
Ibex: Privacy-preserving ad conversion tracking and bidding
Ke Zhong

University of Pennsylvania

Yiping Ma

University of Pennsylvania

Sebastian Angel

UPenn and MSR

ABSTRACT
This paper introduces Ibex, an advertising system that reduces the

amount of data that is collected on users while still allowing adver-

tisers to bid on real-time ad auctions and measure the effectiveness

of their ad campaigns. Specifically, Ibex addresses an issue in recent

proposals such as Google’s Privacy Sandbox Topics API in which

browsers send information about topics that are of interest to a

user to advertisers and demand-side platforms (DSPs). DSPs use

this information to (1) determine how much to bid on the auction

for a user who is interested in particular topics, and (2) measure

how well their ad campaign does for a given audience (i.e., measure

conversions). While Topics and related proposals reduce the amount

of user information that is exposed, they still reveal user prefer-

ences. In Ibex, browsers send user information in an encrypted

form that still allows DSPs and advertisers to measure conversions,

compute aggregate statistics such as histograms about users and

their interests, and obliviously bid on auctions without learning

for whom they are bidding. Our implementation of Ibex shows that

creating histograms is 1.7–2.5× more expensive for browsers than

disclosing user information, and Ibex’s oblivious bidding protocol

can finish auctions within 550 ms. We think this makes Ibex capable
of preserving a good experience while improving user privacy.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Privacy protections; •
Information systems→ Online advertising.

KEYWORDS
Online advertising privacy; Private aggregation; Oblivious bidding

ACM Reference Format:
Ke Zhong, Yiping Ma, and Sebastian Angel. 2022. Ibex: Privacy-preserving
ad conversion tracking and bidding. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3548606.3560651

1 INTRODUCTION
Online advertising serves as the financial backbone of the free

Web. Two key components of this ecosystem are the ability of ad

platforms to select relevant ads for users and measure an ad’s ef-

fectiveness. To do so, ad platforms track users’ browsing habits to

understand their behavior and demographics, which helps adver-

tisers predict the value of showing an ad to the user and determine

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3560651

Browser
Ad tag

1. User profile generation

3. Conversion
measurement

2. Estimation
of user value

Third-party
cookies

Advertisers

Ad Exchange
Submit bids

Notify winner

Conversion

Winner

Send ad tag

Figure 1: Lifecycle of a displayed ad today. Advertisers use
third-party cookies to generate the profile of a user. Based
on this profile, advertisers can determine how much to bid
for the user’s attention when the user visits a publisher that
displays ads. After the user has seen the ad, advertisers keep
track of whether the user acted on the ad (a conversion).

whether ads lead to the user performing some action such as buying

a product (known as a conversion). A key issue with the current

state of affairs is that users’ browsing information is collected and

shared by a multitude of providers, from publishers to ad platforms

to advertisers, often without users’ consent. Our animating goal in

this paper is to propose an alternative: we describe Ibex, a system
that allows advertisers to determine the value of a user so that they

can bid in ad auctions, enables the selection of relevant ads for

users, and supports the measurement of conversions—all without
collecting information about individual users.

Figure 1 depicts the end-to-end process that results in an ad being

shown to a user. It begins with a user profile generation phase in

which advertisers (typically with the help of ad platforms) identify

users, track their activities across different sites over time and

aggregate this data, and ultimately generate a profile for each user.

Then during a phase of estimation of user value, when a user visits

a publisher’s site, this visit triggers an auction. The product being

auctioned is real estate on the user’s browser as they navigate a

particular site. To determine the value of such real estate, advertisers

rely on the profiles they have generated in the past for users and

use that information to decide on how much to bid. Entities called

ad exchanges run real-time auctions where they process the bids

of different advertisers to determine whose ad to show to the user.

After a winner is chosen and its ad is displayed in the user’s browser,

a phase of conversion measurement is used to measure the users’

response to the ad: does the user interact with the ad or purchase

some product or subscription as a result?

Protecting user privacy is challenging because in the current

ecosystem, the above phases rely on two operations that must act

on sensitive user information: aggregation and bidding. First, in the

user profile generation and conversion measurement phases, trackers
(e.g., advertisers, ad platforms, demand-side platforms) aggregate

https://doi.org/10.1145/3548606.3560651
https://doi.org/10.1145/3548606.3560651

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

the activities of users across different sites over time using third-

party cookies to get a better idea of who the users are and how

they are affected by ads. Second, in the phase of estimation of user
value, the user’s profile is critical to determine how to bid for the

user during an auction.

Ibex deals with the challenge of data aggregation with a new

protocol that collects the information needed for the user profile
generation and conversion measurement phases but does so at the
granularity of groups of users rather than individuals. In particular,

Ibex adopts the setting of recent industry proposals such as Google’s
Privacy Sandbox FLoC [84] and Topics API [22] that abandon the

use of third-party cookies altogether. Instead, these proposals cap-

ture user profiles in a coarse, but still useful, way with a group id
or several topic identifiers. Ibex extends these proposals to allow

trackers to construct a histogram that conveys how many times a

particular group of users visits certain sites or performs particular

actions after seeing an ad but without ever learning to which group

a particular user belongs.

Ibex also designs an oblivious bidding protocol in which an ad-

vertiser or demand-side platform runs an arbitrary computation on

the collected histograms to determine the value of each particular

group of users (i.e., how much to bid for each group). Then, when

a user visits a publisher and a real-time auction is conducted for

that user, the bidder obliviously submits their bid for the auction

without learning to which group the user belongs or which bid

they even submitted. Ibex then takes these oblivious bids and uses

them as inputs to an existing two-party private auction protocol

(e.g., Addax [89]). The result is that the auctioneers learn who the

winner of the auction is and how much they must pay, but they

learn no information about the losing bidders’ bids. Finally, the

auctioneers charge the winning bidder but do so after a batch of

auctions and (optionally) after some small amount of noise is added.

This ensures that the final bill itself does not reveal to the bidder

the group of a particular user in a particular auction.

In more detail, Ibex’s technical contributions are:
• Private histogram.A new two-party asymmetric private aggre-
gation protocol that combines secret sharing and homomorphic

encryption. The protocol requires one of the parties to very

cheaply validate some of the inputs provided by the browser

while the other party performs more (but still lightweight) oper-

ations. Crucially the two parties never talk to each other directly,

which avoids a privacy vulnerability of prior aggregation proto-

cols where one large ad platform helps aggregate reports of many

advertisers and can piece together users’ interests (§4.1). Having

one party partially validate the inputs of the browser means that

Ibex avoids expensive proofs to ensure that a malicious browser

is not supplying bogus inputs. This means that the computation

costs for browsers are minimal: they only need to split their

aggregation report into additive shares and communicate the

share (and some other materials) to each aggregator.

• Oblivious bidding. A new protocol whereby a bidder can sub-

mit the appropriate bid without learning the user’s group. To

do so, the bidder first pre-generates bids for different groups of

users, encrypts secret shares of the bids, and stores them in a pub-

lic bidding database. The user’s browser fetches the encrypted

bid shares corresponding to the user’s group privately using

private information retrieval (PIR) and submits the encrypted bid

shares to the two auction servers that compute the auction. In

the process above, no party learns the profile of the user.

Our implementation of Ibex shows that with Ibex’s private his-
togram aggregation, the response time when a browser visits a site

increases to 1.7–2.5× over the status quo with no privacy. In the

most optimistic case (out of many that we evaluate), the oblivious

bidding protocol is fast enough to complete an auction in 550 ms,

which is about 1.8× slower than existing non-private auctions.

Limitations. Besides data aggregation and bidding, there are other
important aspects such as ad delivery that indirectly leak to the

advertiser something about the user’s interests. We do not imple-

ment protections for those other aspects, but recent work [79] looks

at these complementary problems. Another limitation is that our

auction protocol reveals to the auctioneer which advertiser wins

the auction in order to bill the advertiser for the impression. Un-

fortunately this also means that the auctioneer could over time

determine which advertisers are winning auctions for a given user

and infer some of its interests. Ibex’s oblivious bidding protocol

takes into account the user’s group and can also incorporate some

contextual data (e.g., type of site showing the ad, location within the

page, time of day). However, if there are too many features, Ibex’s
approach becomes impractical and more work is needed to devise

a better mechanism. Finally, Ibex’s threat model is not as strong

as we would like: we assume that browsers are malicious, but that

advertisers, ad platforms, and auction servers are semi-honest.

2 BACKGROUND
This section gives a brief overview of how tracking and real-time

bidding work today; we later discuss how recent industry proposals

plan to change the ad ecosystem to provide better privacy for users

and how Ibex fits into that new ecosystem.

Ad platforms can show ads that are relevant to users by under-

standing users’ prior activities on the Web. This is done in a user
profile generation phase in which trackers use third-party cookies

and cookie matching techniques [27, 29] to assign the user a unique

identifier. Trackers use this identifier to build a holistic profile of

the user that includes activities such as which pages the user visits

and which items the user purchases.

When a browser visits a publisher’s site, the publisher—or more

commonly a supply side platform (SSP) which is a company that

represents the publisher—auctions the user on an ad exchange. In
this auction, the exchange requests bids from interested bidders

which are typically demand side platforms (DSPs). DSPs are com-

panies that represent advertisers and run ad servers that have the

resources required to participate in real-time auctions. One of the

key steps that takes place during the auction is for bidders to esti-
mate the value of the user (i.e., how much they are willing to bid).

To make this decision, bidders are provided with the user’s profile,

demographic information, and relevant details about the publisher

and the ad slot, such as size, type, and location within the page [68].

Based on this information, bidders return a bid to the ad exchange.

The ad exchange runs an auction to select the winning bidder,

charges the winner, and sends the ad tag of the winner to the

browser; this ad tag contains information that the browser needs

to retrieve and display the ad.

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

In the conversion measurement phase, trackers use third-party
cookies to follow a user’s actions after it clicks on the ad. Con-

versions refer to events such as a purchase or a signup and are

used to measure the effectiveness of ads. The trackers first record

the click by a browser on the publisher’s site, and then record the

activities of the user on the advertiser’s site. Trackers match these

recorded clicks and activities and attribute a conversion to a click.

There are also more advanced mechanisms known as view-through
conversions that can attribute a conversion to the display of an ad

rather than a click (e.g., if the user sees an ad and then goes to the

advertiser’s site on a new tab without clicking on the ad [24]).

2.1 Where is the industry headed?
The ad industry is currently in the design phase of a more privacy-

friendly ecosystem that deprecates the use of third-party cookies.

There have been several proposals put forth. Before describing them,

we want to emphasize that these proposals are speculative and most

have not been implemented or deployed. Our here goal is to just

give a flavor of the ideas that have piqued the community’s interest,

and how Ibex’s mechanisms fit within the larger ecosystem.

Finding a proxy for user profile. Several works such as Google’s
Topics API [22] (a refinement of a prior proposal called FLoC [84])

and Microsoft’s PARAKEET [17] introduce ideas to replace a user’s

profile and browsing history with something good enough to de-

scribe the interests of the user, but coarse enough to not uniquely

identify the user. In these proposals, the browser is extended to

include code that maps a user to some group of like-minded users

or to a set of topics of interest, based on the websites that the user

visit. We do not discuss how this mapping is done, as things are

constantly in flux, but in Ibex we assume that some such mapping

exists. We will use the term group id to describe the coarse identifier

assigned to the user (Ibex generalizes to a set of topics).

Measuring conversion. Once users are assigned to groups, it be-

comes important for advertisers, DSPs, and ad platforms at large

to have a mechanism to measure how users in each group interact

with sites (how often do they buy a product, share an article, etc.).

To do so, one proposal from Google is for browsers to send these

reports to trusted hardware enclaves [2] that collect and aggregate

the data, and produce noisy aggregates for ad platforms to use.

Other proposals [12, 36] discuss the possibility of having multiple

non-colluding servers compute this aggregate with secure multi-

party computation. The way Ibex approaches this problem is also

based on multiparty computation, but there is a key distinction in

which servers Ibex uses, and what kind of computation they each

do. As we will discuss in Section 4.1, in existing proposals an ad plat-

form serves as one of the servers and is involved in processing all
aggregation reports. This gives the ad platform a powerful vantage

point that allows it to determine which sites a user is visiting; over

time, the platform can piece together the user’s interests, which is

precisely what we wish to avoid.

Bidding. When a user visits the publisher and an auction is trig-

gered, there is a question of how can the bidders determine which

user is for auction and how valuable this user is to them? In Chrome’s

FLEDGE proposal [33], the idea is to have the auctions happen di-

rectly in the user’s browser. In this way, the user’s group id (or

topics) stay within the browser, safeguarding the user’s privacy. To

enable this, each bidder must submit their bidding function (e.g.,

a machine learning model) to the browser, which then runs this

function on the appropriate data to compute bids and then pick the

winner. This approach is actually really appealing, but browsers can

easily be modified to run code that extracts the bidding function of

each DSP. In many cases, these functions represent the intellectual

property of the company, and competitors could take advantage of

this. There are also questions about the integrity of the auctions.

Another proposal called MaCAW [13] secret shares the user’s

group id (or topics) among two or more servers that run a simple

bidding model (e.g., linear regression) to determine the bid for the

user. This bid can then be used in an auction outside of the browser.

Ibex also adopts this model of running the auction outside of the

browser. However, Ibex proposes a very different mechanism than

running MPC to compute a bid. Instead, Ibex introduces an obliv-
ious bidding protocol whereby the bidder submits its bid without

learning what bid it submitted. This is done with the help of the

browser, as we detail in Section 5.

3 OVERVIEW OF IBEX
Ibex is a new ad platform that replaces a user’s profile and browsing

history with a group id. This group id is derived as per recent

proposals such as Google’s FLoC [84] and its successor [22]. Ibex
then introduces various technical mechanisms to ensure that real-

time bidding auctions and conversion measurement mechanisms

continue to work, even when the group id is not shared (at least

not in the clear) with other parties.

We begin by answering some basic questions about Ibex’s setting,
and then discuss the threat model and goals in more detail.

Is Ibex necessary? One may wonder whether revealing a coarse

group id is problematic. It is. Prior proposals that have done this [22,

84] have been criticized precisely because this is enough to leak

sensitive user information [6, 7, 18, 23, 78]. Briefly, the criticisms

state that while a single group id (or set of topics) alone might not

reveal too much about a user, as time passes and the user browses

the web, the group id inevitably changes—revealing new facets

of the user’s interests. Exposing such information allows trackers

to study and understand users over time. With enough of these

observations, trackers can put together a detailed profile of the user,

allowing the inference of the user’s browsing history.

Does Ibex prevent tracking? Even if one hides the group id from

trackers, could they not continue to track users anyway? Indeed,

Ibex does not prevent cross-site tracking explicitly. However, all

major browsers are disabling third-party cookies which is the de-

fault way of tracking users across sites. There are other ways to

track users across sites (e.g., browser fingerprinting [25]), but these

methods are noisy, involved, and require the coordination of multi-

ple sites. We therefore expect that sites will respect users’ privacy

if the existing functionality can be provided through other means.

How does Ibex work? In Ibex, browsers locally record all user

activities and identify reports that should be sent to aggregators
(e.g., an advertiser who tracks conversion reports). The aggregators

combine the reports provided by many users and generate a profile

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

Browser

Auxiliary Aggregator
(ad platform)

ɠ

Signature

S2S1 Encrypted
report

Encrypted
histogram

ɡ

ɢ

Main Aggregator
(advertiser)

Main Aggregator
(advertiser)S2S1

S1

S1

Bidding database
Grp 1

Grp 2

Grp 2
Grp 3

Bidding database
Grp 1
Grp 2
Grp 3

Encrypted shares

Randomized shares

ɠ

ɡ
ɢ
Private auction

ɣ

Batch charges

�D��3ULYDWH�$JJUHJDWLRQ� �E��2EOLYLRXV�%LGGLQJ�

Advertiser Advertiser

Auction servers

Figure 2: Overview of Ibex’s architecture. It consists of private aggregation (§4) and oblivious bidding (§5). Aggregation helps
advertisers understand the value of different kinds of users, and they use this information to bid in auctions.

for each group of users (rather than individuals). Each user’s group

id then serves as a proxy for the user’s profile.

As we show in Figure 2, Ibex introduces algorithms that allow

aggregators to function without seeing individual reports, and bid-

ders in auctions to determine how much to bid for a user without

learning who the user is. We discuss the details of aggregation in

Section 4 and of bidding in Section 5. One key point worth mention-

ing is that Ibex requires multiple non-colluding servers to achieve

these goals. We next discuss what we assume of the different parties

in the ad ecosystem, and how we could instantiate non-colluding

servers (which is a very strong assumption) in practice.

3.1 Threat model and assumptions
In Ibex, there are several principals: browsers, publishers (or SSPs
that represent publishers), advertisers (or DSPs that represent ad-

vertisers), and ad platforms. There are also two additional roles that

could be taken up by different combinations of these principals:

auction servers and aggregation servers. We suggest the following

concrete arrangement (other arrangements might work too).

For aggregation, each advertiser (or DSP) serves as a “main” ag-

gregator, and its job is to aggregate the visits and conversion reports

of the users that interact with its own site. Since Ibex requires two
non-colluding aggregators, we also have one out of the many exist-

ing ad platforms serve as an “auxiliary” aggregator. In this role, the

ad platform merely helps the main aggregator complete its task—it

does not learn the final aggregation results (histograms).

For auctions, each publisher (or SSP) serves as one of the auction

servers, and an ad platform serves as the other auction server. If

having each SSP serve as an auction server is too onerous or creates

too much market fragmentation (i.e., too many concurrent auction

platforms), then one can use a service like Divvi Up [4] to take up

the role of the auctioneer in place of each publisher. Divvi Up is a

service provided by the non-profit ISRG [10] (the same organization

in charge of Let’s Encrypt [11]) that helps prop up a second server

for applications that require non-collusion assumptions.

Based on the above principals and roles, we have the following

threat model.

Browsers. Since browsers are under the control of users and can

be easily modified, we model them as malicious adversaries that
can deviate from any prescribed protocol.

Advertisers, publishers, and ad platforms. Wemodel these par-

ties as honest-but-curious adversaries: they will follow the pre-

scribed protocol but will try to infer users’ private information.

We assume that these parties will not collude with each other. If

one uses a service like Divvi Up, this model also applies to them.

Non-goals. Ibex does not prevent users from claiming to be in-

terested in categories of sites or products that they are actually

not. For example, claiming that they are interested in sports when

in reality the user does not like sports. We are not aware of any

mechanism that could enforce this against malicious users that can

modify their browsers to submit false information.

4 PRIVATE HISTOGRAM AGGREGATION
In our architecture, and consistent with industry proposals (§2.1),

when a user clicks on an ad or visits a site after seeing an ad (see-

through conversion), the user’s browser generates a report (e.g., a

conversion). The goal of the aggregation protocol described in this

section is for an advertiser or DSP to be able to tell which groups of

users are most valuable to it (more likely to interact with its content,

purchase products, etc.). In Ibex we wish to do this without any

party learning to which group any individual user’s report belongs.

That is, the reports are aggregated in such a way that the advertiser

learns the final aggregate value and the total number of reports,

but does not learn which report belongs to which user.

Abstractly, we can model this task as follows. There are N users

and d different groups. Each user holds a report belonging to one

group. Among these N users, there are N0 users with reports of

group 0, N1 users with reports of group 1, . . ., and Nd−1 users with
reports of group d − 1. Each report is a number indicating the

group. At the end of the protocol, the aggregator obtains a vector

[N0,N1, . . . ,Nd−1]. The vector can be interpreted as a histogram

with the x-axis corresponding to the different groups and the y-axis

representing the number of reports belonging to each group.

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Ad platform

nike.com

adidas.com

Aggregation

Aggregation

Browser

Linkability between the browser,
nike.com, and adidas.com

this user is very likely to
purchase sportswear

Infer
S1

S2

S1

S2

Figure 3: Linkability issue of a centralized ad platform in
current advertising architecture.

4.1 Issues of existing aggregation protocols
Asking users to submit the reports in plaintext violates users’ pri-

vacy, as they would be revealing their group. A promising alter-

native is works [32, 36, 42, 50, 59] that show how to privately

aggregate data while ensuring that the inputs are well-formed (to

avoid corrupting the final result). They fall into two categories:

• Homomorphic encryption (HE): each user encrypts its report

using a homomorphic cryptosystem that supports batching (so

it can represent the value of 0 or 1 for each of the d groups

within a single ciphertext) and sends the resulting ciphertext

and a proof that the corresponding plaintext is well-formed to

the aggregator. The aggregator sums up reports across many

users and forwards the result to a third party with the decryption

key who can recover the final histogram.

• Aggregate shares: the user splits its report (represented as a d-bit
vector) into two or more additive shares and sends them to sev-

eral non-colluding aggregators. The aggregators then compute a

multi-party protocol on the shares to obtain the final aggregate

histogram across many users.

Neither of these types of protocols is a great fit in our context.

For HE aggregation, it is costly for the browser to generate zero-

knowledge proofs (ZKP) that show that the ciphertext corresponds

to a well-formed plaintext. In Appendix C.2 [88] we show that

the cost of generating the required ZKP for state-of-the-art HE

schemes is expensive. For multi-server aggregation protocols such

as Prio [50] and Poplar [42] their symmetric nature poses a problem

if a large ad platform helps aggregate reports for many advertisers.

Consider the example of Figure 3 where an advertiser (e.g., nike.com

or adidas.com) employs the help of a (non-colluding) ad platform

to perform the aggregation. If the ad platform helps more than one

advertiser to aggregate reports, then the reports must specify for

which advertiser they are meant. For example, browsers will need to

tell the ad platform: “this is a share of a report for nike.com”. While

the ad platform does not learn the user’s group from the share, it

still learns that the user visited nike.com. In the extreme case where

a single ad platform helps all advertisers aggregate reports, it is

akin to a situation where it gets to see users’ entire history. We call

this advertiser linkability.
One way to eliminate this issue is to designate two aggregators

to handle the reports from all users and all sites, and ensure that the
id of the advertiser is encoded in the report share and is only visible

once the shares are aggregated. In this way, neither aggregator

can distinguish the target advertiser of a user’s report. However,

this design has two shortcomings: (1) it can be abused; and (2) it

increases the size of a report.

First, as advertisers are not involved in the aggregation process,

a malicious user can send many random reports to the two aggrega-

tors; the advertiser cannot verify whether activities of these reports

are real at all, since it only sees the final histogram. For example,

an adversary can send many reports indicating many users from

group 2 purchased shoes on an advertiser’s site, which tricks the

advertiser into thinking that users from group 2 are the most desir-

able. In contrast, in Ibex, the user sends its report as it is visiting
the advertiser and making the purchase, so the advertiser knows

that this is a valid report.

Second, since reports of all sites are sent to the same two ag-

gregators, each report needs to include an additional feature, the

target advertiser’s id. Based on prior documentation [14], the total

number of advertisers can be over 10 million. Increasing the size of

a report impacts performance since many of these protocols [42, 50]

have computational complexity linear in the size of the report. One

exception is the work of Anderson et al. [36] which scales well.

Nevertheless, it is still not a great fit in our setting since advertisers

are out of the loop and cannot verify the authenticity of reports.

Appendix C [88] discusses these schemes in more detail.

4.2 Asymmetric aggregation
To solve the advertiser linkability problem, Ibex’s key idea is to

enable an “auxiliary” aggregator (such as an ad platform) to help

a “main” aggregator (an advertiser or DSP) to aggregate reports

without actually learning the identity of the main aggregator that

it is helping. This seemingly paradoxical property boils down to

enforcing a notion of information asymmetry: we allow the main

aggregator to know the identity of the auxiliary aggregator and its

public key, but not the other way around. To leverage this asym-

metry, all messages from the auxiliary aggregator to the main ag-

gregator must be proxied via the browser. But as browsers can be

malicious, the proxied messages must be signed by the sender. This

means that the main aggregator cannot send any messages to the

auxiliary aggregator, as otherwise the auxiliary aggregator would

be required to know the identity of the main aggregator to validate

its signatures, violating information asymmetry.

In Ibex, the auxiliary aggregator generates the proof required

to validate the report, encrypts the report share, signs the proof

and encrypted share, and gives these messages to the browser. The

browser then forwards these messages and the other report share

to the main aggregator. The main aggregator receives its share, the

auxiliary’s aggregator signed encrypted share and proof, and uses

these materials to locally compute the histogram.

Challenge of adapting existing protocols. Given the above, a

natural question is whether existing aggregation protocols such as

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

Prio [50] and Poplar [42] can be easily adapted to be asymmetric.

This is not the case. The reason is that in order for these protocols

to validate the inputs provided by users, the aggregators need to

interact with each other for two or more rounds (e.g., in Prio, ag-

gregators use Beaver triples [41] and are required to exchange their

local shares of a value). Thus, the proof cannot be generated locally

by the auxiliary aggregator without receiving a message from the

main aggregator (and therefore learning its identity and violating

asymmetry). Ideas from group signatures [48, 69] could hide the

identity of the sender, but the number of main aggregators could

be in the thousands, which would lead to high costs. Instead, Ibex
designs a protocol where validating inputs from browsers requires

no communication between the two aggregators.

4.3 Histogram aggregation overview
To enable histogram aggregation, there are a few things that need

to be addressed. First, we need a way to encode the user’s group g
into a representation that indicates the g-th bin of the histogram,

and such representation should be aggregatable. Second, we need

an encryption scheme that naturally represents all the bins and the

encryption scheme should be aggregatable over ciphertexts. Third,

as browsers are malicious, we should avoid asking the browser to

do the encryption; otherwise, the browser needs to generate an

expensive ZKP to prove that the ciphertext encrypts a well-formed

encoding of the user’s group. We discuss the high-level ideas of

Ibex’s histogram aggregation design below and discuss the details

in the sections that follow.

Histogram encoding. We observe that a one-hot vector, which
is a vector where one entry is a 1 and all others are zeros, is a

good fit to represent the aggregatable bins. The browser encodes its

report, group g, into the one-hot vector [0, . . . , 1, . . . , 0]. Element-

wise additions over the vectors give us the “bin” aggregation. For

example, given three vectors, [0, 1, 0, 0], [0, 1, 0, 0], and [0, 0, 1, 0],
corresponding to two reports for group 2 and one report for group

3, their sum yields [0, 2, 1, 0]; the i-th element of the vector gives

the total number of reports belonging to group i.

Encryption and aggregation. Given the above representation, a

strawman solution is to encrypt each value in the vector individually

with an additively homomorphic cryptosystem like Paillier [76].

However, this is far too expensive. Instead, cryptosystems based on

the Ring-LWE assumption [70] have the advantage that each bin can

be represented as a different coefficient in a polynomial. Specifically,

in the BFV cryptosystem [45, 55], plaintexts are polynomials of

degree at most N with integers coefficients modulo t. Formally,

they are polynomials from the quotient ring Rt = Zt [x]/(xN + 1),
where N is a power of 2 and t is the plaintext modulus. One can
therefore represent the one-hot vectors [0, 1, 0, 0], [0, 1, 0, 0], and
[0, 0, 1, 0] with the monomials x, x, and x2 in Rt , respectively. Their
sum is 2x + x2, which is equivalent to the histogram [0, 2, 1, 0].

Correct encoding and secret sharing. One way to avoid the

browser generating the encryption of the one-hot vector for group

g and proving that it is well-formed (i.e., that a single entry is a

1 and the rest are 0) is to have the servers generate the one-hot

vector themselves. Of course, the client cannot simply give g to the

servers, since this would leak g. Instead, the browser can view g as

an element in a group Zd (d is the total number of groups) and can

randomly sample two additive shares s1 and s2 from Zd such that

s1 + s2 = g (mod d). The browser can then send s1 to the auxiliary

aggregator and s2 to the main aggregator. The auxiliary aggregator

represents s1 as the monomial xs1 and encrypts it with its public

key pkaux to obtain: c = Enc(pkaux , xs1). The auxiliary aggregator

then sends (via the browser) c to the main aggregator.

Once the main aggregator receives c, it can represent its share

s2 as the monomial xs2 and then perform a plaintext-ciphertext

multiplication: xs2 · c = Enc(pkaux , xs1 · xs2) = Enc(pkaux , xs1+s2).
For example, suppose a user’s group id is 2 ∈ Z4, and the browser

generates two additive shares, 1 and 1. The auxiliary aggregator

takes its share (1) and generates the ciphertext c = Enc(pkaux , x1).
The main aggregator receives its share (also 1) and the ciphertext

c. It then expresses its share as the monomial x1, and performs a

plaintext-ciphertext multiplication with c to obtain Enc(pkaux , x2),
which is the encoded one-hot vector representing a report for group

2. This plaintext-ciphertext multiplication essentially “shifts” the

original plaintext by s2 positions to the right.

Dealing with shift overflows. One issue with the above is that

when the shift operation overflows it results in a negative coefficient.

For example, if g = 1, its two shares can be 2 and 3 (2 + 3 ≡
1 ∈ Z4). So the auxiliary aggregator generates a ciphertext for the

monomial x2, and the main aggregator further increases its degree

by 3 (equivalent to shifting the entries in a one-hot vector to the

right 3 positions). The result is: Enc(pkaux , x2+3) = Enc(pkaux ,−x).
This negative coefficient occurs because plaintexts are defined over

Rt = Zt [x]/(xN + 1), so xN + 1 ≡ 0 (mod xN + 1) and xN+1 ≡ −x
(mod xN + 1). We address this by increasing the polynomial degree

to 2d; since the multiplied monomials both have degrees lower

than d, multiplying them will not overflow a polynomials with

degree of 2d. This approach is very simple and more efficient than

alternatives (e.g., performing rotations [56]).

End-to-end flow. We consider a single auxiliary aggregator that

serves all main aggregators though Ibex naturally extends to sup-

port multiple auxiliary aggregators. The auxiliary aggregator gen-

erates a pair of keys for the homomorphic cryptosystem and a pair

of signing and verification keys. The public key and verification

key are distributed to all main aggregators.

A browser privately splits its report into two shares, s1 and s2,
and sends s1 to the auxiliary aggregator. The auxiliary aggregator

responds to the browser with an encrypted report share and a

signature generated with its signing key. The browser then sends s2,
the encrypted report share, and the signature to themain aggregator.

The main aggregator first validates these materials, and shifts the

encrypted report share using s2 to obtain the appropriate encryption
of the report. The main aggregator then adds up many encrypted

reports over a window of time to obtain an encrypted aggregate

result. Finally, the main aggregator adds some randomness to this

encrypted aggregate result, submits it to the auxiliary aggregator

for decryption, and removes the randomness from the decrypted

result to recover the histogram.

4.4 Construction
Ibex’s private histogram protocol provides the following properties.

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

• Correctness. If all parties follow the protocol, the final output of

the histogram aggregation protocol is the correct distribution of

the number of reports from different groups.

• Robustness. In Ibex, malformed inputs from malicious browsers

can be detected and discarded by both aggregators.

• Privacy. Ibex’s histogram aggregation protocol hides all raw

inputs of users from both aggregators, except what is implied

by the output histogram to the main aggregator. Moreover, the

auxiliary aggregator does not learn which user sends a report to

which main aggregator.

Notation.
• All polynomials defined below have degree 2d.
• The polynomials below are defined over the ring Zt [x]/(x2d +1),
with plaintext modulus being t. Since each coefficient will act as

a “bin” in our histogram, and the maximum value of a coefficient

is t, then t is also the maximum number of reports that can be

summed together before overflow happens (e.g., t + 2 ≡ 2 ∈ Zt).
• The auxiliary aggregator generates a pair of public and secret

keys, pk and sk, from an additively homomorphic cryptosystem

by calling HE-KeyGen. pk is public to all main aggregators.

• The auxiliary aggregator generates a pair of signing and verifi-

cation keys, sigkey and vrfkey by calling Sig-KeyGen; vrfkey is

public to all main aggregators.

Subroutines. Now we define subroutines that will be used later

in the construction of the private histogram aggregation.

• Additive-Shares(g) → (s1, s2). Takes an element g ∈ Zd , and
generates two uniformly random shares s1, s2 ∈ Zd such that

s1 + s2 ≡ g ∈ Zd . Neither share leaks any information about g.
• HE-KeyGen(1𝜆) → (pk, sk). Takes in a security parameter 𝜆 and

outputs a public key pk and a secret key sk.
• HE-Enc(pk, pt) → c. Takes the public key pk and a plaintext

polynomial pt and outputs a ciphertext c which encrypts pt.
• HE-Dec(sk, c) → pt. Takes the secret key sk and a ciphertext c
and outputs the decrypted polynomial pt.
• HE-Add(c1, c2) → cadd . Takes two ciphertexts, c1 and c2 which
encrypt two polynomials, and outputs a ciphertext cadd which

encrypts the sum of the two polynomials.

• HE-Add-Plain(c, p2) → cadd . Takes a ciphertext c, which en-

crypts a polynomial p1, and a plaintext polynomial p2, and out-

puts a ciphertext cadd which encrypts p1 + p2.
• HE-Mul-Plain(c, p2) → cmul . Takes a ciphertext c, which en-

crypts a polynomial p1, and a plaintext polynomial p2, and out-

puts a ciphertext cmul which encrypts p1 · p2.
• Sig-KeyGen(1𝜆)→ (sigkey, vrfkey). Takes security parameter 𝜆

and outputs a signing key sigkey and a verification key vrfkey.
• Sign(sigkey,m) → sig. Generates a digital signature on message

m using the signing key sigkey.
• Verify(vrfkey,m, sig) → valid. Outputs whether sig is a valid

signature for messagemwith the signer’s verification key vrfkey.
valid is set to true when sig is valid. Otherwise, it is set to false.

Figure 2(a) shows the architecture of Ibex’s private histogram.

Ibex’s aggregation consists of three steps as follows.

Step 1: Browser generates shares and obtainsmaterials from
auxiliary aggregator. The browser runs theAdditive-Shares func-
tion on its report group g ∈ Zd , and obtains two shares, s1 and s2,
as the output. The browser sends s1 to the auxiliary aggregator. The
auxiliary aggregator first checks whether s1 is valid, and discards

the share otherwise. Then, it generates the encrypted share cs and
signature sig as follows.

(1) If s1 ∉ Zd , discard the share and abort;

(2) pt ← xs1 ;
(3) cs← HE-Enc(pk, pt);
(4) sig← Sign(sigkey, cs).
The auxiliary aggregator sends (cs, sig) back to the browser; the

browser then forwards (cs, sig, s2) to the main aggregator.

Step 2: Main aggregator validates, recovers, and aggregates
reports. For each aggregation report, the main aggregator receives

a tuple (cs, sig, s2) of encrypted share, signature, and share from

a browser. For each tuple, the main aggregator first validates the

signature using the auxiliary aggregator’s verification key vrfkey,
then locally recovers the encrypted report cr if validation passes.

(1) If s2 ∉ Zd , discard the report and abort;

(2) If Verify(vrfkey, cs, sig) ≠ true, discard report and abort;

(3) pt ← xs2 ;
(4) cr ← HE-Mul-Plain(cs, pt).
For a number of recovered encrypted reports (cr1, . . . , crN), the

main aggregator combines them into the encrypted aggregation

result (cAgg) as follows.
(5) cAgg← ∑N

i=1 cri , this is ciphertext addition using HE-Add.

Step 3: Main aggregator obtains aggregation result. To hide

the aggregation result from the auxiliary aggregator (who is the

only onewho can decrypt cAgg), themain aggregator first generates

a mask polynomial that has uniformly random coefficients, and

adds it to the local encrypted aggregation result as follows.

(1) mask← uniformly random element in Zt [x]/(x2d + 1).
(2) mAgg← HE-Add-Plain(cAgg,mask).
The main aggregator submits mAgg to the auxiliary aggregator,

who can decrypt mAgg using its secret key sk:
(3) dAgg← HE-Dec(sk,mAgg).
The main aggregator receives the decrypted polynomial dAgg

from the auxiliary aggregator. It removes the previously generated

random mask to obtain the real aggregation result as follows.

(4) agg← dAgg −mask.

Decode the histogram. Recall that in Step 1, the browser invokes

Additive-Shares to generate two additive shares in Zd . These two
shares add up to either g or g+d in Z

2d . Thus, the coefficients of the

g-th and (g + d)-th term in the decrypted polynomial, agg, refer to
the number of reports belonging to the same group g. For example,

suppose d is 2 (only two groups of reports) and the decrypted

polynomial that the main aggregator obtains is 1x0+2x1+3x2+4x3.
Thismeans thatmain aggregator receives 4 (1+3) reports from group

1, and 6 (2+4) reports from group 2.

Theorem 4.1. Ibex’s private histogram aggregation protocol achieves
the properties defined in Section 4.4.

We give the full proof in Appendix B.1 [88].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

4.5 Multiple sets of HE parameters
Different aggregation tasks may require different number of groups.

In Ibex, the auxiliary aggregator can generate different HE parame-

ters including the secret key, public key, and the number of total

groups (d). For each set of parameters, the auxiliary aggregator

assigns it a unique id. Then, in Line 4 of Step 1, the auxiliary aggre-

gator embeds the id into the message it signs (id | |cs).

5 OBLIVIOUS BIDDING
In today’s ad auctions, each bidder is given the user’s profile as

well as contextual information; the bidder then generates a bid and

submits the bid to the auctioneer. The auctioneer computes the

auction and selects the highest bidder as the winner, and outputs a

sale price (in some auctions the sale price is the highest bid itself,

in others it may be the second highest bid). In Ibex, each user is

assigned to a group and uses its group id as a proxy for its profile.

Our goal is to enable bidders to generate a bid for a given group id

without actually learning the group id.

5.1 Private auctions
Bidding does not make sense without a corresponding auction

protocol. So for completeness, we describe a semi-honest two-party

private auction protocol where each party takes a set of bid shares

as input and the parties jointly compute the winner and the sale

price of the auction. Note that the auction protocol that we describe

is not novel; it simply uses a generic MPC framework. That said,

there are very efficient custom two-party auction protocols that

Ibex could use instead [89]. Importantly, these works take shares

of bids as inputs but they are agnostic to how the bids (and the

corresponding shares) are generated. The process of bid generation

is precisely what is novel in Ibex.
The auction protocol consists of two parts: how to encode bids

into shares, and how to compute the auction using shares.

Bid encoding. Each bidder represents its bid (assumed to exist) as

a binary string B and then generates two additive shares B1 and B2

such that B1 ⊕ B2 = B. We use this binary encoding because in our

context we find that it is cheaper to use an MPC framework that

operates over boolean rather than arithmetic circuits to compute

the auction (see Section 7.1 for details).

Private auction. Each bidder submits its first share B1 to the first

auction server and B2 to the second auction server. The two servers

collect shares from many bidders and then run a secure two-party

computation that outputs the winning bidder and the auction’s sale

price (they basically reconstruct the bids inside the MPC and then

find the highest bid). Appendix A.1 [88] provides the pseudocode.

5.2 High-level idea of oblivious bidding
In Ibex, the bidders use the aggregated information about each

group of users to decide their bidding strategies. When the browser

visits a publisher’s site and needs an ad tag, it locally selects poten-

tial bidders from a list provided by the publisher (this is actually how

header bidding [3] works today and how Google’s FLEDGE [33]

proposal is intended to work). If the list is too large, the browser

can filter them based on which ones are the best match for the user

by leveraging the local profile stored within the browser.

To hide the user profile but allow bidders to bid for a user, each

bidder encodes its bids into two shares, encrypts each share with

a different auction server’s key, and stores them in the bidding

database. Note that one auction server can only decrypt one share

but not the other; without it, it cannot learn the bid. The browser

then uses a single-server private information retrieval (PIR) protocol
to privately read encrypted bid shares from the invited bidder’s

bidding database while hiding which element of the database is

read. The browser then randomizes the encrypted bid shares before

submitting each encrypted bid share to the corresponding auction

server. Each auction server then decrypts the received randomized

bid shares, runs a private two-party auction protocol, and tells the

browser where to fetch the winner’s ad.

Why and how to randomize encrypted bid shares. The bid-

ding database is pre-generated and public; auction servers can

access it too. This means that when an auction server receives an

encrypted bid share from the browser, it could simply scan the

bidding databases of all bidders and find the matching ciphertext,

thereby learning the user’s group id.

Ibex avoids this by randomizing the bid shares—not just the ci-

phertext themselves but also the underlying plaintext (the share

itself). It is important to randomize the plaintext because the auc-

tion server has the corresponding secret key so it can decrypt

the ciphertext. To do so, recall that the two shares B1 and B2 of
the binary representation of a bid B are uniformly random, and

B = B1 ⊕ B2. A browser can generate a uniformly random mask

mask of the same length as B and add mask to the shares. Since

(B1 ⊕ mask) ⊕ (B2 ⊕ mask) = B, the bid B is unchanged but the

auction servers do not obtain the original B1 and B2. A bit homo-
morphic encryption scheme [57, 58] supports adding randomness

(XOR over bits) to the encrypted shares.

5.3 Properties
Ibex’s oblivious bidding protocol provides the following properties.

• Correctness. If the browser and all bidders follow the protocol,

the two auction servers each receive a valid bid share for the

user’s group from each bidder. If the auctioneers are also honest,

then the output of the auction is correct (e.g., the winner is the

highest bidder and the sale price is the winner’s bid).

• Robustness. Misbehavior of malicious browsers (§5.5) can be

detected in Ibex’s oblivious bidding protocol.

• Privacy. Ibex’s oblivious bidding protocol hides an honest user’s

group id from the auction servers and bidders.

5.4 Construction
Below is the notation and subroutines that we will use.

• Each of the two servers holds a set of public and secret keys of an

additively homomorphic cryptosystem. We use the Goldwasser-

Micali’s cryptosystem [57, 58] since it encrypts each bit individ-

ually and supports homomorphic XOR over ciphertexts.
1
We

denote the set of keys of the first auction server as (pk1, sk1)

1
We make this choice since the two-party auction protocol that we use takes as input

boolean shares. If we had instantiated Ibex with an auction protocol that uses integer

shares, we would have used cryptosystems like Paillier [76] or ElGamal [54].

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

and the keys of the second auction server as (pk2, sk2). pk1 and
pk2 are made available to all bidders and browsers.

• There are d total groups and k bidders are invited to an auction.

• The range of bids is from 0 to 2
ℓ − 1. All bit strings and lists of

ciphertexts below have length ℓ .

Subroutines. Below are the subroutines that we use. Appendix

A [88] provides details on their constructions.

• Bid-Encode(b)→ (B1,B2). Encodes bid b ∈ [0, 2ℓ − 1] as a bit
string B, and generates shares B1 and B2 such that B1 ⊕ B2 = B.
• Priv-Auction(B1

1
, . . . , B1k , B

2

1
, . . . , B2k)→ (bs, id). Runs a semi-honest

two-party auction protocol between the auction servers. The i-th
server inputs the bid shares of the k invited bidders, Bi

1
, . . . ,Bik .

This subroutine outputs the sale price bs and the winner’s index

id without leaking anything else.

• Share-Enc(pk,B) → (C). Encrypts each bit in the bit string B
into a ciphertext using additive bit homomorphic encryption

with public key pk, and outputs the list of bit encryption C.
• Share-Dec(sk,C) → (B). Decrypts each ciphertext in C using

the secret key sk and outputs the bit string B of decrypted bits.

• Share-Add(C1,C2) → (Cadd). Takes two lists of ciphertexts C1
and C2, which encrypt the bit string B1 and B2 respectively, and
outputs the list of ciphertexts Cadd , which encrypts each bit in

the bit string (B1 ⊕ B2).
• PIR-Read(g) → (entry). Protocol that fetches the g-th row of

some database without revealing the index g.

5.4.1 Workflow of oblivious bidding. Ibex’s oblivious bidding is

depicted in Figure 2(b). It consists of 5 steps. In the initialization
step (not depicted), bidders use information they acquire about each

group of users through Ibex’s aggregation (§4) and pre-generate

bids for each group. A bidder generates its bid shares, encrypts

them, and posts the ciphertexts to a bidding database. In Step (1),

the browser identifies potentially interested bidders using its local

history. In Step (2), the browser fetches the encrypted bid shares

for its group from the bidding database, randomizes the encrypted

shares, and submits the randomized encrypted shares to the auction

servers. In Step (3), the two auction servers decrypt the received

ciphertexts, compute the auction, and notify the browser of the

winner’s ad tag. Finally, the auction servers store the sale price and

the winner of each auction. After a long enough time window, Step

(4) occurs, in which the auction servers issue a bill to each bidder

for all pending charges. The details are as follows.

Initialization: Bidders set up bidding database. Each bidder

generates a bid for each group of users, encodes, splits, and en-

crypts the shares. For the group of users for whom the bidder is

not interested, it simply chooses a bid of zero. It sets up its bidding

database db as follows.
• Initialize an empty database db;
• For each group g ∈ [1, d], the bidder generates its bid b[g] using
any algorithm of its choice and then does the following;

• (B1 [g],B2 [g]) ← Bid-Encode(b[g]);
• C1 [g] ← Share-Enc(pk1,B1 [g]);
• C2 [g] ← Share-Enc(pk2,B2 [g]);
• Set the g-th row of db to (C1 [g],C2 [g]).

Step 1: Browser selects Bidders. The browser locally uses its

browsing history to select k bidders for the auction using a local

ads selection algorithms [60, 61, 79, 80] without leaking the user’s

browsing history and preferences. Google’s FLEDGE proposal [33]

also has a similar mechanism.

Step 2: Browser fetches and randomizes encrypted shares.
The browser locally computes its group id g. For each invited bidder
i, it reads the encrypted bid shares from each bidder’s database and

does the following to randomize the encrypted shares and generate

the encrypted shares with randomness, CR1i and CR2i .

(1) (C1

i [g],C
2

i [g]) ← PIR-Read(g) to i’s database;

(2) maski
R←− {0, 1}ℓ

(3) R1i ← Share-Enc(pk1,maski);
(4) R2i ← Share-Enc(pk2,maski);
(5) CR1i ← Share-Add(C1

i [g], R
1

i);
(6) CR2i ← Share-Add(C2

i [g], R
2

i).
The browser submits CR1i and CR

2

i for each bidder i to the auction
servers. Note that the browser does not disclose the identities of

the bidders it selects to the auction servers; the servers only learn

the number of bidders and the index of each encrypted share in the

list. This is important, as otherwise the auction servers would learn

all of the bidders that are invited to the auction and can use that

information to better infer the user’s interests over time. We limit

the auction servers to only learning the identity of the winner.

Step 3: Auction servers compute auction. The servers decrypt
all ciphertexts they receive, and run the auction protocol.

(1) S1 computes BR1i ← Share-Dec(sk1,CR1i);
(2) S2 computes BR2i ← Share-Dec(sk2,CR2i);
(3) (bs, id) ← Priv-Auction(BR1

1
, . . . ,BR1k ,BR

2

1
, . . . ,BR2k).

The auction servers respond to the browser with the index of the

winner, id. The browser then sends to the auctioneers the winner’s

identity, which they use to notify the winner, request the ad tag,

and forward it to the browser.

Step 4: Delayed and batch charges. The auction servers record

the winner and the sale price of each auction. In Ibex, a bidder is
not immediately charged for winning the auction as that would

allow the bidder to link a recent click of a user with the auction’s

sale price, thereby leaking the user’s group id. Instead, the auction

servers charge each advertiser in a batch after the number of its

winning auctions exceeds a certain threshold (e.g., every ten thou-

sand auctions). Note that there might still be a small leakage from

the aggregate value. For example, suppose that every bid from the

bidder is even except for the bid for group 5 which is odd. Then, if

the final aggregate is odd, the bidder can infer that at least one of

the ten thousand auctions that it won was for a bidder of group 5.

If even this type of leakage is unaccepted, one of the auctioneers

could add a careful amount of noise to the final value before disclos-

ing it to the bidder. Differential privacy [52, 53, 73] can be used to

analyze how much noise must be added and the sensitivity of this

aggregate value. Further, it can shed light on the tradeoff between

privacy and utility (i.e., what premium must the bidder pay due to

the added noise).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

5.5 Malicious browsers
The protocol above ensures that the user’s group id is kept confiden-

tial. But as a browser can be malicious, it may try to submit arbitrary

encrypted shares to the auction servers. This can lead to a sale price

that is higher or lower than what the winning bidder actually bid.

To defend against malicious browsers, when each bidder sets up

the database, it also provides all of its bids in a shuffled order to the

auction servers. This means that the auction servers learn all of the

bidder’s bids, but not their mapping to specific group ids. Note that

in the status quo, ad exchanges learn all of the bids as well, so this

is not an additional source of leakage. When the private auction

outputs the winner’s bid as the sale price, the auction servers can

check if this sale price is on the list of bids that the bidder previously

supplied. If not, the auction servers mark this auction as invalid

and do not charge the winner. The auction servers can also mark

the browser as potential fraud and deny services to these browsers.

One small caveat is that this does allow a malicious browser

to create a fake bid that is one of the other bids submitted by a

bidder. However, the browser could always do that because there is

currently no mechanism to prevent a browser from claiming that it

belongs to a different group than it actually does.

5.6 Update bidding database
The bidders may update their bids for different groups of users

at any time. When it changes the bids, it generates a whole new

bidding database by running the initialization step (§5.4.1) even

though the bids for some groups of users will remain the same. It

then sends the shuffled bid list to the auction servers as before (§5.5).

This way, the auction servers only learn the advertiser changed

bids for some groups of users, but cannot learn the group ids of the

updated bids.

Browsers could cache the fetched encrypted bid shares of a bidder

when it selects the bidder for an auction. If the next time the browser

selects the same bidder for an auction, instead of issuing PIR queries

again, it sends “if-modified-since” requests to the advertiser. If the

bidder’s bidding database has not been updated since the last query

of the browser, the browser does not need to issue a PIR query again.

This reduces the end-to-end latency of oblivious bidding (§7.4).

Theorem 5.1. Ibex’s oblivious bidding protocol achieves the prop-
erties defined in Section 5.3.

We give the full proof in Appendix B.2 [88].

Above we describe the basic version of our bidding protocol.

The limitation is that bidders need to pre-generate the bids and the

bidding database is static. Frequently updating the bidding database

can invalidate the cached encrypted bid shares of a browser. Besides,

the bidder might want to customize its bids based on other dynamic

factors, such as who the publisher is, and the time of day.We discuss

some ideas to support these features in Section 9.

6 INTEGRATE IBEX FOR AGGREGATION
We classify the aggregation tasks into two categories, first-site

aggregation and cross-site aggregation. We discuss how we can

apply Ibex’s private histogram aggregation for the two kinds of

aggregation tasks.

6.1 First-site aggregation
In first-site aggregation tasks, the user activities, such as viewed

pages, are known to the aggregators (advertisers). Advertisers want

to understand the activities of different groups of users, such as their

browsing and purchasing preferences on their sites. For example,

an advertiser needs to understand the interest of groups of users

in particular items as in the user profile generation phase. To do

so, the advertisers first classify the contents on their sites (e.g.,

pages or items) into different categories. For example, advertisers

can classify their pages or items into the 392 categories from the

Internet Advertising Bureau’s (IAB) contextual taxonomy [15]. For

different types of content, the advertiser maintains one encrypted

histogram which includes how many times a certain group of users

has viewed this type of content.

As the advertiser sees all activities of users on its site, the user

only needs to split and share its group id with the aggregators.

When a browser visits an advertiser’s site for the first time, it uses

the private histogram aggregation protocol to send its group id

privately while the advertiser works as the main aggregator and

the ad platform works as the auxiliary aggregator. The advertiser

obtains the encrypted group of the user, issues a first-site cookie

to the browser, and uses the cookie as an identifier to record this

user’s visits or purchases on its site. When the browser visits the ad-

vertiser’s site again before the cookie expires, it does not recompute

its group id; it only needs to include the assigned cookie.

For each activity (viewed content) of a user, the advertiser adds

the encrypted group id to the encrypted histogram of that type

of content. For example, if a user visits sports-related pages three

times, the advertiser can add the encrypted group id of this user

three times to the encrypted histogram of sports contents. After the

advertiser aggregates enough aggregation reports (e.g., all reports

in one day), the advertiser submits each encrypted histogram to

the ad platform for decryption.

The process above enables each advertiser to understand user

interests on its site. Appendix D [88] also provides a way for adver-

tisers to understand the user interests by combining aggregation

results on different sites as needed.

6.2 Cross-site aggregation
In many cases, aggregation needs to account for actions of users

across different sites. For example, during the conversion measure-
ment phase, one might want to attribute an action (e.g., conversion)

on one site to some activity that happened on another site. This

requires the browser to locally record important activities on dif-

ferent sites, such as the click of an ad. To do this, Ibex follows an

existing conversion measurement proposal [30]. In short, when the

user performs an activity such as a purchase at an advertiser’s site,

the advertiser sends the browser a request for an attribution report.

The browser uses its local history to attribute this conversion to a

previously clicked or seen ad of the advertiser and asynchronously

sends the report.

Different from the original proposal that asks browsers to send

reports in plaintext, the browser uses the private histogram proto-

col to send its attribution report in a way that hides the identity of

the publisher that led to the user’s visit and subsequent conversion.

The report contains the user’s group id and the id of the publisher’s

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

site. Each combination of the group and id of the publisher’s site

corresponds to a unique report number. For example, if the ad-

vertiser’s ads are displayed on N publishers and there are d user

groups, there will be N · d types of reports in total. For each kind

of user action (e.g., conversion), the advertiser maintains one en-

crypted histogram. After the advertiser aggregates enough reports,

the advertiser submits each encrypted histogram to the ad platform

for decryption.

7 EVALUATION
In this section, we would like to answer the following questions:

(1) What are the costs of Ibex’s private histogram and oblivious

bidding for each party?

(2) How does Ibex’s private histogram affect the user’s browsing

response time compared to the non-private method?

(3) What is the end-to-end latency of Ibex’s oblivious bidding and

how does it compare to non-private auction?

7.1 Implementation and evaluation setting
We answer the above questions in the context of the following

implementations and evaluation environment.

Ibex’s implementation. Ibex consists of about 2.5K lines of C++.

In private histogram aggregation, we use SEAL’s [34] implemen-

tation of the BFV scheme [55] as the HE scheme and OpenSSL

3.0.0 [16] for our basic cryptographic operations, and instantiate

the signature algorithm with RSA. In oblivious bidding, we use the

open-sourced implementation [19] of SealPIR [37] as the single-

server PIR scheme and use the GMP library 6.2.1 [21] to implement

Goldwasser-Micali (GM) encryption scheme [57, 58] with 2048-bit

modulus. We implement the semi-honest two-party private auction

protocol using the sh2pc protocol [5] in EMP toolkit [82]. To reduce

the latency of fetching bid shares from the PIR servers, we split the

bidding database into eight chunks, and process the PIR query for

each chunk on a different core.

Why use a bit-homomorphic cryptosystem? We need each

auctioneer to receive a secret share of bidders’ bids, and these shares

need to be defined over the plaintext space of a homomorphic cryp-

tosystem so that we can apply the mask (Step 2 in Section 5.4). The

GM cryptosystem satisfies this. We can also use additive or multi-

plicative shares and an additive or multiplicatively homomorphic

cryptosystems, and then define the auction using an arithmetic

MPC. In any case, the constraints we face are that (1) we want

ciphertexts to be as small as possible since we store them in the

PIR database (so larger ciphertexts increase PIR’s costs); and (2) we

need the MPC to be defined over the same ring or field as the plain-

text space of the homomorphic cryptosystem to avoid performing

expensive modular reductions inside the MPC.

Method andmetrics. Besides the microbenchmarks, our key met-

rics are the response time of a browser’s HTTP requests to the

aggregator’s web server and the end-to-end latency of the oblivious

bidding. The oblivious bidding includes the events after the browser

locally selects the advertisers for auction, but before the browser

fetches and displays the winner’s ad.

Group size 2
14

2
15

2
16

Browser costs
Generate shares (𝜇s) 0.38 0.37 0.43

Share size (bit) 14 15 16

Auxiliary aggregator costs
Encrypt and sign (ms) 25.58 47.05 91.33

Encrypted share and signature size (MB) 0.66 1.35 2.72

Decrypt aggregation result (ms) 3.35 7.12 14.81

Main aggregator costs
Validate and recover encrypted report (ms) 2.20 4.50 9.23

Aggregation (ms) 0.36 0.84 1.90

Encrypted report size (MB) 0.66 1.35 2.72

Figure 4: Microbenchmarks for operations of each party in
private histogram aggregation, the reported numbers are
mean over results of 10 trials.

Evaluation environment. We run all our experiments on AWS

c5.4xlarge instances (8-core Intel Xeon Platinum 8000 series proces-

sor with hyper-threading and 32 GB RAM) running Ubuntu 20.04.

To measure the response time to HTTP requests of the private

histogram when the browser visits the aggregator’s site, we run

the client in US East (Ohio) and the server in US West (California).

To measure the end-to-end latency of oblivious bidding, we run

the client in US East (Ohio), the advertisers’ PIR servers and one

auction server in US West (California), and another auction server

in US West (Oregon). We use one c5.24xlarge instance (48-core

machine) to run 6 advertisers’ PIR servers.

Parameters. We experiment with the user group size close to the

FLoC’s trial experiment [31]. For private histogram, we choose the

HE parameters in such a way that it can support the aggregation

of 2
27

encrypted reports (more than one hundred million), which

is sufficient to handle the daily visits to the New York Times [20].

For oblivious bidding, we experiment with 24 invited bidders in an

auction and 14-bit bids, which is consistent with disclosed reports

from ad exchanges [86, 87].

7.2 Microbenchmarks: costs of each party
7.2.1 Private histogram aggregation. We report our microbench-

mark evaluation results in Figure 4, with varied group size. Most

computation of each party can be computed off the critical path.

And we detail the costs of each party below.

Browser’s costs. An Ibex-enabled browser asynchronously com-

putes its group id locally. And the group id can be recomputed once

a week or so based on FLoC’s trial [84]. The only computation on

the browser is to locally encode and split its group id into shares.

The shares have the same bit length as the group size and the time

to generate shares is negligible. It first sends one share to an aux-

iliary aggregator by attaching the share in its HTTP request to

obtain the encrypted report share and signature. It then appends

the encrypted report share and signature in the request to the main

aggregator. The average size of these materials is 0.66, 1.35, and

2.72 MB for group size of 2
14
, 2

15
, and 2

16
respectively.

Auxiliary aggregator’s costs. For each received report share, the

auxiliary aggregator encrypts the share and signs the encrypted

share. The most costly part of this operation is one homomorphic

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

Group size 2
14

2
15

2
16

Browser costs
Generate one PIR query (ms) 1.94 1.70 1.75

One PIR query size (KB) 90.75 90.86 90.73

Decode PIR reply (ms) 1.42 1.42 1.41

Bidder costs
Process one PIR query (ms) 230.02 375.70 650.46

One PIR reply size (KB) 181.05 181.19 181.15

Number of bidders 6 12 24

Browser costs
Randomize bidding shares (ms) 0.27 0.55 1.1

Size of bidding shares (KB) 21 42 84

Auction server costs
Decrypt bidding shares (ms) 0.88 1.77 3.53

Private auction (ms) 19.64 19.83 19.80

Figure 5: Microbenchmark for operations of each party in
oblivious biddingwith varied group sizes and varied number
of bidders in an auction. The costs of PIR operations are the
costs on a database chunk. For example, the entire database
consists of 216 rows and it is split into 8 smaller chunks that
have 213 rows each. The numbers are themean over 10 trials.

encryption to encrypt the share. The time to encrypt and sign the

share and the size of generated materials grow linearly with the

group size. For an aggregation task with the group of 2
16
, such

materials are 2.72 MB and it takes about 91.33 ms to generate. The

auxiliary aggregator is also responsible to decrypt the encrypted

aggregation result (histogram) for the main aggregator. The time

of decryption also grows linearly with the size of the group and it

takes 14.81 ms to decrypt with a group of size 2
16
.

Main aggregator’s costs. For each report, the main aggregator

first validates and recovers the encrypted report locally. Costs of

this operation grow linearly with the group size and it takes 9.23

ms with group size of 2
16
. Aggregating recovered encrypted reports

is a lot cheaper as it only requires ciphertext additions, and it only

takes a few milliseconds to sum up two encrypted reports. Adding

randomness to the final aggregation result is a one-time cost when

themain aggregator needs to decrypt the aggregation result and this

operation shares the same cost as one homomorphic encryption

and summing up two ciphertexts. Removing the randomness is

also a one-time cost and takes several milliseconds. The recovered

encrypted report has the same size as the encrypted share.

7.2.2 Oblivious bidding. Figure 5 shows the costs of each party of

private bidding with varied group sizes and we detail them below.

Browser’s costs. In oblivious bidding, a browser first locally se-

lects bidders to join the auction. It then concurrently issues PIR

requests to the selected bidders’ PIR servers. The time of generating

one PIR request and the size of each request is constant for varied

group sizes since we use the same set of parameters for PIR. Gener-

ating one request takes less than 2 ms and the size of one request

is around 90 KB. To decode the PIR reply from the PIR servers,

it takes about 1.4 ms to recover the encrypted bid shares. After

retrieving the shares the browser randomizes these shares, and the

time grows linearly with the number of invited bidders; the size of

0 500 1000 1500 2000 2500
Response time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
er
ce

nt
ag

e

Baseline (non-private)
Group size: 214
Group size: 215
Group size: 216

Figure 6: CDF (cumulative distribution function) of the re-
sponse time of HTTP requests to a single-threaded web
server using Ibex’s private aggregation under different
group sizes and a non-private aggregation method. For each
setting, we sample 300 data points where theHTTP requests
are issued at the same rate which is far below the rate that
will saturate the server.

the bid shares is only tens of KB. It takes 1.1 ms to randomize the

bid shares for an auction with 24 bidders.

Bidder’s costs. The bidder splits its bidding databases into 8 chunks.
It processes the PIR query on all 8 chunks in parallel. The time to

answer one PIR query is linear to the group size while the reply size

is constant. For each chunk, the bidder can answer a query in 650

ms for a group size of 2
16
. The bidder can further split the entire

database into more chunks to reduce the latency of answering PIR

queries, but it requires more cores.

Auction server’s costs. Auction servers receive the randomized

shares from the browsers. They each first decrypt the randomized

shares and then run the private auction protocol. The time to de-

crypt shares is linear to the number of invited bidders. It takes 0.88

ms, 1.77 ms, and 3.53 ms for 6, 12, and 24 advertisers respectively.

The local computation time of the private auction remains roughly

the same with the varied number of bidders and takes around 20

ms per auction server.

7.3 Browsing response time comparison
Most operations of Ibex’s private aggregation protocol can be com-

puted off the critical path. The part that influences user experience

most is response time when the user visits an aggregator’s site.

The private aggregation requires the browser to attach additional

materials in the request when visiting the aggregator’s site while

the non-private methods [22, 84] directly expose the user’s group

id in plaintext. To compare the two, we build a single-threaded web

server implemented in Python that receives HTTP requests from

the clients and responds with a 1 MB webpage, and use wrk2 [26]

to benchmark the response time of browsers’ HTTP requests. The

browser attaches the group id or the additional materials in the pay-

load of POST requests. Figure 6 shows the CDF of the response time

of HTTP requests under different settings. The median response

time of the browser using Ibex’s private aggregation is 1.7–2.5×
slower than that of the non-private method.

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

6 12 24
Number of invited bidders

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te
nc

y
(s
ec

)

Baseline
Group size: 214

Group size: 215

Group size: 216

Figure 7: End-to-end latency of Ibex’s oblivious bidding and
auction protocol. The baseline (purple bar) is a non-private
auction with bids provided in the clear.

7.4 End-to-end latency of oblivious bidding
Figure 7 shows the end-to-end latency of Ibex’s oblivious bidding
comparedwith the non-private method.With 24 invited bidders, the

non-private auction takes 300 ms to complete while Ibex’s oblivious
bidding takes 1.54 sec, 1.78 sec and 2.25 sec with group sizes of 2

14
,

2
15
, and 2

16
respectively. This is 4.97–7.26× more costly than the

non-private auction. The browser needs to send around 17.1 MB of

extra data (PIR queries and the bid shares) with 24 invited bidders.

Note that the browser might have cached the bid shares of some

bidders locally. If the bidder has not updated its bidding database

since the last query of the browser, the browser can reuse the value

in its cache. In the overly optimistic case when all bid shares are

local and the browser does not need to issue PIR queries, oblivious

bidding only takes around 550 ms to complete with 24 invited

bidders, which is 1.8× slower than the non-private auction.

While these numbers are high, existing studies [1, 8, 28, 83] show

that page loading takes several seconds today, so Ibex should be

able to run the auction and display the ad asynchronously (using

AJAX) without significantly impacting page load.

8 RELATEDWORK
This section describes other efforts that relate to Ibex.

8.1 Privacy-preserving advertising
AdVeil [79] uses Tor [51] and anonymous tokens to hide the identity

of the user submitting a report, while ObliviAd [39] performs all

adverting operations (ad selection, reporting) in a TEE. Ibex does

not require each user to be equipped with Tor, nor does it use

TEEs which are riddled with vulnerabilities [47, 49, 67, 75, 81, 85].

PPAD [43] computes statistics at the granularity of groups, but

reveals which group a user belongs to (which Ibex does not do).

BAdASS [63] assumes that bidders use a linear model to privately

generate a bid using secret shares of the user profile. In contrast,

Ibex bidders can choose arbitrary bids for each group. IPA [35] has a

way to measure conversions on blinded ids but does not discuss how

to use this mechanism to allow bidders to adjust their estimation

of user value.

8.2 Private or verifiable auctions
Parkes et al. [77] and VEX [38] provide auction integrity but the

auctioneer learns the bids. Other works [62, 65] hide the bids but

lack integrity. Addax [89] provides both. Some designs [40, 46] run

MPC among the bidders. These works are orthogonal to Ibex.

9 DISCUSSION
This section discusses potential extensions and improvements.

Bottleneck of Ibex in practice. Ibex’s costs during the auction is

still more expensive than current non-private methods. The main

costs come from bidders’ PIR servers processing queries. One possi-

bility is to experiment with other single-server PIR protocols such

as Spiral [72], PIR schemes that do preprocessing for cheaper com-

putation [64], or fast multi-server PIR schemes [44, 66, 71, 74] with

proper deployment of multiple PIR servers.

Hide winner’s identity. In the oblivious bidding, auction servers

in the end learn which winner’s ad is viewed by the user. Com-

bining multiple winners of auctions for the same user allows the

auction server to infer the user’s interest. One way to limit the auc-

tion server’s view is to hide the winner’s identity from the auction

servers. After learning the winner’s index, the browser directly

fetches an ad tag from the winner and displays the ad. Instead of

directly sending both auction servers the winner’s identity, the

browser could split the identity into two shares (the identity can

be the id of the winner among all advertisers), and send each auc-

tion server one share. The auction servers input the shares of the

winner’s id and the sale price of each auction and run a two-party

computation (2PC) program that outputs the batch charges of each

bidder without leaking the winner of each auction.

Dynamic features during bidding. Instead of just relying on the
user profile, bidders may want to bid based on information about

the publisher’s site (where on the page the ad is shown), time of

day when a user visits, etc. To address this issue, the bidder can set

up a different bidding database for each combination of features.

For example, a bidder sets up a bidding database for the publisher

of news sites and morning visits. The browser chooses the bidding

database it needs to read according to its visit. The bidders can

decide which features of bidding are sensitive to a user and include

that feature in the database. For example, each row in the database

represents the bidding share for a combination of a type of publisher

site and user group.

Other trackingmethods. While Ibex prevents tracking via group
identifiers or third-party cookies, there are other more noisy track-

ing methods such as browser fingerprinting [25] and IP addresses.

Ongoing efforts specifically address these tracking issues, such as

Apple’s private relay service [9] that hide IP address and browsing

activities in Safari, can be integrated with Ibex.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Amrita Roy

Chowdhury, for their helpful comments that improved the content

and presentation of this work. This work was funded in part by

NSF grant CNS-2045861 and DARPA contract HR0011-17-C0047.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Ke Zhong, Yiping Ma, and Sebastian Angel

REFERENCES
[1] About pagespeed insights.

https://developers.google.com/speed/docs/insights/v5/about.

[2] Aggregation service for the attribution reporting api.

https://github.com/WICG/attribution-reporting-

api/blob/main/AGGREGATION_SERVICE_TEE.md.

[3] Back to basics: What is header bidding?

https://www.lotame.com/back-basics-header-bidding/.

[4] Divvi up: A privacy-respecting system for aggregate statistics.

https://divviup.org/.

[5] EMP sh2pc. https://github.com/emp-toolkit/emp-sh2pc.

[6] Google Has a New Plan to Kill Cookies. People Are Still Mad.

https://www.wired.co.uk/article/google-floc-cookies-chrome-topics.

[7] Google’s Topics API: Rebranding FLoC Without Addressing Key Privacy Issues.

https://brave.com/web-standards-at-brave/7-googles-topics-api/.

[8] Here’s what we learned about page speed.

https://backlinko.com/page-speed-stats.

[9] icloud private relay overview. https:

//www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf.

[10] Internet security research group. https://abetterinternet.org/.

[11] Let’s encrypt: A nonprofit certificate authority providing tls certificates to 260

million websites. https://letsencrypt.org/.

[12] Masked learning, aggregation and reporting workflow (masked lark). https:

//github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md.

[13] Multi-party computation of ads on the web (macaw).

https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md.

[14] Number of active advertisers on Facebook from 1st quarter 2016 to 3rd quarter

2020. https://www.statista.com/statistics/778191/active-facebook-advertisers/.

[15] Openrtb protocol buffer 2.5.0. https://developers.google.com/authorized-

buyers/rtb/downloads/openrtb-proto.

[16] OpenSSL. https://www.openssl.org.

[17] Parakeet.

https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md.

[18] Privacy analysis of FLoC.

https://blog.mozilla.org/en/mozilla/privacy-analysis-of-floc/.

[19] SealPIR: A computational PIR library that achieves low communication costs

and high performance. https://github.com/microsoft/SealPIR.

[20] Similarweb. https://www.similarweb.com.

[21] The GNU Multiple Precision Arithmetic Library. https://gmplib.org/gmp6.2.

[22] The Topics API. https://github.com/patcg-individual-drafts/topics/.

[23] This is how Google plans to track you now. https://www.slashgear.com/this-is-

how-google-plans-to-track-you-now-25708910/.

[24] Understand your conversion tracking data.

https://support.google.com/google-ads/answer/6270625.

[25] What is fingerprinting and why you should block it.

https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/.

[26] wrk2: a http benchmarking tool based mostly on wrk.

https://github.com/giltene/wrk2.

[27] Cookie synching. https://www.admonsters.com/cookie-synching/, 2010.

[28] Find out how you stack up to new industry benchmarks for mobile page speed.

https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-

benchmarks.pdf, 2017.

[29] Cookie matching.

https://developers.google.com/authorized-buyers/rtb/cookie-guide, 2020.

[30] Attribution reporting api.

https://github.com/WICG/conversion-measurement-api, 2021.

[31] FLoC origin trial & clustering.

https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc,

2021.

[32] Private aggregation. https://github.com/WICG/conversion-measurement-

api/blob/main/SERVICE.md, 2021.

[33] Fledge api. https://developer.chrome.com/docs/privacy-sandbox/fledge/, 2022.

[34] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, Mar. 2022.

[35] Privacy preserving attribution for advertising. https:

//blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/,

2022.

[36] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and C. Weng. Aggregate

measurement via oblivious shuffling. Cryptology ePrint Archive, Paper

2021/1490, 2021. https://ia.cr/2021/1490.

[37] S. Angel, H. Chen, K. Laine, and S. Setty. Pir with compressed queries and

amortized query processing. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2018.

[38] S. Angel and M. Walfish. Verifiable auctions for online ad exchanges. In

Proceedings of the ACM SIGCOMM Conference, 2013.
[39] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably secure and

practical online behavioral advertising. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2012.

[40] S. Bag, F. Hao, S. F. Shahandashti, and I. G. Ray. Seal: Sealed-bid auction without

auctioneers. IEEE Transactions on Information Forensics and Security, 15, 2020.
[41] D. Beaver. Efficient multiparty protocols using circuit randomization. In

Proceedings of the International Cryptology Conference (CRYPTO), 1991.
[42] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Lightweight

techniques for private heavy hitters. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2021.

[43] S. T. Boshrooyeh, A. Küpçü, and Ö. Özkasap. Ppad: Privacy preserving

group-based advertising in online social networks. In 2018 IFIP Networking
Conference (IFIP Networking) and Workshops, 2018.

[44] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and

extensions. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[45] Z. Brakerski. Fully homomorphic encryption without modulus switching from

classical GapSVP. In Proceedings of the International Cryptology Conference
(CRYPTO), 2012.

[46] F. Brandt. A verifiable, bidder-resolved auction protocol. In Proceedings of the
5th International Workshop on Deception, Fraud and Trust in Agent Societies, 2002.

[47] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the

keys to the intel sgx kingdom with transient out-of-order execution. In

Proceedings of the USENIX Security Symposium, 2018.

[48] D. Chaum and E. van Heyst. Group signatures. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 1991.

[49] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre attacks:

Leaking enclave secrets via speculative execution. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2019.

[50] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation

of aggregate statistics. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[51] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In Proceedings of the USENIX Security Symposium, 2004.

[52] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In Proceedings of the Theory of Cryptography Conference
(TCC), 2006.

[53] C. Dwork and A. Roth. The algorithmic foundations of differential privacy.

Found. Trends Theor. Comput. Sci., 9(3–4), 2014.
[54] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31(4), 1985.
[55] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.

Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

[56] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with

polylog overhead. In Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2012.

[57] S. Goldwasser and S. Micali. Probabilistic encryption; how to play mental poker

keeping secret all partial information. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), 1982.

[58] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2), 1984.

[59] M. Green, W. Ladd, and I. Miers. A protocol for privately reporting ad

impressions at scale. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[60] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in online advertising.

In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[61] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis. Serving ads from

localhost for performance, privacy, and profit. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2009.

[62] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions with private bids.

In 3rd USENIX Workshop on Electronic Commerce (EC 98), 1998.
[63] L. J. Helsloot, G. Tillem, and Z. Erkin. Badass: Preserving privacy in behavioural

advertising with applied secret sharing. In Provable Security, 2018.
[64] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and

V. Vaikuntanathan. One server for the price of two: Simple and fast single-server

private information retrieval. Cryptology ePrint Archive, Paper 2022/949, 2022.

https://eprint.iacr.org/2022/949.

[65] H. Kikuchi, S. Hotta, K. Abe, and S. Nakanishi. Distributed auction servers

resolving winner and winning bid without revealing privacy of bids. In

Proceedings of the Seventh International Conference on Parallel and Distributed
Systems: Workshops, 2000.

[66] D. Kogan and H. Corrigan-Gibbs. Private blocklist lookups with Checklist. In

Proceedings of the USENIX Security Symposium, 2021.

[67] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring fine-grained

control flow inside SGX enclaves with branch shadowing. In Proceedings of the
USENIX Security Symposium, 2017.

[68] H. Liao, L. Peng, Z. Liu, and X. Shen. Ipinyou global rtb bidding algorithm

competition dataset. In Proceedings of the Eighth International Workshop on Data

https://developers.google.com/speed/docs/insights/v5/about
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md
https://www.lotame.com/back-basics-header-bidding/
https://divviup.org/
https://github.com/emp-toolkit/emp-sh2pc
https://www.wired.co.uk/article/google-floc-cookies-chrome-topics
https://brave.com/web-standards-at-brave/7-googles-topics-api/
https://backlinko.com/page-speed-stats
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://abetterinternet.org/
https://letsencrypt.org/
https://github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md
https://github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md
https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md
https://www.statista.com/statistics/778191/active-facebook-advertisers/
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://www.openssl.org
https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md
https://blog.mozilla.org/en/mozilla/privacy-analysis-of-floc/
https://github.com/microsoft/SealPIR
https://www.similarweb.com
https://gmplib.org/gmp6.2
https://github.com/patcg-individual-drafts/topics/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://support.google.com/google-ads/answer/6270625
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://github.com/giltene/wrk2
https://www.admonsters.com/cookie-synching/
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://github.com/WICG/conversion-measurement-api
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://github.com/Microsoft/SEAL
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://ia.cr/2021/1490
https://ia.cr/2012/144
https://eprint.iacr.org/2022/949

Ibex : Privacy-preserving ad conversion tracking and bidding CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Mining for Online Advertising, 2014.
[69] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes

with efficient protocols and dynamic group signatures from lattice assumptions.

In International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), 2016.

[70] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

errors over rings. J. ACM, 2013.

[71] Y. Ma, K. Zhong, T. Rabin, and S. Angel. Incremental offline/online PIR. In

Proceedings of the USENIX Security Symposium, 2022.

[72] S. J. Menon and D. J. Wu. Spiral: Fast, high-rate single-server pir via fhe

composition. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2022.

[73] I. Mironov. Rényi differential privacy. In Proceedings of the IEEE Computer
Security Foundations Symposium, 2017.

[74] H. Mozaffari and A. Houmansadr. Heterogeneous private information retrieval.

In Proceedings of the Network and Distributed System Security Symposium (NDSS),
2020.

[75] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens.

Plundervolt: Software-based fault injection attacks against intel sgx. In

Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020.
[76] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In J. Stern, editor, Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1999.

[77] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe. Practical

secrecy-preserving, verifiably correct and trustworthy auctions. Electronic
Commerce Research and Applications, 2008.

[78] E. Rescorla and M. Thomson. Technical comments on FLoC privacy.

https://mozilla.github.io/ppa-docs/floc_report.pdf, 2021.

[79] S. Servan-Schreiber, K. Hogan, and S. Devadas. Adveil: A private

targeted-advertising ecosystem. Cryptology ePrint Archive, Report 2021/1032,

2021. https://eprint.iacr.org/2021/1032.

[80] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Adnostic:

Privacy preserving targeted advertising. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2010.

[81] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yuval,

B. Sunar, D. Gruss, and F. Piessens. LVI: Hijacking Transient Execution through

Microarchitectural Load Value Injection. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[82] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit: Efficient MultiParty

computation toolkit. https://github.com/emp-toolkit, 2016.

[83] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.

Demystifying page load performance with wprof. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2013.

[84] Y. Xiao and J. Karlin. Federated learning of cohorts. https://wicg.github.io/floc/,

2021.

[85] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side

channels for untrusted operating systems. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2015.

[86] S. Yuan, J. Wang, B. Chen, P. Mason, and S. Seljan. An empirical study of reserve

price optimisation in real-time bidding. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2014.

[87] W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding benchmarking with

ipinyou dataset. https://arxiv.org/abs/1407.7073, 2015.

[88] K. Zhong, Y. Ma, and S. Angel. Ibex: Privacy-preserving ad conversion tracking

and bidding (full version). Cryptology ePrint Archive, Paper 2022/1174, Sept.

2022. https://eprint.iacr.org/2022/1174.

[89] K. Zhong, Y. Ma, Y. Mao, and S. Angel. Addax: A fast, private, and accountable

ad exchange infrastructure. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2023.

https://mozilla.github.io/ppa-docs/floc_report.pdf
https://eprint.iacr.org/2021/1032
https://github.com/emp-toolkit
https://wicg.github.io/floc/
https://arxiv.org/abs/1407.7073
https://eprint.iacr.org/2022/1174

	Abstract
	1 Introduction
	2 Background
	2.1 Where is the industry headed?

	3 Overview of Ibex
	3.1 Threat model and assumptions

	4 Private histogram aggregation
	4.1 Issues of existing aggregation protocols
	4.2 Asymmetric aggregation
	4.3 Histogram aggregation overview
	4.4 Construction
	4.5 Multiple sets of HE parameters

	5 Oblivious bidding
	5.1 Private auctions
	5.2 High-level idea of oblivious bidding
	5.3 Properties
	5.4 Construction
	5.5 Malicious browsers
	5.6 Update bidding database

	6 Integrate Ibex for aggregation
	6.1 First-site aggregation
	6.2 Cross-site aggregation

	7 Evaluation
	7.1 Implementation and evaluation setting
	7.2 Microbenchmarks: costs of each party
	7.3 Browsing response time comparison
	7.4 End-to-end latency of oblivious bidding

	8 Related work
	8.1 Privacy-preserving advertising
	8.2 Private or verifiable auctions

	9 Discussion
	References

