
Packet scheduling with optional client privacy
Andrew Beams

abeams@cis.upenn.edu
University of Pennsylvania

Philadelphia, PA, USA

Sampath Kannan
kannan@cis.upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Sebastian Angel
sebastian.angel@cis.upenn.edu
UPenn and Microsoft Research

Philadelphia, PA, USA

ABSTRACT
Existing network switches implement scheduling disciplines such
as FIFO or deficit round robin that provide good utilization or fair-
ness across flows, but do so at the expense of leaking a variety
of information via timing side channels. To address this privacy
breach, we propose a new scheduling mechanism for switches called
indifferent-first scheduling (IFS). A salient aspect of IFS is that it
provides privacy (a notion of strong isolation) to clients that opt-in,
while preserving the (good) performance and utilization of FIFO or
round robin for clients that are satisfied with the status quo. Such
a hybrid scheduling mechanism addresses the main drawback of
prior proposals such as time-division multiple access (TDMA) that
provide strong isolation at the cost of low utilization and increased
packet latency for all clients. We identify limitations of modern pro-
grammable switches which inhibit an implementation of IFS without
compromising its privacy guarantees, and show that a version of
IFS with full security can be implemented at line rate in the recently
proposed push-in-first-out (PIFO) queuing architecture.

ACM Reference Format:
Andrew Beams, Sampath Kannan, and Sebastian Angel. 2021. Packet sched-
uling with optional client privacy. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), Novem-
ber 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3460120.3485371

1 INTRODUCTION
Networks, from roads to the Internet, are a scarce resource shared
by all. Sharing is necessary, as the complexity and cost of having
dedicated links or infrastructure between every pair of clients would
be unimaginable. But as we have known for decades in a variety of
contexts [9, 10, 16, 37, 51, 58, 60], sharing—and specifically the lack
of strong isolation—is at odds with privacy. Today’s networks rely
on switches and routers that queue and schedule packets following
policies such as first-in-first-out (FIFO) and priority queuing. These
policies have many desirable properties ranging from fairness to
minimizing average latency, but lack of interference between clients
is not one of them. As a result, a client’s traffic is influenced and
shaped by others’ traffic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485371

Why is this a problem? Consider situations in which there are
multiple clients that share a network switch: multi-tenant data cen-
ters, corporate networks, universities, coffee shops, someone’s home.
In these settings, a client (“the victim”) can be in a position where it
sends or receives messages via a shared switch, while another client
(“the attacker”) is also using the same switch and observing how the
victim’s traffic affects its own traffic (if at all) by the way the switch
schedules and queues packets. In other words, the attacker aims to
exploit a timing side channel that leaks information about the vic-
tim’s traffic. Prior works [29, 33, 35, 36] have shown that this flavor
of side channel can reveal which Web sites a user is visiting or what
words are being spoken over a VoIP application such as Skype or
Zoom (even when the communication is encrypted [15, 27, 45, 57]).
This leakage can also be used by data center tenants as a covert chan-
nel to bypass existing isolation and monitoring mechanisms [28].

Note that timing side channels in networks are far from new: the
anonymity community has bravely fought them for decades in their
quest to build onion routing and mix network systems [11, 14, 17–
20, 22, 23, 25, 40–43, 56]. What is different in our setting is the
threat model: our concern is not a malicious network provider or
nation state actor that tries to deanonymize users. Instead, the focus
is on what one user can learn about another when the network infras-
tructure is reliable and trustworthy. Not only is this a qualitatively
different threat model, it is in many ways a more common one: a
visitor at one’s home could perform measurements to eavesdrop
on a VoIP call taking place in a private room, or a tenant of a pub-
lic data center might attempt to infer workload characteristics of a
competitor with whom it shares a switch.

This paper’s contribution. Our work has three goals. First, we
wish to understand if timing side channels are exploitable today.
Prior works [29, 33, 36] offer evidence of these attacks in simulations
or Internet measurements on slow (297 kbps) DSL routers, but it is
unclear whether those observations hold with fast gigabit switches.
We replicate the results of Kadloor et al. [33] when the victim and the
attacker share a traditional WiFi home router. However, conducting
these attacks on a fast data center switch requires more effort on the
part of the attacker. Nevertheless, we demonstrate the feasibility of
leaking some information with fast switches.

Our second goal is to design a scheduler that provably guaran-
tees privacy, which is a notion of strong isolation across clients.
While there is already one scheduling discipline that provides this
guarantee, namely time division multiple access (TDMA) and its
randomized and weighted generalization [36] in which clients are
allocated a window of time on which to send their packets, it has
several drawbacks. Chief among them is that TDMA taxes all clients,
in the sense that even clients who are indifferent about privacy must
still pay the cost of using TDMA. Not only is this bad for privacy-
indifferent clients, it also bad for the collective, as TDMA is not
work conserving and wastes bandwidth when there are idle clients.

https://doi.org/10.1145/3460120.3485371
https://doi.org/10.1145/3460120.3485371

To address these drawbacks, we introduce a new hybrid sched-
uling discipline called indifferent-first scheduling (IFS). The key
aspect of IFS is that clients who satisfied with the status quo and do
not require privacy (e.g., tenants in a data center who are not running
sensitive workloads) should continue to receive as good a service (or
even better) than that provided by existing schedulers such as FIFO.
On the other hand, clients who require privacy guarantees can opt
into IFS’s private mode and avoid leaking any information through
the scheduler’s decisions, at the cost of increased latency for their
packets. Furthermore, IFS lets clients toggle between indifferent and
private modes (e.g., a client may engage private mode when it starts
a VoIP call). While transitions can be observed by an attacker and
might leak the user’s intent to be private, they do not leak the user’s
workload characteristics.

Our last goal is pragmatic. We ask to what extent we can imple-
ment privacy-preserving scheduling disciplines on programmable
switches. We find that neither TDMA nor IFS are amenable to imple-
mentation in existing architectures, since, among other limitations,
switches do not support pauses or random sampling. If we look at ex-
isting Intel Tofino switches, for example, the best we could manage
is to provide privacy to client’s outgoing packets (e.g., a client’s re-
quest to an HTTP server leaks no information, but the corresponding
response might). This is problematic since responses can leak just
as much or even more information than requests. However, we show
that a recently proposed queuing architecture for programmable
switches called push-in-first-out (PIFO) [55] has all the building
blocks that we need to build IFS and TDMA. We implement both of
these schedulers on a PIFO simulator [4] and show that IFS achieves
the best of both worlds: it provides better expected packet latency
than FIFO or round robin to indifferent clients, and the same privacy
guarantees and better latency than TDMA for private clients.

In summary, this work makes the following contributions:

• We replicate prior timing attacks on recent hardware and show
that some leakage exists even on fast switches.
• We propose IFS, a new scheduling discipline that guarantees

privacy to clients who want it without burdening those who do
not, and which has many desirable properties.
• We show how to instantiate IFS in switches that support push-in-

first-out (PIFO) [54, 55].
• We evaluate our implementation of IFS and find that its perfor-

mance is better than existing schedulers for both indifferent and
private clients, while simultaneously protecting private clients
from timing side channels.

2 MOTIVATION AND RELATED WORK
This section discusses proposed attacks on schedulers and prior
proposals to address the resulting privacy violations.

2.1 Timing attack on switches and schedulers
Our work is inspired by the observation of Kadloor et al. [33] that if
a client is accessing content on the Internet while traversing a switch
or router that uses a first-in-first-out queuing strategy, an adversary
could issue a series of probes to this switch to determine when the
victim client is sending packets (and their size). The high level idea
is that the switch will enqueue the attacker’s probes and will process
them once it has spare cycles (presumably after it has processed

Victim

FIFO queue

Attacker

Service

Network

Figure 1: An attacker can learn whether the Victim is sending
packets to some service (and potentially which service) by prob-
ing one of the switches used by the victim. Since the switch has
limited resources it must queue the attacker’s packets whenever
there is contention. If the switch uses a FIFO queuing discipline
and the attacker’s packets arrive after the victim’s, the attacker
can observe changes in timing and infer that the victim is send-
ing packets and the size of the burst of traffic. This attack was
proposed by Kadloor et al. [33].

any packets from the victim that arrived before the attacker’s). The
probes could be simple ICMP packets (though some switches treat
ICMP traffic differently), but could also be TCP or UDP packets
sent to a destination that the attacker controls and that ensures the
attacker’s traffic traverses the shared switch. Based on how long
it takes for the attacker’s probes to be processed, the attacker can
infer the number of packets sent by the victim. This information can
allow the attacker to learn which Web sites or services the victim
is accessing, or even what phrases are spoken over VoIP calls, even
if the traffic is encrypted [15, 27, 45, 57]. This attack can also be
conducted within a data center thereby allowing a tenant to infer
the workload characteristics of another tenant that uses the same
network infrastructure. Figure 1 depicts this attack.

Two similar attacks include the work of Gong and Kiyavash [29]
that shows that information leaks when users share a job event
queue, and the work of Ghassami and Kiyavash [28] that shows how
to create a covert channel between two otherwise isolated processes
in a data center. In this latter work, even if the processes are given
their own dedicated hardware, if the underlying physical network is
shared, then one process can send a covert message to the other via
the same strategy described above. The sender could encode their
message by modifying the sizes or timing of seemingly innocuous
Web traffic, after which the recipient could send probes to the shared
switch to retrieve it. This might not trigger any red flags in a firewall
or other monitoring system. In this way, a malicious actor could take
advantage of this covert channel to leak potentially sensitive data.

The above attacks are actually not limited to FIFO: by using
higher frequency probes, this same technique can be used on any
work conserving scheduler [29, 35]. This motivates the need for
scheduling mechanisms that protect against these types of side chan-
nels while still prioritizing other standard metrics such as fairness,
low latency, etc.

In Section 7.1, we replicate the experiments performed by Kadloor
et al. [33], first with a typical home router, and then with a state-of-
the-art switch. Our findings are consistent with those of prior work
for the home router, but the high performance of a gigabit switch
makes this attack more difficult to carry out. Nevertheless, we show
that leakage is still present.

2

2.2 Existing proposals
In this section we describe prior work on building a scheduler that
provides privacy across requests. Note that these proposals were
not introduced in the context of packet switches, and are therefore
hard to implement in our setting. They also force all clients to have
privacy and pay for it even if some clients are indifferent and could
do without it. Nevertheless, they illustrate the kinds of techniques
that have been proposed to prevent the attacks mentioned in the prior
section.

The work of Kadloor et al. [36] proposes two solutions. The so-
lutions assume that clients send requests that, on a long enough
timescale, follow a well-known distribution (e.g., Poisson distri-
bution with a certain rate). This distribution is assumed to not be
sensitive. What the attacker does not know, however, is the instanta-
neous number of requests being issued by a victim in some arbitrary
time window. Such fine visibility into a victim’s workload could leak
what services a client is accessing, as we described previously.

The first proposal, which the authors denote accumulate-and-
serve, works by alternating between two phases. In the accumulation
phase, the scheduler serves no requests, it merely enqueues them.
After some time passes, the queued requests are serviced in FIFO
order. As requests are being serviced, the scheduler begins to ac-
cumulate the next batch. The intuition behind this approach is that
as the accumulation window is lengthened, the number of requests
from each client approaches the number that would be expected
based on their long-term rates from the well-known distribution, and
hence the amount of useful information for the adversary decreases.

The second approach is a non-work-conserving variant of the
classic Time Division Multiple Access (TDMA) protocol. In (non-
work-conserving) TDMA, each client is assigned a specific time slot;
if a client has a pending packet by the time the scheduler reaches
that client’s time slot, the client’s packet is processed. Otherwise,
the scheduler simply idles until the following time slot when it
processes the packet (if any) of the next client. Since the delays of a
client are independent of the traffic of other clients (as clients have
their own statically allocated slots), an adversary’s probes reveal
no information about any other client in the system. Kadloor et
al. [36] then generalize TDMA to include weights and randomize
the allocation of slots (proportional TDMA).

An entirely different approach to address a related problem is
given in Pacer [48], which prevents network side channels in a shared
data center environment. One major distinction with Pacer is the
location of the privacy mechanism, and its scope of coverage. Pacer’s
isolation mechanism is located at a server, and provides privacy to
clients’ responses from that specific server under two assumptions:
(1) that the size and shape of a client’s requests leak no information
(necessary since Pacer does not touch clients’ requests); and (2) that
the server has a small set of responses which it pre-registers with
Pacer (this requires modifying the server). These assumptions are
reasonable in some settings. For example, within a data center where
client virtual machines access a few file servers that host a specific
set of files. However, our setting is more general: we support clients
that make arbitrary requests to arbitrary services, without requiring
any server modifications.

3 DEFINING PRIVACY
In this section we formalize what it means for a scheduling algorithm
to provide privacy. At a high level, our definition of privacy captures
a notion of strong isolation among all clients, in the sense that one
client should not be able to affect the behavior of the packets of
another client. Prior privacy definitions captured this with notions
such as mutual information [33, 35], correlation [34], and minimum
mean squared error [35, 36]. We instead give an indistiguishabil-
ity-based definition in Section 3.2 that resembles more traditional
cryptographic notions such as semantic security or pseudorandom-
ness. We believe this definition is easier to understand. We begin
with a concrete setting and threat model.

3.1 Setting and threat model
In order to give our formal definition, we abstract away the details
of the switch and network topology, and treat each switch as a
scheduler. Furthermore, we make the simplifying assumption that
clients acquire a certain rate 𝜆 from the switch’s operator (e.g., 10
Mbps), and that the switch is provisioned to support this rate. Clients’
instantaneous number of packets, however, may be sampled from
any distribution with expected value of 𝜆 (this allows clients to idle
or be bursty). What does it mean for a client to acquire a rate of 𝜆? In
WAN settings, it means that clients purchase a dedicated rate from
their ISP, similar to existing service tiers but with stronger SLOs.
In a data center network, this means that the operator provisions
the network in a way that ensures that each tenant (or their VMs)
can achieve their purchased rate; there is already a vast literature on
performance isolation and throughput guarantees [8, 12, 13, 44, 50]
that considers this exact setup (but note that privacy is a stronger
notion than the type of isolation studied in these works).

Setting and admission control. Clients can join and leave the sys-
tem. When a client 𝑐𝑖 joins, it requests a rate 𝜆𝑐𝑖 from the scheduler.
The rate could be given in a standard metric such as bits per sec-
ond, but for simplicity we assume that all 𝜆𝑐𝑖 have been normalized
by the capacity of the scheduler, and are therefore a real number
in [0, 1]. Each scheduler serves some set of active clients 𝐶, and
this set changes over time as clients join and leave the system. The
aggregate rate of active clients at the scheduler is Λ =

∑
𝑐𝑖 ∈𝐶 𝜆𝑐𝑖 .

In order to reason analytically about the worst-case delay induced
by our proposed scheduling mechanism (§4.4), our scheduler will
maintain an admission threshold 𝐿 such that Λ ≤ 𝐿 ≤ 1. We will call
a client 𝑐 𝑗 ∉ 𝐶 admissible if 𝜆𝑐 𝑗 +

∑
𝑐𝑖 ∈𝐶 𝜆𝑐𝑖 ≤ 𝐿. A client can join

the system only if it is admissible; otherwise, the client must wait
until resources are freed up.

For our analysis we take time to be discrete, and assume that all
requests issued to the scheduler are of uniform size, and that the
scheduler can process one such request per time slot (we relax these
assumptions later).

Threat model. We assume that the network infrastructure is itself
honest. Indeed, our model differs from timing attacks on mix net-
works and anonymity systems in that we do not view the network
or provider as the adversary, but rather an ally who is attempting to
provide privacy to its users. The adversary in our setting controls any
subset of the clients and wishes to learn about one or more victim
clients’ requests through a timing side channel attack (§2.1). We

3

allow the adversary to adaptively issue requests from its compro-
mised clients at any instantaneous rate it wishes, and to accurately
measure the sending and receiving time of all of its packets. Our
privacy guarantee ensures that the adversary learns nothing about
the traffic of clients who are not compromised.

3.2 Indistinguishability of arrival sequences
For the setting we consider, there is already one definition of privacy
in the literature [29] based on the mutual information between an
adversary’s observations and the times at which the victim transmits.
This definition is cumbersome to work with because one must con-
dition on what the adversary already knows (for example, the rate of
each victim, the concrete scheduling policy, etc.) and then compute
if there is non-zero mutual information. We propose an alternate
definition below that is simpler and does not require making the
adversary’s prior knowledge explicit.

Let us focus on a particular client 𝑐 (our analysis is symmetric for
any client). At each time step 𝑡 , there are 𝑛𝑡 packets belonging to 𝑐

that arrive at the queue. If the discretization is fine enough, we could
imagine that 𝑛𝑡 is 0 or 1, but more generally we assume that 𝑛𝑡 is
a non-negative integer. An arrival sequence 𝑆𝑇 for the packets of
client 𝑐 is a sequence of integers (𝑛0, 𝑛1, . . . , 𝑛𝑇−1) that denotes the
number of packets that arrive at the queue at all times less than 𝑇 .

Definition 3.1 (Privacy). Let A be an adversary who controls all
but one of the active clients using the shared scheduler. We will say
that A violates the privacy of the remaining client 𝑐, if there exist
any two arrival sequences 𝑆𝑇1 and 𝑆𝑇2 for 𝑐 such that A can create
arrival times for packets for the clients that it controls, observe their
arrival and transmission times, and be able to correctly decide if 𝑐
has arrival sequence 𝑆𝑇1 or 𝑆𝑇2 with probability higher than a random
guess. Letting 𝑂 denote the set of observable variables for A and
letting A(𝑂) denote A’s guess of 𝑐’s arrival sequence, we say that
privacy is violated if:

Pr[A(𝑂) = 𝑖 | 𝑐 has arrival sequence 𝑆𝑇𝑖] >
1
2

where 𝑖 ∈ {1, 2} and the probability is over the random coins of A
and the scheduling mechanism. Note that this definition is given
in terms of the conditional probability of guessing correctly, which
avoids having to reason about the prior distribution of different
arrival sequences. It is also a definition of statistical indistinguisha-
bility, as it is not based on any computational hardness assumptions.

Summary: Our definition basically states that a switch guarantees
privacy if an adversary, by injecting any number of packets into the
switch at the time slots of its choosing, cannot distinguish between
two possible arrival sequences for a victim client’s packets. This
definition is very strong, essentially stating that the adversary gets
no benefit from probing the switch, thereby eliminating all timing
side channels.

3.3 Prior approaches guarantee privacy
Both TDMA and p-TDMA meet our definition of privacy (§2.2).
To see why, observe that in these schemes the slots assigned to
𝑐 are independent of 𝑐’s arrival sequence—they are statically or
randomly allocated. Moreover these slots are either used by 𝑐 or
“wasted” if 𝑐 has nothing to transmit. To other clients these two

function IFS(𝐼 , 𝑃, 𝑟)
if 𝐼𝑟 ≠ ∅ then
𝑐 ←𝑊𝐶𝑆 (𝐼𝑟)

else
𝑐 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃)

𝑆𝑒𝑛𝑑𝑃𝑎𝑐𝑘𝑒𝑡 (𝑐)

Figure 2: Pseudocode for indifferent-first scheduling. 𝐼 is the set
of indifferent clients, and 𝑃 is the set of private clients. 𝐼𝑟 ⊆ 𝐼 is
the set of indifferent clients with packets in the queue as of time
slot 𝑟 . 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (·) chooses a client from the set randomly,
weighted by clients’ rates.𝑊𝐶𝑆 is any work-conserving schedul-
ing discipline; we focus on FIFO and randomized Round Robin
(𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡). 𝑆𝑒𝑛𝑑𝑃𝑎𝑐𝑘𝑒𝑡 (·) sends the next packet queued for
client 𝑐, if any, or idles.

scenarios are identical since that slot is never made available to
them. Consequently, an adversary cannot distinguish between any
two arrival sequences for 𝑐.

4 MAKING PRIVACY OPTIONAL
TDMA and p-TDMA provide the strong isolation that is needed to
prevent the timing side channel discussed in the previous section.
However, they force all clients—even those that do not care about
privacy—to incur higher response times than they would under other
disciplines. In the following subsections we introduce the idea of
indifferent clients, which are clients that do not care about leaking
some or all of their information (essentially the status quo). We
then propose indifferent-first scheduling (IFS), a new scheduling
discipline that provides the same guarantees as TDMA and p-TDMA
for clients who desire privacy, without increasing the expected delay
for indifferent clients.

4.1 Indifferent-first scheduling (IFS)
The high level idea of IFS is to process the packets of indifferent
clients with a work-conserving scheduler, and to give priority to
these packets over the packets of private clients.

In detail, let 𝐶 = 𝑃 ∪ 𝐼 partition the clients into private and
indifferent, respectively. Let 𝐼𝑟 ⊆ 𝐼 be the subset of indifferent
clients with at least one packet still queued during time slot 𝑟 . For
each time slot, IFS first determines if the slot will be given to a
private or an indifferent client. If 𝐼𝑟 ≠ ∅ (i.e., there are packets
from an indifferent client in the queue), the slot will be allotted to an
indifferent client. To decide which client is serviced, IFS uses a work-
conserving scheduling policy; in this work we focus on round robin
and FIFO. For round robin, IFS picks a client from 𝐼𝑟 to service at
random using clients’ purchased rates as weights; IFS then dequeues
the first packet from this client. For FIFO, IFS processes packets
from 𝐼𝑟 in the order they entered the FIFO queue.

If there are no packets from indifferent clients in the queue, IFS
then considers private clients. IFS picks a client randomly among
𝑃—which includes all private clients, even those with no packets
enqueued—using their purchased rates as weights. If the chosen
client has packets enqueued, the first packet of that client is dequeued
and sent. Otherwise, IFS idles until the slot is finished, thereby
wasting the switch’s resources. This wastage is precisely the price

4

that private clients must pay for privacy (it does not affect indifferent
clients since they always “go first”). Figure 2 gives IFS’s algorithm.

While conceptually simple, implementing IFS in a real switch is
far from trivial since neither randomized round robin (weighted or
otherwise) nor idling are supported by programmable switches. In
Section 5 we propose approximations and adaptations of this design
to conform to the reality of today’s switches. Below we discuss the
properties of IFS.

4.2 IFS guarantees privacy
IFS guarantees privacy (Definition 3.1) for private clients. The argu-
ment mirrors that of TDMA (§3.3): the slots allocated to a private
client are independent of the arrival sequence of that client, and
depend only on (1) the arrival sequences of the indifferent clients
and (2) the internal randomness of the scheduler. Since indifferent
clients are afforded no privacy, the ability of an adversary to observe
the effect of these clients’ packets on its own packets does not give
the adversary any information about private clients.

4.3 IFS is incentive-compatible
The addition of privacy, unsurprisingly, increases the time it takes for
a packet to be processed. One of our main motivations in designing
IFS is to avoid sharing this burden with clients who are indifferent
about privacy. IFS actually guarantees that if such clients declare
themselves as indifferent, they will be better off (in terms of expected
packet delay) than if they declare themselves as private.

We formalize this as follows. Let 𝑃 and 𝐼 be the sets of active
private and indifferent clients, respectively. Let 𝑐 be a client that is
considering whether to declare itself as private or indifferent. IFS
guarantees that for all 𝑃 and 𝐼 :

𝐷𝑐 (𝜆𝑐 , 𝑃, 𝐼 ∪ {𝑐}) ≤ 𝐷𝑐 (𝜆𝑐 , 𝑃 ∪ {𝑐}, 𝐼)

where 𝐷𝑐 is the expected delay for 𝑐’s packets given a rate 𝜆𝑐 , and a
set of private and indifferent clients.

We give the proof of this claim in Appendix B. The intuition is
that IFS can be viewed as a strict priority queue in which packets
from indifferent clients have higher priority than those of private
clients. Hence, being an indifferent client results in lower expected
packet delay.

4.4 IFS is better for all clients
Since IFS is a scheduling algorithm that provides differentiated
service to two types of clients (private and indifferent), it is natural to
ask whether clients of either type would have preferred a scheduling
algorithm that treats all clients the same as themselves (i.e., either all
private if they are private, or all indifferent if they are indifferent). If
the answer is no, then this can be seen as a type of sharing incentive,
meaning that both private and indifferent clients are happy to share
the infrastructure and be serviced by IFS. One way to do this is to
show that the worst-case expected packet delay under IFS satisfies
the following two properties: (1) if a client 𝑐 is private, then 𝑐 does
worst when all other clients are private and are served by p-TDMA;
and (2) if 𝑐 is indifferent, then 𝑐 does worst if all other clients are
indifferent and are served by a round robin or FIFO scheduler.

The monotonicity definitions below imply these properties.

Definition 4.1 (Indifferent delay monotonicity). Let 𝑃 and 𝐼 be
non-empty sets of private and indifferent clients, and let 𝑝 ∈ 𝑃 be
any private client. A scheduler is indifferent delay monotonic if for
all indifferent clients 𝑐 ∈ 𝐼 the expected delay for 𝑐’s packets given
rate 𝜆𝑐 is:

𝐷𝑐 (𝜆𝑐 , 𝑃, 𝐼) ≤ 𝐷𝑐 (𝜆𝑐 , 𝑃 \ {𝑝}, 𝐼 ∪ {𝑝})
That is, changing a client from private to indifferent does not

benefit any of the former indifferent clients.

Definition 4.2 (Private delay monotonicity). Let 𝑃 and 𝐼 be non-
empty sets of private and indifferent clients and let 𝑐 ∈ 𝐼 be any
indifferent client. A scheduler is private delay monotonic if for all
private clients 𝑝 ∈ 𝑃 , the expected delay for 𝑝’s packets assuming
𝑝’s rate is 𝜆𝑝 is given by:

𝐷𝑝 (𝜆𝑝 , 𝑃, 𝐼) ≤ 𝐷𝑝 (𝜆𝑝 , 𝑃 ∪ {𝑐}, 𝐼 \ {𝑐})
That is, changing a client from indifferent to private does not

benefit any of the existing private clients.

IFS’s concrete guarantees. To show that IFS is indifferent de-
lay monotonic (Definition 4.1), recall the following fact from Sec-
tion 4.1: the packet delay of indifferent clients is only ever impacted
by other indifferent clients because indifferent clients have a strict
scheduling priority over private clients. As a result, more clients
becoming indifferent necessarily hurts existing indifferent clients, as
packets from new joiners can sometimes be scheduled first. We give
a proof in Appendix C.

Proving that IFS is private delay monotonic (Definition 4.2) is
challenging. The difficulty arises from two competing forces whose
combined effects are hard to model: (1) the fact that indifferent
clients are processed by a work-conserving scheduler and do not
waste slots; and (2) the priority that indifferent clients have over
private clients. In particular, since indifferent clients never waste
slots, if an indifferent client has nothing to send, its slot will be
given to another client (potentially a private one). In contrast, when
an indifferent client becomes private it will never yield its slot,
even when the client has nothing to send. Consequently, a client’s
transition from indifferent to private partially benefits existing private
clients in the sense that there is one fewer client with higher priority,
but it also partially harms them because this client will occasionally
waste its slot without yielding it to others. Depending on the setting
(make up of clients and weights), it is conceivable that one effect
might be stronger than the other.

Nevertheless, we conjecture that private delay monotonicity holds
for IFS. Appendix A shows empirical evidence in support of it, and
Appendix D shows analytic results for several settings. A full proof
that reasons about the interplay between the multiple schedulers in
IFS remains an open question.

Monotonicity and worst case expected delay. If a scheduler satis-
fies both private and indifferent delay monotonicity, then the sched-
uling policy guarantees that there is an upper bound on the expected
delay for all clients in all settings. In the context of IFS, this delay is
precisely the expected delay of any client 𝑐 of rate 𝜆𝑐 in a scheduler
with an admission threshold of 𝐿—using p-TDMA if 𝑐 is private
and round robin or FIFO if 𝑐 is indifferent. As a result, given the
admission threshold supported by the scheduler, the client’s rate 𝜆,
and whether the client is indifferent or private is enough to bound

5

the worst case expected delay of that client. This holds regardless
of any other clients who may enter or leave the system in the future.
Appendix E discusses this in more detail.

4.5 Private client starvation
An issue with IFS, as presented, is starvation of private clients since
they have lower priority than indifferent clients. As a result, IFS
needs to enforce rate limits on clients to ensure that they do not send
packets in excess of their allocated rates. This can be done through
standard mechanisms such as the use of a token bucket (§6.2). An
interesting question is whether private clients also need to be rate
limited? After all, the point of IFS’s design is that the traffic of a
private client does not impact any other private or indifferent client.

We find that if IFS rate limits both private and indifferent clients,
then privacy (Defintion 3.1), indifferent incentive (§4.3), and indif-
ferent delay monotonicity (§4.4) continue to hold (the proofs are
identical); private delay monotonicity holds if our conjecture holds.
The drawback is that IFS would be giving a suboptimal service to
private clients. In particular, whenever all indifferent clients idle
(or have exhausted their tokens for a given window of time), IFS
grants the slot to a private client (the “else” branch in Figure 2). If
private clients are also rate limited, occasionally a private client will
be chosen by IFS’s 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 but will have no tokens to send
their packet; the scheduler will therefore be forced to idle, thereby
wasting the slot and benefiting no one.1

One the other hand, if IFS rate limits the indifferent clients but
not the private clients, then whenever a private client is chosen by
IFS’s 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 they can send a real packet (if they have one),
improving their service. The drawback is that indifferent incentive
compatibility (§4.3) no longer holds in a handful of pathological
cases. For example, if the switch only has a single client, this client
would be rate limited if it were indifferent, but not if it were private;
and since it is the only private client, it would receive 100% of the
slots under 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 . Hence, even if this client did not care
about privacy, it would choose to be private to avoid the rate limit.

In the rest of this paper we choose to implement rate limits only
for indifferent clients. We conclude that the possibility of improving
service for private clients is worth the existence of a few pathological
cases where indifferent clients might prefer to label themselves as
private. Such mislabeling does not impact the packet delay of other
indifferent clients (because they would have a higher priority) or the
privacy of other private clients; hence, the arguments against this
choice are mostly of theoretical rather than of practical value.

5 IFS ON PROGRAMMABLE SWITCHES
At a high-level, implementing IFS on a programmable switch re-
quires four operations: (1) queuing packets with different priorities;
(2) idling in response to some condition; (3) selecting randomly
among packets; and (4) equalizing packet sizes. Of these features,
existing switches provide only the first one. This section describes
various ways that allow us to overcome some (though not all) of the
missing features. For the remaining missing features, we leverage a
switch architecture called PIFO [54, 55] that has attracted significant
1𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 cannot be computed on just the subset of private clients with tokens,
nor can the slot be given to another private client because it would leak information: an
adversary can specify two arrival sequences that take into account rate limits and that
violate Definition 3.1.

attention from the networking community, and for which there are
preliminary implementation and approximation efforts [3, 5, 7, 59].
Figure 3 shows the high-level architecture of IFS; we discuss each
component in the next sections.

5.1 Registration
A client decides whether its traffic should be private or not, and how
much rate (upload and download combined) it requires. To do so,
it sends a control plane registration packet to the switch containing
this information. The switch determines whether it can support this
additional bandwidth, and if so, it modifies its queue mapping and
weights to take the new client into account. Later, the client may
choose to modify its rate, change its type (indifferent or private), or
leave the system by sending another control packet (de-registration
can also be done automatically after a timeout). If IFS is deployed
within a data center, registration packets can be sent by a controller
that allocates network capacity to VMs or servers, as in Oktopus [12].
In the WAN context, these packets can be issued by the ISP when
a new customer is enrolled. In a coffee shop setting, these packets
can be sent by a server when the client authenticates through a WiFi
captive portal.

5.2 Emulating switch idling
IFS and TDMA rely on the switch being able to idle for a time slot
in the event that a private client’s turn is next in the schedule dic-
tated by 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 and the client has no packets queued (§4.1).
Since switches lack the ability to idle, an alternative is for the switch
to inject a dummy packet into the head of the queue whenever a
private client has nothing to send, and send the dummy instead.
While promising, this approach is also not implementable since pro-
grammable switches cannot generate packets at line rate whenever
a condition holds (e.g., lack of packets from a particular client).
Instead, we settle for outsourcing the creation of the dummy packets
to private clients, and requiring that they always have a “real” or a
dummy packet queued up in order for them to receive privacy. This
approach raises two challenges.

Challenge 1: Dummy preemption. How does a client know when
to send dummy packets? The easiest option is to send them at fre-
quent intervals, since it is important that either a real or a dummy
packet be always available in the queue when IFS selects the client
as part of 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (Figure 2). However, this means that if the
client sends a real packet to the switch after having sent some dum-
mies (now queued at the switch), the real packet will be processed
after all of the dummies are, significantly increasing latency. IFS
must therefore have a mechanism to preempt dummy packets.

Challenge 2: Response privacy. If clients only need to send outgo-
ing messages, then sending dummies when they have nothing else
to send would mimic the switch idling. However, this is not the case
in practice, since clients also receive responses from the services
with whom they interact. Worryingly, responses (e.g., the HTML
and JavaScript payload in response to an HTTP GET request) can
be just as revealing (and often more so) than requests: they tend
to be larger and contain more diverse fingerprints. If not handled
properly, responses to one private client can impact the responses
for another client, creating yet again a timing side channel. This

6

Ingress pipelines Egress pipelines

recirculation ingress/egress ports

Scheduler/Queues

IFS (Fig. 4)

IFS (Fig. 4)Rate limit / Pad

Rate limit / Pad

Rate limit / Pad

Rate limit / Pad

Pipeline1

Pipeline2

Pipeline3

TDMA (Fig. 4)

IFS (Fig. 4)

Figure 3: Switch architecture with IFS. Ingress pipelines are
used for classifying, rate limiting, and padding packets. Each
egress port is associated with an IFS queue (Figure 4), though
we only show one IFS queue per pipe. A recirculation egress
port is associated with a TDMA or p-TDMA queue and is used
to feed back packets that require more padding (§6.3).

creates a challenge, as the client must somehow mask the absence of
responses despite not knowing their size or arrival time a priori. Note
that the server with whom the client communicates is completely
oblivious to the client’s desire for privacy or IFS’s mechanisms, and
will not send dummies.

Proposal: dummy pools and hierarchical queuing. Our idea to
address the above two challenges is to have the switch maintain a
pool of dummy packets for each client ready to use in the event
that a private client’s queue is chosen and has no “real” packets.
To preempt dummies (Challenge 1), we implement dummy pools
with a priority queue where the lower priority is assigned to dummy
packets. This ensures that no dummy packet is ever sent before
a queued real packet belonging to the same client. To deal with
responses (Challenge 2), the switch filters packets based on source
and destination and forwards them to the appropriate queue: all
packets destined to a private client share that client’s incoming queue
and dummy pool, and all packets originating from a private client
share one of the client’s outgoing queues and dummy pools. We
expand on this in Section 6.2.

Note that the introduction of dummy pools into IFS requires the
switch to support a layered scheduling policy, as shown in Figure 4.
The scheduler will first round robin or do FIFO among indifferent
clients (A and B in the figure). If neither client has packets, the switch
will round robin among private clients (C and D). For each private
client, real packets have priority over dummy packets. Appendix F
describes why this approach produces the same observable variables
to a probing attacker as a switch capable of idling.

Unfortunately, existing switches lack support for layered policies:
they can typically be configured to use a layer of deficit round robin
followed by a priority queue, but this is not enough for IFS. We
address these issues with PIFO (§6.2).

5.3 Approximate randomized round robin
So far, we have abstracted the RandomSelect mechanism of Figure 2
as a “randomized weighted round robin”. Since no such scheme is
supported by switches, we replace this mechanism with deterministic

C

A

B
Priority Queue

Priority Queue

Dummies

Priority Queue

Dummies

FIFO or
Round Robin

Round Robin

D

TDMA

Figure 4: Concrete instantiation of IFS in PIFO [54, 55] for a
setting with 2 indifferent clients (A and B) and 2 private clients
(C and D). IFS relies on a hierarchy of queues with different
scheduling disciplines. The dashed box implements (p-)TDMA,
which IFS uses as a sub-component. Indifferent clients retain
the status quo and can be serviced with FIFO or round robin.

approximations of weighted fair queuing (WFQ) [24, 49]. These
approximations work by computing an estimated start and finish
time for packets when they arrive, and use these estimates to order
packets. Section 6.4 discusses why approximating 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 is
safe in IFS, but for now we focus on two approximations that we
consider useful in different cases.

Approximate Fair Queueing (AFQ) [53]. AFQ maintains a vir-
tual start and finish time for each packet, and orders packets based
on ascending virtual finish times. The approximation comes from
various concessions, such as the use of count-min sketches due to
lack of sufficient memory for per-flow state, dealing with a limited
number of queues, and maintaining line rate. AFQ can be used as
the round robin approximation for indifferent clients, but it is not
appropriate for private clients because it combines different clients’
packets in the same queue As a result, a private client’s traffic could
affect others.

Start Time Fair Queueing (STFQ). The second option is to use a
weighted variant of STFQ [30], which schedules packets based on
virtual start time. Unlike AFQ, STFQ does not combine the packets
of different clients into the same queue, which provides the strong
isolation required by private clients at the cost of more queues. And
unlike deficit weighted round robin, which is readily available in ex-
isting programmable switches owing to its constant-time complexity,
STFQ provides a better approximation of WFQ. Furthermore, STFQ
can be implemented at line rate in PIFO switches [54, 55], which
we require to guarantee privacy for responses anyway (§5.2).

6 IFS ON PIFO SWITCHES
Push-In-First-Out (PIFO) [54, 55] is an abstraction that aims to
support a variety of scheduling policies while still having a design
that is implementable in hardware and that operates at line rate. The
insight behind this abstraction is that in many policies the ordering of
a packet in the queue depends only on some value that is calculated
at its ingress. Therefore, once a group of packets are enqueued, their
internal ordering does not change. Incoming packets are inserted
into a sorted list and then dequeued uniformly from the head.

7

However, PIFO introduces an additional, perhaps more valuable
functionality: the ability to compose multiple queues in a hierarchical
fashion. Specifically, the outputs of lower queues can feed into
upper ones, which gives designers a lot of flexibility. We exploit
this flexibility to design a scheme that supports round robin (STFQ)
between private clients while also ensuring that within each client
queue, no dummy packet is processed before real packets in the
queue. This is the precise hierarchy discussed in Figure 4. Below we
discuss the details of implementing TDMA and IFS in PIFO.

6.1 Implementing TDMA
To implement TDMA and p-TDMA in PIFO, clients send dummies
as described in Section 5.2. On the switch, we utilize a hierarchy
of queues. At the base of this hierarchy, each client will insert its
real and dummy packets into its own priority queue, with dummy
packets having low priority. These priority queues then feed into
a Start Time First Queue (STFQ), which can be implemented in
PIFO as described by Sivaraman et al. [55]. The weights used in
STFQ will be the rates purchased by each client. This scheme is
the dashed box in Figure 4, and to our knowledge, represents the
first implementation of a non-work-conserving scheduler (required
to guarantee privacy) in a programmable switch—albeit leveraging
PIFO and dummy packets.

6.2 Implementing IFS
To implement IFS, we need to introduce support for indifferent
clients which adds three constraints: (1) ensure that every indifferent
client has a higher priority than all private clients, (2) ensure that
packets are enqueued in the appropriate queue, and (3) prevent
starvation of private clients.

To address (1), we add a FIFO or round robin queue for indifferent
clients. FIFO requires one physical queue for all indifferent clients,
whereas for round robin the number of queues needed depends on
whether we use AFQ or STFQ; AFQ’s fairness guarantees are more
approximate but it requires fewer queues. We then add a priority
queue that takes as input packets from the above FIFO or round
robin queue (high priority), and from the TDMA queue of private
clients described in Section 6.1 (low priority). A schematic of this
scheme is given in Figure 4.

To address (2), IFS treats packets based on their type:
• Outgoing: moving from a client to the upstream network.
• Incoming: moving from the upstream network to a client.
• Internal: moving from one client of the switch to another.

At ingress, a packet is categorized into one of these types, and
then forwarded to the appropriate egress pipeline (based on IP or
IP/port matching). Each egress pipeline has an IFS queue, as depicted
in Figure 3. Packets are then inserted into the queue (internal to
IFS) associated with the sending or receiving client (depending on
whether this is outgoing or incoming packet) as shown in Figure 4.
Internal packets are associated with the queue of the client designated
as private, if there is only one, or with the queue of the sender if both
are private or indifferent. This is safe because privacy implies no
leakage beyond what can be inferred in the absence of the switch. In
other words, if an internal packet is sent from A to B and enqueued
in B’s queue, then B may learn something about A’s traffic, but B
would have learned this regardless.

Finally, to address (3), we implement rate limiting in the ingress
pipelines with a token bucket. For each indifferent client, we use a
stateful register that tracks the number of tokens and the last time the
tokens were refilled, updating this register accordingly, and dropping
packets in the absence of enough tokens. We do not rate limit private
clients since, by construction, they cannot affect the performance of
other private clients (§4.5).

6.3 Dealing with variable-size packets
Since different packet sizes take different amounts of time to be
processed and be written on the wire, an adversary can infer packet
sizes even with IFS. One solution is to limit egress ports to a rate
of MTU/BW per packet, which is the moral equivalent of padding
all packets to be MTU sized. For example, for a 1.5 KB MTU and
100 Gbps link, we would limit the port to 120 ns per packet. However,
this approach also harms indifferent clients, which IFS aims to avoid.
Our approach is to have private clients pad their requests to a uniform
size, and implement logic in the switch to pad the responses from
upstream services that are unaware of clients’ privacy desires. In
particular, we implement padding in the ingress pipeline by adding
custom Ethernet headers to the packet header vector (PHV) until the
frame reaches the MTU. This is safe because the switch pads only
responses to private clients, who are the next hop and can ignore
these headers. One issue is that the PHV has a limited size (vendor
specific), so only a limited amount of padding can be added per
ingress pipeline. To account for the worst case (padding a small
frame to the MTU), the switch might need to recirculate small
frames (i.e., send them back to an ingress port) a few times.

Typically, switches have recirculation ports that are backed by
FIFO queues. In our case, however, this is problematic since FIFO
does not guarantee privacy and an attacker can perform timing at-
tacks by controlling an upstream service and issuing small responses
that can be delayed by a concurrent victim’s small responses. To
address this we use a p-TDMA queue with the recirculation port. As
with IFS, this p-TDMA queue requires each client to populate and
maintain a dummy pool. However, unlike other ports, the client can
just populate the dummy pool once with a few dummies, and these
dummies are automatically recirculated and reused over and over
(this is not possible in other ports because there the dummies leave
the switch). Figure 3 depicts this process.

6.4 Analysis of IFS’s properties
In Section 4 we identified four desirable properties for IFS: privacy,
incentive compatibility, and two monotonicities. The use of STFQ to
order private packets does not affect our privacy guarantee. Once a
private client’s actual packets are combined with that client’s dummy
packets, as long as later scheduling mechanisms do not differentiate
between the two, privacy will be preserved. This was not possible
without PIFO, as we would otherwise have no way to combine only
a private client’s packets together with its own dummies, and doing
this off the switch would not provide response privacy.

Prioritizing all indifferent packets over private packets provides
incentive compatibility. The use of STFQ might, however, affect our
monotonicity properties (§4.4), as these are directly related to the
“fairness” of the 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 approximation. However, we do not

8

0 2 4 6 8 10
Timestamp (seconds)

0

1000

2000

3000
Vi
ct
im

 Tr
af
fic
 (K

ilo
by

te
s)

0

5

10

15

20

Pi
ng

 R
TT

 (m
illi
se
co
nd

s)

Figure 5: Attack on the Home switch. The victim’s Web traffic
(red line), has a clear effect on the RTT of the probes sent by the
adversary every 10 ms (blue line). The dashed blue line shows
the average probe delay over the length of the capture.

observe violations to either of the monotonicity properties in our
evaluation (Appendix A).

7 EVALUATION
This section aims to answer the following questions:

• Can the attacks of Section 2.1 be performed against standard
home switches and high performance switches?
• Does IFS provide an effective defense?
• What is IFS’s performance on private and indifferent clients

compared to existing schedulers (FIFO / p-TDMA)?

In addition to the above questions, Appendix A gives empirical
evidence in support of IFS’s monotonicity properties.

Experimental setup. We conduct our experiments using a Motorola
Surfboard (“home switch”), an Edgecore Wedge 100BF with an Intel
Tofino programmable chip (“DC switch”), and a PIFO simulator [4].
We use the home switch only for attacks since it is not programmable.
For the DC switch, we implement IFS as described in Section 5,
without dummy pools (since Tofino lacks the necessary layered
scheduler support). We have six servers with 8-core Intel Xeon 4110
CPUs and 100 GB of RAM running Ubuntu 16.04; they connect to
the switches with Intel X722 network cards. For the PIFO simulator,
we implement all of IFS as described in Section 6.

7.1 Are timing side channels a real threat?
We begin with two simple hypotheses: (1) the attack described in Sec-
tion 2.1 is possible on today’s home and data center hardware, and
(2) client-side traffic shaping (where clients send dummies without
the use of IFS’s other mechanisms) is not enough to provide privacy.
To test these hypotheses, we perform the following experiments.

Home switch. We connect two machines to the home switch, with
one acting as the victim and the other as the adversary. We configure
the adversary to send repeated pings to the switch, with inter-ping
delays of 10 ms, and capture all sent and received packets with Wire-
shark. Meanwhile, the victim runs a headless browser instrumented
to visit one of the Alexa Top 50 sites [1] at random and then wait for
a random amount of time (up to a minute) before executing again.

Figure 5 gives the result for a representative 10 second snapshot
(the rest of our trace looks similar). Whenever the victim is actively
accessing a Web page (red line spike), there is a noticeable impact on
the adversary’s aggregated ping delays (blue line). Furthermore, the

Setting Pearson’s 𝑟 (p-value) Spearman’s 𝜌 (p-value)
Home switch 0.829 (<.00001) 0.854 (<.00001)

DC switch 0.871 (<.00001) 0.636 (.00016)

FIFO simulation 0.519 (<.00001) 0.658 (<.00001)

IFS simulation 0.001 (.96446) 0.007 (.83134)

Figure 6: Correlation coefficients between adversarial ping
RTT and victim traffic in a variety of settings. The correspond-
ing two-sided p-values using the Student’s t-distribution are
given in parenthesis.

10 15 20 25 30 35
Timestamp (seconds)

0.00

0.25

0.50

0.75

1.00

Tr
af

fic
 (g

ig
ab

yt
es

)

0.25

0.50

0.75

1.00

Pi
ng

 R
TT

 (m
illi

se
co

nd
s)

Figure 7: Attack on the DC switch. The adversary can observe
the impact of the victim’s traffic (red) on its probe’s RTTs (blue).
The dashed line shows the adversary’s traffic needed to prime
the attack.

additional packet delay is impacted by the amount of bytes fetched
by the victim, giving the adversary the ability to infer volume and
not just frequency. While measurements can be noisy, the duration
and magnitude of packet delay stemming from real victim actions is
distinguishable from noise: we compute statistical tests by averaging
the RTTs within 100ms intervals and adding the victim’s packet sizes
within the same intervals. As shown in Figure 6, the Pearson and
Spearman correlation coefficients between adversarial ping RTTs
and victim traffic are over 0.8 (with both two-sided p-values less
than .00001)—implying a strong linear dependence.

DC switch. We then ask whether a similarly simple attack works on
our DC switch. This is not the case: the effect of fetching a Web page
is simply too small to be noticeable. Consequently, we lower the
bar on what constitutes a successful attack and ask instead whether
an attacker who controls one or more machines can distinguish
whether a victim is sending traffic or idling. This is admittedly less
informative to the attacker, but even this binary information can be
damaging [9]. To perform this experiment, we connect four servers
to the programmable switch. We assign one of the servers to be
the “recipient”; there is a 10 Gbps link between the switch and the
recipient. One of the servers acts as the victim who communicates
with the recipient, and the remaining two servers are controlled by
the adversary. We then write a P4 data plane program to forward all
packets to egress ports based on destination MAC address.

The victim uses iPerf3 [2] to generate traffic, and alternates be-
tween sending 3 Gbps of UDP traffic to the recipient and idling.
The adversary sends 8 Gbps of traffic from one of its servers to
the recipient; this creates congestion at the egress port (toward the
recipient) whenever the victim sends traffic. The adversary uses its
other server to measure this congestion by pinging the recipient with

9

35 36 37 38
Timestamp (seconds)

0

1

2

3

Vi
ct

im
 Tr

af
fic

 (K
by

te
s)

genuine traffic dummy traffic

0
2
4
6
8
10

Pi
ng

 R
TT

 (m
illi

se
co

nd
s)

(a) Unidirectional traffic

93 94 95
Timestamp (seconds)

0

1

2

3

Vi
ct

im
 Tr

af
fic

 (K
by

te
s)

genuine traffic

dummy traffic

0
2
4
6
8
10

Pi
ng

 R
TT

 (m
illi

se
co

nd
s)

(b) Bidirectional traffic

Figure 8: With unidirectional traffic a client can get privacy
by sending dummy packets in lieu of idling. When traffic is
bidirectional, the additional response traffic impacts the adver-
sary’s pings (blue line), even with the added dummies. Here the
amount of response traffic is the same size as the outgoing re-
quests, but in general the user will have no way of forecasting
the size or time of a response.

an inter-ping delay of 10 ms. The results are shown in Figure 7. As
with the home switch, we also compute the correlation coefficients
between RTTs and victim traffic and give the results in Figure 6.

While this attack requires the victim to generate over 2 Gbps
of traffic, an adversary can fine tune, à la binary search, its own
contribution of traffic until it observes signs of congestion for victims
with fewer traffic. It can also use this approach to get a rough estimate
of a victim’s volume.

7.2 Client-side Traffic Shaping
Can a concerned victim prevent the above attack without the switch’s
help with the use of well-timed dummies? To answer this question
we consider two cases: (1) victim alternates between sending unidi-
rectional traffic for a few seconds (UDP traffic that does not trigger a
response) and then idles; and (2) victim alternates between sending
bidirectional traffic for a few seconds (UDP requests that trigger
a response) and then idles. Throughout the experiment, the adver-
sary probes the switch every 10 ms. Figure 8a shows the result for
case (1) on the home switch. We see that masking idle time with
dummy traffic (dashed red line) is indeed effective—observe the
blue line, which captures the adversary’s observations, remains un-
changed as the client idles. This is expected, as dummy packets are
indistinguishable from real packets.

Figure 8b shows the result for case (2). Unlike the prior case, the
solid red line depicts not only requests but also the contribution of
responses. We find that the adversary’s observation (blue line) is
significantly different when the victim is sending real traffic versus
dummy traffic (which does not trigger a response). For the client to
mask this discrepancy it would need to have a priori knowledge of
the response distribution and timing and somehow fabricate dummy
responses. Such a task is untenable in practice.

7.3 Does IFS hide private clients’ actions?
As Section 7.2 shows, client-side traffic shaping (i.e., the addition
of dummy traffic) on its own is not enough to provide privacy. As
a result, it becomes necessary to enlist the switch’s help. To that
end, we turn our attention to our implementation of IFS in a PIFO
simulator [4]. Since indifferent clients can be serviced by any work-
conserving scheduler, we use FIFO for them. We have private clients
pre-load their dummy pools before our simulations start. In each

0 200 400 600 800 1000
Slot

0

20

40

60

80

of

 P
ac

ke
ts

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Pi
ng

 T
im

e
(s

lo
ts

)

Figure 9: Attack under IFS in a PIFO simulator [4]. The black
line shows the delay experienced by adversarial pings (right-
side y-axis), whereas the violet and blue lines show the traffic
patterns of private and indifferent clients respectively (left-side
y-axis). We use identical indifferent traffic on both stages and
activate private clients only in the second stage. The black line
is identical in both stages indicating that private clients’ actions
do no affect the adversary’s probes.

experiment, the switch has a capacity of 100 packets per time slot
and we consider a slot to consist of one phase of insertion and then
a corresponding phase of dequeueing (the current PIFO simulator
works at the granularity of abstract “packets”).

We evaluate a setting with 5 clients: 2 are indifferent, 2 are private,
and one is the attacker. We make the attacker a private client as well
(if we make the attacker indifferent then its packets will have high
priority and will not be affected by the packets of private clients).
Clients send packets following a Poisson process with a rate of 20
packets per slot, whereas the attacker carries out the attack described
in Section 2.1 by sending 18 ping packets every slot. We simulate
two 500-slot stages. In the first stage, we activate only the indifferent
clients (the non-adversary private clients remain idle). In the second
stage we also activate the non-adversary private clients. To make the
results more clear, we fix the random choices made by the indifferent
clients to be the same as those of the first stage so that the incoming
indifferent traffic is identical in both stages.

Figure 9 gives the results. The x-axis gives the simulation’s slots,
the black line (and associated right-hand y-axis) shows the average
waiting time of the adversary’s probes, the blue lines give the total
number of packets sent by indifferent clients, and the violet lines
depict the number of packets sent by private client. As we expect, IFS
ensures that the adversary’s observations are identical in both stages
despite private clients being idle in the first and active in the second.
Indeed, the Pearson and Spearman correlation coefficients under IFS
are close to 0, with p-values indicating that we cannot disregard the
null hypothesis (there is no correlation). An (insecure) FIFO baseline
running on the same simulator with the same packet distributions
has much higher and statistically significant correlations. The results
are in Figure 6.

7.4 How does IFS impact clients?
At the outset, our philosophy was that IFS should preserve the per-
formance of the status quo for indifferent clients, while providing
privacy for those who want it at a cost comparable to prior ap-
proaches. We evaluate this goal with 3 metrics: latency, throughput,
and network overhead for private clients.

10

FIFO PTDMA IFS
Scheduling Policy

0

20

40

60

80

100

Ti
m

e
sp

en
t i

n
qu

eu
e

(m
s)

Private
Indifferent

(a) Bursty traffic distribution

FIFO PTDMA IFS
Scheduling Policy

0

20

40

60

80

100

Ti
m

e
sp

en
t i

n
qu

eu
e

(m
s)

Private
Indifferent

(b) Steady traffic distribution

Figure 10: Average queuing time across client types and
schedulers. FIFO treats all clients as indifferent and is work-
conserving, whereas p-TDMA treats all clients as private and
wastes slots when clients idle. IFS (using FIFO for indifferent
clients) achieves lower queuing time than FIFO for indifferent
clients and than p-TDMA for private clients. Error bars show
the 99𝑡ℎ-percentile waiting time.

Latency. In order to measure the latency impact of IFS on clients
we consider two workloads: a bursty workload (e.g., Web browsing)
and a steady workload.

Bursty workload: we record 150 5-minute packet traces following
a similar idea to Section 7.1: we visit an Alexa top-50, wait a random
amount of time, and then visit another site. We implement FIFO,
p-TDMA, and IFS on the PIFO simulator configured with an slot
interval of 280 𝜇s and 300 Mbps bandwidth (similar to our home
switch). We feed the 150 traces (representing 90 private and 60
indifferent clients) into the PIFO simulator, and measure the mean
and 99th percentile time that packets of each client type spend in the
queue. Figure 10a gives the results.

Since FIFO has no notion of client type and is work conserving,
all clients’ packets achieve reasonably low latency (although without
privacy). On the other hand, p-TDMA treats all clients as private and
uses dummy packets that waste a slot whenever a client idles. As a
result, clients’ packet latency is considerably higher than in FIFO,
which highlights the cost of privacy. Finally, IFS is type-aware and
processes clients’ packets accordingly. Indifferent clients, owing to
their high priority, achieve lower latency than they do under FIFO
due to the sharing incentive implied by indifferent delay monotonic-
ity (§4.4). And while private clients do worse than indifferent clients
due to their low priority, they are still better off than under p-TDMA
owing to the sharing incentive implied by IFS’s conjectured pri-
vate delay monotonicity (§4.4). Specifically, since indifferent clients
yield their slot whenever they idle, these spare slots are given to
private clients, thereby lowering their expected packet delay when
compared to p-TDMA.

Steady workload: we generate the same number of packets as the
bursty workload, but following a Poisson distribution with exponen-
tial packet size. The results are shown in Figure 10b and are similar
to those of the bursty experiment—the main difference is that all
clients enjoy lower latency in this scenario, which is expected from
an arrival pattern with lower variance [39].

Overall, the above experiments demonstrate that IFS can indeed
benefit all types of clients: private clients get privacy, albeit at a cost,
whereas indifferent clients satisfied with the status quo can do even
better than they do today!

Network overhead. We also measure the additional bandwidth re-
quired by the private client for both padding and dummy packets

20 40 60 80 100 120 140 160
Incoming Rate Per Client (Mb s)

10)5
10)3
10)1
101
103

Ti
m
e
s
en
t i
n
qu
eu
e
(m

s)

 rivate latenc(

indifferent latenc(

0.4

0.6

0.8

1.0

Th
ro
ug
h
ut
 (%

 o
f m

ax
)

throughput

(a) No rate limiting

20 25 30 35 40 45 50 55 60
Incoming Rate Per Client (Mb s)

10)4

10)2

100

102

Ti
m
e
s
en
t i
n
qu
eu
e
(m

s)

 rivate latenc(

indifferent latenc(

indifferent rate limit 0.4

0.6

0.8

1.0

Th
ro
ug
h
ut
 (%

 o
f m

ax
)

throughput

(b) Rate-limited indifferent clients

20 25 30 35 40 45 50 55 60
Incoming Rate Per Indifferent Client (Mb s)

10)4

10)2

100

102
Ti
m
e
s
en
t i
n
qu
eu
e
(m

s)
 rivate latenc(

indifferent latenc(
indifferent rate limit 0.4

0.6

0.8

1.0

Th
ro
ug
h
ut
 (%

 o
f m

ax
)

throughput

(c) Rate-limited indifferent clients with fixed private client rate

Figure 11: Effect of clients’ rates on average private latency
(purple), indifferent latency (blue), and throughput (black).
When applicable, we show the rate limit imposed on indifferent
clients (blue dashed).

for one of the 5-minute traces. The original workload contained
19.83 MB of data; padding increases the network communication to
38.37 MB. Furthermore, submitting the dummies required by IFS
introduces an additional 51.08 MB of network communication.

Throughput. To measure how IFS responds to increasing load, we
carry out several experiments that tease out the effect of clients’
sending rates on private and indifferent client latency and throughput,
and the effect of rate limits. We use the same settings and traces for
the PIFO simulator as the previous experiment, which are similar to
our home switch. A key distinction is that we map the 150 traces to
5 larger clients (rather than dealing with 150 clients) to increase the
range of sending rates for each client.

The experiments are as follows. The first experiment sets the
sending rate of all clients to 24 Mbps, which corresponds to a total
rate of 120Mbps, or 40% of the simulator’s capacity. We disable
all rate-limiting and run the simulator for 5 minutes (≈1M slots),
measuring the average latency of private and indifferent clients,
and the total throughput. We then increment each client’s rate by 6
Mbps, repeating the entire process until the throughput has flattened

11

out. This experiment gives us an idea of how different clients are
impacted in the absence of rate limits.

The second experiment is the same as the first, but rate-limits
indifferent clients to 45 Mbps. The third experiment is the same as
the second but only increments the rates of indifferent clients during
each trial—private clients’ rates are fixed at 42 Mbps (we chose
this value as it was the inflection point at which the latency spiked
for private clients in the second experiment). This last experiment
helps us tease out if private clients are at all negatively impacted
by rate-limited indifferent clients increasing the load in the system
(thereby violating IFS’s sharing incentive properties).

Figure 11 gives the results. Figure 11a shows that as clients’ load
increase, private clients begin to starve early on and experience a
latency spike at around 42 Mbps due to indifferent clients going
first. Indifferent clients, on the other hand, only suffer later when
the switch approaches its capacity. This confirms our intuition that
without rate-limiting, indifferent clients are free to consume all of
the available bandwidth and completely starve private clients.

Figure 11b shows that placing a rate limit on indifferent client is
indeed sufficient to prevent the degradation of private clients’ latency
while still keeping cumulative throughput high. Note here throughput
flattens at around 80% of the switch’s capacity, in contrast to the
first experiment. This is not because of dummy packets—the private
queues are congested and so never need to process a dummy—but
rather due to private clients padding their packets which reduces the
system’s goodput.

Lastly, Figure 11c demonstrates that private clients’, whose rate
is fixed, continue to experience the same service even as indifferent
clients increase their load. Likewise, observe that the line for indif-
ferent clients is nearly identical to that of the second experiment
despite the fact that private clients start off sending more traffic than
indifferent ones. This is expected since in IFS, indifferent clients are
not affected by private ones. Note that the cumulative throughput
here is lower because we are not increasing the load from private
clients, and indifferent clients are rate limited, so no client is using
the switch’s spare capacity.

8 DISCUSSION
IFS is a hybrid scheduling discipline that provides privacy to clients
who want it, without burdening clients who are indifferent. While
we are able to build IFS at line rate on switches that support PIFO,
and our evaluation confirms that indifferent clients are as well off
or even better under IFS than they are today, the requirements for
private clients are high.

Main limitations. Private clients need to maintain dummy pools
for all egress ports (Figure 3), which is costly. A compromise is for
them to have dummy pools only for the egress ports they use, at the
risk of potentially leaking the destination of their traffic (although
redundant data center topologies like FatTrees [6], VL2 [31], and
F10 [46] might sufficiently obscure the destination). This limitation
could be addressed with switch extensions. For example, support for
idling or the generation of packets would free clients from having or
stocking dummy pools. Alternatively, if queues could be associated
with multiple ports, some of those ports could be used to recirculate
dummies as we do for padding (§6.3).

IFS also requires the switch to have access to a number of queues
that is linear in the number of clients. Even in a setting where we
treat clients as hosts rather than network flows, this is challenging
to satisfy. One potential idea is to leverage TEA [38], which allows
switches to use external memory to store additional state for lookup
tables. With TEA (or some other similar architecture), IFS could
store buffers off-switch, thereby virtualizing the necessarily large
number of queues.

Potential optimization. In our threat model (§3.1), the attacker tar-
gets a particular switch. As a result, it might be hard for the attacker
to “chase” packets deep into the network, as doing so would require
probing all potential switches on all possible paths without prior
knowledge of which service the victim is even accessing. Further-
more, switches deeper in the network aggregate traffic from many
clients, masking the contribution of any one client. Consequently,
clients might be able to let dummy packets have small TTLs so that
they are discarded early on in the network to reduce overhead for
other switches. We leave finding the optimal TTL as a function of
network topology, packet aggregation rate, and attacker capabilities
as an interesting open question.

Algorithmic extensions. In modeling clients’ actions and desires,
which were critical to our incentive compatibility argument of Sec-
tion 4.3, we made a few assumptions. First, we assumed that private
client’s desire for privacy was absolute: in other words, private
clients accept any additional delay instead of risking a privacy viola-
tion. Second, we assumed that privacy is a binary notion: either one
enjoys privacy or not. Third, we focused only on packet delay but
not on throughput.

Future work could relax these assumptions. For example, we
could allow for “partially private” clients, which are clients willing
to leak a controlled amount of information. The challenge here
is characterizing the leakage of information that results from an
attackers’ observations and devising a mechanism that can enforce a
bound on such leakage. A starting point is to draw inspiration from
differential privacy [26].

Since IFS’s treatment of indifferent clients is work conserving,
it gifts any slack to private clients. As a result, private clients are
actually allocated a bandwidth share higher than the rate they pur-
chased whenever the switch is underutilized (due to indifferent
clients idling). This might lead an indifferent client who greatly
values bandwidth and who is willing to tolerate a higher latency
to label itself as private to enjoy more bandwidth at a lower finan-
cial cost. We could incorporate this additional variable into clients’
objective functions, and design a variant of IFS that incentivizes
truthfulness in the presence of these other objectives.

Code. Our code is available at https://github.com/eniac/IFS.

Acknowledgments
We thank the SIGCOMM and CCS reviewers for their feedback,
which significantly improved the content and presentation of our
work. We also thank Vincent Liu for invaluable discussions. This
work was funded in part by NSF grants CCF-1733794, CNS-2045861,
CNS-2107147, CNS-2124184; by DARPA contract HR0011-17-
C0047; and by a gift from JP Morgan Chase & Co. Any views or
opinions expressed herein are solely those of the authors listed.

12

https://github.com/eniac/IFS

REFERENCES
[1] Alexa - top sites. https://www.alexa.com/topsites.
[2] iperf3. https://iperf.fr, 2015.
[3] pifo-hardware. https://github.com/programmable-scheduling/pifo-hardware,

2015.
[4] C++ reference implementation of a pipeline of Push-In First-Out queues.

https://github.com/programmable-scheduling/pifo-machine, 2016.
[5] Sp-pifo: Approximating push-in first-out behaviors using strict-priority queues.

https://github.com/nsg-ethz/sp-pifo, 2020.
[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In Proceedings of the ACM SIGCOMM Conference, 2008.
[7] A. G. Alcoz, A. Dietmüller, and L. Vanbever. SP-PIFO: Approximating push-in

first-out behaviors using strict-priority queues. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Feb. 2020.

[8] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-to-end
performance isolation through virtual datacenters. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Oct. 2014.

[9] S. Angel, S. Kannan, and Z. Ratliff. Private resource allocators and their
applications. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), May 2020.

[10] S. Angel, D. Lazar, and I. Tzialla. What’s a little leakage between friends? In
Proceedings of the ACM Workshop on Privacy in the Electronic Society (WPES),
Oct. 2018.

[11] S. Angel and S. Setty. Unobservable communication over fully untrusted
infrastructure. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov. 2016.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable
datacenter networks. In Proceedings of the ACM SIGCOMM Conference, 2011.

[13] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. O’Shea.
Chatty tenants and the cloud network sharing problem. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2013.

[14] O. Berthold and H. Langos. Dummy traffic against long term intersection attacks.
In Proceedings of the Workshop on Privacy Enhancing Technologies (PET), Mar.
2002.

[15] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vulnerabilities
in encrypted HTTP streams. In Proceedings of the Workshop on Privacy
Enhancing Technologies (PET), 2005.

[16] A. Cabrera Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García, and N. Tuveri.
Port contention for fun and profit. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), May 2019.

[17] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2), Feb. 1981.

[18] D. L. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1), 1988.

[19] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. HORNET:
High-speed onion routing at the network layer. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), Oct. 2015.

[20] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and C. Troncoso.
TARANET: Traffic-analysis resistant anonymity at the network layer. In
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), Apr. 2018.

[21] R. Cooper. Introduction to Queueing Theory. North Holland, 1981.
[22] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable anonymous group

messaging. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2010.

[23] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type III
anonymous remailer protocol. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), May 2003.

[24] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In Proceedings of the ACM SIGCOMM Conference, 1989.

[25] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the USENIX Security Symposium, Aug. 2004.

[26] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Theory of Cryptography
Conference (TCC), Mar. 2006.

[27] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo, I still see
you: Why efficient traffic analysis countermeasures fail. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2012.

[28] A. Ghassami and N. Kiyavash. A covert queueing channel in FCFS schedulers.
IEEE Transactions on Information Forensics and Security, 13(6), 2018.

[29] X. Gong and N. Kiyavash. Quantifying the information leakage in timing side
channels in deterministic work-conserving schedulers. IEEE/ACM Transactions
on Networking (TON), 24(3), 2016.

[30] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks. IEEE/ACM
Transactions on Networking, 5(5), Oct. 1997.

[31] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,
P. Patel, and S. Sengupta. VL2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM Conference, 2009.

[32] C. R. Heathcote. Preemptive priority queueing. Biometrika, 48(1/2):57–63, 1961.
[33] S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and N. Borisov. Low-cost side

channel remote traffic analysis attack in packet networks. In Proceedings of the
IEEE International Conference on Communications (ICC), Aug. 2010.

[34] S. Kadloor, X. Gong, N. Kiyavash, and P. Venkitasubramaniam. Designing router
scheduling policies: A privacy perspective. IEEE Transactions on Signal
Processing, 60(4):2001–2012, 2012.

[35] S. Kadloor and N. Kiyavash. Delay-privacy tradeoff in the design of scheduling
policies. IEEE Transactions on Information Theory, 61(5), 2015.

[36] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam. Mitigating timing side
channel in shared schedulers. IEEE/ACM Transactions on Networking (TON),
24(3), 2016.

[37] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of
product ciphers. In Proceedings of the European Symposium on Research in
Computer Security (ESORICS), Sept. 1998.

[38] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan. TEA: Enabling
state-intensive network functions on programmable switches. In Proceedings of
the ACM SIGCOMM Conference, 2020.

[39] J. F. C. Kingman. On queues in heavy traffic. Journal of the Royal Statistical
Society. Series B (Methodological), 24(2):383–392, 1962.

[40] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford. Atom: Horizontally
scaling strong anonymity. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2017.

[41] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An efficient communication
system with strong anonymity. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2016.

[42] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt. Herd: A
scalable, traffic analysis resistant anonymity network for VoIP systems. In
Proceedings of the ACM SIGCOMM Conference, Aug. 2015.

[43] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and P. Francis.
Towards efficient traffic-analysis resistant anonymity networks. In Proceedings of
the ACM SIGCOMM Conference, Aug. 2013.

[44] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma.
Application-driven bandwidth guarantees in datacenters. In Proceedings of the
ACM SIGCOMM Conference, 2014.

[45] M. Liberatore and B. N. Levine. Inferring the source of encrypted HTTP
connections. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2006.

[46] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-tolerant
engineered network. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[47] M. B. Mamoun, J.-M. Fourneau, and N. Pekergin. Analyzing weighted round
robin policies with a stochastic comparison approach. Computers & Operations
Research, 35(8), 2008.

[48] A. Mehta, M. Alzayat, R. de Viti, B. B. Brandenburg, P. Druschel, and D. Garg.
Pacer: Network side-channel mitigation in the cloud, 2020.

[49] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking, 1(3), June 1993.

[50] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos.
Elasticswitch: practical work-conserving bandwidth guarantees for cloud
computing. In Proceedings of the ACM SIGCOMM Conference, 2013.

[51] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my
cloud:exploring information leakage inthird-party compute clouds. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2009.

[52] D. Shah and J. Shin. Randomized scheduling algorithm for queueing networks.
Annals of Applied Probability, 22(1), Feb. 2012.

[53] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approximating fair
queueing on reconfigurable switches. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2018.

[54] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T. Chuang, T. Edsall,
M. Alizadeh, S. Katti, N. McKeown, and H. Balakrishnan. Towards
programmable packet scheduling. In Proceedings of the ACM Workshop on Hot
Topics in Networks (HotNets), 2015.

[55] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable packet
scheduling at line rate. In Proceedings of the ACM SIGCOMM Conference, 2016.

[56] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers:
Making strong anonymity scale. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Oct. 2012.

[57] C. V. Wright, L. K. Ballard, S. E. Coull, F. Monrose, and G. M. Masson.
Uncovering spoken phrases in encrypted voice over IP conversations. ACM
Transactions on Information and System Security, 13(4), 2010.

13

https://www.alexa.com/topsites
https://iperf.fr
https://github.com/programmable-scheduling/pifo-hardware
https://github.com/programmable-scheduling/pifo-machine
https://github.com/nsg-ethz/sp-pifo

[58] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-speed covert
channel attacks in the cloud. In Proceedings of the USENIX Security Symposium,
2012.

[59] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu, and X. Jin.
Programmable packet scheduling with a single queue. In Proceedings of the ACM
SIGCOMM Conference, 2021.

[60] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency
detection in the cloud via side-channel analysis. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2011.

A DELAY AND CLIENT COMPOSITION
IFS is a hybrid scheduling algorithm that treats two types of clients:
private and indifferent. Here, we study the effect that varying the
number of clients of a particular type has on the average delay
experienced by clients of each type. Our experiment is done on the
PIFO simulator [4] and consists of four clients, each with a Poisson
arrival rate with mean 0.1 packets/slot. For each trial, we measure the
average waiting time experienced by each client, and then compute
the average of these values for the private and indifferent clients
respectively. We then vary the number of clients that are private
and indifferent. We start with all four clients being private and then
progressively convert one client each trial to become indifferent until
all clients are indifferent. Like our other IFS simulations, we ensure
that each private client has a sufficient amount of dummy packets
already present in the system

Figure 12 gives the results. We make three observations:
• The average delay experienced by private clients is strictly higher

than that of indifferent clients in all configurations.
• The delay of indifferent clients is strictly increasing.
• The delay of private clients is strictly decreasing.

The first observation showcases IFS’s incentive compatibility (§4.3),
whereas the latter two demonstrate IFS’s indifferent and private de-
lay monotonicity (§4.4). We have also experimented with other rates
and number of clients, and the trends are similar.

B INDIFFERENCE INCENTIVE
Recall from Section 4.3 the definition of indifference incentive. That
is, an indifferent client is incentivized to tell the truth because doing
so is its dominant strategy.

We formalize this as follows. Let 𝑃 and 𝐼 be the sets of active
private and indifferent clients, respectively. Let 𝑐 be a client that is
considering whether to declare itself as private or indifferent. IFS
guarantees that for all 𝑃 and 𝐼 :

𝐷𝑐 (𝜆𝑐 , 𝑃, 𝐼 ∪ {𝑐}) ≤ 𝐷𝑐 (𝜆𝑐 , 𝑃 ∪ {𝑐}, 𝐼)

where 𝐷𝑐 is the expected delay for 𝑐’s packets given a rate 𝜆𝑐 , and a
set of private and indifferent clients. Note that here we assume that
either no rate limiting is done, or all clients (private and indifferent)
are rate limited. Otherwise, this definition does not always hold as
we discuss in Section 4.5.

PROOF. Let a scheduler’s client allocation sequence 𝑆 = 𝑐𝑎, 𝑐𝑏 ...

be defined such that the 𝑖th element in 𝑆 , 𝑆𝑖 = 𝑐𝑎 if and only if
the scheduler allocates the 𝑖th slot to client 𝑐𝑎 , i.e. the scheduler
processes a packet from client 𝑐𝑎 in its 𝑖th time slot. Note that if
there is at least one private client registered to the scheduler, each
slot will be allocated to one client; In the case of all indifferent

4 priva
te, 0 in

differen
t

3 priva
te, 1 in

differen
t

2 priva
te, 2 in

differen
t

1 priva
te, 3 in

differen
t

0 priva
te, 4 in

differen
t

Client Configuration

0.0

0.5

1.0

1.5

2.0

2.5

Av
er
ag
e
W
ai
tin

g
Ti
m
e
In
 Q
ue
ue
 (s
lo
ts
)

private clients

indifferent clients

Figure 12: For each configuration described by the x-axis, the
red point represents the average waiting time of a private client
in that configuration and the blue point represents the same
for an indifferent client. We can see that the red line is strictly
higher, which incentivizes indifferent clients.

clients, we represent unallocated slots by letting that element of the
sequence be ∅.

We start with the following simple lemma:

LEMMA B.1. If 𝑆𝑖 = 𝑐𝑎 and 𝑐𝑎 ∈ 𝑃 , then at time slot 𝑖 no
indifferent client can have any packets waiting at the scheduler.

PROOF. If there were any indifferent packets queued, IFS would
have processed them before allocating a slot to a private client due
to its strict priority for indifferent clients. □

We can also partition a sequence into subsequences in which the
scheduler allocated slots to indifferent clients and those in which the
scheduler allocated slots to private clients, and if we require these
subsequences to be as long as possible, this partitioning is unique.

Now we will examine two client allocation sequences 𝑆 and 𝑆 ′.
The sequence 𝑆 occurs in a scheduler with private clients 𝑃 and
indifferent clients 𝐼 such that there is an indifferent client 𝑐 ∈ 𝐼 . 𝑆 ′
describes the allocation that occurs in a nearly identical scheduler
with private clients 𝑃 ′ = 𝑃 ∪ {𝑐} and indifferent clients 𝐼 ′ = 𝑃 \ {𝑐}.

Now we will examine a packet 𝑝 sent by 𝑐. Suppose that this
packet was processed at time slot 𝑖, so that 𝑆𝑖 = 𝑐. 𝑆𝑖 falls into an
indifferent partition, and we claim that for any random values chosen
by the scheduler, 𝑝 would have been processed in this partition. 𝑝
could not have been processed in a previous partition, because the
immediate preceding partition is private and this contradicts Lemma
B.1. Similarly, 𝑝 could not have been processed in a later partition,
because the immediate following partition is also private. We also
know that 𝑝 must have arrived during this same partition.

We will now examine how the partitions of 𝑆 differ from those of
𝑆 ′. There are three cases: (1) an indifferent partition in 𝑆 consisted
entirely of packets produced by 𝑐, in which case when 𝑐 becomes
private this partition becomes private and merges with its two sur-
rounding partitions, and (2) an indifferent partition in 𝑆 contains

14

no packets from 𝑐, in which case this partition does not change in
𝑆 ′, and (3) an indifferent partition in 𝑆 contains packets from 𝑐 as
well as those from clients that are not 𝑐, in which case the partition
splits in 𝑆 ′, with the slots allocated to 𝑐 merging with the following,
private partition. Finally, we note that in case (1), the set of packets
from 𝑐 will not be assigned slots earlier than they were in 𝑆 (individ-
ual packets may fare better, but only by switching slots with other
packets from 𝑐) and as well for case (3). Further, if there is at least
one other client in the scheduler, either indifferent or private, then 𝑐

will perform worse on expectation. □

C INDIFFERENT DELAY MONOTONIC
First, we state the following. Given four clients, 𝑝, 𝑞, 𝑟 , and 𝑠:

𝐷𝑝 (𝜆𝑝 , {𝑟, 𝑠}, {𝑝, 𝑞}) ≤ 𝐷𝑝 (𝜆𝑝 , {𝑠}, {𝑝, 𝑞, 𝑟 })
In fact, this statement holds not just for the expected delay, but

also for any possible arrival patterns that are compatible with the
clients’ announced rates.

This is trivially true when the indifferent clients use FIFO. When
we use randomized round robin, we can define our random selec-
tion over indifferent clients in the following way: each time slot,
we randomly choose a client from the set {𝑝, 𝑞, 𝑟 }, based on each
client’s purchased rate. If the first client selected is indifferent and
has a packet queued, that client’s packet will be processed this slot.
Otherwise, remove this client from the set, and if 𝑟 is private and
still in the set, remove 𝑟 also. Now continue to pick clients from
the set until the selected client has a packet queued—if the set is
empty before this happens, idle this slot. This will yield our desired
selection probabilities, but will allow us to use the same random se-
lections regardless of the privacy of client 𝑟 , allowing us to compare
the above situations. It is clear that no packet of 𝑝 will benefit from
the indifference of 𝑟 .

Note that both 𝑞 and 𝑠 can be either zero-rate clients (identical to
an empty set of clients) or the client obtained by combining multiple
clients’ packet sequences (identical to a set of multiple clients).
Therefore, the above property covers every possible case claimed by
indifferent delay monotonicity.

D PRIVATE DELAY MONOTONIC
Recall from Definition 4.2 in Section 4.4 that private delay mono-
tonicity means that as more clients become private, none of the
existing private processes is better off. As a result, private clients
do not care about the composition of the system (in terms of pri-
vate or indifferent clients). We conjecture that IFS is private delay
monotonic.

We do not have a formal proof for this conjecture, but we have
empirical evidence that supports this (Appendix A). We also prove
it to be true in a special case. We leave it for future work to formally
prove or disprove this conjecture. It requires modeling complex in-
teractions between multiple scheduling algorithms, which is outside
the scope of this work.

Evidence in favor. We can show the validity of our conjecture in
the specific case where there are exactly two clients of Poisson rates
present, with some minor stipulations. Notice that in this situation,
our policy reduces to a simple priority queue when one client chooses
to be private and the other indifferent, and p-TDMA when both are

private. We have provided the delay for the latter case in Appendix E.
For the former case, we reference the work of Heathcote [32] to
obtain the waiting time of a second class client in a preemptive
priority queue of M/D/1 form with a fixed service distribution of 1.
Letting 𝑝 denote our private client and 𝑞 our indifferent client, with
𝜆𝑝 , 𝜆𝑞 their respective rates and 𝜆 = 𝜆𝑝 + 𝜆𝑞 , the expected waiting
time of client 𝑝 is:

1 − 𝜆
2

(1 − 𝜆𝑞) (1 − 𝜆)
We can compare this waiting time with that obtained via our

equation for p-TDMA. Our conjecture holds when the waiting time
of 𝑝 is lower when 𝑞 is indifferent. If we assume that 𝜆𝑝 = 𝜆𝑞 , then
we find that this waiting time is strictly lower than that of pTDMA
on the interval (0, 1), so our conjecture holds throughout.

We will also explore two additional cases in this two-client situa-
tion: We will let 𝜆𝑝 = 1

𝑏
· 𝜆 or 𝜆𝑝 = 𝑏−1

𝑏
· 𝜆 for some positive integer

𝑏. For the first case, we can calculate the expected delay directly
from our p-TDMA equation as

𝑊𝑝𝑡𝑑𝑚𝑎 (𝜆,𝑏) = 1 + 1
2(1 − 𝜆) +

𝑏 − 1
1 − 𝜆

and from the priority queue delay above as

𝑊𝑝𝑟𝑖𝑜 (𝜆,𝑏) =
1 − 𝜆

2

(1 − 𝑏−1
𝑏

𝜆) (1 − 𝜆)
Letting 𝑓 (𝜆,𝑏) =𝑊𝑝𝑟𝑖𝑜 (𝜆,𝑏)−𝑊𝑝𝑑𝑡𝑚𝑎 (𝜆,𝑏), we can compute the

partial derivative of 𝑓 with respect to 𝑏 an find that this is negative
when 0 < 𝜆 < 1. Because 𝑓 (𝜆, 1) is negative for all 𝜆, 𝑓 (𝜆,𝑏) is
negative for the range of values we care about.

In the second case, we can compute the p-TDMA delay when
𝜆𝑝 = 𝑏−1

𝑏
by using the fact that, letting this delay be 𝑊̂𝑝𝑡𝑚𝑑𝑎 (𝜆,𝑏),

1
𝑏
𝑊𝑝𝑡𝑑𝑚𝑎 (𝜆,𝑏) +

𝑏 − 1
𝑏

𝑊̂𝑝𝑡𝑑𝑚𝑎 (𝜆,𝑏) =𝑊𝑝𝑡𝑑𝑚𝑎 (𝜆, 2)

Using the same method as above, we find that𝑔(𝜆,𝑏) =𝑊𝑝𝑟𝑖𝑜 (𝜆, 𝑏
𝑏−1)−

𝑊̂𝑝𝑡𝑑𝑚𝑎 (𝜆,𝑏) and the partial derivative of 𝑔 with respect to 𝑏 is neg-
ative when 0 < 𝜆 < 1 and 𝑏 > 1. This, coupled with the fact that
the limit of 𝑔(𝜆,𝑏) approaches −.5 as 𝑏 goes to infinity, regardless of
𝜆, means that 𝑔(𝜆,𝑏) is also negative for the range in which we are
concerned.

While admittedly limited, these two cases, and our inability to
identify counterexamples analytically or empirically, give us hope
that our conjecture (or some slight weakening that perhaps takes into
account the scheduler’s admission threshold 𝐿) might be true for all
settings.

E WORST-CASE EXPECTED DELAYS
To calculate the expected delay for a private client 𝑐, we can use
the following fact, proven by Kadloor et al. [36]: for a proportional
TDMA scheduler with 𝑛 clients with combined rate 𝜆, the average
delay experienced for any packet is:

1 + 1
2(1 − 𝜆) +

𝑛 − 1
1 − 𝜆

We can find the delay for a client with rational rate that consumes
𝑎/𝑏 of the total rate by first calculating the delay of a client with

15

rate 1/𝑏, using the fact that in p-TDMA regardless of the number of
clients, a client with rate 𝜆 in a scheduler with combined rate Λ will
always have the same delay.

To calculate the expected delay for an indifferent client, we first
note that all of the other guarantees of IFS are independent of the
specific flavor of round robin we use, although in Section 4.1 we
have abstracted it away as a random selection. The work of Shah
and Shin [52] provides an analysis of the expected delay of random
scheduling, which is a similar concept to ours but in a different
context, and the work of Mamoun, Fourneau, and Pekergin [47]
provides an analysis of the delay of (deterministic) weighted round
robin. If instead we use FIFO on the indifferent clients, the expected
delay is 1 + 1

2(1−𝜆) [21].

F EQUIVALENCE OF DUMMY POOLS
We can show equivalency between a model in which the switch idles
for a time slot where a private client has nothing to send (“abstract
model”), and a model in which the switch leverages a dummy packet
that has been previously enqueued (“actual model”).

We make the simplifying assumption that there is no latency be-
tween the client and the switch. In practice, this just means that the
switch has all of the dummies already present, which can be ensured
by having clients preload their dummy pools and maintain them pop-
ulated. First we will fix all of the inputs (clients and corresponding
rates, packets departure times and corresponding arrival times, and
internal randomness) for both models.

We will start with the case where all clients are private. Let 𝑠 =
0, 1, 2, . . . be the sequence of slots over the lifetime of the scheduler.
We can partition 𝑠 into subsequences over the set of clients, i.e. 𝑠𝑝
is the subsequence of 𝑠 assigned to client 𝑝. Because indifferent
clients do not generate dummy packets, the arrival times for the
packets of each indifferent client will be identical in both models.
One consequence of IFS is that private clients cannot affect the
schedule of any indifferent client, so for any indifferent client 𝑝𝑖 ,
the subsequence 𝑠𝑝𝑖 will also be identical in both models. We know
that any slot not allocated to an indifferent client will be allocated
to a private client, and the selection of which private client depends
only on the reserved rates of the private clients and a sequence of
random selections, both of which we have ensured to be equal in
both models. Therefore, for any client, indifferent or private, 𝑝, the
subsequence 𝑠𝑝 is identical in the two models.

Now we will introduce a function 𝑛𝑒𝑥𝑡𝑝 (𝑖) = min{𝑥 |𝑥 > 𝑖, 𝑥 ∈
𝑠𝑝 }. In other words, 𝑛𝑒𝑥𝑡𝑝 (𝑖) returns the next slot allocated to client
𝑝 after slot 𝑖. We will also let 𝑎𝑟𝑟 (𝑟𝑖) and 𝑑𝑒𝑝 (𝑟𝑖) express the arrival
and departure slots associated with packet 𝑖, respectively. We assume
that all packets arrive at the end of a slot, after the packet associated
with that slot has left the queue.

LEMMA F.1. For two packets of a common client 𝑝, 𝑟𝑖 and its
preceding packet 𝑟𝑖−1,

𝑑𝑒𝑝 (𝑟𝑖) = 𝑛𝑒𝑥𝑡𝑝 (𝑚𝑎𝑥 (𝑎𝑟𝑟 (𝑟𝑖), 𝑑𝑒𝑝 (𝑟𝑖−1)))

PROOF. Assume towards contradiction that a packet 𝑟𝑖 actually
departs at a slot 𝑑𝑒𝑝 (𝑟𝑖) which is different from the one our lemma
predicts, 𝑑𝑒𝑝 ′(𝑟𝑖).

In both models, for any packet 𝑟𝑖 , 𝑑𝑒𝑝 (𝑟𝑖) > 𝑎𝑟𝑟 (𝑟𝑖). When 𝑟𝑖
arrives at the queue, at slot 𝑎𝑟𝑟 (𝑟𝑖), there are two possibilities for

𝑟𝑖−1. Either it had left the queue on this turn or a previous one
(𝑑𝑒𝑝 (𝑟𝑖−1) ≤ 𝑎𝑟𝑟 (𝑟𝑖)), or it is still present in the queue. In the
latter case, we know it will be processed before 𝑟𝑖 , so either way,
𝑑𝑒𝑝 (𝑟𝑖) > 𝑑𝑒𝑝 (𝑟𝑖−1). We also know that 𝑑𝑒𝑝 (𝑟𝑖) ∈ 𝑠𝑝 . Combining
these three statements, we have that 𝑑𝑒𝑝 (𝑟𝑖) > 𝑑𝑒𝑝 ′(𝑟𝑖).

Now consider what kind of packet is handled at slot 𝑑𝑒𝑝 ′(𝑟𝑖).
By definition, 𝑑𝑒𝑝 ′(𝑟𝑖) ∈ 𝑠𝑝 , so it must be a packet associated with
client 𝑝. Further, 𝑑𝑒𝑝 (𝑟𝑖) > 𝑑𝑒𝑝 ′(𝑟𝑖) > 𝑑𝑒𝑝 (𝑟𝑖−1), so because it
occurs between the departures of two consecutive packets from
client 𝑝, it cannot be an actual packet, so it must be a dummy. But
at this slot the subqueue associated with client 𝑝 contains 𝑟𝑖 , as
𝑑𝑒𝑝 (𝑟𝑖) > 𝑑𝑒𝑝 ′(𝑟𝑖) > 𝑎𝑟𝑟 (𝑟𝑖). In the case of the abstract model,
a dummy packet for process 𝑝 will not be created with an actual
packet for client 𝑝 in the subqueue; for the real model, even if there
is a dummy packet in the subqueue it will not be handled before the
higher priority actual packet (𝑟𝑖). Therefore, no such packet other
than 𝑟𝑖 can be assigned to slot 𝑑𝑒𝑝 ′(𝑟𝑖), which is a contradiction.

We can argue similarly that the first packet 𝑟0 of each client 𝑝 will
be allocated to slot 𝑛𝑒𝑥𝑡𝑝 (𝑎𝑟𝑟 (𝑟0)). At this point we have shown that
in both models, each of client 𝑝’s packets 𝑟0, 𝑟1, 𝑟2, . . . are assigned
the same departure slots 𝑑𝑝 = 𝑑𝑒𝑝 (𝑟0), 𝑑𝑒𝑝 (𝑟1), 𝑑𝑒𝑝 (𝑟2), Further,
if we take any slot in 𝑠𝑝 that is not present in 𝑑𝑝 , we can show that
at this slot there are no actual packets associated with 𝑝 in the queue.
Therefore, each such slot is idled (in the abstract model) or assigned
to a dummy packet of 𝑝 (in the real model). □

16

	Abstract
	1 Introduction
	2 Motivation and related work
	2.1 Timing attack on switches and schedulers
	2.2 Existing proposals

	3 Defining privacy
	3.1 Setting and threat model
	3.2 Indistinguishability of arrival sequences
	3.3 Prior approaches guarantee privacy

	4 Making privacy optional
	4.1 Indifferent-first scheduling (IFS)
	4.2 IFS guarantees privacy
	4.3 IFS is incentive-compatible
	4.4 IFS is better for all clients
	4.5 Private client starvation

	5 IFS on programmable switches
	5.1 Registration
	5.2 Emulating switch idling
	5.3 Approximate randomized round robin

	6 IFS on PIFO switches
	6.1 Implementing TDMA
	6.2 Implementing IFS
	6.3 Dealing with variable-size packets
	6.4 Analysis of IFS's properties

	7 Evaluation
	7.1 Are timing side channels a real threat?
	7.2 Client-side Traffic Shaping
	7.3 Does IFS hide private clients' actions?
	7.4 How does IFS impact clients?

	8 Discussion
	References
	A Delay and client composition
	B Indifference incentive
	C Indifferent delay monotonic
	D Private delay monotonic
	E Worst-case expected delays
	F Equivalence of dummy pools

