generates key-value records, and map-
shuffle, which shuffles the records among reduce tasks, sub-phases.
The map-shuffle dominates the running time in DDC execution—
95% of map time. This suggests moving the map-shuffle phase close

to the data, which we achieve with minimal code changes (see
Figure 11); the pushdown function requires only 28 lines of code.

6 IMPLEMENTATION

We have implemented Teleport1 on top of LegoOS [3]. Similar
to LegoOS, Teleport uses the Mellanox mlx4 InfiniBand driver
for fast network accesses and assumes the x86-64 architecture. It
consists of 6,500 lines of C code, split across the kernels for the
compute and memory pools, focusing on memory disaggregation.

Our implementation utilizes the RDMA RPC messaging frame-
work that is built atop LITE [48], a two-sided RDMA kernel module
implemented by the one-sided write verb. We pre-allocate and reg-
ister physical memory to the network card as RPC buffers, which
are kept separate from the LegoOS buffers to provide a degree of
isolation. We describe the details of each kernel as follows.

Teleport compute kernel supports the pushdown system call,
sends the request to the memory pool, and handles synchronization.
As part of the latter, we needed to add functionality to enable the
compute kernel to serve incoming page faults, invalidating the page
and flushing the TLB as necessary.

To reduce network cost, our implementation adds an additional
optimization to the protocol of Section 4. Specifically, it compresses
the list of resident pages sent at the beginning of pushdown using
run-length encoding, which provides 20× reductions in the message
size, making it feasible to pack the list of pages and their permissions
along with necessary metadata into a single RDMA message.

Teleport memory kernel handles incoming RPC requests and
cache coherence. It runs a number of parallel RPC handlers to per-
form these tasks—each on its own a kernel thread. This number is
configurable to reflect the compute power limitation in the memory
pool. Upon receiving a pushdown request, the server enqueues it
into the workqueue of the memory-pool instance of Teleport and
eventually processes it in the manner described in Sections 3 and 4.

7 EVALUATION

We conduct a comprehensive set of experiments to evaluate the ben-
efits of Teleport based on the use cases presented in Section 5, the
trade-offs in compute pushdown, and the efficiency of Teleport
designs. We compare Teleport with two baselines: (1) a disaggre-
gated baseline, LegoOS, which incurs cost of scaling due to remote

1Teleport source code is available at https://github.com/eniac/TELEPORT.

https://github.com/eniac/TELEPORT
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memory accesses, and (2) a single-machine baseline, Linux, where
the cost is either low when local memory is sufficient for the work-
load or high when local memory is constrained and data is spilled to
secondary storage, e.g., SSDs. In all experiments, the applications,
datasets, and the number of CPUs used by the applications are
consistent across all platforms to ensure a fair comparison.

Experimental setup. The baremetal machines in our testbed have
Intel Xeon E5-2630L CPUs and 64GB DDR4 RAM, and run either
Linux, LegoOS, or Teleport. The emulated DDC cluster consists of
all three types of pools: compute, memory, and storage. Machines
are connected with an InfiniBand network of NVIDIA Mellanox
Connect-X3 NICs and an EDR switch, with 56Gbps throughput
and 1.2𝜇s latency. The compute pool consists of a single physical
machine and has access to 1 GB of local DDR4memory; the memory
pool consolidates 128GB DDR4 memory with a single controller,
and the storage pool has a 1 TB NVMe SSD. We chose 1GB of
compute-local memory per application since many of the benefits
of DDCs come from high density configurations where many CPUs
reside in the same pool, resulting in a modest amount of local
memory per CPU.

7.1 The Effectiveness of Teleport

We first quantify the performance improvement achieved by op-
erator pushdown for data-intensive systems over baseline DDC.
Hence, this section first focuses on the cost of disaggregation. We use
a default setup: the CPU cores in the compute and memory pools
have the same clock speed, but numbers of cores are different—the

memory pool is limited to a single thread; concurrent pushdown re-
quests are serialized. Beyond the cost of disaggregation, Section 7.2
showcases the elasticity of DDCs. Section 7.3 further investigates
the impact of the degree of disaggregation by varying CPU clock
speed and the number of threads in the memory pool.

Database microbenchmark. Our first experiment involves the
synthetic 𝑄filter query presented in Section 5.1. Recall that this
query involves a selection operator followed by projections and an
aggregation. During setup, we supply as input a Lineitem table
with 300 million tuples. Figure 12 summarizes our main findings for
these operators, where the Y-axis shows the query execution times
in Linux (local execution), LegoOS (baseline DDC), and Teleport.
We make the following observations. First, compared with the local
execution, baseline DDC adds significant overhead, experiencing
3–6× slowdowns, primarily due to paging data from remote mem-
ory. With Teleport, the slowdowns are drastically reduced to less
than 2×. In fact, Teleport is faster than LegoOS by 2.1–5.5×. The
improvements are most visible for projection, which would other-
wise have to ship many tuples from the remote memory pool just
to identify attributes of interest and apply filters.

Database TPC-H benchmark. Figure 13 (left figure) compares
the performance of MonetDB in Linux, LegoOS, and Teleportwith
the three TPC-H queries (scale factor 50) with the longest execution
times, namely Query 9 (𝑄9), Query 3 (𝑄3), and Query 6 (𝑄6). These
queries, as described in Section 5, consist of a mix of relational
operators involving selections, projections, aggregations, hash and
merge joins, and expression calculation.

We make the following observations. In all three queries, the
significant slowdowns, higher than 50× in the worst case, render
the baseline DDC prohibitively costly for database query processing
in scaling out the hardware resources. Using Teleport, we pushed
down a subset of the most bandwidth-intensive operators that
bottleneck the DDC performance to the memory pool. The speedup
improvements over LegoOS range from 3–29×. Teleport, with a
compute-local memory that is ∼2% of the database size (1 GB versus
50 GB), is only slightly slower than local execution. The cost of
scaling for DBMSs in DDCs with Teleport is comparable to the
cost in distributed DBMSs as we see in Figure 1b.

Graph processing. Our next experiment is on graph processing.
Figure 13 (center figure) summarizes the results obtained on Pow-
erGraph for three graph queries: SSSP (single-source shortest path),
RE (single-source reachability), and CC (connected components).
We use as input a real-world social-network graph [52]. Our results
show that the cost of scaling in baseline DDC is 5×. In comparison,
Teleport closes the gap between DDC and local execution quite
noticeably, achieving 2–3× speedup over LegoOS. The primary ben-
efits obtained are in pushing down the scatter-gather and finalize
stages, as described in Section 5.2.

MapReduce.Our final use case is MapReduce using theWC (Word-
Count) and Grep applications on a real-world NLP dataset consist-
ing of 15 million Reddit comments2. Our observations in Figure 13
(right figure) are consistent with the other two systems. Teleport
achieves 2.5× and 4.7× performance improvements over LegoOS,
significantly narrowing the gap from local execution in Linux.
2https://www.kaggle.com/reddit/reddit-comments-may-2015
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The takeaway is that Teleport results in up to an order of mag-
nitude performance improvement over the baseline disaggregated
OS and minimizes the gap between disaggregated and traditional
environments. We note that the goal is not to surpass a local execu-
tion where resources are all centralized in a single place, but rather
to narrow the performance gap to achieve a low cost of scaling
while reaping the benefits of DDCs [21, 43, 55].

7.2 The Benefits of Memory Disaggregation

We next compare the performance of data-intensive applications
in both monolithic and DDC deployments with varying levels of
memory. We first fix the amount of local memory available to all
systems to 1GB to emulate the effects that occur when processing
large-scale workloads—namely, the effects of being able to access a
large remote memory pool in DDCs instead of needing to spill data
to disks in Linux. To ensure efficient disk I/O, we use an NVMe SSD
that supports 3 GB/s (sequential) and 600K IOPS (random) I/O.

Figure 14 shows the results of processing the three most expen-
sive queries (scale factor 50) in TPC-H in MonetDB. Unsurpris-
ingly, when local memory is insufficient, LegoOS is 10×, 65×, and
80× faster than Linux with SSDs for 𝑄9, 𝑄3, and 𝑄6, respectively.
However, with Teleport, this benefit increases to two orders of
magnitude: 330×, 210×, and 310×, respectively. In sum, Teleport,
by offloading a small set of operations, enables memory-intensive
workloads to more efficiently take advantage of the large memory
pools envisioned by proposals for memory disaggregation.

We also evaluated the effect of Teleport when varying the
amount of memory available in the memory pool (local memory is
kept at 1GB). For this experiment, we used 𝑄9 and increased the
workload size to scale factor 200 (a 200GB database). In addition to
the baseline DDC, we again show a monolithic Linux configuration
for comparison—all versions are provided a consistent amount of
memory before they need to spill to disks until 128GB, which
exceeds the memory capacity of the Linux server.

Figure 15 shows that with 1GB total memory 3, all platforms
perform poorly. In principle, provisioning more total memory will
spill less data to disk; however, at 64GB, the disaggregation cost
in LegoOS begins to dominate the execution time, which is signifi-
cantly longer than the time in Linux. Teleport instead effectively

3Total memory allocated in the application. The 1GB compute-local cache in the DDC
is not allocatable by applications.
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minimizes this cost and achieves a similar performance to Linux
until 128GB where Linux cannot match the amount of resources.
Teleport provides 2.3× higher performance than the best Linux
execution, and 31.7× higher performance than LegoOS with the
same memory size. These benefits will grow with larger workloads.

7.3 Varying the Degree of Disaggregation

Our next set of experiments performs a sensitivity analysis on
the degree of disaggregation along two dimensions: (1) where the
memory pool has lower CPU clock speed compared to CPUs in the
compute pool, and (2) degree of parallelism—the number of threads—
in the memory pool. We emulate these effects by throttling CPU
clock rate in the memory pool and varying the number of threads
that are used to process parallel pushdown requests. Our results also
help future DDC and hardware designers understand sweetspots in
cost-performance ratios when determining the relative hardware
costs for the disaggregated compute and memory pools.

Figure 16 shows the effect that computation power in the mem-
ory pool has on pushdown execution time. We control the CPU
clock speed with throttling for 𝑄9 in the MonetDB TPC-H bench-
mark (scale factor 50). We observe that as the CPU capabilities in
the memory pool increases from 20% (0.4 GHz) to 100% (2.1 GHz)
of the compute pool, query speedup of 𝑄9 relative to the baseline
DDC increases as expected. Our results suggest that even at very
modest CPU speeds (0.4 GHz), emulating a memory pool with very
limited compute resource and thus a high degree of disaggregation,
Teleport is still able to achieve a 17 × speedup over the baseline.
Moreover, at clock speeds above 1.7 GHz, the speedups level off at
29×, suggesting there is no need to match the fastest CPU speed to
reap the performance benefits of Teleport.

Figure 17 shows the effect of memory-pool parallelism on the per-
formance of processing concurrent pushdown calls. We evaluate a
parallel aggregation query on TPC-H Lineitem table. We maintain
the same CPU speed (2.1 GHz) in both the compute and memory
pools. The application uses eight threads in the compute pool, one
on each physical core. The memory pool uses two physical cores
for the user contexts, emulating a scenario where the disaggregated
memory pool does not have significant compute resource dedicated
for pushdown. The Y-axis in the figure shows the speedup over a
single user context, as we vary the number of parallel user contexts
in the memory pool on the X-axis. We find that as the parallelism



101

102

103

Non
e

To
p 

1
To

p 
4

To
p 

6
All

3.3X

27X 26X 24X

E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d

)

Level of pushdown

(a) 50% lower CPU clock rate.

102

103

104

Non
e

To
p 

1
To

p 
4

To
p 

6
All

2.6X

17.3X
16.5X

14.5X

E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d

)
Level of pushdown

(b) 75% lower CPU clock rate.

Figure 18: The performance of different levels of pushdown.

increases, it takes less time to process the eight concurrent requests
as expected. However, we see diminishing returns in speedup, pri-
marily due to context switching overheads when scheduling more
threads than there are physical cores.

7.4 Varying the Level of Pushdown

Recall from Section 5.1 that there are trade-offs in compute push-
down. We now evaluate the impact of these trade-offs by using a
metric we call memory intensity. To compute memory intensity, we
first execute a profiling run in the baseline DDC; memory intensity
is then the total remote memory accesses divided by the execution
time (i.e., remote memory accesses per second, RM/s). We compute
memory intensity for 𝑄9 in MonetDB and order its eight operators
by this metric. For reference, Projection has the highest intensity
(110KRM/s) and Group has the lowest (45KRM/s).

Figure 18a shows the performance of different levels of push-
down. We constrain the computation power in the memory pool
to be 50% of that in the compute pool. Compared to no pushdown,
offloading the most expensive operator to the memory pool brings
3× performance speedup. The speedup increases to 27× when we
apply Teleport to the top four operators. Being too aggressive, how-
ever, backfires: the speedup decreases to 26× and 24×when we push
down the top six and all operators, respectively. This is because,
for these operators, the benefit of saving network communications
does not compensate the overhead of pushdown and a lower CPU
clock rate. These effects are magnified when the computation power
in the memory pool is more constrained (Figure 18b).

We found that 80KRM/s is a good split for pushdown decisions
in our DDC testbed. However, the optimal level of compute push-
down is determined by the operators, the workload, and the DDC
configuration. Applying Teleport automatically while accounting
for these parameters is a promising future direction.

7.5 Teleport Execution Breakdown

We next quantify the benefits of on-demand synchronization meth-
ods, and provide a comprehensive look at the costs associated with
them. Figure 19 presents a factor analysis on the execution time
in Teleport for processing a pushdown call. This time consists of
six parts: (1) pre-pushdown synchronization, (2) pushdown request
transfer from the compute pool to the memory pool in the RDMA
network, (3) user context setup, (4) pushdown function execution
and synchronization during the execution, (5) pushdown response
transfer from the memory pool to the compute pool via RDMA, and

# Component Determined by

1 Pre-pushdown sync time Synchronization method, cache size
2 Request transfer time Message size, the network
3 Context setup time Synchronization method, cache size

4 Function execution User function
Online sync time Synchronization method, cache size

5 Response transfer time Message size, the network
6 Post-pushdown sync time Synchronization method, cache size

Figure 19: The components in executing a pushdown request.

Grayed are factors on what Teleport has no control.
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Figure 20: The breakdown of Teleport performance in dif-

ferent data sync methods with 1GB compute-local cache.

(6) post-pushdown synchronization. While all parts have factors
that are not controlled by Teleport, specifically the cache size
in the compute pool, the network, and the user function, the data
synchronization method in use is important for every part. Message
sizes for (2) and (4) also vary across different methods.

Figure 20 summarizes our cost breakdown results for a 1 GB lo-
cal memory in the compute pool (user function time was excluded
so that the result can be generalized). In the figure, eager memory
synchronization is a strawman that synchronizes all pages at the be-
ginning and end of pushdown function execution. The on-demand
memory synchronization is our default technique presented in Sec-
tion 4.1. We make the following observations. In both techniques,
pre/post pushdown and user context setup are the dominant costs,
though at varying degrees. Overall, Teleport’s on-demand syn-
chronization is significantly faster than eager synchronization (0.3s
vs. 3.5s for one pushdown call), since data is only fetched on demand
as required by the user function. Although synchronizing data on-
demand requires extra time in setting up the user context (yellow
region in figure) because of page table entry checking described in
Section 4.1, its substantial savings in parts (1) (blue) and (6) (red)
reduce overall execution time by an order of magnitude. Our results
suggest that a careful data-synchronization approach does impact
performance significantly, compared to sunk costs that are tied to
the underlying network speed.

7.6 Coherence Protocol Efficiency

Finally, we evaluate the efficiency of Teleport’s coherence pro-
tocol. We do this by extending the microbenchmark in Section 4.
We add shared memory between the compute-intensive thread and
the memory-intensive thread, and vary the contention (where both
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threads request write permissions) rate from low (0.0001%; one in a
million operations) to high (1%; one in a hundred operations).

Figure 21 shows the application performance in different sys-
tems when the contention between the threads increases. As the
contentions in both local execution and base DDC are local to the
threads (within the same NUMA node), increasing the contention
rate barely affects the performance. In Teleport with the default
coherence protocol, the contention leads to network communica-
tion. At low contention, the application completes in 2.1s. There are
observable performance changes when the contention rate reaches
0.1% (2.3s) and 1% (3.7s). Figure 22 shows the number of network
messages incurred by the protocol. The average messaging latency
in our coherence protocol (1.6𝜇𝑠) is close to the raw network latency
(1.2𝜇𝑠). In contentions, favoring the memory thread in tiebreaking
completes the pushdown faster: 15% improvement at 1% contention
rate. Adding more threads increases the contention correspond-
ingly. For example, when we fix the contention rate at 0.1% per
thread, increasing the number of compute-intensive threads to four
brings the execution time up to 2.9s.

A Weak Ordering [8] relaxation avoids contention between writ-
ers. Figures 21 and 22 show that the performance and the number
of coherence messages no longer change with the contention rate
when the application adopts the relaxation. Other relaxations work
similarly for other types of contentions, e.g., the PSO relaxation
(Section 4.2) for contentions between writers and readers.

In summary, the default coherence protocol of Teleport achieves
low latency when exchanging messages between the compute and
memory pools. Hence, it can tolerate a moderate amount of data
contention without observable performance degradation. Applica-
tions can also leverage the relaxations that Teleport supports for
weaker memory models to avoid/manage contention directly.

8 RELATEDWORK

Teleport is related to the classic idea of pushing computation
closer to the data [19, 20, 22, 30, 36, 38, 46]. Pushing down selection
predicates is also a well-studied technique in databases, including
distributed databases [13, 16, 42] and sensor networks [29]. Tele-
port’s instantiation of these prior ideas is unique owing to the
memory disaggregation setting. Teleport has access to a process’s
entire memory address space, can compute arbitrary functions, can
modify the memory at will, and can dereference pointers.

Today’s cloud DBMSs already leverage storage disaggregation [7,
11, 50], which decouples processing and data so they can scale inde-
pendently; however, workers in these systems are still constrained
by their local memory—a limitation that memory disaggregation
addresses. Operator pushdown has been applied to these storage-
disaggregated environments [27, 33, 39, 53]. Unfortunately, they
are typically limited by the operations supported by the storage
service and, thus, relegated to simple tasks like scanning tuples.
Combining Teleport and storage pushdown may yield further
improvements in a fully disaggregated environment.

Within the DDC and remote memory context, Semeru [51]
pushes down part of the JVM garbage collector to remote memory,
while the work of Aguilera et al.[9] pushes down pointer chasing,
and StRoM [45] pushes down checksum computations to remote
SmartNICs. Finally, CompuCache [54] supports compute offloading
for remote memory caching with spot VMs. Teleport is distinct
in its generality—it can be used to push down arbitrary functions.
This is possible because of disaggregated memory and OSes.

Improving database systems in DDCs is a timely topic [14, 55–
57]. Recent studies [55, 56] investigate the performance overhead
of DDCs for DBMSs and sketch the opportunities for optimizations.
Redesigned DBMSs [14, 57] can significantly lower the overhead.
DDC architectures are continuously evolving. Keeping up with the
hardware by redesigning DBMSs requires expensive investment.
Teleport provides a simpler and more portable alternative for
DBMSs to harvest many benefits of DDCs. Teleport can also be
applied to other data-intensive systems for the same advantage.

9 CONCLUSION

Disaggregated data centers (DDCs) are an emerging trend for orga-
nizing hardware resources, and disaggregated OSes have risen to
help manage them. Unfortunately, data-intensive systems suffer
from high performance overhead in DDCs. We propose Teleport,
a framework that can flexibly transport a piece of computation to
the memory pool for saving expensive data movement and thus
improving overall execution. Our design challenges center around
ensuring consistent views on the memory space, synchronization,
and temporary context creation in a pushdown call. By applying
Teleport to three popular data-intensive systems, we showcase
the significant performance benefit of Teleport for DDCs.
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