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In the past decade there has been a significant increase in the collection of personal
information and communication metadata (with whom users communicate, when,
how often) by governments, Internet providers, companies, and universities. While
there are many ongoing efforts to secure users’ communications, namely end-to-end
encryption messaging apps and email services, safeguarding metadata remains elu-
sive. This dissertation discusses the design, implementation, and evaluation of a sys-
tem called Pung that makes progress on this front. Pung lets users exchange messages
over the Internet without revealing any information in the process. Perhaps surpris-

ingly, Pung achieves this strong privacy property even when all providers (ISPs, com-
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panies, servers, etc.) are arbitrarily malicious.

As part of realizing Pung, this dissertation introduces two orthogonal but
complementary techniques: SealPIR and probabilistic batch codes (PBCs). SealPIR is
a new private information retrieval (PIR) library that reduces the communication
costs of the most computationally efficient PIR protocol by over two orders of mag-
nitude. SealPIR can also be used in other contexts to instantiate private services (for
example, private variants of media streaming services). PBCs are a new data encod-
ing that amortizes the computational costs associated with PIR, and are significantly
more network-efficient than prior encodings. Thanks to these two techniques, our

small deployment of Pung can scale out to support hundreds of thousands of users.
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Chapter 1

Introduction

Can two or more users communicate over a public network like the Internet with-
out anyone else learning of the existence of this communication? This is the cen-
tral question studied in this dissertation. This question is decades old [61], but has
received renewed interest due to a proliferation of controversial mass surveillance
practices [32, 54, 95, 117, 118] that defy existing privacy laws and long-held be-
liefs [79, 195, 214, 215, 222], and the monetization of users’ private information [33,
150, 161, 185]. Many privacy-conscious companies have responded to a weaker for-
mulation of this question (and the aforementioned privacy threats) by deploying
email and chat services that safeguard users’ communications with end-to-end en-
cryption [1-4, 116]. While end-to-end encryption hides the content of the messages
exchanged—which is a notable achievement—it does not hide the messages’ exis-
tence nor any of their associated metadata (identity of participants, number of mes-
sages, time and duration of communication, etc.).

Leaking communication metadata is troubling because it can be as sensi-
tive and revealing as the actual content of the messages [200]. For instance, for-
mer NSAs General Counsel Stewart Baker states that “metadata absolutely tells you
everything about somebody’s life. If you have enough metadata, you don't really
need content” [196]. The former director of the NSA and the CIA Michael Hayden
not only agrees with Baker, but further admits that “We kill people based on meta-

data” [72]. Several academic works study the amount and the type of information



that can be learned from analyzing metadata [158, 162, 187, 198], and their results
echo Baker’s statement.

Fortunately, the threat of metadata leakage has received considerable atten-
tion from academics and practitioners; there is a vast literature focused on prevent-
ing such disclosures [23, 43, 47, 60-62, 68, 74, 76-78, 86, 96, 139, 145-149, 164, 165,
170, 183, 192, 193, 199, 201, 216, 225]. While these works make great strides toward
providing strong privacy guarantees (that is, hiding the data and metadata associ-
ated with users’ communications), most require trusting one or more entities in the
public network (for example, proxy servers, Internet service providers, large coali-
tions of users) to achieve their goals. In many contexts, trusting that certain entities
will perform their job and will follow a prescribed protocol is a sensible and justi-
fied assumption. For example, it is reasonable to trust a service provider when its
interests align with those of the service’s users, or when an adversary does not have
the resources to compel the provider to violate its duties. However, online commu-
nication is a particularly problematic setting. There is enough precedent to believe
that any trustworthy provider, good intentions notwithstanding, can be subverted
through technical, financial, or political means [28, 73, 150, 161, 197]. This stems
from the strength of the adversary, which typically consists of nation states and well-
connected organizations.

To withstand these very strong adversaries, there are several proposals based
on Chaum’s dining cryptographers (DC) networks [62] that hide metadata without
requiring trusted intermediaries [77, 113, 121, 218]. Although these works inspire
the content of this dissertation in many ways, we significantly diverge from them to
avoid the prohibitive costs that are inherent in their architecture. In particular, these
protocols are peer-to-peer and require messages to be communicated to all users.
This has two negative consequences. First, all participants must know each other (by
“know” we mean having everyone else’s public keys, or sharing pairwise secrets). This
introduces challenges in dynamic settings such as online communication, especially
when dealing with high membership churn. Second, and more importantly, these
protocols are very expensive: the network costs are quadratic in the number of users

in the system. This is best exemplified by Dissent [77], which despite significantly ad-



vancing the state of DC network systems, supports only dozens of concurrent users.

Resolving this tension between trust and performance is the overarching theme
of this dissertation. As part of the contributions of this work, we demonstrate that pri-
vate communication can be achieved with reasonable performance, even in the pres-
ence of strong adversaries. To substantiate this position, we present Pung, a system
that provably hides all metadata associated with users’ conversations—even against
adversaries that control all the communication infrastructure (ISPs, cloud providers,
etc.) and arbitrary coalitions of users. An experimental evaluation of Pung confirms
that Pung can support hundreds of thousands of users sending multiple messages
per minute, which is 10*x more users than prior systems that withstand a similar
adversary. When this comparison is extended to similar systems under a weaker
threat model (for instance, Vuvuzela [216], Stadium [213]), Pung’s performance is
promising, but admittedly falls short of serving as a viable replacement: Pung han-
dles 10-100x fewer users, and clients incur significantly higher network costs (§8.4).

To build Pung, this dissertation addresses two main challenges. The first is ar-
chitectural: devising a way for users to send and receive messages without a trusted
intermediary. The resulting proposal consists of combining untrusted servers and
powerful cryptography through a synthesis of new and known ideas (§4). The second
and more salient aspect of this work is reducing the costs of the underlying crypto-
graphic machinery. Our contributions apply in contexts beyond Pung, and include
algorithms to extend the interface of the cryptographic machinery (§4.3), to reduce
its communication costs (§5), and to amortize its computational expense (§6). We

discuss these in detail below.

1.1 High-level architecture and challenges

Pung is architected as an untrusted key-value store that exposes private deposit and
retrieval procedures to users. Users can communicate with each other by depositing
and explicitly retrieving messages via Pung. This model of communication is differ-
ent from existing chat applications (such as WhatsApp) where the server sends a

push notification to the recipient; instead, Pung more closely resembles email where



clients explicitly fetch their messages using POP3 or IMAP. A key distinction be-
tween the two, besides privacy, is that Pung operates in synchronous rounds to avoid
leaking timing information, whereas email communication is asynchronous.

Pung’s deposit procedure keeps the destination of a message private by ex-
ploiting the ability of communicating users to secretly agree on a shared label (or
“key” in the key-value store context) under which to store a message (§4.2). Pung’s
retrieval procedure hides which message a user accesses by relying on a powerful
cryptographic primitive: private information retrieval (PIR) [70]. PIR allows a client
to fetch an element (such as a message in Pung) from a server without revealing to
the server which element was fetched. While PIR is powerful, it is expensive and it
is hard to integrate into a larger system as we outline below.

With regards to expense, PIR forces the server to operate over all the stored
elements in order to answer a single client request [70]. After all, if the server could
omit even one element when answering a request, then it would learn that the omit-
ted element is of no interest to the client—violating the desired privacy guarantee.
To put PIR’s expense in context, recent work [49] uses reducibility to PIR as a litmus
test on whether certain problems admit concretely practical solutions. This is akin to
the use of NP-completeness to separate hard problems from easy ones: if a problem
implies PIR, its solutions likely have poor concrete efficiency.

With regards to integration, PIR has a narrow interface. It requires the client
to know the index of the desired element in the data structure that the server uses
to store all of its elements. Not only does this introduce communication overhead
since the server is forced to share this information with all clients, but in Pung, this
data structure changes continuously (§4.3).

Despite the negative outlook on performance and the less than ideal interface
of PIR, this dissertation is an exercise in optimism: to build Pung we do not need PIR
to scale to arbitrarily large databases—supporting 7 billion entries is likely enough to
provide worldwide communication. With this frame in mind, this dissertation makes
several contributions to extend the interface of PIR, and to reduce the computational
and network costs of PIR in practice. While the proposed techniques ultimately fall
short of the intended 7 billion target, they represent a significant step forward.



1.2 Contributions

This dissertation describes the architecture of the first metadata-private messaging
system that support hundreds of thousands of users and withstands an adversary
that controls all communication infrastructure. To realize this architecture, our work
weaves various existing and new cryptographic building blocks with careful system
design. We also provide a formal proof that Pung’s end-to-end design meets all of
our privacy guarantees under standard assumptions. Incidentally, as part of writing
the proof we uncovered a new attack that affects all existing messaging systems that
hide metadata; we also describe how to mitigate this attack.

Besides building Pung, this dissertation introduces several technical contri-
butions that are general and can be used in other contexts. In particular, this work
discusses three extensions to the computational variant of PIR (CPIR) [143], which
guarantees privacy under cryptographic assumptions (the other variant of PIR re-
quires multiple non-colluding servers which conflicts with Pung’s goals). These ex-
tensions are orthogonal but compose with each other, and alleviate PIR’s drawbacks.

The first PIR extension is SealPIR, a new CPIR library that builds on top of
the most computationally-efficient CPIR protocol, XPIR [20], and introduces a new
query compression technique that reduces network costs (§5). Specifically, a query
in XPIR (and its base protocol [207]), consists of d vectors of </n ciphertexts, where
n is the number of elements in the server’s database, and d is a small positive inte-
ger (the size of the response increases exponentially with d, so d is usually less than
4). SealPIR takes a different approach. Instead of creating a query vector, SealPIR
has the client send a single ciphertext containing an encoding of the index of the
desired element. The server then executes a new oblivious expansion procedure that
extracts the corresponding n-ciphertext vector from the single ciphertext, without
leaking any information about the client’s index, and without increasing the size of
the response (§5.6). The server then executes the rest of the XPIR protocol on the
extracted vector.

In terms of concrete savings over XPIR, SealPIR results in queries that are

274x smaller and are 16.4x less expensive for the client to construct. However, SealPIR



introduces a 6% CPU overhead to the server (over XPIR) to obliviously expand
queries. This constitutes an excellent trade-off since answering a PIR query is an em-
barrassingly parallel task, and one can regain the lost throughput by employing addi-
tional servers. Furthermore, reducing communication overhead makes PIR usable
in settings where clients have limited bandwidth, such as mobile devices or wired
connections with data limits [15].

The second extension is a technique to amortize the server’s CPU cost when
processing multiple PIR queries from the same client (multi-query PIR). This sce-
nario applies when clients in Pung engage in group communication, or when clients
exchange many messages in one round of communication (recall that unlike email,
Pung is a synchronous communication system). The proposed technique is a relax-
ation of batch codes [127], which is a data encoding that was originally intended for
this purpose. In practice, most batch code constructions target a different domain—
providing load balancing and availability guarantees to distributed storage [177, 189]
and network switches [221]; using these constructions to amortize the processing of
a batch of PIR queries is not worthwhile since they introduce onerous network costs
while yielding only modest CPU speedups (56.1).

Our data encoding, called a probabilistic batch code (PBC), addresses this issue
at the expense of introducing a small probability of failure (§6). In the context of
multi-query PIR, a failure simply means that a client can only get some (and not all)
of her queries answered in a single interaction. While the implications of a failure
depend on the application, we argue that this is not really an issue in Pung (§6.6.2).
Moreover, the failure probability of our constructions is low—about one in a trillion
multi-queries would be affected.

The key idea behind our PBC construction is a simple new technique called
reverse hashing (§6.3). This technique flips the way that hashing (for instance, multi-
choice [166], Cuckoo [174]) is typically used to build hash tables or to achieve load
balancing in distributed systems: instead of executing the hashing algorithm during
data placement and replicating queries during data retrieval, reverse hashing repli-
cates data during placement and uses hashing during retrieval. Like batch codes,

PBCs can be used to amortize the server’s CPU costs when processing a batch of



PIR queries. Unlike batch codes, PBCs introduce orders of magnitude less network
overhead (§8.3).

The third and last extension broadens PIR’s interface in order to integrate
SealPIR and PBCs with the rest of Pung. This is achieved through the introduction
of an oblivious search technique that adapts prior work [69] to allow clients to retrieve
messages without having to know the corresponding index in the server’s data struc-
ture. More importantly, the proposed oblivious search technique works even when
the server’s data structure is encoded with a batch code or a PBC (§4.4.3), which ties

together all of the techniques proposed in this dissertation.

1.3 Limitations

While Pung introduces a new point in the design space of private communication
systems by leveraging powerful cryptography in lieu of trusting part of the network
infrastructure, its costs remain high. Furthermore, like all past private communica-
tion systems, Pung does not hide the fact that users are part of the system (it only
hides if and with whom they are communicating), nor does it provide location pri-
vacy. Pung also does not prevent analog attacks (for example, when a malicious WiFi
router detects users’ keystrokes by tracking the position of fingers through WiFi sig-
nals [24]), and requires clients’ devices to constantly interact with the system to avoid
leaking timing information. Finally, Pung does not provide liveness guarantees (cen-
sorship resistance). This is fundamental, since under our threat model, an ISP could

simply refuse to route network packets.

1.4 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 gives a brief overview
of other works in this general space, and how Pung compares to them. Chapter 3 dis-
cusses Pung’s goals, assumptions, and concrete guarantees, and explicitly outlines
the capabilities of the adversary. Chapter 4 provides the high level architecture of

Pung, discusses how users send and retrieve messages, and how they bootstrap their
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communication. This chapter also discusses how clients can use PIR to retrieve mes-
sages even when the server’s data structure is encoded with a batch code.

Chapter 5 introduces SealPIR, a new PIR library used in Pung, but that can be
used in other contexts and applications as well. Chapter 6 discusses PBCs, which are
a relaxation of batch codes [127], and how they can be used in PIR to amortize the
computational costs of the server. Chapter 7 discusses our prototype implementation
of SealPIR, PBCs, and Pung, and Chapter 8 contains the corresponding experimental
evaluation on a variety of deployment scenarios. Finally, Chapter 9 summarizes this

work, outlines the remaining challenges, and discusses avenues for future work.



Chapter 2

Related work

This chapter discusses systems related to Pung, with a focus on the major architec-
tural differences; for a detailed discussion of many of these works, we recommend
the survey of Danezis, Diaz, and Syverson [83]. These systems, Pung included, are
inspired by Chaum [61], who proposed the first communication system that hides
both data and metadata. We group these works into five high-level categories: mix
networks, peer-to-peer routing, onion routing, dining cryptographer networks, and

private mailbox systems.

2.1 Mix networks

The most common architecture for private communication systems [43, 44, 60, 61,
86, 107, 120, 132, 145, 146, 148, 149] are networks of servers called mixes that route
messages on behalf of users. Mixes batch requests from many users, shuftle them, add
fake requests to serve as noise, and remove outer layers of encryption from messages.
The result is that if a mix performs its duty, an adversary who observes network
packets cannot correlate input messages (sent by clients) with output messages. By
combining many of these mixes, and assuming that at least one is correct, clients can
send messages anonymously. Furthermore, since the operations that mixes perform
are relatively lightweight, these systems enjoy higher throughput than many works

in the literature—including Pung.



One challenge with mix networks is that malicious mixes can replay, dupli-
cate, and drop messages, violating the anonymity guarantees [151, 157, 172, 180, 181,
191,203, 224]. To deter malicious mixes, systems like Riftle [146] and Atom [145] use
verifiable shuffle protocols that force mixes to prove the correctness of their actions.
Loopix [183], on the other hand, introduces message loops where particular messages
loop around (potentially going back to the sender), allowing clients and mixes to de-
tect if messages are being handled improperly. Finally, systems like Aqua [149] and
Herd [148] target deployment scenarios where critical mixes are assumed to operate
correctly.

Besides its architecture (as we discuss later), Pung differs from mix networks
in its threat model, use cases, and guarantees. Specifically, Pung targets an ecosystem
in which all servers are malicious (rather than some fraction of them), and supports
private messaging (for example, email, chat) that hides metadata from anyone be-
sides the sender and the recipient. Crucially, Pung does not provide anonymity: the
recipient of a message in Pung knows the identity of the sender. As a result, Pung is
not useful for anonymous content publishing (such as allowing a whistleblower to
anonymously send documents to a news organization), which is one of the primary
use cases of mix networks.

While it might be possible to redesign Pung into a mix network and relax
its threat model to achieve anonymity, it might not be worthwhile. First, some of the
existing systems are likely better alternatives. Second, Kesdogan et al. [131] show that
mix networks are fundamentally susceptible to certain traffic analysis attacks, and
Das et al. [89] show that strong anonymity cannot be achieved with low bandwidth
and low latency. As a result, we believe that Pung strikes a good balance between
supporting a meaningful application (private messaging), while providing provable

guarantees under a realistic threat model.

2.2 Peer-to-peer routing

Peer-to-peer routing systems [35,71, 85,102, 104, 170, 192, 201], notably Crowds [192],

offer an alternative to mix networks. In these systems, clients send a message to one
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or more of their peers, who then randomly decide whether to forward the message to
other peer nodes or to the final destination. While a benefit of these systems is their
ease of deployment, they incur high network costs and require a threshold of peers
to be correct in order to guarantee anonymity. For example, Salsa [170] requires that
fewer than 20% of all nodes be malicious, whereas Blindspot [104] and Drac [85] sug-
gest peering only with contacts from existing social networks, which leaks informa-
tion about users’ relationships and results in smaller anonymity sets. Furthermore,
peer-to-peer routing systems are susceptible to network adversaries [99, 163, 206]
and Sybil attacks [98].

Similar to mix networks, peer-to-peer routing systems differ from Pung in
threat model (partial compromise versus full compromise), guarantees (anonymity

versus metadata privacy), and use cases (Web browsing versus messaging).

2.3 Onion routing

Works based on onion routing [96, 164, 165, 210], especially Tor [96], are readily
adopted due to their relative low latency and support for anonymous Web browsing.
They have an architecture superficially similar to that of mix networks, but there are
key differences. First, nodes are routers instead of mixes, meaning that they do not
batch or shuffle requests from many users, which keeps latency low. Second, unlike
mix networks where all clients use the same set of nodes, clients in onion routing
select 3 or 4 nodes from a large list of geo-distributed volunteer nodes, and route
messages through them. One drawback of onion routing systems is their inability
to resist routing attacks [209] and traffic analysis attacks [125, 168, 191], including
those performed by local adversaries [56, 144, 176, 219]. Furthermore, many volun-
teer nodes can be malicious, making it difficult for clients to select safe routes. While
there is hope that future Internet architectures may address many of these shortcom-

ings [63, 64], Pung is designed to work in today’s ecosystem.
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2.4 Dining cryptographers networks

Another line of work initiated by Chaum [62] is the Dining Cryptographers (DC)
network [62, 77, 113, 121]. Unlike the prior categories of systems, DC networks tar-
get the same threat model as Pung, while supporting both metadata-private messag-
ing and anonymous publishing. In this regard, DC network systems are more flexi-
ble than Pung. Their drawback, and what motivates Pung’s techniques, is that they
are peer-to-peer (requiring all users to know each other) and are based on all-to-all
broadcast of messages, which results in prohibitive network communication. Despite
their appealing guarantees, DC network systems typically accommodate only hun-
dreds of users.

Verdict [78] and Dissent in numbers [225] make great strides to reduce the
costs of DC networks. These systems support thousands of users, but in the process
they relax DC networks’ threat model and introduce servers of which at least one
must be trusted. While Pung cannot support anonymous publishing, it can support

hundreds of thousands of users while retaining a desirable threat model.

2.5 Private mailboxes

Finally, there are a number of systems [23, 47, 74, 76, 139, 146, 199, 216] that employ
an architecture and techniques similar to Pung’s (clients privately retrieve messages
from mailboxes kept at third-party servers). The key differences between these works
and Pung is their reliance on at least one correct server, and the mechanisms that
follow from that assumption. We elaborate on the most related ones below.

P’ [139], like Pung, employs a key-value store from which users can privately
pull messages. While P?’s focus is a retrieval mechanism that supports general queries
when fetching a message (for instance, prefix search), Pung’s primary goal is to drive
down the cost of retrieval by introducing new protocols (§5) and batching optimiza-
tions (§6).

Riposte’s [76] mechanisms are the opposite of Pung’s: while Riposte hides

which messages a user deposits into the servers (in order to provide sender anonymity),
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Pung hides which messages a user retrieves. The Pynchon Gate [199] provides anonymity
by composing a mix network with a private information retrieval (PIR) protocol,
which is a primitive that Pung also uses (§4.3.1) and improves (§5). However, the
Pynchon Gate’s guarantees hold only for passive adversaries that do not compromise
mixes; under our threat model, several attacks exist [172, 180, 181, 224].

Vuvuzela [216] and Stadium [213] have a mix network architecture and pro-
vide privacy through request shuffling and the careful addition of cover traffic. These
systems have lower costs and achieve better performance than Pung (§8.4.1, §8.4.3),
but Pung has some benefits. In Vuvuzela and Stadium, messages are ephemeral and
can be accessed only during one round; Pung supports long-lived messages that can
be retrieved any time prior to garbage collection (§7). Unlike these works, Pung sup-
ports group communications in addition to point-to-point exchanges. Finally, the
guarantees of a Vuvuzela and Stadium deployment are based on differential privacy
and are valid only for a certain number of rounds (based on a privacy budget). Pung’s

guarantees hold for any number of rounds.
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Chapter 3

Goals, assumptions, and threat model

This chapter makes explicit the goals and assumptions of this work, and the general

ecosystem in which we intend for Pung to be deployed.

3.1 Target ecosystem and guarantees

We strive for a messaging system that allows two or more users to communicate over
the Internet (or any other public network) while hiding the content of all messages
exchanged in addition to the metadata associated with the exchange. The metadata
that we wish to hide from anyone—except from the users directly involved in the
conversation—includes the start and end time of a conversation, the frequency of
messages exchanged, the size of messages, and the identity of participants. Some of
this information is difficult to keep private since existing services rely on it for their
proper functioning. For instance, ISPs need to know the destination of a message
in order to route packets. Consequently, Pung must be compatible with existing ser-

vices and infrastructure while meeting the following security goals:

Message integrity and privacy. The content of a message must be intelligible only
to its intended recipient. Furthermore, no one should be able to tamper with a mes-
sage while it is in transit without the recipient being able to detect alterations. Specif-

ically, we target two cryptographic properties that capture these goals, namely indis-
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tinguishability under adaptive chosen ciphertext attacks (IND-CCA2) [171, 186], and
integrity of ciphertexts under chosen plaintext attacks INT-CTXT) [39, 130].

Metadata privacy. An adversary must not be able to determine if (or when) a user
sent or received a message. Furthermore, an adversary must not be able to link a
message exchange with the users who participated in that exchange. Specifically, we
target the privacy notion of relationship unobservability as defined by Pfitzmann and
Hansen [179]. Informally, relationship unobservability states that an adversary does
not learn useful information from observing (or actively interfering with) all net-
work traffic, provided that the sender and the recipient are not compromised. In the
case where the adversary compromises the sender or the recipient, relationship un-
observability offers little value: the sender could trivially disclose that it is sending a
message and to whom, and the recipient could similarly leak the sender’s identity.
Relationship unobservability is sufficient for our setting of two-way commu-
nication. However, this property does not protect the identity of a whistleblower who
wishes to remain anonymous from everyone, including the recipient; that would re-
quire sender anonymity [179]. For settings where anonymity is desired, a related class
of systems—including the Tor anonymity network [96] —is more appropriate; we dis-
cuss these systems in Chapter 2. We give a formal definition of metadata privacy and

prove that Pung meets this definition in Appendix C.

Non-guarantees. Pung does not attempt to hide the fact that a user is part of the
system, the geographic location of the user, or the maximum number of concurrent
conversations that a user can have. Indeed, these limitations are shared by all other
systems related to Pung. Hiding that a user is part of Pung relates to the goal of
many steganographic systems (see for instance the work of Weinberg et al. [223]),
which remains elusive in practice [126]. Pung provides no guarantees in the pres-
ence of targeted attacks that compromise a user’s device (for example, malware, ma-
licious firmware) or that determine the user’s actions through analog channels (such
as video cameras that observe users’ screens, or routers that detect users” keystrokes

through WiFi signals [24]). Finally, Pung does not prevent censorship: a government

15



or network operator could stop users from accessing Pung.

3.2 Assumptions

Pung provides the above guarantees and can be deployed in our target ecosystem

only if the following assumptions hold true.

Cryptographic assumptions. Pung assumes the existence of an authenticated en-
cryption (AE) scheme [39], a public key cryptosystem with key privacy [38] and weak
robustness [17], a pseudorandom function (PRF) [111], and a computational private
information retrieval (CPIR) scheme [143]. AE schemes such as AES-GCM [159]
hide the content and preserve the integrity of a message, and are part of TLS 1.2 [93,
§6.2.3.3] and end-to-end encrypted chat and email services (for example, WhatsApp,
Signal). Public key cryptosystems that provide key privacy (that is, a ciphertext does
not leak which public key was used to encrypt a message) and weak robustness
(meaning that a ciphertext is only valid under a single encryption key) include Cramer-
Shoup [80], Kurosawa-Desmedt [142],and DHIES [18, 40]. PRFs, for example HMAC-
SHA256, are functions whose output on a given input is indistinguishable to an ad-
versary from the output of a truly random function. We review CPIR schemes in
Section 4.3.1, and give one construction in Chapter 5.

Pung’s protocol relies on an AE scheme for message integrity and privacy, the
robust key-private cryptosystem to bootstrap the communication, and the CPIR and
PRF schemes for metadata privacy. In Section 7 we discuss the instantiations that we

use for each of these primitives, but Pung’s design is independent of these choices.

Trust assumptions (threat model). Pung assumes that pairs (or groups) of users
who wish to communicate know their peers’ public keys (or can exchange a secret
through an out-of-band channel). Pung provides privacy guarantees only to pairs
(or groups) of users who communicate through Pung while following the prescribed
protocol. However, these guarantees are not predicated on the behavior of any other

user in the system, or the communication channel between users. In other words,
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Pung’s guarantees for a correct user u hold even if there is compromise or arbitrary
behavior of all of the infrastructure that Pung uses (servers, ISPs, DNS, etc.) and
all users not directly conversing with u. We therefore assume that the adversary is

malicious and may control all infrastructure and any subset of users.

Liveness assumption. Pung assumes that its own servers (which can act arbitrar-
ily) as well as online services typically used to communicate over the Internet (such
as DNS) do not deny service. That is, we expect ISPs to carry traffic, DNS to pro-
vide name resolution, and servers to process requests. While this assumption is not
needed for Pung to meet its security and privacy guarantees (§3.1), it is essential for

Pung to be usable in practice.

3.3 Alternate trust models

Pungadopts a threat model where the adversary controls all of the existing infrastruc-
ture. A benefit of this model is ease of deployment: any provider can deploy Pung,
and it is compatible with standard monetization strategies such as having the op-
erator charge customers for using the system. As we discuss in Chapter 2, weaker
threat models such as threshold assumptions (for example, that a fraction of servers
or services are not compromised) can be used to design alternatives to Pung that
achieve better performance, but these alternatives have a harder deployment path.
Specifically, it is difficult to find an uncorruptible consortium of servers to run the
system—especially given the likely adversary of a metadata-private communication

system (such as nation states or well-connected organizations).
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Chapter 4

Design and architecture of Pung

This chapter presents the general architecture of the Pung metadata-private
messaging system. Pung is a client-server system in which third-party servers me-
diate the exchange of messages between users. Figure 4.1 depicts this architecture.
From the perspective of end users, Pung’s servers act as a storage service. This paral-
lels services like Gmail or Outlook that store messages on behalf of users.

Users exchange messages with each other via a Pung client application that
deposits client messages into mailboxes located at Pung’s servers. These mailboxes are
addressed by a label that is known to both the sender and the recipient (but nobody
else). Recipients can access a message sent to them by retrieving the contents of a
mailbox from Pung’s servers using an appropriate label. Pung’s mailbox architecture
borrows heavily from prior systems [47, 74, 139, 146, 199, 216]. The key differences
are which entities run the storage nodes, the kinds of processing that these nodes do,
and the mechanisms for storing and retrieving messages. We discuss each of these
components in the following sections, but we first highlight how this architecture fits
within our target ecosystem.

Pung’s mailbox architecture forces all messages sent and retrieved to go through

This chapter contains material from two previously published works: “Unobservable communi-
cation over fully untrusted infrastructure” (OSDI ’16) by Sebastian Angel and Srinath Setty [27], and
“What’s a little leakage between friends?”(WPES ’18) by Sebastian Angel, David Lazar, and Ioanna
Tzialla [26]. Sebastian contributed to all aspects of the design, implementation, and experimental
evaluation of the system and attacks described in this chapter.
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Figure 4.1: Pung client applications issue send and retrieve requests to the Pung clus-
ter at a given rate, introducing dummy requests whenever the user is idle (or when
the user issues fewer requests than the established rate).

entities like ISPs and Pung’s servers. These services rely on (or can easily infer) the
types of metadata that we wish to hide, since they process all network traffic. Con-
sequently, protecting metadata without harming the functioning of these services
requires that the act and the rate of sending and receiving network packets be dis-
entangled from the act and the rate of sending and retrieving messages in Pung. In
other words, just because a network packet is sent by a client does not mean that
the network packet contains an actual message. This requirement is key to prevent-
ing many types of traffic analysis attacks [82, 134, 191] in which an adversary can
observe when messages are sent or received, and can, over a long period of time, es-
tablish which users are communicating. Unfortunately, this disentanglement results
in an unavoidable inefficiency: clients must send and receive network packets at a
rate that is independent of users’ actual communication (such as maintaining a con-
stant rate), even when a user is idle. This forces clients to queue requests that are
in excess of this rate and add cover traffic or chaff [194] (dummy requests that are

indistinguishable from real ones) when the user sends few messages or is idle.

4.1 Mailbox labels and discrete rounds

Pung operates in discrete rounds or time epochs. Round duration is configurable
and depends on the use case. Pung’s servers act as a point of synchronization for
clients and dictate when a new round starts. While this allows Pung’s servers to force
clients out of sync, doing so results in a denial of service but does not violate our

goals of privacy or integrity (§3.1). In particular, clients keep track of the current
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round and increase it monotonically. During each round, client applications send
exactly one message and retrieve exactly one message from Pung’s servers. This en-
sures that clients issue requests at a constant rate that is independent of the users’ in-
tent. In Chapter 6 we relax this model and let clients issue multiple send and retrieve
requests per round, enabling several applications, and achieving lower (amortized)
costs (§4.4). Finally, Section 4.5 discusses how clients can manage existing connec-
tions (for example, add friends), and how they can agree on a round on which to

start a new conversation.

Deriving mailbox labels. Pung’s servers effectively act as a key-value store service
that treats mailbox labels as keys and (encrypted) messages as values. This means
that users’ communication depends on their ability to agree on a label under which
to store and retrieve messages. This label should be unique (to avoid multiple pairs
of users overwriting each other’s messages), and it must also be independent of the
users communicating, as otherwise an adversary could link a label to a conversation.
Pung achieves both of these properties through a combination of shared secrets and
a pseudorandom function (PRF).

Recall from Chapter 3.2 that we assume that users who wish to communicate
have access to each other’s public key, or have exchanged a secret through an out-
of-band channel. In Section 4.5.2 we discuss how a user can add some other user
(identified by a public key) as a friend, and derive a shared secret. Consequently, the
next few sections assume that pairs of users who want to communicate share a secret
that acts as a master key. This master key is used to derive two additional keys, k;
and kg, with a key derivation function [141] that ensures that the resulting keys are
uniformly distributed and indistinguishable from truly random keys. The derived
keys are used for mailbox label generation and message encryption, respectively. We
also assume that users have a unique identifier, uid, within each pair of communi-
cating users. For example, if Alice and Bob wish to communicate with each other,
the one with the lowest name in lexicographic order (Alice) could be “0”, and the
other (Bob) could be “1”. This information need not be private (nor does it need to

be an integer), so users could choose any identification scheme including using their
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names or public keys as uids.
Each user can derive the corresponding labels for the current round r, labels(r)

and labelx(r), by invoking the pseudorandom function (PRF) keyed with k;:
labels(r) = PRFy, (|| uidpeer)

labelr(r) = PRFy, (r|| tidoyn)

where the round number r is a fixed-width integer and || is the concatenation operator
when r and uid are treated as binary strings. Note that labels need not be symmetric:
a user can send a message to Alice and retrieve one from Bob in the same round. In
such cases, the labels would be generated using different keys and wuids. If a user is
idle and has nothing to send or retrieve, it generates random mailbox labels of the

appropriate width.

4.2 Sending messages in Pung

Sending a message in Pung consists of deriving the recipient’s mailbox label (labels,
which stands for “label to use for sending”), and encrypting the message m with an
authenticated encryption scheme (§3.2) using key kg, and the round r as a nonce.
The client then sends the resulting ciphertext, ¢ = AEx,(m,r), along with labels to
one of Pung’s servers as a (labels, c)-tuple. Idle users send a tuple that consists of
a random label and an encryption of a random message instead. We ensure that all
messages are the same size by: (1) padding small messages, and (2) breaking up large
messages into (potentially padded) chunks and prepending additional information
(to the first chunk which is then encrypted) to allow the recipient to piece together
the large message once it has received all the chunks after several rounds.

For security, it does not matter to which particular Pung server a user sends
their tuple since all servers belong to the same untrusted provider. For performance,
an operator might wish to redirect users to particular servers to balance the load
or to provide better service (for instance, if a server is geographically closer to the

user). In the rest of this chapter we will simply assume that clients send and retrieve

21



messages from “Pung’s server”, which is just a highly-replicated logical entity.

4.3 Retrieving messages from Pung’s server

Observe that if Pung’s server were to broadcast to all users the (label, c)-tuples re-
ceived during a round, users could iterate through the list locally and find the tuple
with the label that is of interest to them (or determine that it is not present). Intu-
itively, this operation would not leak any information about which label (if any) was
of interest to a retriever, and would not allow the adversary to determine with whom
a user is communicating (or if the user is idle). Of course, broadcasting all tuples
would incur prohibitive network costs. Fortunately, retrieving an item from an un-
trusted server without revealing which item was retrieved is the problem addressed
by a powerful cryptographic primitive: private information retrieval (PIR) [70]. PIR
protocols trade off computation at the server to achieve lower network costs than
the above broadcast scheme. We summarize PIR next since it is the basis of mes-
sage retrieval in Pung, and we discuss it in detail in Chapter 5 where we propose an

extension to an existing construction.

4.3.1 Background: Private information retrieval (PIR)

Chor etal. [70] introduce private information retrieval (PIR) to answer the following
questions: can a client retrieve an element from a database managed by an untrusted
server (or set of servers) without the server learning which element was retrieved
by the client? And can this be done more efficiently than simply having the client
download the entire database? Chor et al’s affirmative response inspired two lines of
work: information theoretic PIR (IT-PIR) and computational PIR (CPIR).!

In IT-PIR schemes [36, 70, 90, 92, 110] the database is replicated across sev-
eral non-colluding servers. The client issues a carefully constructed query to each
server (that reveals no information as long as the servers do not collude) and com-

bines the responses from all of the servers locally. IT-PIR schemes have two bene-

! Also known as multi-database PIR (IT-PIR) and single-database PIR (CPIR).
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fits. First, the servers’ computation is relatively inexpensive: an XOR for each entry
in the database. Second, the privacy guarantees are information-theoretic, meaning
that they hold even against computationally-unbounded adversaries (so there is no
need for cryptographic hardness assumptions). However, basing systems on IT-PIR
poses a significant deployment challenge since it can be difficult to enforce the non-
collusion assumption in practice (see the discussion in Section 3.3).

On the other hand, CPIR protocols [20, 51, 55, 59, 97, 109, 137, 143, 152, 153,
227] can be used with a database controlled by a single operator (which is the setting
that Pung targets), under cryptographic hardness assumptions. The drawback is that
they are more expensive than IT-PIR protocols as they require the database operator
to perform costly cryptographic operations on each database element. Fortunately,
there is a long line of work that focuses on improving the resource overheads of
CPIR schemes (see [20, 137] for the state-of-the-art); recent work [20] proposes a
construction that achieves, for the first time, plausible (although still high) compu-

tational costs.

CPIR protocol. We will give a concrete CPIR protocol in Chapter 5. For now, we
discuss only its interface. Our CPIR protocol operates over a collection DB of n items
held by a server, and consists of three procedures: QUERY, ANSWER, ExTrRACT. The
QuEery(pk, idx, n) procedure is run by the client; it outputs a query g that encodes
the index, idx, in DB of the desired element with the client’s encryption key pk. The
Answer(g, DB) procedure is run by the server; it returns an encrypted response a
that contains the element in DB at the index encoded in q. Producing the response
a requires the server to perform cryptographic operations over every element in DB.
That is, the running time of the computation that the server performs is linear in
n. The intuition for this is simple: if the server were to omit even a single element
while still being able to correctly answer the query, then the server would learn that
the client did not request the omitted element. The Extract(sk, a) procedure is run
by the client; it decrypts a with the client’s decryption key sk to recover the desired

element in DB.
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Figure 4.2: A client wishing to retrieve an item with label “3” from a server hold-
ing a sorted list of 6 items would need to perform three rounds of probing. During
each probe, the client guesses an index, uses PIR to retrieve the (label, ¢)-tuple at
that index, and refines the guess accordingly. “Cost” indicates the number of items
processed by the server in each probe.

4.3.2 Retrieving messages

Since PIR allows clients to privately retrieve an item from a server at some index, one
possibility is to use labels as indices: clients can retrieve a message from labelg(r)
with g = Query(pk, labelr(r), n). However, the size of the collection (1) would need
to match the range of the labels (§4.1), which is 256 bits in our implementation (§7).
This would require Pung’s server to input a collection of 22°¢ elements to ANSWER,
consisting of a combination of real tuples (sent by users) and dummy tuples (needed
to satisfy the structure and size expected by PIR).

Instead, we can arrange for Pung’s server to insert all tuples sent by clients
in some search data structure (such as a sorted list or a search tree) and present
them as a collection DB of size n (where # is the total number of nodes in the search
data structure). This enables clients to perform PIR directly on the search data struc-
ture, but there is a problem: clients know from which mailbox they wish to retrieve
(labelg(r)), but they do not know the mapping between labels and the index of the
desired tuple in the data structure representing DB, or if the tuple even exists. This
can easily be addressed by having clients obtain this label-to-index mapping explic-
itly from Pung’s server. However, when the collection is large (for example, n>10K),
downloading this mapping consumes significant network resources; we show how
clients can use a search scheme to reduce network costs below.

The key idea is that clients can find their desired element in DB via an “oblivi-
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ous” search procedure. This procedure consists of a client guessing an index, issuing
a PIR query to Pung’s server requesting the element at that index, and then gradually
refining the index based on the retrieved element and the known structure of DB. Fig-
ure 4.2 depicts an example of this search when DB is stored as a sorted list. In this case,
the client guesses an index and performs log(#) probes to locate its desired element
(or determine that it is not present), refining the index after each probe. Even if the
client gets lucky and finds its element early, it must continue until the end to preserve
privacy; the remaining probes can just use any index. Since each probe is a PIR query
to all of DB, the server must process n elements each time (recall that ANswer is lin-
ear in n); the computational complexity of this search is therefore ©(nlog(n)). How-
ever, this scheme has a lot of redundancy since the server processes each item log(n)
times. Chor et al. [69] show that one can eliminate this “double counting” overhead
by using data structures that can be (logically) split into independent chunks while
retaining their search capability. We elaborate on this idea below in the context of

the specific construction that Pung uses.

4.3.3 Retrieving messages from large collections using a BST

We choose to use a complete? binary search tree (BST) as our underlying data struc-
ture for several reasons. First, a complete BST is balanced, enabling search in O (log(n))
probes. Second, for any collection there is a unique complete BST, so the server needs
not communicate the structure to clients (aside from n). Last, since every level of a
complete BST is full (except for possibly the last) and every node contains an actual
data item, there is no need for padding or auxiliary elements that aid the traversal; it
can be represented as a contiguous array without overhead. This last point is crucial.
While Chor et al. [69] also propose other search data structures that result in fewer
probes—and therefore lower network costs—using a BST adds no computational
overhead to the PIR protocol over the baseline where the client knows the index a
priori. Given that computation is the current bottleneck in CPIR protocols and that

Chapter 5 introduces techniques to reduce network costs, using a BST appears the

2A tree is complete if all levels (except the last) are full, and the last level is filled from left to right.
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Figure 4.3: The Pung cluster can store (label, c)-tuples in a complete BST, allowing
clients to treat each level as an independent collection. Clients can issue a PIR query
for the top level, and can recursively derive the index of lower levels using BST se-
mantics. This figure depicts the search for label “3”.

best choice for our use case (at least asymptotically).

We therefore set up Pung’s server to store the collection of (label, ¢)-tuples in
a complete BST, and have clients treat all the nodes at the same depth in the tree (that
is, on the same level) as a (logically) separate collection. As depicted in Figure 4.3,
clients can then query each of the log(#) collections sequentially from top to bottom,
deriving the index of the next level from the semantics of the BST. The pseudocode
for this procedure is listed in Figure 4.4. Since each collection (and therefore each
element) is accessed exactly once, there is no overhead due to double counting; as
expected, the computational complexity of this BST-based PIR retrieval scheme is
©(n), which is the same as if the clients had known the index in the first place. Com-
pared to performing PIR over a known index, clients do incur log(#n)x higher net-
work costs due to retrieving a tuple at every level. As an optimization, clients could
fetch (non-privately) all of the tuples of the first few levels, saving both bandwidth
and CPU. This is because CPIR queries and answers are typically much larger than
the elements in the collection (tuples in Pung); when the collection is small, it is more
efficient to download all elements (naive PIR) than to use a CPIR scheme.

The next section proposes an alternative to using a BST that results in lower

communication costs in practice when the collection is small.
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1: function BST-RETRIEVAL(pk, sk, L*, n)
2 h < |logx(n)] // last level of the BST
3 <1 /] target ciphertext (1L means not yet found)
4: idx < 0 // index of the current level
5: len < 1 // length of the current level
6
7 fori=0tohdo
8 // use PIR to get element at position idx from collection at level i of the BST
9: q < QUERY(pk, idx, len) // see Figure 5.1, Line 4
10: a < send i and g to server and get answer
11: (L,c) < ExTRACT(Sk, a) // see Figure 5.1, Line 14
12:
13: if ¢* == 1 then
14: if L* < L then /1 access left child next
15: idx < 2-idx
16: elseif L* > L then /] access right child next
17: idx < 2-idx+1
18: else /I L* == L, found target ciphertext
19: <c
20:
21: /1 length of the next level of the BST (last level, h, might not be full)
22: if i <h—-1then
23: len « 211
24: else
25: len < n—(2"-1)
26:
27: if idx > len or ¢* # 1 then
28: idx < random index between 0 and len — 1
29: return c*

Figure 4.4: Client procedure for retrieving an encrypted message ¢* from a mailbox
with label L*. The keys pk and sk are an encryption/decryption key pair as we explain
in Chapter 5. The server holds a collection of n (label, c)-tuples in a complete binary
search tree. The client issues a PIR query at every level of the tree (initially getting
the root). As the client reads the label of the retrieved tuples, comparing this label
with L* and the semantics of a BST inform the choice of the index at the lower level
of the tree. The client probes all levels regardless of whether the tuple associated with
L* is found at an earlier level.
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4.3.4 Retrieving messages from small collections

In the previous section we show that when the size of the collection (n) is large, BST
retrieval incurs lower network overhead (logarithmic in #) than explicitly download-
ing the label-to-index mappings (linear in n) and performing PIR with a known in-
dex. We now describe how to delay the breakeven point (meaning the value of n at
which BST retrieval is better than explicitly downloading labels) by using a Bloom
filter [45]. A Bloom filter is a probabilistic data structure that encodes a compressed
representation of a set, and is widely used to reduce network costs in many settings,
including private communication [147, 184] (although our use case is different). It
exposes a check procedure that allows anyone to check whether an element is in the
set; false positives are possible and occur with small probability.

In our protocol, after Pung’s server has received all messages from users for a
given round, the server creates a Bloom filter as follows. For each (label, c)-tuple in
DB, the server adds to the Bloom filter the bit string: idx || label; idx is the index of
the tuple in DB, label is the tuple’s label, and || is the concatenation operator. Pung’s
server then sends the resulting Bloom filter to clients, who can then find the index
of their desired label L* by testing for set membership locally. In particular, clients
use the check procedure of the Bloom filter while varying the index until they find
a match: check(0||L*),. .., check(n — 1||L*). While standard Bloom filters require
computing a large number of hash functions for each add and check operation, there
exist constructions that require only two [138]. Thus, with little computation, clients
can locally derive their desired index while saving network resources. For very large
collections, retrieval via BST (Fig. 4.4) is still the most efficient option, since the size
of a Bloom filter is linear in n (asymptotically the same as explicitly sending the label-

to-index mapping, but with lower constants).

4.4 Cheaper group communication with batch codes

One compelling application of Pung is private group communication. This includes

not only group chat, but also discussion boards and collaboration tools (such as
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Slack). One way for Pung to support group communication is for each member in
the group to have a key that is shared with every other member. Clients can use these
keys to derive the label of every member in the group, and retrieve a message from
all labels (we describe the specific protocol in Section 4.4.4). One issue with this pro-
posal is that, as we discuss in Section 4.1, clients must send and retrieve messages
at a rate that is independent of their communication pattern. Consequently, clients
who wish to participate in a group with up to k people must configure their retrieval
rate to be at least k (that is, clients retrieve k messages every round, even if they are
not communicating with anyone). This increases the network communication and
the computational load on Pung’s server linearly with k, which is undesirable given
PIR’s high costs.

The good news is that while reducing the computational resources needed for
the server to answer a single PIR query appears hard, there are several proposals to
amortize the costs of processing multiple PIR queries. Below we survey a few of these
ideas, and we then give background on the particular technique that Pung uses to
reduce the computational resources of the server when processing a batch of queries.
We improve on this technique in Chapter 6 (we describe it in a different chapter for

modularity, since the technique is general and can be used in other applications).

44.1 Existing PIR amortization approaches

Beimel et al. [37] describe two query amortization techniques. The first is based on
the observation that queries in many PIR schemes consist of a vector of entries, and
answering these queries is equivalent to computing a matrix-vector product (where
the product could be over ciphertexts instead of plaintexts, or it could be an XOR op-
eration). By aggregating multiple queries—even from different users—the server’s
work can be expressed as a product of two matrices. As a result, subcubic matrix
multiplication algorithms (such as Coppersmith-Winograd [75] or Strassen’s algo-
rithm [208]) provide amortization over multiple matrix-vector multiplication in-
stances. This approach is further studied by Lueks and Goldberg [155] in the context
of Goldberg’s IT-PIR scheme [110].

29



The second proposal described by Beimel et al. [37] is to preprocess the database
in certain IT-PIR schemes to reduce the cost of future queries. Since this works well,
recent proposals [48, 58] employ an analogous approach in CPIR schemes. How-
ever, making the preprocessed database accessible by more than one client under
these schemes requires cryptographic primitives that are currently too inefficient to
be implemented (virtual black-box obfuscation [34] heuristically instantiated from
indistinguishability obfuscation [105]).

Several works [90, 119, 123, 124] extend specific PIR schemes to achieve CPU,
disk IO, or network amortization. For example, Popcorn [122] pipelines the process-
ing of queries in IT-PIR to amortize disk I/O, which is a bottleneck for databases with
very large files such as movies. Related to CPIR, Groth et al. [119] extend the scheme
of Gentry and Ramzan [109] to retrieve k elements at lower amortized network cost
by having the client compute k discrete logarithms (with tractable but expensive pa-
rameters) on the server’s answer. This results in low network costs, but Gentry and
Ramzan’s scheme is computationally expensive (tens of minutes to process one PIR
query, based on our estimates); the extension of Groth et al. compounds this issue.

Finally, the most general approach to achieve the type of amortization that
we seek is a batch code [127]. A batch code is a type of encoding that can be applied
to the PIR server’s database (which is made up of n elements) to obtain many small
databases. The property that batch codes provide is that a client can get any k ele-
ments from the original n-element database by querying all of the small databases at
most once. Since batch codes guarantee that the sum of the number of entries across
all the small databases is less than kn, this can be used to amortize computational
costs. Furthermore, batch codes treat PIR as a black box, so they work with any PIR
protocol (information-theoretic or computational), and compose with other opti-
mizations (for example, Beimel et al’s [37] matrix multiplication proposal).

In Pung, we use batch codes to reduce the computational cost of group com-
munication. The next sections give detailed background on batch codes, and intro-
duce a new technique that allows a client to continue to use BST retrieval (§4.3.3)

even when the server’s collection has been encoded with a batch code.
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442 Background: Batch codes

A (n,m,k,b)-batch code B takes as input a collection DB of n elements, and pro-
duces a set of m codewords, C, distributed among b buckets with three key proper-
ties: locality, availability to sets (or multisets) of k elements in DB, and the number

of codewords (m) grows sublinearly with k. Formally,
B:DB — (COa“-aCb—l)

where |C;] is the number of codewords in bucket i, and the sum of codewords across
all buckets is m = X2}|C)| > n.

Locality [114] means that one can recover an element in the input collection
(DB) by accessing only a small number of codewords (in C). Availability [188] to
sets (or multisets) of k elements means that any set (or multiset) of k elements from
DB can be recovered from k disjoint sets of codewords (in C). In other words, any
k elements from DB can be retrieved from the b buckets by fetching at most one
codeword from each bucket.

The last property of batch codes is that m < k - n, which is precisely what
ensures computational amortization in PIR. Recall from Section 4.3.1 that PIR’s costs
are linear in the size of the collection, which is m after encoding; the amortized per-
request costis O(m/k). In contrast, running k instances of PIR directly on DB results

in computational costs linear in k-n, which corresponds to a per-request cost of O(n).

Example. Wedescribea (4,6,2,3)-batch code, more specifically the subcube batch
code [127]. Let DB = {x;, X3, X3, x4 }. For the encoding, DB is split in half to produce 2
buckets, and a third bucket is produced by XORing the entries in the first two buckets:
B(DB) = ({x1,%2}, {x3,x4}, {x1 ® x3, %, ® x4} ). Observe that one can obtain any 2
elements in DB by querying each bucket at most once. For example, to obtain x; and
X, one can get x; from the first bucket, x4 from the second bucket, and x, & x, from
the third bucket. One can then locally recover x, by computing x, = x4 & (x; ® x4).
This encoding is helpful for PIR because a client wishing to retrieve 2 ele-

ments from DB can, instead of querying DB twice, issue one query to each bucket.
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The server is in effect computing over 3 databases with 2 elements each, which re-
sults in 25% fewer operations than computing twice over one database of 4 elements.
This benefit, however, comes with two drawbacks. First, using a batch code increases
network costs superlinearly with k: by increasing the number of databases from 1 to
3 in the above example, the client is forced to generate 3 queries and receive 3 an-
swers (versus 2 queries and 2 answers if a batch code had not been used). Chapter 6
discusses this drawback at length, and introduces a relaxation of batch codes that is
significantly more efficient.

A second drawback of batch codes is that they are not compatible with exist-

ing keyword or label-based retrieval schemes ($4.3.3). We discuss this below.

443 Retrieving messages from encoded collections

Recall from Section 4.3.3 that when the collection is large, it is beneficial for Pung
to use the BST retrieval algorithm of Figure 4.4. However, this algorithm no longer
works when the collection is encoded with a batch code since some of the entries
may be XORs of other entries, and it is unclear where in the BST to place these en-
coded entries. Furthermore, clients cannot directly compare their target label L* to
an encoded label, complicating tree traversal.

We now show how to adapt BST-RetrievaL (Figure 4.4) to work on collec-
tions that have been encoded with a subcube batch code. We focus on a (n, %n, 2,3)-
subcube batch code (this was our earlier example with n = 4), but our approach

generalizes.

Server setup. The server starts with a collection of n tuples, which it sorts based
on labels. Analogous to the batch code scheme described earlier, the server splits
the collection into two halves, and stores each of them as a complete BST. Call the
resulting BSTs b, and b,. Finally, the server creates a third binary tree, b;, from b,
and b, by computing element-wise XORs as follows: for every level i and index j,
bs(i,j) = b1(i,j) @ by(i, ). Note that unlike b; and b,, b is not a BST since its nodes

are the XOR of the nodes in the other trees, and they are not guaranteed to follow
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BST semantics (that the left child has a lower value and the right child has a higher
value than its parent).
The server then indicates to clients the collection size (1) and the lowest label

in by, L,yia; tuples with labels lower than L4, if they exist, would be found in b;.

Client lookup. A client wishing to retrieve two elements labeled L, and L, does so

as follows. Assume without loss of generality that L, < L,. There are two cases:

o IfL; < Lyisand L, > L,,,: the client calls BST-RETRIEVAL(L*, §) on each of the
three trees, passing the label L, as L* for b, the label L, as L* for b,, and a

random label as L* for b;.

o IfL; < Lygand L, < Lyig, the client calls BST-RETRIEVAL(L;, 5) on tree by, and
performs a joint tree traversal on b, and b; to retrieve L, (the case where both
Ly > Lyjgand L, > L,y is symmetric and simply requires exchanging the role

of b; and b,). We describe joint tree traversal next.

Joint tree traversal. Since b; is not a BST (specifically, the order of its elements
does not respect BST semantics), it cannot be used directly for search. However, it
can be jointly traversed with the help of one of the other trees. We describe this for
the case where L; < Ly, and L, < L,;4. A client starts by retrieving the tuples at
level 0 and index 0 for both b, and b; in parallel. This is equivalent to lines 9-11 in
Figure 4.4 (during the first iteration of the loop when i = 0). The result of these two
separate calls (one for each tree) to the ExTracT procedure in line 11 of Figure 4.4 is
the pair of (label, c)-tuples t, and ;. While the label of ¢; is unintelligible (since it is
encoded) and the label of ¢, is irrelevant to the client’s search (since the client is not
interested in an element in b,), they can be combined to compute (L,c) = t; = t, ® 13,
which is the corresponding tuple in b;.

This yields a way to jointly traverse the trees: the client can compare L, to L
and choose whether to go left or right on both b, and b; for the next level. If L, = L,

the client can save ¢ (as this is the desired ciphertext), and continue with random
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indices for the remaining levels. The above steps are analogous to lines 13-28 in

Figure 4.4 when one replaces L* with L,.

444 Group communication

With the use of batch codes and the multi-query BST-retrieval algorithm described
in the previous section, Pung allows a client to specify multiple labels (we discuss the
details of this interface in Section 6.6) and get back multiple messages from Pung’s
server at an amortized computational cost. This can be used as a building block for
group communication. In particular, suppose that a group of users G has privately
derived a group shared key k;. For now, assume this key derivation is done securely
through an out-of-band channel; we discuss a more pragmatic alternative in the next
section. A user i € G can use the group shared key to send its message to G under
label PRFy, (7 || uid;) during round r. Here, uid; is the unique id of user i € G (§4.1).
Furthermore, any user in G can simultaneously retrieve all messages sent during
round r with the multi-query BST-retrieval algorithm. Specifically, the user passes in
labels PRFy, ( || uid;) for all j € G, which results in the user getting all the messages
that were sent by group members during round r. This scheme provides metadata-
privacy for group communication provided that all users in the group are honest,

follow the protocol, and the group shared key is kept secret.

4.5 Managing contacts and starting conversations

This section addresses two important questions that we have avoided thus far: how
exactly do users agree on a particular round to start communicating and how do
pairs of users (or groups) derive a shared key? Once these parameters are established,
clients exchange messages by deriving the appropriate labels (§4.1). In Pung, the an-
swer depends on the type of pre-existing relationship that users have: symmetric,
where users already know each other and have already derived a shared key, and

asymmetric, where one user wishes to add a new contact. We describe both cases.
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4.5.1 Managing symmetric connections with a control plane

Client applications of users who already know each other exchange control messages
through Pung. Control messages have a special structure that client applications rec-
ognize and automatically act upon, so they are transparent to actual users (that is, the
users never see these messages). Clients send control messages over Pung like any
other message—so they too are private—and include statements like “END” to indi-
cate that a conversation is over, or “START [round]” to indicate the round when a
conversation should start. Clients send these messages periodically (for example, ev-
ery 20 rounds), but can also send them during an active communication in response
to events (for instance, END is sent when the application is placed in the background
or when the user stops typing for a few minutes).

The frequency of control messages is configured the first time that two users
communicate with each other, but it can be adjusted dynamically with the “FREQ
[rounds]” control statement. Using a higher frequency leads to smoother operation
(for example, client applications can agree on a round to start a conversation faster),
but like any other message, they count toward the send and retrieve rate limit chosen
by the user (§4.1).

Clients also use control messages to ensure message delivery by implementing
a transport layer on top of Pung. In particular, when a client sends a message via
Pung, the recipient’s application sends an “ACK” to acknowledge that the message has
been received and that the next message in the sender’s send queue can be sent. In
the absence of an acknowledgment, the sender continues to resend the same message
until it reaches a predetermined maximum attempt number. At this point, the Pung
client application displays a notification to the user stating that the message could

not be delivered.

4.52 Managing symmetric connections with a dialing protocol

An alternative to periodically sending control messages is for clients to use a dialing
protocol as proposed by Alpenhorn [147]. In Alpenhorn’s dialing protocol, clients

first derive round keys from the shared key and the current round, and use those
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round keys to generate dialing tokens. The round key K, is obtained by applying a
PREF to the string “1” using the previous round key (or the shared key initially): for
round r the round key is K, = PRFx,_,(“1”). A dialing token for round r is then
generated by applying a PRF to the string “2” using K,: for round r the dialing token
is token = PRF (“2”). (There is nothing special about “1” or “2”, they just need
to be different strings and they need to be well-known to all participants). Since
both clients derive the same round key, they both generate the same dialing token.
However, an adversary who does not know the round key cannot distinguish token
from a random bitstring. Consequently, by looking at token, the adversary cannot
determine if it is a real or a dummy dialing token, or the identity of the intended
recipient of that token.

One way to think about dialing tokens is as Boolean indicator labels. That is,
a label whose presence indicates interest in starting a conversation. Indeed, the way
Alpenhorn generates dialing tokens is similar to the way Pung derives labels in Sec-
tion 4.1. Pung can use Alpenhorn’s dialing scheme as follows: Pung servers receive
dialing tokens from clients and add them to a Bloom filter. Clients then download
this Bloom filter and locally check, for each of their peers, if a corresponding dialing
token is present. If so, the receiving client can send a “START [round]” control mes-
sage to the peer, retransmitting if necessary until it receives an “ACK” or the target
round is past. The submission of dialing tokens and the download of the Bloom filter
happens in parallel with the rest of Pung (one can think of clients as interacting with
a different system). It can happen, for example, every 10 minutes. Note that if clients

are idle, they generate a random dialing token and send that instead.

4.5.3 Initiating asymmetric connections

The exchange of control messages and dialing, described above, presupposes an es-
tablished relationship between clients. But how does Pung bootstrap this interaction
in the first place? One option is for clients to use control messages to introduce their
peers to others. This would allow clients to bootstrap connections, provided users

had an honest shared contact. A more realistic alternative is for clients to use an add-
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friend protocol, as proposed by Alpenhorn [147]. Alpenhorn’s scheme uses a variant
of identity-based encryption (IBE) [46] to allow clients to encrypt special control mes-
sages using easy-to-remember strings like email addresses. Unfortunately, it appears
hard (and might not even be possible) to construct an IBE scheme under our threat
model (where the adversary controls all servers). Consequently, Pung uses a simpli-
fied scheme that assumes clients know their peers’ public keys rather than (the more
user-friendly) email addresses (§3.2).

In Pung, each client has two well-known public keys: a public verification key
that allows anyone to verify digital signatures generated by the client’s secret signing
key, and a public encryption key that allows anyone to encrypt a message that can only
be decrypted by the client’s secret decryption key. While in some cases both of these
keys could be the same, this could lead to issues. One reason is that cryptosystems
for digital signatures and public key encryption are designed and analyzed indepen-
dently so reusing keys could open the door for attacks. Another reason is that one
might want to change encryption keys often, but keep a long-term verification key
(this long-term key can then be used to authenticate new public encryption keys).
Indeed, we do this in Pung.

Specifically, a client in Pung only needs to get its peer’s public verification key
through an out-of-band channel; Pung has a key server that clients use to period-
ically deposit their most recently signed public encryption keys (which contain an
explicit expiration date) under their name, email address, or any other string. Clients
can then periodically (for instance, once a day) obtain these public encryption keys
from Pung’s servers using an instance of PIR with BST retrieval as we describe in Sec-
tion 4.3.3 (where the associated label is a collision-resistant hash of the correspond-
ing client’s public verification key), adding chaft if a client has nothing to retrieve.
Clients can check these keys’ authenticity using the long-term well-known verifica-
tion keys that they obtained out of band, preventing an adversary from forging and
distributing fake public encryption keys.

Following Alpenhorn’s protocol, a sender wishing to contact a recipient cre-
ates a friend request. Friend requests contain the sender’s name or email address,

a round number on which to start communicating, cryptographic material to de-
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rive a shared key, and a signature of this information that can be verified with the
sender’s long-term verification key. This information is then encrypted using the re-
cipient’s public encryption key. Since in Chapter 3.2 we assume that the public key
encryption scheme is key-private (which means that it is hard for an adversary to
determine which public key was used to generate a particular ciphertext), the sender
simply sends this encrypted friend request to a Pung server. If a sender does not wish
to add a friend, the sender issues a fake request by encrypting random information
with a dummy public key.

Just like in the dialing protocol above, recipients periodically check for friend
requests by downloading all of the requests sent by all clients. One difference is that
we cannot use a Bloom filter since the recipient does not know what he or she is
looking for (by contrast, the recipient could derive the exact dialing token). Recipi-
ents instead attempt to decrypt each of the friend requests. Since in Section 3.2 we
assume the public key encryption scheme is weakly robust® (that is, no honestly gen-
erated ciphertext decrypts to a valid message under two different keys), clients can

determine exactly which requests are meant for them.

4.6 Leakage in the presence of compromised friends

Recall that Pung provides no privacy guarantees to any communication between a
client and a friend who has been compromised by the adversary (§3). In this sec-
tion we ask whether an adversary—by leveraging a compromised friend—can learn
anything about a client’s other ongoing communications. At first glance the answer ap-
pears to be no (assuming that the client does not voluntarily disclose the existence of
any other communication to the compromised friend). After all, Pung’s guarantee of
relationship unobservability should prevent the adversary from learning about the
existence of conversations between honest clients. This is indeed true, as we show in

Appendix C, but only if Pung does not allow clients to start new conversations by us-

>We do not require strong robustness (meaning that a maliciously generated ciphertext does not de-
crypt to valid messages under two different keys) since clients are downloading and trying to decrypt
all messages, and the adversary could instead simply send two different ciphertexts [140].
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ing a dialing protocol or by agreeing securely out-of-band. Without this crippling as-
sumption, we show that there are circumstances under which an adversary can learn
information about a client’s other ongoing communications by leveraging the client’s
compromised friends. Interestingly, we show that this leakage is fundamental and ap-
plies to all metadata-private messaging (MPM) systems that support dialing (or any
mechanism that allows clients to start new conversations) [23, 145, 147, 213, 216].

In Section 4.6.5 we show how Pung can prevent this leakage at high cost.

4.6.1 The exclusive call center problem

We start by introducing an abstract problem that we call the exclusive call center prob-
lem. It consists of a call center that has k operators capable of receiving calls. The call
center promises exclusivity to a single organization. This might be desirable to en-
sure high quality of service, for legal reasons, or to prevent the accidental leak of
trade or business secrets to callers of a different organization. When a caller issues a
call, an automatic answering machine M routes the call to an available operator. If M
receives more calls than there are available operators, then M routes as many calls as
it can, and notifies the remaining callers that all operators are busy.

While the above seems like a reasonable design, the call center in question
is greedy and wishes to oversubscribe its resources by contracting with a second
organization—thereby violating its exclusivity agreement. This poses two problems
for the lying call center. First, M cannot determine to which organization a call be-
longs; only an operator is in a position of making that distinction. This places limits
on how clever M can be. Second, with the current decision logic of M (route to avail-
able operators, notify remaining callers that operators are busy), either of the two
organizations can easily determine that they are not being given exclusive access to
the call center (for example, by placing k calls and noticing that not all are picked
up). Given these issues and the limit of k operators (which is publicly known), can
the call center do anything to maintain the illusion of exclusivity?

The first observation that the call center’s CEO makes is that while there are

k operators, there is no guarantee that all of them are available at any given point

39



in time. After all, operators are human and have the right to take breaks. This, the
CEO believes, opens the door for some level of plausible deniability. In particular, if
M gives a caller from organization O, a busy signal it could mean:
1. All k operators are busy handling calls of other callers from O;.
2. Some operators are busy handling callers from O, and the remaining operators
are on a break.
3. Some operators are busy handling callers from O;, some are busy handling
callers from O,, and some are on a break.

Possibility 1 is the expected scenario of a high-efficiency trustworthy call cen-
ter. Possibility 2 is an unwanted outcome since it is inefficient, but it does not violate
the contractual agreement. Possibility 3, however, violates the promise of exclusivity.
The goal of the lying call center is to design M in such a way that it is hard for either
of the two organizations and their callers (that is, assume no collusion across organi-
zations) to infer that possibility 3 is the one taking place. As we alluded to earlier, the
key challenge is that M cannot distinguish between callers (and importantly cannot
determine to which organization they belong), and therefore cannot selectively lie
to keep a consistent set of responses. We thus ask whether there exists any M that
can leverage the proposed ambiguity to fool the organizations into thinking they are
exclusive. In other words, does there exist a private answering machine M?

We think of M as acting in rounds, where in each round, M receives a set of

callers C and a number of operators k. We seek two properties from M.
« Liveness: eventually one of the callers in C gets to talk to an operator.

« Privacy: it is computationally hard for any colluding subset of callers § ¢ C (some

of whom may get to speak to operators) to distinguish between a scenario where

S = Cand a scenario where S c C (in other words, it is difficult for the colluding
subset of callers to determine whether they are the only callers or not).

The liveness guarantee is needed for M to be useful, but also to rule out a

trivial solution: if M never puts anyone through to an operator, then the probability

that any colluding set of callers S can distinguish between S = C and S c C is the

same as randomly flipping a coin (assuming both scenarios are equally likely).
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Security game. To define privacy and liveness more formally, we use a security
game played between an adversary A and a challenger parameterized by a polyno-
mial time answering machine M and a security parameter \. M takes as input a sub-
set of callers C from the set of all possible callers C, a number of operators k, and a
random string r, where k = poly(\),|C| = poly(A), |r| = poly(X). M outputs a set of
callers U ¢ C, such that |U| < k.

1. Ais given oracle access to M, and can issue a poly(\) number of queries to M
with arbitrary inputs C, k, r. For each query, A can observe the corresponding
result U < M(C, k,r).

2. Challenger samples a random bit b uniformly in {0, 1}, and a random string

r uniformly in {0,1}".

3. Apicks a set of callers S (where S c C) and positive integer k, and sends them
to the challenger.

4. Challenger sets C = Sif b = 0, and C = Su {e} if b = 1 (where e is a uniform

random element from the set C - S).
5. Challenger calls M(C, k, r) to obtain U ¢ C where |U| < k.

6. Finally, the challenger removes e from U (if it is present) and returns the result

(U-{e}) to A.

7. Aoutputs its guess b’, and wins the security game if b = b'.

In summary, the adversary’s goal in the above security game is to determine
if the challenger is communicating with the uncompromised caller e after compro-

mising all of the other callers (represented by §).

Definition 4.6.1 (Private answering machine). An answering machine M is privacy-

preserving if in the above security game with parameter A, for all probabilistic poly-
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nomial time algorithms A, there exists a negligible function* negl such that:
|Pr[b=10"]-1/2| < negl(\)

the probability is over the random coins of M and the challenger.

Definition 4.6.2 (Non-trivial answering machine). Ananswering machine M is non-
trivial if given security parameter ), for any set of callers C, number of operators k
(where k > 0), and random string r, the probability that M(C, k, r) outputs a non-
empty set is non-negligible in A. Here |C| = poly()), k = poly(\),|r| = poly(\), and

the probability is over the random coins of M.

4.6.2 Challenge with building private answering machines

We now give two straw man proposals to highlight why constructing a private an-

swering machine that meets Definitions 4.6.1 and 4.6.2 is challenging.

Straw man M;:
o Input: C k,r
o 7 « uniform pseudorandom permutation of C according to r
o Output: the first min(k, |C|) elements from 7

This is not secure. Let X be the random variable describing the cardinality of the set
returned to A, namely |U - {e}|. Assuming that k < |C|, Pr[X < k|b = 0] = 0 and
Pr[X < k|b = 1] = k/|C|. As a result, A can, by simply counting the elements in
U - {e}, distinguish between b = 0 and b = 1 with non-negligible advantage.

Straw man M,:
o Input: C k,r

o 7 < uniform pseudorandom permutation of C according to r

*A function f: N — R is negligible if there exists an integer ¢ such that for all positive polynomials
poly and all x greater than ¢, |[f(x)| < 1/poly(x).
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o Sample m € [0, min(k, |C|) ] uniformly at random
o Output: the first m elements from 7

This is also not secure. For simplicity let k = 1 and |S| = 1. We have that the
probability that the challenger returns to the adversary an empty set is much higher
when b = 1 than it is when b = 0. This is due to Line 6 in the security game and the
way we construct M,. Again, let X be the random variable describing the cardinality
of the set returned to A. In particular, Pr[X < 1|b = 0] = 1/2, whereas Pr[X < 1|b =
1] = 3/4. As a result, A can distinguish between b = 0 and b = 1 with non-negligible
advantage. More generally, since X is drawn from a uniform distribution when b = 0,

the probability mass function (pmf) for X (assuming k < |C|) is:

L for0<x<k

f) = {57

0 otherwise

On the other hand, if b = 1, the pmf for X is:

1 1 _

=1 m fOI‘ x=0

L for1<x<k-1
fla) = {FT

D) forx=k

0 otherwise

An adversary A can leverage the difference in these pmfs to distinguish be-
tween b = 0 and b = 1 with non-negligible advantage.

We also consider sampling m and permuting C non-uniformly, but the effect
of Line 6 (in the security game) is large enough for 4’s advantage to remain non-
negligible (recall that M must output a non-empty set with non-negligible probability
to satisfy non-triviality). As a result, building an answering machine that meets both
the privacy and liveness guarantees does not seem possible. However, below we give

the construction of a private answering machine under a relaxed setting.
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4.6.3 Answering machines with a known set of callers

We now discuss the construction of an answering machine that provides privacy
and liveness under the assumption that the set of all possible callers (C) is fixed and
known in advance to M (the machine still does not know which callers belong to
a particular organization). As a result, we assume that each element e in C can be
uniquely mapped to an integer with the function id(e), and that this mapping is

known to M.

Private answering machine Ms;:

Input: C k, r

e U«w

Veec, Vo<ickr if id(e) = (r+i) mod |C|,add e to U.
Output: U

In other words, M; precomputes a schedule mapping callers to rounds: in
each round a set of k callers will be serviced (the input r is the current round). If a
caller happens to call during a round that has been allocated for it, it will be added
to the set U (its call will be handled). Otherwise, the call will not be answered.

Machine M; guarantees liveness because for every caller e, every k out of |C|
rounds are assigned to e; since |C| = poly()), this occurs with non-negligible proba-
bility. Machine M; guarantees privacy because the response given to A at the end of
the game (Step 6 in the security game) depends only on r and not on b. As a result
this response is exactly the same when b = 0 and b = 1; observing this response gives

no advantage to A.

4.6.4 'The compromised friend attack

The exclusive call center problem is the scenario encountered by users in MPM sys-
tems who communicate with compromised friends. Clients in these systems can only
handle a fixed number of concurrent conversations in one round (this maps to the k

operators in the call center problem), which opens the door to an attack that we call
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the compromised friend attack (CFA). An adversary—via compromised friends—can
dial (or start a conversation through any other means supported by the MPM sys-
tem) a client and observe whether the client responds or not. If the client does not
have a private answering machine, then the adversary will be able to distinguish be-
tween a scenario where the client is also talking to some honest client (meaning that
the adversary’s subset of callers is not the full set, S c C), and a scenario where the
client is not talking to some honest client (S = C). This leaks one bit of information

that opens the door to existing attacks.

Intersection, disclosure, and hitting set attacks. There is a large literature of traf-
fic analysis attacks [19, 82, 84, 87, 88, 133, 134, 156, 178, 178, 190, 212] that uncover
patterns of communication by observing when users send and receive messages. For
example, intersection attacks [190] can be used to narrow down the possible recipi-
ents of a message when users communicate with a single friend, while disclosure [19]
and hitting set [134] attacks can handle the case where users communicate with mul-
tiple friends. There are also statistical variants of these attacks [82].

MPM systems typically avoid these attacks by requiring users to always be on-
line, continuously sending and retrieving messages at a particular rate; when users
are not communicating, they send and retrieve dummy messages instead. Unfortu-
nately, the CFA allows an adversary to guess whether a user is sending dummy mes-
sages or not with non-negligible advantage. An adversary can therefore target a set
of potential senders and potential recipients with a CFA, making these systems vul-

nerable to disclosure attacks.

How effective is the CFA in practice. Of course, there are some challenges in com-
posing CFA with disclosure or statistical disclosure attacks. First, if a user is com-
municating with f friends in a given round, the CFA leaks that the user is sending at
least one real message, but, depending on the particular design of the MPM system,
it might be hard to pinpoint the exact value of f. Second, the CFA requires actively
targeting users on a given round, which may limit the number of observations that

are available to an adversary. Furthermore, this attack requires compromising users’
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actual friends or it requires the use of phishing attacks to fool users into befriending
malicious users. This is because the only message that a user can send to a stranger
in MPM systems is a friend request, and this operation is handled differently than all
other messages (typically through a different service, as we discuss in Section 4.5.3).

Once an attacker has compromised a user’s friends, a CFA is actually very
effective on existing MPM systems. This is because existing systems use a determin-
istic answering machine M that automatically accepts calls until a clients commu-
nication rate (k) is reached, at which point M ignores further requests. Moreover,
since M does not pre-empt existing conversations, an adversary who calls a user
with k compromised friends learns with probability 1 whether the user is engaged in
a real conversation or not. The adversary could even learn the exact number of peo-
ple with whom a user communicates by performing a binary search over multiple
rounds (specifically, calling the user with k/2 compromised friends, observing the

result, and adjusting the number in future rounds).

Variants of the compromised friend attack. Note that this same attack can be
achieved in other ways. For example, if a pair of users are already communicating
with each other and they wish to increase the number of messages they exchange
per round, this is the moral equivalent of dialing. In particular, if clients can sustain
k concurrent conversations, one can think of each of these k “channels” as logical
clients with communication rate of 1. Increasing the number of channels between
two clients is tantamount to a dialing interaction between the users’ logical clients
(the mechanism to achieve this type of dialing would be the exchange of control
messages as we describe in Section 4.5.1).

Another instance of this attack occurs when the round duration is relatively
short. Suppose that a client is engaged in a conversation with several other users
(some of whom are compromised). If the human user is not quick enough to process
and respond to all incoming messages during a given communication round, some
of the user’s friends will not receive a response. In other words, one can think of
the human user’s processing capacity as the k operators. If the client does not have a

private answering machine that decides which of all incoming messages the client’s
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screen displays to the human user in a given round, an adversary could use the pres-
ence or absence of a response as a weak signal that the user is busy communicating

with others.

4.6.5 Defending against compromised friends

We now discuss a couple of ways in which existing MPM systems could prevent com-
promised friend attacks. Assuming a secure answering machine M (for instance, M;
in Section 4.6.3), each client could use M to determine which of the new (or existing)
conversations to accept (or continue), and this decision would leak no information.
As is the case in existing MPM systems, the client would continue to send and re-
trieve k messages every round, but only a subset of these messages (based on the
output of M) correspond to actual conversations; the rest act as cover traffic. Note
that if one uses M3, a compromised friend can learn how many other friends a user
has, or at least an upper bound on it (which corresponds to |C| in the abstract sce-
nario). Furthermore, while M; gives a sliding window of communication to allow
two clients to exchange messages for k consecutive rounds, clients must wait, possi-
bly for a while, to be able to communicate again. Finally, it is possible that two clients
who are using M; have no overlapping rounds and therefore cannot communicate
with each other (in Pung this is not an issue because clients can retrieve messages sent
to them in previous rounds). Additional mechanisms would therefore be needed to
avoid this case for other MPM systems.

In the absence of a private answering machine M, clients could set k to a value
larger than their maximum number of friends (assuming that each pair of friends ex-
changes at most one message per round). This is actually the solution that we use in
Pung. In our evaluation (§8.4.3) we experiment with clients setting k up to 256. Fur-
thermore, the frequency of rounds could be reduced to lower the number of samples
that a compromised friend collects, and to mitigate the case where a user is too slow
to respond to all messages. The drawback of these defenses is that making rounds
less frequent increases message latency, and the communication and computational

costs of MPM messaging systems increase linearly with k (computational costs in

47



Pung increase only sublinearly due to the use of batch codes).

4.7 Summary

The previous sections detailed Pung’s architecture (§4), how clients send (§4.2) and
privately retrieve messages (§4.3), even with groups (§4.4). They also discuss how
clients can bootstrap their communication with mechanisms to add friends (§4.5.3),
synchronize their rounds (§4.5.1), and dial them ($4.5.2), while preventing compro-
mised friends from learning about other conversations (§4.6). These procedures are
sufficient to build a version of Pung that meets our security goals (§3.1): it enables
users to communicate with each other privately, preserving the integrity of messages,
and hiding the content and metadata. Furthermore, none of the security guarantees
depend on the correctness of Pung’s servers (or other users). For instance, if Pung’s
server modifies the ciphertext associated with any tuple, clients can detect this due to
the integrity guarantees of the authenticated encryption scheme. If the server drops
tuples or stores them in a data structure that is not a complete BST, clients will be
unable to find the tuple of interest to them (a denial of service), but the integrity of
the content and the privacy of the communication is preserved.

The drawback with Pung’s design as described so far is its costs: the server
has to process over the entire collection to answer each PIR query, and each query is
large (tens of MBs). Additionally, for applications where clients wish to retrieve more
than one message in the same round (for example, email, group communication, file-
sharing), using batch codes reduces computational costs but also leads to prohibitive
network overhead. We address these issues in the coming chapters. Chapter 5 intro-
duces a technique to reduce the network cost of PIR by orders of magnitude, while
Chapter 6 relaxes batch codes and proposes a scheme to simultaneously achieve bet-

ter computational amortization and orders of magnitude lower network costs.
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Chapter 5

Reducing network communication with SealPIR

Besides being useful in Pung, PIR is a crucial building block in many other ap-
plications, including anonymous communication [146, 164], and privacy-preserving
variants of media streaming [20, 122], ad delivery [115], friend discovery [47], and
subscriptions [68]. Unfortunately, the costs of CPIR constructions [20, 51, 55, 97,
137, 143, 153, 207] are so significant that existing CPIR-backed systems must settle
with supporting small databases with fewer than 100,000 entries [20, 115, 122]. If one
were to use any of these constructions in Pung, it would be prohibitive to support
more than a few tens of thousands of users.

In this chapter we discuss SealPIR, a new CPIR library that extends the most
computationally-efficient CPIR protocol, XPIR [20], with a new query compression
technique that reduces network costs. The main takeaway is that SealPIR introduces
small computational costs (6%) to the server over XPIR, but simultaneously reduces
computational costs for the client (by up to 17x) and the size of PIR queries (by up
to 274x). This trade-off is an excellent fit for Pung, since clients could often be weak
devices with limited bandwidth.

This chapter contains material from a previously published work: “PIR with compressed queries
and amortized query processing” (S&P ’18) by Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty [25]. Sebastian contributed to the design, implementation, and experimental evaluation of the
techniques described in this chapter.
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5.1 Background: Stern’s PIR protocol

Our work extends Stern’s PIR protocol [207] and incorporates the optimizations pro-
posed in XPIR [20]. At a high level, a query in Stern’s PIR protocol consists of a
vector of n ciphertexts, where 7 is the number of elements in the server’s database.
All of these ciphertexts encrypt the integer 0 (the cryptosystem is randomized so
all of the ciphertexts are different), except for the ciphertext at position idx (the in-
dex of the element desired by the client) which encrypts the integer 1. Clients gen-
erate these ciphertexts using an additively homomorphic cryptosystem (a common
choice is Paillier [175]). In this type of cryptosystem, it is possible for anyone—even
someone without access to the client’s secret decryption key (for example, the PIR
server)—to perform an operation directly on ciphertexts that results in a new cipher-
text encrypting the sum of the corresponding plaintexts. For example, given two ci-
phertexts! encrypting a and b, ¢; = Enc(a) and ¢, = Enc(b), anyone can compute
¢3 = ¢1 ® ¢ = Enc(a + b) by performing ® (in Paillier, ® is a modular multiplica-
tion). Similarly, anyone can compute the multiplication of a ciphertext by a plain-
text. For example, given c; and the integer 3 (acting as a plaintext), one can compute
c4=3¢1=¢0¢ 0c =Enc(3a).

Figure 5.1 gives a sketch of Stern’s protocol. The server receives the query
vector from the client and executes ANswEer by computing a dot product between its
database (which can be thought of as a vector of »n plaintexts) and the query (vec-
tor of n ciphertexts). This is a two step process. First, the server computes entry-wise
plaintext-ciphertext multiplications (like ¢, in the example above, where the database
element, which is some arbitrary binary data, is treated as the corresponding integer)
to produce n output ciphertexts. Notice that all but one ciphertext encrypt 0, and
multiplying any element (that is, a plaintext) by an encryption of 0 yields another
encryption of 0. For example, if ¢cs = Enc(0), then 123 - ¢5 = Enc(123 - 0). Multiply-

ing an element by an encryption of 1 yields an encryption of the element itself. For

'For simplicity, we denote a ciphertext of x as ¢ = Enc(x). In reality, Enc is a randomized algorithm
that depends on a cryptographic key pk and random coins R (which we omit), so ¢ = Encyk(x, R). By
¢ = ¢’ we mean that ¢ and ¢’ encrypt the same value (for example x) under the same key, but the
ciphertexts might be different due to different random coins.
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: function SETuP(DB)
Represent DB in an amenable format (see [20, §3.2])

1

2

3:

4: function QUERY(pk, idx, n)

5: fori=0ton-1do

6 ¢i < Enc(pk,i==idx?1:0)
7
8
9

return g < {co,...,cn-1}

: function ANSWER({cy, . ..,¢y-1} = g, DB)
10: fori=0ton—1do

11: a; < DB;-¢; // plaintext-ciphertext multiplication
12: returna < ap© ... Q@ a,_ // homomorphic addition
13:

14: function EXTRACT(sk, a)
15: return Dec(sk,a)

Figure 5.1: CPIR protocol from Stern [207] and XPIR [20] on a database DB of n
elements. This protocol requires an additively homomorphic cryptosystem with algo-
rithms (KeyGen, Enc, Dec), where (pk, sk) is the encryption and decryption key pair
generated using KeyGen. We omit the details of all optimizations. The client runs the
Query and ExTracT procedures, and the server runs the SETup and ANswER proce-
dures. Each element in DB is assumed to fit inside a single ciphertext. Otherwise,
each element can be split into ¢ smaller chunks, and Lines 11 and 12 can be per-
formed on each chunk individually; in this case ANswer would return ¢ ciphertexts
instead of one.
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example, if ¢s = Enc(1), then 123 - ¢5 = Enc(123 - 1).

The second step is for the server to combine the resulting » ciphertexts from
the prior step using the cryptosystem’s additive homomorphic operator (like c; in the
example above). Since all but one ciphertext encrypt 0, and the remaining ciphertext
encrypts the chosen element, the final ciphertext encrypting their sum is just another
encryption of the chosen element. The server then sends the resulting ciphertext
as the PIR response to the client who uses its private decryption key to obtain the
plaintext of the requested element.

One obvious issue with the above scheme is that the query is as large as the
database (both have n entries). As a result, the communication costs of this scheme
are too high (in fact, it would not even constitute a PIR scheme since PIR requires
sublinear communication [70]).

Fortunately, Stern [207] shows that it is possible to reduce the number of ci-
phertexts in the query to d/n for any positive integer d, thereby making network
costs sublinear in n. The downside of Stern’s approach is that the size of the response—
which depends on the size of the elements rather than the number of elements (n)—

increases exponentially with d. We explain this below.

5.1.1 Achieving sublinear communication costs

Stern [207], based on the technique of Kushilevitz and Ostrovsky [143], proposes a
modification to the protocol in Figure 5.1. Instead of structuring the database DB as
an n-entry vector (where each entry is an element), the server structures the database
as a \/n x \/n matrix M: each cell in M is a different element in DB. The client then
sends 2 query vectors, v,o,, and v, each of size \/n . The vector v,,, has the encryp-
tion of 1 at position r, while v, has the encryption of 1 at position ¢ (where M[r, ¢]
is the client’s desired element). The server, upon receiving v,,,, and v,,;, computes the
following matrix-vector product: A, = M - v,,;, where each multiplication is between
a plaintext and a ciphertext, and additions are on ciphertexts. Observe that A, is a
vector containing the encryptions of the entries in column ¢ of M.

The server then performs a similar step using A, and v,,,,. There is, however,
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one technical challenge: the underlying cryptosystem used by Stern’s protocol is ran-
domized to guarantee semantic security [112]. As a result, every plaintext maps to
many possible ciphertexts, which requires the size of a ciphertext to be larger than the
size of the plaintext that it encrypts. This ciphertext-to-plaintext size ratio is called
the cryptosystem’s expansion factor, or F. Since each entry in A, is a ciphertext, it is
too big to fit inside another ciphertext (the largest plaintext that can fit in a ciphertext
has size |ciphertext|/F).

To address the above expansion issue, the server splits elements in A, into
F chunks, where the first chunk contains the first |ciphertext|/F bits of the element,
the second chunk contains the next |ciphertext|/F bits, etc. A, can be therefore be
thought of as a matrix of \/n rows and F columns. In this matrix, row i and column
j contains Enc(M[i, c]);, which is the j* chunk of Enc(M[j, c]). The server can now
repeat the process as before on the transpose of this matrix: it computes A? - v,,,,, to
yield a vector of F ciphertexts (where the j ciphertext is Enc(Enc(M[r, c]) ;))> which
it sends to the client. The client then decrypts all F ciphertexts and combines them to
obtain Enc(M[r, c]). Finally, the client decrypts Enc(M][r, c]) to obtain M[r, c]—the
desired element in DB.

This scheme generalizes by structuring the database as a d-dimensional hy-
percube? and having the client send d query vectors of size </n. The server then

returns F4~! ciphertexts as the response.

5.2 Background: XPIR

A major issue with Stern’s protocol [207] is that the homomorphic operations that
the server must perform (plaintext-ciphertext multiplication and ciphertext addi-
tion) are computationally expensive. XPIR [20] is a recent construction that reduces
the computational costs of Stern’s scheme. The key idea in XPIR is to perform the
encryption and homomorphic operations using a lattice-based cryptosystem (the au-
thors use BV [52]), and preprocess the database in a way that further reduces the cost
of the operations in Lines 11 and 12 in Figure 5.1. Using a lattice-based cryptosys-

2The server could instead use a hyperrectangle; the client would send d vectors of different sizes.
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tem helps because ciphertext addition requires only modular addition of vectors of
small integers (60 bits) which can be done efficiently in existing CPUs. In contrast, a
scheme like Paillier [175] requires modular multiplications over very large integers,
which is computationally expensive.

Multiplying a ciphertext by a plaintext is expensive in both schemes. In Pail-
lier, this requires a modular exponentiation over very large integers. In the lattice-
based cryptosystem used by XPIR, this requires polynomial multiplications. How-
ever, XPIR introduces preprocessing techniques that significantly reduce the cost of
this operation [20, §3]. To our knowledge, this makes XPIR the only CPIR scheme
that is usable in practice.

A major drawback of XPIR, which it inherits from Stern’s protocol but which
it also exacerbates, is high network costs. This comes from two sources. First, cipher-
texts in lattice-based cryptosystems are very large, around 32 KB each (we explain
this in Section 5.4). Second, recall that Stern describes a way to represent the query
using d/n ciphertexts (instead of n) for any positive integer d (§5.1.1). This increases
the response size exponentially from 1 to F#~! ciphertexts. For Paillier, the expansion
factor is F = 2, whereas for the cryptosystem that XPIR uses, F > 6.4 for recom-
mended security parameters [22, 65]. As a result, even with Stern’s technique, XPIR
results in either the query vector or the response containing hundreds or thousands

of very large ciphertexts for the values of n that we evaluate (§8.2.1).

5.3 SealPIRs objective

At a high level, our goal is to realize the following picture: the client sends one ci-
phertext containing an encryption of its desired index i to the server, and the server
inexpensively evaluates a function called Expanp that outputs n ciphertexts contain-
ing an encryption of 0 or 1 (where the i ciphertext encrypts 1 and others encrypt
0). The server then uses these n ciphertexts as a query and execute Stern’s protocol
as before (Figure 5.1, Line 9).

A straw man approach to construct Expanp is to create a circuit that com-

putes the following function: “if the index encrypted by the client is i return 1, else
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return 0”. The server then evaluates this circuit on the client’s ciphertext using a fully
homomorphic encryption (FHE) scheme (for example, BV [52], BGV [50], FV [100])
passing in values of i € [0,n — 1] to obtain the n ciphertexts. An FHE scheme sup-
ports both addition and multiplication of ciphertexts, which is sufficient to evaluate
arbitrary circuits, like the one proposed by our straw man, directly on ciphertexts.

However, evaluating the above circuit using FHE to compute Expanp is im-
practical. First, the client must send log(n) ciphertexts as the query (one for each bit
of its index). Second, the circuit is concretely large (thousands of gates) and expen-
sive to evaluate. Third, the security parameters for the FHE scheme would have to be
large, so Expanp and the rest of the PIR protocol would be very costly. Finally, the
server must evaluate this circuit for each of the #n possible indices.

Instead, we propose a new algorithm to implement Expan. It relies on the
types of cryptosystems that typically support FHE, but perhaps surprisingly, it does
not require encrypting each bit of the index individually, or performing any homo-
morphic multiplications. This last point is critical for performance, since homomor-
phic multiplications are expensive and require using larger security parameters. We
note that the cryptosystem used by XPIR (BV [52]) supports FHE, so we could im-
plement Expanp using that. We choose instead to implement all of SealPIR using the
SEAL homomorphic library [11], which is based on the Fan-Vercauteren (FV) [100]
cryptosystem. We make this choice for pragmatic reasons: ExpanD requires the im-
plementation of a new homomorphic operation, and SEAL already implements the

necessary building blocks. Below we give some background on FV.

5.4 Background: Fan-Vercauteren FHE cryptosystem (FV)

In FV, plaintexts are polynomials of degree at most N with integer coeflicients mod-

ulo t. Specifically, the polynomials are from the quotient ring:

R; = Zy[x]/ (XN + 1)
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operation CPU cost (ms) noise growth

addition 0.002 additive
plaintext multiplication 0.141 multiplicative™
multiplication 1.514 multiplicative
substitution 0.279 additive

Figure 5.2: Cost of operations in SEAL [11]. The parameters used are given in Sec-
tion 8.1. Every operation increases the noise in a ciphertext (see text for details). Once
the noise passes a threshold, the ciphertext cannot be decrypted. For a given compu-
tation, parameters must be chosen to accommodate the expected noise.

*While plaintext multiplication yields a multiplicative increase in the noise, the fac-
tor is always 1 (that is, no noise growth) in Expanp because it is based on the number
of non-zero coefficients in the plaintext (see the SEAL manual for details [65, §6.2]).

where Nis a power of 2, and t is the plaintext modulus that determines how much data
can be packed into a single FV plaintext. In our implementation, an FV plaintext is
represented as an array of N 64-bit integers, where each integer is mod ¢ (and t < 2%).
Each element in the array represents a coeflicient of the corresponding polynomial.
We encode an element e (for example a message in Pung) into an FV plaintexts p(x)
by storing log(¢) bits of e into each coefficient of p(x). If elements are small, we store
many elements into a single FV plaintext (for example, the first element is stored
in the first 20 coefficients, etc.). If elements are too big, we store the element across
multiple FV plaintexts.

Ciphertexts in FV consist of two polynomials, each of which is in the ring:
Ry = Zg[x]/(x" + 1)

where q is the coefficient modulus that affects how much noise a ciphertext can con-
tain and the security of the cryptosystem. When a plaintext is encrypted, the cor-
responding ciphertext contains noise. As operations such as addition or multiplica-
tion are performed, the noise of the output ciphertext grows based on the noise of
the operands and the operation being performed (Figure 5.2 gives the noise growth

of several operations). Once the noise passes a threshold, the ciphertext cannot be
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decrypted anymore.

Parameters. FV has 3 tunable parameters: N, ¢, and g. Since they present tradeofts,
finding the best combination depends on the use case. A larger polynomial degree
N increases security but also increases the computational expense of homomorphic
operations and the size of the ciphertext. A larger plaintext modulus ¢ allows more
data to be packed into a single FV plaintext (so one needs fewer FV plaintexts to
represent, say, a movie), but it also increases the noise growth. A larger coefficient
modulus g leads to a higher noise threshold (so one can perform more homomorphic
operations), but it increases the size of a ciphertext and results in lower security [65].
The expansion factor of the FV cryptosystem is F = 2log(q)/log(t). We discuss

concrete parameters in Section 8.1.

Supported operations. In addition to the standard operations of a cryptosystem
(key generation, encryption, decryption), FV also supports homomorphic addition,
multiplication, and relinearization (which is performed after multiplications to keep
the number of polynomials that make up a ciphertext at two); we are interested in

the following operations.

« Addition: Given ciphertexts ¢, and ¢,, which encrypt FV plaintexts p; (x), p»(x),

the operation c; + ¢, results in a ciphertext that encrypts their sum, p; (x) + p(x).

« Plaintext multiplication: Given a ciphertext ¢ that encrypts p;(x), and given a
plaintext p,(x), the operation p,(x) - ¢ results in a ciphertext that encrypts their
product, p;(x) - po(x).

o Substitution: Given a ciphertext ¢ that encrypts plaintext p(x) and an odd inte-
ger k, the operation Sub(c, k) returns an encryption of p(x*). For instance given
plaintext p(x) = 7 + x> + 2x> (mod xN + 1), if ¢ is an encryption of p(x), then
Sub(c,3) returns an encryption of p(x3) = 7 + (x3)> + 2(x3)° = 7 + x6 + 2x°

(mod xN +1).

Our implementation of the substitution operator is based on the plaintext

slot permutation technique discussed by Gentry et al. [108, §4.2]. However, substi-
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tution is less general than Gentry et al’s technique which can arbitrarily permute the
coefficients of a plaintext polynomial, but at great expense. By giving up generality,
we can implement substitution very efficiently, as shown in the last row of Figure 5.2.

We give a detailed description of substitution in Appendix A.1.

5.5 Encoding the index

A client who wishes to retrieve the i element from the server’s database using SealPIR
generates an FV plaintext that encodes this index. The client does so by representing
i € [0,n—1] as the monomial x’ € R, (that is, the coefficient associated with x" is 1 and
all others are 0). In other words, instead of the client creating the vector of Os and a
1 and placing each entry in a different ciphertext as in XPIR, the client in SealPIR
represents this vector in the coefficients of the plaintext polynomial. The client then
encrypts this plaintext to obtain query = Enc(x'), which is the query that the client
sends to the server. In Section 5.8 we discuss how to query databases that are larger
than the polynomial’s degree (N); in these cases the index cannot be represented by

a single FV plaintext.

5.6 Expanding queries obliviously

The server receives from the client query = Enc(x'), and uses a function called Ex-
PAND to obtain a vector of n ciphertexts where the i ciphertext is Enc(1) and all
other are Enc(0). To get a sense for how Expanp works, we first give a description
for the case where the database has only two elements (n = 2).

The server receives query = Enc(x'), with i € {0, 1} in this case (since n = 2)

as the client’s desired index. The server first expands query into two ciphertexts ¢ =
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query and ¢, = query - x71:

Enc(1) ifi=0
Cy =

Enc(x) ifi=1

Enc(x'-x7') = Enc(x1) ifi=0
C1 =

Enc(x'-x7') = Enc(1) ifi=1

The server then computes ¢ =q+ Sub(c;, N + 1) for j € {0,1}. Since operations
in R, are defined modulo xV + 1, a substitution with N + 1 transforms the plaintext

encrypted by ¢, and ¢; from p(x) to p(—x).3 Specifically, we have:

. | Enc(1) + Enc(1) = Enc(2) ifi=0
Ch =

’ Enc(x) + Enc(-x) = Enc(0) ifi=1

.| Enc(x!) + Enc(-x7") = Enc(0) ifi=0
C; =

1 Enc(1) + Enc(1) = Enc(2) ifi=1

Finally, assuming t is odd, we can compute the multiplicative inverse of 2 in
Zy, say «, encode it as the monomial v € R, (that is, the coeflicient of the constant
term is o and all other coefficients are 0), and compute 0; = a - ¢[. It is the case that
0o and 0, contain the desired output of ExpaND: 0; encrypts 1, and o,_; encrypts 0.

We can generalize this approach for any database size (n) that is a power of
2 aslong as n < N. In cases where # is not a power of 2, we can run the algorithm
for the next power of 2, and take the first n output ciphertexts as the client’s query.
Section 5.8 discusses how to handle databases that are larger than N. Figure 5.3 gives
the generalized algorithm, and Figure 5.4 depicts an example for a database of 4
elements. We prove the correctness of Expanp in Appendix A.2 and bound its noise

growth in Appendix A.3.

3Observe that x¥ + 1 =0 (mod &Y + 1), x¥ = ~1 (mod xN + 1), and xN*! = —x (mod xV + 1).
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1: function ExpaND(query = Enc(x'))

2 find smallest m = 2 such that m > n

3 ciphertexts < [ query |

4:

5: /] each outer loop iteration doubles the number of ciphertexts

6 // and only one ciphertext ever encrypts a non-zero polynomial

7 forj=0to/—-1do

8 fork=0to2 - 1do

9 co < ciphertexts[k]
10: C1 < Co x?
11: ¢, < co + Sub(co, N/2/ + 1)
12: Chyy < €1 +Sub(c,N/2 +1)
13: ciphertexts < [cg, - - ., Cyi_]
14:
15: /I ciphertext at position i encrypts the monomial m and all other encrypt 0
16: inverse < m~! (mod t)
17: forj=0ton-1do
18: 0j < ciphertexts[j] - inverse // ciphertext at position i now encrypts 1
19: return output < [0, ..., 0n-1]

Figure 5.3: Procedure that expands a single ciphertext query that encodes an index i
into a vector of n ciphertexts, where the i entry is an encryption of 1, and all other
entries are encryptions of 0. We use the substitution group operator Sub (see text for
details). Plaintexts are in the polynomial quotient ring Z,[x]/(XN + 1). N is a power
of 2, n is the number of elements in the server’s database, and N > m > n.
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x° xt w3

q =Enc([o]o]1]0]) # query (encodes index 2): x*
* Expand (j = 0)

¢'o= Enc([0]2]0]0]), ¢'1=Enc([o]o]o]0])
* Expand (j = 1)

c'o= Enc([0[o[0]0]), ¢'s=Enc([o]o]o]0]),

¢, = Enc([4]0]0]o]), c's=Enc([o]o]o]0])

¥ Multiplication by 4* (mod 1)

c'o=Enc(lofo]ofo]), c¢';= Enc([o]o]o]0]),
c',=Enc([1]o]o]0]), ¢'s=Enc([0]0]0]0])

Figure 5.4: Example of ExpanD’s effect on each iteration of the outer loop. Each array
represents the coefficients of the corresponding polynomial. This example assumes
a database with 4 elements (n = 4), polynomial degree N = 4, and a query retrieving
the third item.
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5.7 Reducing the cost of expansion

One issue with Expanp is that despite each operation being inexpensive (Figure 5.2),
O(n) operations are needed to extract the n-entry query vector. This is undesirable,
since Expanp could end up being almost as expensive to the server as computing the
answer to a query (see Figure 5.1, Line 9). We show how to reduce this cost by having
the client send multiple ciphertexts.

In Section 5.1.1 we describe how Stern’s protocol [207] achieves communica-
tion costs that are sublinear in the size of the database. The key idea is to structure the
database as a d-dimensional hypercube, and ask the client to send d query vectors
instead of one. We show how to use this same technique to make the computational
costs of ExpanD sublinear in the size of the database.

Instead of encoding one index, the client in SealPIR encodes d indices (on
different ciphertexts), one for each dimension of the database. The server then calls
ExpanD on each of the d ciphertexts and extracts a </n-entry vector from each. The
server then uses the modified PIR protocol described in Section 5.1.1 with the ex-
tracted d vectors. Observe that this reduces the CPU costs of Expanp from O(n) to
O(d/n). Of course, this approach has the downside that the PIR response gets larger
because of the cryptosystem’s expansion factor (F). Specifically, the network cost is
d ciphertexts to encode the indices, and F¢~! ciphertexts to encode the response. The
good news is that for small values of d (2 or 3), this results in major computational

savings while still reducing network costs by orders of magnitude over XPIR (§8.2.1).

5.7.1 Optimizing Exeanp further

In FV, an encryption of 2¢ (mod 2¥), for y > ¢, is equivalent to an encryption of
1 (mod 20-%). Observe that in Lines 16-18 of Figure 5.3, Expanp multiplies the n
ciphertexts by the inverse of m where m = 2¢ (the goal of this multiplication is to
ensure that all ciphertexts encrypt either 0 or 1). Instead, we change the plaintext
modulus of the n ciphertexts from ¢t = 27 to # = 27~¢, which allows us to avoid the
plaintext multiplications and the inversion, and reduces the noise growth of Expanp.

The result is n — 1 ciphertexts encrypting 0, and one ciphertext encrypting 1, as we
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expect. This optimization requires ¢ to be divisible by m rather than being an odd
integer. One drawback is that the server must represent the database using FV plain-
texts defined with the plaintext modulus # (rather than t). As a result, we can pack
fewer database elements into a single FV plaintext.

Note that the change of modulus is done by the client; the server simply
encodes database elements into FV plaintexts with coefficients defined modulo #.
Specifically, the client generates the query as we discuss in Section 5.5 by generat-
ing an FV plaintext with coefficients modulo ¢. The server uses Expanp without the
multiplication by an inverse (Lines 16-18) to turn the client’s query into a vector of
ciphertexts where the corresponding plaintexts are defined with coeflicients mod-
ulo ¢. In particular, the element at position i encrypts m € R, and all other elements
encrypt 0. The server then follows the PIR protocol (Figure 5.1) as before, which pro-
duces the PIR answer Enc(m - p(x),). Here, p(x), € Ry is the FV plaintext requested
by the client, and m - p(x), € R is the polynomial that is actually encrypted by the
PIR answer (since we did not perform the multiplication by the inverse of m, all
coefficients in p(x), are multiplied by a factor of m). When the client receives the
answer from the server, it decrypts it into an FV plaintext with coefficients modulo
t'. Observe that m (mod t) =1 (mod '), and therefore the PIR answer decrypts to
p(x), € Ry, which is the desired outcome.

To select a value for ', we want the largest integer value of log(#') for which

the following inequality holds:
log(#") + [log([ ¥/ns )] < log(t) (5.1)

nyy = [nfa]
a = [Nlog(t)/5]

Here o is the number of elements of size /3 bits that can be packed into a single
FV plaintext, and 7y, is the number of FV plaintexts that are needed to represent
elements of size 3 (in Pung’s implementation, 3 = 2,304 bits).

The rationale behind Equation 5.1 is as follows. First, by definition log(#') <

63



log(t), which places a bound on the value of #. Second, #' should be as large as pos-
sible, since #' determines how much data the server can pack into a single FV plain-
text. Finally, the second operand of Equation 5.1 corresponds to ¢ (and recall that
m = 2%). In other words, the second operand constrains how big of a database a single
PIR query can index (since ExpAND outputs at most m ciphertexts). This operand is
computed based on the number of FV plaintexts that make up the database, and the
dimension of the database (§5.1.1). We discuss the empirical effects of this optimiza-

tion (and the value of #) in our experimental evaluation (Sections 8.2.2 and 8.3).

5.8 Handling larger databases

As we discuss in Section 5.6, the size of the query vector that ExpaND can generate is
bounded by N. Based on recommended security parameters [22, 65], N is typically
2048 or 4096 (larger N improves security but reduces performance). So how can one
index into databases with more than N elements?

We propose two solutions. First, the client sends multiple ciphertexts and the
server expands them and concatenates the results. For instance, if N is 2048, the
database has 4000 elements, and the client wishes to get the element at index 2050,
the client sends 2 ciphertexts: the first encrypts 0 and the second encrypts x2. The
server expands both ciphertexts into 2048-entry vectors and concatenates the results
to get a 4096-entry vector where the entry at index 2050 encrypts 1, and all others
encrypt 0. The server then uses the first 4000 entries as the query vector.

Another solution is to change the dimension of the d-dimensional hypercube
that represents the database (§5.7). A dimension d allows the client to send d cipher-
texts to index a database of size N%. For d = 3 and N = 2048, three ciphertexts are
sufficient to index 8.5 billion entries. One can also use a combination of these so-
lutions. For example, given a database with 22* entries, SealPIR uses d = 2 (so the
database is a 212 x 212 matrix), and represents the index for each dimension using
212/2048 = 2 ciphertexts. The server expands these 2 ciphertexts and concatenates
them to obtain a vector of 212 entries. In total, this approach requires the client to

send 4 ciphertexts as the query (2 per dimension), and receive [ F| = 7 ciphertexts as
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the response (d = 3 would lead to 1 ciphertext as the query, but [ F?| = 41 ciphertexts
as the response).

In conclusion, SealPIR’s query compression and Expanp procedures reduce
the query communication complexity from O(Nd</n) in XPIR to O(Nd[</n/N]).
To see why this is the case, observe that XPIR sends d vectors containing «/n cipher-
texts each. Meanwhile, each ciphertext is made up of two polynomials of degree N. In
contrast, SealPIR sends d ciphertexts, each of which is two polynomials of degree N
(the ceiling operator is needed to account for the case where v/n > N, which requires

more than one FV plaintext to encode the query).

5.9 Summary and future work

In this chapter we presented SealPIR, a new PIR library that balances computational
and network costs in practice. Seal PIR significantly reduces the network cost of XPIR,
while introducing only modest computational overheads. The key technique is a new
oblivious expansion procedure that allows a client to send a compressed query that
the server can efficiently decompress and use in the rest of the XPIR protocol.
While the cost of query expansion is small, there are several opportunities to
reduce CPU costs further. For example, observe that when the database dimension
(d) is 2 (see Section 5.1.1) the first step of the computation consists of a matrix-vector
product (the matrix is the database and the vector is v.,; which specifies the desired
column). The server could aggregate \/n column vectors (v,,;) sent by different users
into a \/n x \/n matrix, and compute a single matrix-matrix multiplication using an

algorithm with subcubic computational complexity (for example, Strassen’s [208]).
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Chapter 6

Reducing computational costs with PBCs

Section 4.4 discusses how Pung’s server can use batch codes to amortize its
computational costs when processing a batch of PIR queries from the same client.
Nevertheless, while existing batch code constructions achieve good computational
amortization, they also introduce very high network overhead. In this chapter, we
propose a new construction that weakens the guarantees of batch codes, and in re-
turn reduces network overhead by orders of magnitude. Before describing our con-

struction, we first highlight the costs of using existing batch codes in PIR.

6.1 Costs of PIR with existing batch codes

Recall from Section 4.4.2 that a batch code that provides availability to sets (or mul-
tisets) of k input elements takes a collection of #n elements as input, and outputs m
codewords that are spread out (not necessarily evenly) across b buckets. Figure 6.1
depicts the relationship between the number of codewords () and the number of

buckets b, as a function of the input collection size (1) and the batch size (k) for

This chapter contains material from two previously published works: “Unobservable communi-
cation over fully untrusted infrastructure” (OSDI '16) by Sebastian Angel and Srinath Setty [27], and
“PIR with compressed queries and amortized query processing” (S&P ’18) by Sebastian Angel, Hao
Chen, Kim Laine, and Srinath Setty [25]. Sebastian contributed to all aspects of the design, imple-
mentation, and experimental evaluation of the probabilistic batch codes described in this chapter.
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batch code codewords (m) buckets (b)

subcube (£ > 2) [127, §3.2] n-((0+1)/6)°&® (¢ +1)lo&®)
combinatorial ((,",) <n/(k-1)) [177, §2.2] kn—(k-1)-(.")) r

Balbuena graphs [189, SIV.A] 20 —k-[n/(K -k)]) 2(kK -k)
3-way reverse cuckoo hashing™ (this work, §6.5) 3n 1.5k

Figure 6.1: Cost of existing batch codes and the probabilistic batch code (PBC) con-
struction given in Section 6.5. n indicates the number of elements in the database
DB. k gives the number of elements that can be retrieved from DB by querying each
bucket in 3(DB) at most once, where /3 is the batch code. Building a multi-query
PIR scheme from any of the above constructions leads to computational costs to the
server linear in m, and network communication linear in b. We list batch codes that
have explicit constructions and can amortize CPU costs for multi-query PIR. Other
batch codes have been proposed (for example, [154, 204, 205, 220]), but they either
have no known constructions, or they seek additional properties (such as tolerate
data erasures, or optimize for the case where n = b, support multisets) that intro-
duce structure or costs that makes them a poor fit for multi-query PIR.

*Unlike other schemes, the reverse cuckoo hashing PBC can fail with small proba-
bility (~ 27 for large k).

several constructions. In multi-query PIR, the client issues one query to each of the
b buckets and therefore receives b responses. To answer these b queries, the server
computes over all m codewords exactly once; lower values of m lead to less compu-
tation, and lower values of b lead to lower network costs. Since m < k - n, the total
computation done by the server is lower than running k parallel instances of PIR.
The drawback is that existing batch codes produce many buckets (see the third col-
umn in Figure 6.1). As a result, they introduce significant network overhead over not
using a batch code at all. This makes batch codes unappealing in practice.

Our key observation is that batch codes’ guarantees are actually too conserva-
tive for Pung. Specifically, batch codes guarantee perfect completeness (that is, clients
can retrieve any k items). Meanwhile, Pung does not require that clients can al-
ways retrieve all k messages during a given round: since messages in Pung are long-
lived (§7), if for some reason a client cannot get a particular set of k messages, the

client can simply retry the next round. In fact, this behavior is inevitable in systems
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resistant to traffic analysis such as Pung: recall that clients send and retrieve messages
at some rate; any client who receives messages in excess of this rate must wait at least
two rounds to get all the messages. Below we describe an alternative that works well
for larger k, but is probabilistic. That is, a client can sometimes only retrieve a subset

of the k messages that it wished to retrieve in a given round.

6.2 Probabilistic batch codes (PBC)

A probabilistic batch code (PBC) differs from a traditional batch code in that it fails
to be complete with probability p. That is, there might be no way to recover a specific
set of k elements from a collection encoded with a PBC by retrieving exactly one
codeword from each bucket. The probability of encountering one such set (when
the elements are uniformly chosen) is p. In the example of Section 4.4.2, this would
mean that under a PBC, a client may be unable to retrieve both x; and x, by querying
buckets at most once (whereas a traditional batch code guarantees that this is always
possible). In practice, this is seldom an issue: our construction has parameters that
result in roughly 1 in a trillion queries failing, which we think is a sufficiently rare
occurrence. Furthermore, this is an easy failure case to address in PIR since a client
learns whether or not it can get all of the elements before issuing any queries.

In addition to the above relaxation, the specific PBC construction described
in this chapter introduces another weakening (this is not fundamental to PBCs). Our
construction provides availability (§4.4.2) only to sets of elements in the input collec-
tion (not to multisets). In other words, our construction only allows for the retrieval
of distinct elements. We emphasize that this is not a limitation for us. While multi-
sets are common in non-PIR applications of batch codes (for example, distributed
storage, network switches), this is not the case for multi-query PIR: if a client truly
wishes to retrieve multiple copies of the same element, this can be trivially done with-
out multiset support. Specifically, the client can download the element once, and

then locally make as many copies as needed.

Definition 6.2.1 (PBC). A (n,m, k, b, p)-PBC is given by three polynomial-time al-
gorithms (Encode, GenSchedule, Decode):
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e (Co,...,Cp1) < Encode(DB): Given an n-element collection DB, output a
b-tuple of buckets, where b > k, each bucket contains zero or more codewords,

and the total number of codewords across all buckets is m = 01| C/| > n.

o {0,1} < GenSchedule(L): Given a set of k labels L corresponding to tuples
in DB, output a schedule 0 : L — {{0,...,b— 1}+}k. The schedule o gives,
for each label / € L, the index of one or more buckets from which to retrieve a
codeword that can be used to reconstruct element DB[/]. GenSchedule outputs
1 if it cannot produce a schedule where each ¢ € L is associated with at least
one bucket, and where no bucket is used more than once. This failure event

occurs with probability p.

o element < Decode(W): Given a set of codewords W, output the corresponding

element € DB.

In the sections ahead we describe an efficient PBC construction. Our key idea
is as follows. Batch codes spread out elements such that retrieval requests are load
balanced among different buckets. Relatedly, many data structures and networking
applications use different variants of hashing—consistent [128], asymmetric [217],
weighted [211], multi-choice [30, 166], cuckoo [29, 174], and others [53, 94]—to
achieve a similar goal. While there is no obvious way to use these hashing schemes
to implement multi-query PIR directly, we can do it indirectly: we first build a PBC
from a simple technique that we call reverse hashing (§6.4), and then use the PBC to
implement multi-query PIR (56.6).

6.3 Randomized load balancing

A common use case for (non-cryptographic) hash functions is to build data struc-
tures such as hash tables or dictionaries. In a hash table, the insert procedure con-
sists of computing one or more hash functions on the label of the item being inserted.
Each application of a hash function returns an index into an array of buckets in the
hash table. The item is then placed into one of these buckets following an alloca-

tion algorithm. For example, in multi-choice hashing [30, 166], the item is placed
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Figure 6.2: Logic for two-choice hashing [30] when allocating three key-value tuples
to buckets: (1, A), (2, B), (3, C). Tuples are inserted into the bucket least full. Arrows
represent the choices for each tuple based on different hashes of the tuple’s key (here
we depict an optimistic scenario). The red solid arrow indicates the chosen mapping.

in the bucket least full among several candidate buckets. In Cuckoo hashing [174],
items may move around following the Cuckoo hashing algorithm (we explain this
algorithm in Section 6.5).

An ideal allocation results in items being assigned to buckets such that all
buckets have roughly the same number of items (since this lowers the cost of lookup).
In practice, there is load imbalance where some buckets end up having more ele-
ments than others; the extent of the imbalance depends on the allocation algorithm
and the random choices that it makes. To look up an item by its label, one computes
the different hash functions on the label to obtain the list of buckets in which the item
could have been placed. One then scans each of those buckets for the desired item.

An example of the insertion process for two-choice hashing is given in Figure 6.2.

Abstract problem: balls and bins. In the above example, hashing is used to solve
an instance of the classic n balls and b bins problem, which arises during insertion.
The items to be inserted into a hash table are the # balls, and the buckets in the hash
table are the b bins; using w hash functions to hash a label to w candidate buckets
approximates an independent and uniform random assignment of a ball to w bins.
The number of collisions in a bucket is the load of a bin, and the highest load across

all bins is the max load. In the worst case, the max load is n/w (all balls map to the
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same w candidate buckets), but there are much smaller bounds that hold with high
probability [30].

Interestingly, if we examine other scenarios abstracted by the balls and bins
problem, a pattern becomes clear: the allocation algorithm is typically executed dur-
ing data placement. In the hash table example, the allocation algorithm determines
where to insert an element. In the context of a transport protocol [135], the allo-
cation algorithm dictates on which path to send a packet. In the context of a job
scheduler [173], the allocation algorithm selects the server on which to run a task.
The result is that the load balancing effect is achieved at the time of “data placement”.
However, to build a PBC, we must do it at the time of “data retrieval”. Reverse hash-

ing achieves this.

6.4 Reverse hashing

We start by introducing two principals: the producer and the consumer. The producer
holds a collection of # items where each item is a key-value tuple. It is in charge of
data placement: taking each of the n elements and placing them into buckets based
on their label (the key in the key-value tuple) following some allocation algorithm.
The consumer holds a set of k labels (k < n), and is in charge of data retrieval: it
fetches items by their labels from the buckets that were populated by the producer.
The goal is for the consumer to get all k items by probing each bucket as few times
as possible. In other words, the consumer has an instance of a k balls and b bins
problem, and its goal is to reduce the instance’s max load.

Note that the consumer is not inserting elements into buckets (that is the job
of the producer). Instead, the consumer is in some sense placing “retrieval requests”
into the buckets. The challenge is that any clever allocation chosen by the consumer
must be compatible with the actions of the producer (who populates the buckets).
That is, if the consumer, after running its allocation algorithm (for example, multi-
choice hashing) decides to retrieve items x;, x,, and x3, from buckets 2, 3, and 7, it
better be the case that the producer previously placed those elements in those exact

buckets. We describe how we guarantee compatibility below.
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Figure 6.3: Example of two-choice reverse hashing. (a) shows the consumer’s simu-
lation when inserting two tuples (2, x), (3, ). The * indicates that the value is not
known, so an arbitrary value is used. (b) shows a modification to two-choice hashing
where the producer stores the tuple in all possible choices. This ensures that the final
allocation is always compatible with the consumer’s simulation.
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Protocol. The consumer starts by imagining that it is a producer with a collection
of k elements. In particular, the consumer converts its k labels into k key-value tuples
by assigning a dummy value to each tuple (since it does not know actual values). In
this simulation, the consumer follows a specific allocation algorithm (for instance, 2-
choice hashing, cuckoo hashing) and populates the b buckets accordingly. The result
is an allocation that balances the load of the k elements among the b buckets (as we
discuss in Section 6.3). The consumer then ends its simulation and uses the resulting
allocation to fetch the k elements from the buckets that were populated by the real
producer.

Guaranteeing that the consumer’s allocation is compatible with the producer’s
actions is challenging. One reason is that the consumer’s simulation is acting on k
items whereas the real producer is acting on n items. If the allocation algorithm being
used (by the consumer and the producer) is randomized or depends on prior choices
(this is the case with multi-choice hashing schemes), the allocations will be different.
For example, observe that if a producer generates the allocation in Figure 6.2 it would
not be compatible with the consumer’s simulation in Figure 6.3(a) despite both enti-
ties using the same algorithm (since the producer places the item under label “2” in
the middle bucket, but the consumer’s simulation maps it to the top bucket).

To guarantee compatibility we employ a simple solution: the producer follows
the same allocation algorithm as the consumer’s simulation (for example, 2-choice
hashing) on its n elements but stores the elements in all candidate buckets. That is,
whenever the algorithm chooses one among w candidate buckets to store an element,
the producer stores the element in all w buckets. This ensures that regardless of which
k elements are part of the consumer’s simulation or which non-deterministic choices
the algorithm makes, the allocations are always compatible (Figure 6.3(b)). Of course
this means that the producer is replicating elements, which defeats the point of load

balancing. However, PBCs only need load balancing during data retrieval.
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6.5 A PBC from reverse cuckoo hashing

We give a construction that uses Cuckoo hashing [174] to allocate balls to bins. How-
ever, the same method can be used with other algorithms (for example, multi-choice
Greedy [30], LocalSearch [136]) to obtain different parameters, and can even be hy-
bridize with traditional batch codes to achieve even better amortization (§6.5.2). We

give a brief summary of Cuckoo hashing’s allocation algorithm below.

Cuckoo hashing algorithm. Given n balls, b buckets, and w independent hash
functions hy, ..., h,_; that map a ball to a random bucket, compute w candidate
buckets for each ball by applying the w hash functions. For each ball x, place x in
any empty candidate bucket. If none of the w candidate buckets are empty, select
one at random, remove the ball currently in that bucket (x,;4), place x in the bucket,
and re-insert x,4. If re-inserting x,;; causes another ball to be removed, this process

continues recursively for a maximum number of iterations.

Construction. Let Hbean instance (producer, consumer) of reverse hashing where
the allocation algorithm is Cuckoo hashing with w independent hash functions and
b bins (we discuss concrete values for w and b later in this section). We construct a
(n,m,k,b,p)-PBC as follows.

Encode(DB). Given a collection DB of n key-value tuples, follow H’s producer
algorithm to allocate the n elements to the b buckets. This results in m = wn total ele-
ments distributed (not necessarily evenly) across the b buckets. Return the buckets.

GenSchedule(L). Given a set of k labels L, follow H’s consumer algorithm to
allocate the k labels to the b buckets. Return the mapping of labels to buckets. If
more than one label maps to the same bucket (that is, if there are collisions), return
1 instead.

Decode(W). Since Encode performs only replication, all codewords are ele-
ments in DB and require no decoding. Furthermore, o, which is returned by Gen-
Schedule, has only one entry for each label (since there is no need to combine code-

words). As a result, W contains only one codeword. Decode returns that codeword.
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6.5.1 Concrete parameters

Analyzing the exact failure probability of Cuckoo hashing, and determining the con-
stant factors, remains an open problem (see [103] for recent progress). However,
several works [66, 91, 182] have estimated this probability empirically for different
parameter configurations. Following the analysis in [91, Appendix B], we choose
w = 3 and b = 1.5k. In this setting, the failure probability is estimated to be p ~ 274
for k > 300 (for smaller k it is around 272°). Figure 6.1 compares this result with

existing batch codes.

6.5.2 Lowering the failure probability further

For some applications, one query failing out of 22° (or even 2%°) queries might not
be acceptable. In the above construction, one can lower p by either increasing the
number of replicas (w), increasing the number of buckets (b), or both. More replicas
lead to higher computational costs (due to PIR’s costs being linear in the total number
of elements), while more buckets lead to higher communication costs in PIR (due to
clients having to query each bucket to maintain privacy). Demmler et al. [91, §5.2]
show that increasing b leads to roughly a linear decrease in the failure probability
of Cuckoo hashing. The effect of increasing w on the failure probability appears less
significant [91, Appendix B], though these findings are based on limited experiments
(only values of w = 2, 3, and 4 were used).

There is, however, another way to lower the probability of failure: increasing
the number of collisions that every bucket can handle. We describe this technique
here for completeness, but we note that we do not use this in Pung, since Pung can
tolerate a failure probability of 272°. In the above scheme, a failure occurs whenever
the allocation resulting from the consumer’ algorithm has a max load greater than 1
(in other words, there is at least 1 collision). However, we can extend PBCs to support
a max load of t. The key idea is to encode each bucket i with a (1, m, k, b)-batch code,
where n = |C;| (the number of elements in bucket i), k = ¢ (the desired max load that
the bucket should support), and m and b are parameters that depend on the batch
code (see Figure 6.1).
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Understanding how all of these parameters interplay in the context of our
reverse cuckoo hashing PBC remains a challenging problem due to the complexity
of analyzing cuckoo hashing’s failure probability. However, Appendix B describes
and evaluates the failure probability for several other PBC constructions; these are
not as efficient as the Cuckoo PBC described in this chapter, but we include them for

comparison and completeness.

6.6 Multi-query PIR from PBCs

In this section we describe how we can combine any PBC with a PIR protocol to
obtain a multi-query PIR scheme. We give the pseudocode in Figure 6.4. At a high
level, the server encodes its database by calling the PBC’s Encode procedure. This
produces a set of buckets, each of which can be treated as an independent database
on which clients can perform PIR. A client who wishes to retrieve elements with
labels L = {/y,..., 01} can then locally call GenSchedule(L) to obtain a schedule
o. This schedule states, for each label, the bucket from which to retrieve an element
using PIR. Because of the semantics of GenSchedule it is guaranteed that no bucket
is queried more than once (or 0 = L). As a result, the client can run one instance
of PIR on each bucket. However, a challenge is determining which index to retrieve
from each bucket: by assumption (of PIR) the client knows the index in DB, but this
has no relation to the index of that same element in each bucket. To address this,
we introduce an oracle O that provides this information (we discuss it below). If the
client has nothing to retrieve from a given bucket, the client simply queries a random
index for that bucket.

Constructing the oracle O. There are several ways that the client can construct O.
The simplest solution is to obtain the mapping from each index in DB to the corre-
sponding indices in each bucket. For example, Pung clients can obtain this mapping
in a succinct Bloom filter (§4.3.4). Another option, which Figure 6.4 uses, is for the
client to fetch elements using BST-ReTrIEVAL (§4.3.3). In this case, the client need not

know the index of a particular tuple in DB or in the corresponding buckets.
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1: function SETUP(DB)
2 // run by the server
3 (Co,--..,Cp_1) < Encode(DB)
4 forj=0tob-1do
5: SeTup(C;) /] See Figure 5.1, Line 1
6:
7: function MULTIRETRIEVAL(pk, sk, L, {|Co|, . . ., |Cp_1]})
8 o < GenSchedule(L)
9 if 0 # 1 then
10: /1 get an element for each bucket
11: /] pick a random label if the bucket is not used in o
12: forj=0tob-1do
13: {; < label for bucket j (based on o)
14: /I run BST-Retrieval on bucket j
15: cwj <= BST-RETRIEVAL(pK, sk, ¢;, |Cj|) /] see Figure 4.4
16:
17: /1 select codewords from cw that are relevant to each label in L
18: fori=0ink-1do
19: W « codewords from cw (based on o[L;])
20: e; < Decode(W)
21: return (eg, ..., ek 1)
22:

23: else deal with failure (see §6.6.2)

Figure 6.4: Multi-retrieval PIR protocol that combines the CPIR proto-
col of Figure 5.1, the BST retrieval protocol of Figure 4.4, and a PBC
(Encode, GenSchedule, Decode). L is the set of k desired labels and |Cj| is the
size of bucket i.
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6.6.1 Selective failure attacks

In Pung, the server is not in charge of assigning labels to tuples. Instead, clients gen-
erate these labels before sending the tuples to the server (§4.2). Since these labels are
pseudorandom, the server cannot control or predict ahead of time in which buckets
a particular tuple will end up after calling Encode. This prevents the server from using
the probabilistic nature of a PBC to conduct selective failure attacks (we discuss these
attacks below). Of course the server could choose to not follow the Encode protocol,
but this would simply lead to a denial of service (in the same way that the server
could choose not to store a tuple in its collection during single-retrieval).

The more interesting case occurs in other applications of multi-query PIR
(besides Pung) where the server does get to assign labels to tuples. In such cases, the
server has full control over where to place elements by nature of its ability to assign la-
bels. As a result, the server could assign labels to specific elements in a way that these
elements cannot be retrieved together (that is, at sets of labels where GenSchedule re-
turns 1). This opens the door to attacks where the server selectively makes certain
combinations of elements not retrievable in hopes of observing a client’s reaction and
breaking the privacy guarantees. Note that a similar attack already exists in the single-
query PIR case: the server can selectively place an incorrect element (or garbage) ata
particular index and can wait to see if a client complains or not (thereby learning that
the index that the client requested was one that contained garbage or not). To address
“selective failure” attacks, additional mechanisms are needed. A common solution is
to ensure that a client’s reaction remains independent of whether or not queries suc-
ceed. This guarantees that the attack violates availability instead of privacy—which

a malicious server could violate anyway by not answering queries.

6.6.2 Dealing with failures in Pung

If the PBC that Pung uses has p > 0, then it is possible that for a client’s choice of
labels, o = L. In this case, the client is unable to fetch all k messages privately. No-
tice, however, that the client learns of this fact before issuing any PIR query (see

Figure 6.4, Line 9). As a result, the client has a few options. First, the client can ad-
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just its set of labels (meaning the client can choose different elements to retrieve).
This is possible in Pung whenever the client needs to retrieve more than k messages.
Second, the client can retrieve a subset of the elements. In Pung, this would mean
that the client would not retrieve all unread messages in the same round. However,
since Pung messages are stored for several rounds, the client can try again the next
round (presumably with a new set of labels). Lastly, the client can simply ignore the
unretrievable messages. In our implementation we use this last option since we im-
plement a reliable transport layer on top of Pung that ensures the sender retransmits

messages until the recipient acknowledges them.

6.7 Summary and future work

In this chapter we discussed a relaxation of batch codes called PBC. We then used
PBCs to build a multi-query PIR scheme that amortizes computational costs (56.6)
while introducing low network overhead. PBCs use PIR as a black box and therefore
work with both XPIR and SealPIR. The key building block of PBCs is an allocation
algorithm (we use hashing schemes) that assigns balls into bins in a way that mini-
mizes the number of collisions. In this dissertation we study allocation algorithms
that are typically used for online load balancing (that is, when balls arrive one at a
time). In the future, we could consider algorithms that optimize for the offline setting
in which all balls are available at the same time (which is the case in PBCs). In this
setting, Czumaj and Stemann [81] show that the allocation process can be phrased in
terms of orienting the edges of undirected graphs in order to obtain directed graphs
with minimum in-degree. Optimal solutions for this problem can be computed in

polynomial time [67], and linear time approximations also exist [57, 81, 101].
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Chapter 7

Implementation

This chapter discuss the prototype implementations of SealPIR, mPIR (our multi-
query PIR library), and Pung. All the code is available at: https://github.com/
pung-project.

SealPIR implements XPIR’s protocol [20] atop the SEAL homomorphic en-
cryption library [11] (version 2.3.0-4) and extends it with our new query compres-
sion and Expanp procedure (§5). This is around 2,000 lines of C++ and Rust (on top
of SEAL). The most intricate component is Expanp (Figure 5.3) which requires the
substitution homomorphic operation (§5.4). We implement this operation in SEAL
by porting the Galois group actions algorithm from Gentry et al. [108, §4.2]. We
discuss this in detail in Appendix A.1.

SealPIR exposes the API in Figure 5.1. A difference with XPIR is that sub-
stitution requires auxiliary cryptographic material to be generated by the client and
be sent to the server (see Appendix A.1). However, a client can reuse this material
across all of its requests, and it is relatively small (2.9 MB per client).

Our multi-query PIR library, mPIR, implements the scheme described in
Chapter 6.6, instantiated with the reverse Cuckoo hashing PBC described in Chap-
ter 6.5. This library works transparently on top of both XPIR and SealPIR, and is

written in 1,700 lines of Rust.

Details of Pung. We express the server side components of Pung as a series of

nodes in a dataflow graph; we use Naiad’s timely dataflow model [169]. Front-end
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@ Aggregatlon PIR query processing

Figure 7.1: Pung’s server-side architecture. Front-end servers receive requests from
users and forward them to workers that process these requests. The collection of
(Iabel, c)-tuples is sharded at the granularity of buckets, and these shards are repli-
cated across multiple workers that process PIR queries (see text for details). g repre-
sents a query, and the lock symbol signifies a PIR answer.

servers receive requests directly from users, aggregate these requests, and load bal-
ance them across dataflow workers. These requests cause workers either to modify
the database of messages by inserting new tuples, or to read through the database to
produce external output (for example, respond to a PIR query).

We depict a round of Pung in Figure 7.1. In the send phase (§4.1), clients
send their (label, c)-tuples to front-end servers (we do not depict clients in the fig-
ure). Front-end servers hand these tuples to workers that transform the existing col-
lection (Figure 7.1, step @) by sorting the tuples, and encoding them with a batch
code or PBC that is compatible with BST retrieval (§4.4.3). The workers then shard
the resulting collection at the granularity of buckets and pass each shard to a PIR pro-
cessing worker node. To support long-lived messages and to allow users to retrieve
messages sent to them during past rounds, workers maintain a sliding window of
messages. Pung’s dataflow workers implement this window by mixing new and ex-
isting messages, garbage collecting the messages that outlive the sliding window, and
reconstructing buckets and BSTs every round.

During retrieval, clients send to front-end servers multi-queries, which are
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requests that contain queries going to multiple buckets (§4.4). Front-end servers for-
ward these multi-queries to nodes that split and route individual queries to the PIR
processing nodes holding the appropriate bucket (step @). Aggregation workers col-
lect the responses from PIR processing nodes and combine them to form the answer
that is ultimately sent to front-end servers and then to clients (step ®).

We implement Pung in 5,800 lines of Rust and C++ bindings (not counting
cryptographic operations, PIR, and PBC). We implement the server-side compu-
tation with the Timely Dataflow library [160] that creates, runs, and coordinates
dataflow workers. We use mPIR to encode the stored messages with a PBC, and
SealPIR (§5) to answer PIR queries. When the number of messages is small, clients
use a Bloom filter (§4.3.4) rather than BST retrieval (§4.3.3). To construct the Bloom
filter, our implementation uses MetroHash [10] as the non-cryptographic hash func-
tion, and it targets a false positive probability of 2718. Finally, we derive keys from se-
crets with HKDF [141], generate labels with HMAC-SHA256, and encrypt messages
with ChaCha20-Poly1305. All of these operations are supported by the Rust-Crypto
library [6].

We also implement the add-friend and dialing protocols of Section 4.5. These
protocols run on a parallel service and are independent of the above Pung implemen-
tation. To implement dialing (§4.5.2), we use HMAC-SHA256 as the PRE and Metro-
Hash for the Bloom filter. To implement add friend (§4.5.3), we use the Cramer-
Shoup public key cryptosystem [80] with 3072-bit keys, and the Edwards-curve Dig-
ital signature algorithm (EdDSA) [42] with curve 25519 [41] implemented in Rust’s
Ring library [16].
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Chapter 8

Evaluation

This chapter evaluates the prototype implementations of SealPIR, mPIR, and Pung

described in the previous chapter. Figure 8.1 summarizes the main results.

8.1 Experimental setup and concrete parameters

We run our experiments using Microsoft’s Azure instances in three data centers: West
US, South India, and West Europe. We run the PIR servers on H16 instances (16-core
3.6 GHz Intel Xeon E5-2667 and 112 GB RAM), and clients on F16s instances (16-
core, 2.4 GHz Intel Xeon E5-2673 and 32 GB RAM)), all running Ubuntu 16.04. We
compile all our code with Rust’s nightly version 1.25. For XPIR, we use the publicly
available source code [21] and integrate it into our testing framework using Rust
wrappers. We report all network costs measured at the application layer. We run
each experiment 10 times and report averages from those 10 trials. Unless otherwise
noted, standard deviations are less than 10% of the reported means. Finally, we run

all microbenchmarks using Rust’s criterion library [14].

Security parameters. We choose security parameters for FHE following XPIRs lat-
est estimates [12], which are based on the analysis and tools by Albrecht et al. [22].
We set the degree of ciphertexts’ polynomials to 2048, and the size of the coefficients
to 60 bits (N and g in Section 5.4). Specifically, SEAL uses a value of g = 260 - 218 + 1,
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SealPIR reduces the size of queries by 274x over XPIR. §8.2.1

The end-to-end response time to privately fetch an element from a server on an  §8.2.2
average network is 42% lower with SealPIR than with XPIR.

SealPIR achieves 23% lower throughput than XPIR (with d = 2), but 50% higher §8.2.3
throughput than XPIR (with d = 3).

mPIR reduces the computational costs of processing a batch of 256 queries by  §8.3
40.5x (over processing each query individually).

Pung can support 131K users with 3-minute communication rounds on 60 VMs. ~ §8.4.2

Figure 8.1: Summary of the main evaluation results.

whereas XPIR uses g = 26! — i - 214 + 1, for various values of i [13].

Each database element is 288 bytes. We choose this size since we use 288-byte
messages in Pung (§8.4). Unless otherwise stated, SealPIR uses a plaintext modulus
t=2%. A larger t leads to lower network and computational costs, but might cause
noise to grow too much, preventing ciphertexts from decrypting successfully (we
lower ¢ in some experiments to ensure that we can always decrypt the result). For
XPIR, we use a = 14, meaning that we pack a elements into a single XPIR plaintext,
thereby reducing the number of elements stored in the database by a factor of «.. For
288-byte elements and our security parameters, setting o = 14 in XPIR has the same
effect as setting ¢ = 22% in SealPIR without the optimization to Expanp discussed in
Section 5.7.1. With the optimization, SealPIR packs fewer data into plaintexts than
XPIR (since it depends on ' rather than ¢, and t' < t); XPIR therefore ends up pro-
cessing over a database with fewer total elements than SealPIR. Note that it does not
make sense to use a lower value of « for XPIR to try to match the effect that ¢ has on
the optimized variant of SealPIR since that would not be fair to XPIR (lower values

of o lead to higher computational costs).
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8.2 Evaluating SealPIR

In this section we evaluate SealPIR in isolation, since it is a general-purpose PIR
library that can be used in contexts beyond Pung. We answer two main questions:
1. What are the concrete resource costs of SealPIR, and how do they compare to
the baseline of XPIR?
2. What is the throughput and latency achieved by SealPIR under different deploy-

ment scenarios?

8.2.1 Costand performance of SealPIR

To evaluate SealPIR, we run a series of microbenchmarks to measure: (i) the time
to generate, expand, and answer a query; (ii) the time to extract the response; and
(iii) the time to preprocess the database. We study several database sizes and repeat
the same experiment for XPIR using two different dimension parameters d (§5.7).

Figure 8.2 tabulates our results.

CPU costs. We find that the computational costs of query generation are an or-
der of magnitude lower under SealPIR than under XPIR. This is because the client
in SealPIR generates d ciphertexts as a query rather than d/n ciphertexts as in
XPIR (§5.7). When it comes to the server, SealPIR’s Expanp procedure introduces
CPU overheads of 11% to 38% (over answering a query vector directly using SealPIR’s
code base). While this is high, it results in significant network savings (which we dis-
cuss below). Furthermore, even with the overhead of Expanp, the cost of answering
a query in SealPIR is comparable to XPIR.

We note that larger values of d lead to more computation for the server for
two reasons. First, structuring the database as a d-dimensional hyperrectangle often
requires padding the database with dummy plaintexts to fit all dimensions. Second,
as we discuss in Section 5.7, the ciphertext expansion factor effectively increases the
size of the elements by a factor of F after processing each dimension, necessitating

more computation.

85



'$9)14q 887 JZIS JO oI SYUIWII[ (1) $IZIS Iseqejep Juihrea
Iopun YIJ[edS pue (SUOISUIWIP seqejep om) J0J) YIJX J0J SIS0 YIoMIdU pue N D) JO SYTEWYOUIQOIIIN :¢'8 2In3L]

9s¢ 9s¢ 9s¢C TS6°1 TS6°1 P8l 9s¢ 9s¢ 9s¢ Tomsue
¥9 ¥9 ¥9 790 095°C €91 9€5°LT 89.L°8 78€Y A1onb
(4dDI) 1500 JI0M)oU

10°C S0 €ro se 80 LT0 [44 €9°0 170 HIMSNY
€00 110 S0°0 V/N V/IN VIN V/IN V/IN VIN aNVaxXq
9Ty v0'1 €C0 (44 8570 ST°0 LT¢ LS°0 ST°0 d0.LES§
(99s) 51500 N D T9AI3S

69'1 6’1 Le'T LSC 6¥'¢C Lv'e 0€0 6C°0 ¥€0 LOVELXY]
LEE LEE AR VLTl €0'8 867 yIss LSLT €8¢l AENQ

(sur) $3505 NdD U
9LS°8%0°T PPICoC  9¢5°69  9LS°8F0°1 PPITOT  9€5°S9  9LS'8VOT  FPITOT  9€5°S9  (u) IzIs aseqeiep
(T =p) A1dIeS (€ = p) d1dX (T =p)¥1dX

86



Network costs.  For network costs, SealPIR enjoys a significant reduction owing to
its query encoding and Expanp procedure (§5.6). For larger databases, the query size
reductions over XPIR are 274x when d = 2, and 63x when d = 3.

8.2.2 SealPIRSs response time

While microbenchmarks are useful for understanding how SealPIR compares to
XPIR, another important axis is understanding how these costs affect response time
and throughput. This section discusses response time, and the next section discusses
throughput. To measure response time, we run experiments where we deploy a PIR
server in Azure’s US West data center, and place a PIR client under four deployment
scenarios. We then measure the time to retrieve a 288-byte element using SealPIR,
XPIR, and scp (the secure copy command line tool). We use scp to represent a client

downloading the entire database (naive PIR).

Deployment scenarios

Intra-DC. The client and the server are both in the US West data center. The band-
width between the two VMs is approximately 3.4 Gbps (measured using the iperf
measurement tool). This scenario is mostly pedagogical since it makes little sense to
use PIR inside two VMs in the same data center controlled by the same operator,
but it gives an idea of the performance that PIR schemes could achieve if network

bandwidth were plentiful.

Inter-DC. The client is placed in the South India data center. The bandwidth be-
tween the two VMs is approximately 800 Mbps. This scenario represents clients who
deploy their applications in a data center (or well-provisioned proxy) that they trust,

and access content from an untrusted data center.

Home network. The client is placed in the South India data center. We use the tc
traffic control utility to configure the Linux kernel packet scheduler in both VMs to

maintain a 20 Mbps send rate. We choose this number as it is slightly over the mean
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download speed in the U.S. (18.7 Mbps) according to Akamai’s latest connectivity
report [8, §4]. This scenario is optimistic to XPIR since it ignores the asymmetry
present in home networks where the uplink bandwidth is typically lower (meanwhile
in XPIR, the queries are large). Nevertheless it gives a rough estimate of a common

PIR use case in which a client accesses an element from their home machine.

Mobile network. The client is placed in the South India data center. We use tc to
configure VMs to maintain a 10 Mbps send rate. We choose this number as it approx-
imates the average data speed achieved by users across all U.S. carriers according to
OpenSignal’s 2017 State of Mobile Networks report [9] and Akamai [8, §8]. As with
the home network, this scenario is optimistic (for XPIR) as it ignores the discrepancy
between download and upload speeds. It represents the use of PIR from a mobile or

data-limited device.

Results. Figure 8.3 depicts the results. At very high speeds (intra-DC), naive PIR
(scp) is currently the best option, which is not surprising given the computational
costs introduced by PIR. In this regime, SealPIR is competitive with both instances
of XPIR, although our implementation falls behind on the largest database size. The
primary issue is that, for a database with n = 222 elements, our optimization of
ExpanD makes the plaintext modulus very small (# = 2!2, see Equation 5.1 in Sec-
tion 5.7.1). This causes SealPIR to use many more plaintexts than XPIR. For even
larger databases, since we must use a higher dimension anyway ($5.8), the difference
in the number of plaintexts between XPIR and SealPIR (for the same d) becomes
less prominent until # is large enough that the second operand in Equation 5.1 ap-
proaches log(t) again.

With lower network speeds, XPIR and SealPIR significantly outperform scp.
As bandwidth decreases (home, mobile), SealPIR’s lower network consumption and

competitive CPU costs yield up to a 42% reduction in response time.
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Figure 8.3: Mean response time experienced by a client under different deployments
(see text for a description of network conditions) with different PIR schemes. When
the network bandwidth is plentiful (intra-DC), downloading the entire database
(scp) achieves the lowest response time. However, when the network bandwidth
is limited (home, mobile), SealPIR achieves the lowest response time.
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Figure 8.4: Comparing throughput vs. mean response time under SealPIR and XPIR
(with d = 2 and d = 3) when using a database with 22° elements where each element is
288 bytes long. We find that XPIR with d = 2 saturates at 9 requests/second whereas
SealPIR saturates at 7 requests/second (a 23% reduction in throughput). When XPIR
uses d = 3, SealPIR achieves about 50% higher throughput.

8.2.3 SealPIRSs throughput

We deploy the PIR server in Azure’s US West data center, but access it with an in-
creasing number of concurrent PIR clients deployed across the South India and EU
West data centers. We then measure the number of requests serviced per minute at
the server, and the request completion times at the clients. Figure 8.4 depicts the re-
sults of running from 4 to 256 clients each requesting one 288-byte element from a
database with 220 entries. In our experiments, we ensure that the bottleneck is the
server’s CPU or WAN network connection, and not the clients or some link between
specific data centers.

We find that SealPIR achieves a 50% higher throughput than XPIR with d = 3,
but a 23% lower throughput than XPIR with d = 2. Most of the difference can be at-
tributed to Expanp, but we believe that with further engineering we can close this gap
(since SealPIR is comparable to XPIR according to microbenchmarks). Compared
to naive PIR via scp, SealPIR and XPIR achieve over 20x higher throughput since
the primary bottleneck in naive PIR is network bandwidth and not CPU (which is
the bottleneck for both SealPIR and XPIR).
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single-query mPIR

batch size (k) 1 16 64 256
client CPU costs (ms)

MultiQuery 3.07 6.45 5.26 4.92
MultiExtract 2.51 3.26 3.25 2.70
server CPU costs (sec)

MultiSetup 6.1 1.50 0.38 0.12
MultiAnswer 3.24 0.69 0.23 0.08
network costs (KB)

query 64 96 96 96
answer 384 480 480 384

Figure 8.5: Per-request (amortized) CPU and network costs of mPIR on a database
consisting of 220 elements, with varying batch sizes. The second column gives the
cost of retrieving a single element (no amortization). The underlying PIR library is
SealPIR with ¢ = 220 and elements are 288 bytes.

8.3 Evaluating mPIR

In this section we evaluate how using a PBC to build a multi-query PIR scheme
as described in Chapter 6 can help amortize computational costs, and what kind
of network overhead it introduces. In particular, we evaluate our multi-query PIR
library, mPIR, which we use in Pung, but which can also be used more generally.
Our experiment consists of repeating the microbenchmark in Section 8.2.1, but this
time we use mPIR. The baseline of this experiment is performing k parallel instances
of PIR, which is the naive way to retrieve k elements using single-retrieval. In this
experiment we use SealPIR with ¢ = 22 and d = 2 as the underlying PIR library.
Figure 8.5 gives the results. We find that mPIR reduces computational costs
over the baseline up to 40.5x for a batch of k = 256 queries and a database with n = 220
elements. This is a direct effect of mPIR performing fewer operations at the server. In
particular, recall from Section 6.5 that the Cuckoo PBC (which is what mPIR uses)
generates 1.5k buckets and 3# total codewords. This results in 1.5k = 384 buckets,

each of which contains on average 2! elements (each element is replicated 3 times
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and each replica is assigned to a random bucket). mPIR then queries each bucket
exactly once. By contrast, the baseline requires the server to answer k queries on a
database with 22° elements, which results in 85x more operations.

Observe that at k = 256, mPIR’s download costs are the same as the baseline.
This is counterintuitive since mPIR results in 50% more answers (the extra answers
are dummies that hide which buckets are of interest to the client; see Section 6.6).
However, each answer in mPIR contains fewer ciphertexts because of the interaction
between SealPIR and mPIR. Recall from Section 5.1.1 that if d > 1, the number of
ciphertexts in an answer is F¢~1; Fis the cryptosystem’s expansion factor, which in our
caseis F = 2log(q)/log(t'). Furthermore, Equation 5.1 (§5.7.1) shows that ¢’ is larger
for smaller databases. Indeed, for the original 22°-entry database, ' = 210 (resulting
in F = 12), whereas for the average bucket of 213 entries, ' = 2> (resulting in F = 8).
Consequently, for our choice of parameters, the total download communication ends
up being the same: 256 - 12 = 384 - 8 ciphertexts.

Note that this parity in download cost is not true in general; it is a result of the
particular parameters used in this case. In fact, because of Equation 5.1 (§5.7.1), we
can even achieve lower amortized download costs. Without ExpaND’s optimization,
this would not be the case: in some sense, the optimization introduces communi-
cation overhead to fetching elements from databases with many entries and mPIR
amortizes that overhead. As an aside, Equation 5.1 does not affect upload costs; these

costs increase by 50% since the client is sending 50% more queries.

8.4 End-to-end evaluation of Pung

In this section we focus on three main evaluation questions:
o How many users can Pung support, and how does it compare to prior systems? We
answer this question by measuring throughput and latency as we vary the number
of users in our end-to-end deployment (§8.4.1 and §8.4.2).
o What are the benefits of using mPIR? We discuss the throughput benefits and also
the corresponding network overheads of clients using mPIR to retrieve multiple

messages from Pung’s servers (§8.4.3).
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» How expensive is Pung for clients? We measure the CPU and network costs in-

curred by all operations performed by clients (§8.4.4).

We answer these questions in the context of the following setup and baselines.

Setup and metrics. We deploy Pung’s server logic on timely dataflow workers run-
ning on the H16 VMs (§8.1). Our performance metrics are throughput (in mes-
sages/minute) and end-to-end latency (in seconds). Note that all entities run on the
same data center, so our results do not capture the effects of wide area networking.
We run clients and dataflow workers in a closed loop and let round duration
be as low as possible: a new round starts as soon as all current requests are fulfilled. To
keep the number of messages constant across rounds, we configure Pung’s garbage

collection window to be the number of messages sent in one round (§7).

Baselines. 'We compare Pung to two prior systems: Dissent [77] and Vuvuzela [216].
Vuvuzela is the state-of-the-art in private communication under the anytrust model [226],
whereas Dissent is the state-of-the-art in the no-trust model. The anytrust model
states that out of a set of servers one is assumed to be correct, but clients need not
know which is the correct one. We want to emphasize that our comparison to Dis-
sent is not entirely fair: Dissent achieves an additional privacy property—sender
anonymity (§3)—that Pung does not provide. However, we are not aware of any sys-

tem that provides the same guarantees as Pung under the same threat model.

8.4.1 How many users can Pung support?

The number of users that Pung can support depends on the performance that users
are willing to tolerate and the financial cost that the provider is willing to shoulder.
We therefore focus on measuring the impact of the number of users on two end-to-
end metrics: latency observed by a client and throughput achieved by Pung’s servers.
Here we test the version of Pung that we describe in Section 4 with SealPIR. Note
that since our goal is to determine the number of users that Pung can support, we set

the batch size used by mPIR to k = 1 (in other words, Pung gets no amortization). We
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Figure 8.6: The end-to-end latency of sending and retrieving one message when
Pung’s server is under-utilized is up to 1.3 seconds (when the server stores 1 mil-
lion messages). This figure gives the round-trip time of the three different retrieval
methods discussed in Chapter 4.

do this because mPIR only helps to amortize the cost when clients retrieve multiple

messages, but it does not actually help Pung support more clients.

Latency. Our goal is to understand what is the lowest round duration that Pung
could possibly support given enough hardware resources. To do this, we measure
the end-to-end latency perceived by a client in Pung when its request is handled by
a dedicated dataflow worker (that is, by a dedicated CPU core). We have the client
send its message and perform a retrieval. To experiment with large collection sizes
we populate the server with up to 1 million 288-byte tuples. We experiment with
three different methods that the client can use to retrieve its desired tuple from the
server. The first has the client explicitly download all the label-to-index mappings
prior to retrieval, look up the index of the corresponding label locally, and perform
PIR with this index. The second downloads a Bloom filter that succinctly encodes
the label-to-index mappings (§4.3.4), and performs the same steps as above. The last
performs the BST retrieval procedure given in Figure 4.4.

Figure 8.6 depicts the results. As we expect from our microbenchmarks of
SealPIR (§8.2.1), the client latency grows linearly with the number of messages at

the server. Also, our low-latency network allows us to confirm that the server-side
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CPU costs associated with BST retrieval are comparable to explicitly fetching the
label-to-index mapping. This is due to our ability to express the complete BST as a
contiguous array which requires no padding or auxiliary elements (§4.3.3). However,
in wide area networks we expect to see added latency due to log(#) round trips. The
Bloom filter’s checks ($4.3.4) also incur little CPU overhead to the client, and its
size is up to 10.4x smaller than the associated label-to-index mapping. However, for
large databases, the Bloom filter consumes more network resources than the BST
retrieval (see the discussion in Section 4.3.4)

Finally, note that our prototype performs request-level—rather than data-
level—parallelism, so these latencies could be reduced further by having dataflow
workers process fractions of a request. This is possible because PIR answers are ci-
phertexts from an additively homomorphic cryptosystem, so workers can gener-
ate partial answers that can then be aggregated (§5.2). However, the current laten-
cies (assuming enough computational resources) are already much better than those
achieved by Vuvuzela, where even a two-client deployment requires 20 to 30 second
rounds due to the addition and serial processing of cover traffic (adding more ma-

chines does not reduce this latency).

Throughput. To measure Pung’s peak throughput, we run experiments where clients
send and retrieve a 256-byte message per round, for a total of 10 rounds. We then
vary the number of clients (#) and measure the number of messages processed per
minute. We distribute 64 timely dataflow workers across 4 VMs to run Pung’s server-
side computation. Since we cannot run tens of thousands of clients in our infrastruc-
ture, we employ a combination of real and simulated clients. We configure 512 real
clients across 8 H16 VMs (4 clients per core). We then have each client send a sin-
gle message and instruct dataflow workers to make up the difference by injecting
the remaining messages (n—-512) at the end of the send phase, simulating additional
clients. Finally, during the retrieve phase, each real client fetches a message from a
random mailbox.

We also run both baselines in our cluster, with 256-byte messages. Since Dis-

sent is a peer-to-peer system and does not use servers, we spread out its peers across
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Figure 8.7: Pung can handle significantly more messages and clients than Dissent but
its throughput at 131K clients (on the same hardware) is 55.7x lower than Vuvuzela’s.
We do not report Dissent’s throughput past 64 users (see text for details).

our VMs. We run only its shuffle protocol as that is more efficient than the full Dis-
sent protocol for small fixed-sized messages [77, §3].

For Vuvuzela, we set up a 3-server chain in addition to the entry server that
proxies client requests, which mirrors the arrangement evaluated by its authors [216,
§7]. A caveat is that our VMs have fewer CPU cores. We also use the same parame-
ters that characterize the distribution from which Vuvuzela servers draw noise (i =
300,000 and b = 13,800). We run 512 Vuvuzela clients and modify the entry server [7]
to make up for the remaining messages (similar to how Pung’s dataflow workers in-
ject messages).

Figure 8.7 depicts our results for 64, 32K, 65K, and 131K clients. We show
Dissent’s throughput only with 64 clients because at higher peer counts it is less than
one message per minute with the prototype we use [5]. Pung and Vuvuzela achieve
relatively low throughput—far below their capacity—at very low client counts. This
is due to lack of work, since only 64 clients are sending and retrieving messages in
a given round. As a result, Pung workers sit idle most of the time, while Vuvuzela
servers continue to generate and process significant cover traffic, delaying the start
of the next round. However, at higher client counts, there is enough work to make
long rounds a non-issue for Vuvuzela. Indeed, Vuvuzela’s throughput is 55.7x higher

than Pung at 131K clients, and this gap grows larger with more clients.
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Figure 8.8: Throughput of Pung for 131K clients (sending and retrieving a single mes-
sage) with varying number of VMs. Pung achieves near-linear horizontal scalability.
For the ideal line, we choose the fastest single-server performance across all 60 VMs,
and multiply it by the number of servers.

8.4.2 Can Pung scale out to support more users?

In the above throughput experiment, we keep the number of VMs that Pung and
Vuvuzela use at 4. This artificial limit is due to Vuvuzela’s architecture not scaling
out with more servers (although Stadium [213] proposes a way to extend Vuvuzela
to achieve horizontal scalability). In contrast, Pung benefits greatly from additional
computational resources owing to its bottleneck being computation (specifically an-
swering PIR queries). To understand Pung’s scaling, we rerun the above throughput
experiment but we increase the number of VMs running Pung’s servers. Figure 8.8
shows the results.

We find that a Pung deployment of 60 VMs and 131K users can complete a
full round of communication (process all sent messages and all retrieval requests)
in 2.8 minutes (a max throughput of around 47.7K requests/min). Assuming that a
3-minute round duration is acceptable to end users, this result supports our claim

that a deployment of Pung can handle hundreds of thousands of users.
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Figure 8.9: Throughput of Pung and Vuvuzela on 4 VMs. When clients retrieve mul-
tiple messages in Pung, its throughput increases by up to 16.1x. Pung (64) repre-
sents an instance of Pung where clients retrieve k=64 messages simultaneously using
mPIR (§7). At 262K clients, Vuvuzela handles 169.8x and 10.7x more messages than
Pung and Pung (64), respectively.

8.4.3 What are the benefits and costs of using mPIR?

Recall that in the previous section we used mPIR with a batch size of k = 1 (since
our goal was to determine the number of users that Pung could support, and larger
batch sizes do not help). We now discuss how a larger batch size impacts Pung in
terms of throughput and network resources for a given number of users. To measure
throughput, we run the same experiment described in Section 8.4.1, but configure

Pung’s servers and clients to use mPIR with varying batch sizes.

Throughput. We depict the throughput benefits of having clients retrieve a batch
of k = 64 messages in Figure 8.9. We find that this offers a throughput boost of up
to 16.1x over single retrieval. Given that the maximum theoretical gain that one can
expect from using mPIR over retrieving messages one by one from a database with
n = 2!% elements is 21.3x for k = 64 (since the number of codewords produced by
mPIR is 3n, which is 21.3x lower than kn), our implementation achieves 76% of this
gain. This is expected, since our end-to-end throughput measures not only message
retrieval but also Pung’s send phase—including the expensive PIR setup step (§8.2.1).

Nevertheless, Pung’s multi-retrieval throughput is high enough that it can
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Figure 8.10: Throughput of Pung and some variants that act as baselines (variants
have the same architecture as Pung but use different cryptographic building blocks)
on one VM with 256K users, each retrieving k 288-byte messages per round. The
XPIR + BC baseline refers to a system that uses XPIR [21] as the PIR library and
a different PBC construction that we describe in Appendix B instead of mPIR. The
SealPIR + BC baseline refers to a system that uses SealPIR as the PIR library as well as
the PBC construction in Appendix B. The XPIR + mPIR baseline refers to a system
that uses XPIR as the PIR library and mPIR to amortize the retrieval of multiple
messages.

support group communication with rounds that are only a few minutes. We also ex-
periment with values of k ranging from 4 to 128, and find throughput gains between
1.2x-34.1x.

Alternatives. To better understand the impact of the primitives introduced in this
dissertation, namely SealPIR and PBCs (mPIR), we compare Pung to several base-
lines that share the same general architecture as Pung but use other building blocks
(that is, a different PIR scheme, and a different PBC). We measure throughput by

running the same experiment described in Section 8.4.1. The baselines are:

o XPIR + mPIR: This baseline has the same architecture as Pung, but clients use

XPIR (d = 2) instead of SealPIR to privately retrieve messages from the servers.

o SealPIR + BC: This baseline has the same architecture as Pung, but clients do not

use mPIR (which implements the PBC based on Cuckoo hashing described in
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Section 6.5). Instead, clients use a multi-query PIR protocol based on a different
construction of a PBC, which we describe in detail in Appendix B; at a high level,
it combines the subcube batch code described in Section 4.4.2 with a PBC.

o XPIR + BC: This baseline has the same architecture as Pung, but clients use XPIR
(d = 2) instead of SealPIR to retrieve messages from the server, and use a different

multi-query PIR scheme instead of mPIR.

Figure 8.10 shows the throughput in messages per minute that Pung and the
baselines achieve on a single VM. Pung’s throughput is higher than that achieved by
the baselines for all batch sizes greater than 1. There are three reasons for this. First,
mPIR produces 50% fewer codewords than the alternate construction used by the
baselines (“BC”), and fewer codewords translate directly into lower computational
costs. Second, BC produces 7x more buckets than mPIR. This means that the XPIR
+ BC baseline has to run the XPIR protocol on many small databases that contain an
average of 500 to 8,000 elements (depending on the batch size), which exacerbates
XPIRS high fixed costs.

Last, even though SealPIR incurs additional CPU costs than XPIR (d = 2) on
large databases as we show in Section 8.2.1 (this is also why the baselines that use
XPIR have higher throughput than Pung when the batch size is 1 in Figure 8.10),
SealPIR is slightly faster when the database is small (see the column with 65,536
elements in Figure 8.2). Ultimately, we find that if clients retrieve k = 64 messages, the
throughput of Pung is 3.1x higher than that of the XPIR + BC baseline. This supports
the claim that the optimizations introduced in this dissertation are important for

Pung’s architecture to perform well.

Network costs. To understand how Pung compares to the baselines in terms of
network overheads, we plot the total communication costs (including uploading and
downloading messages) for a single client resulting from one round of communica-
tion of the prior throughput experiment. We give the results in Figure 8.11.

We find that for single retrievals (k = 1), a user requires 380 KB (SealPIR)
and 8.5 MB (XPIR) for sending and receiving a message. This cost is 3-5 orders

of magnitude higher than sending and retrieving messages through Vuvuzela (or
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Figure 8.11: Per-user total network cost (upload and download) of Pung and several
baselines with 256K users. Each user retrieves k 288-byte messages. See Figure 8.10
for an explanation of the baselines.

through a non-private service). However, compared to downloading the entire col-
lection (which would also meet our privacy goals), it is 194x (SealPIR) and 8.6x
(XPIR) lower. Nevertheless, we admit that in absolute terms these costs are high and
are currently the main limitation of Pung’s design.

For multi-query PIR, the benefits of Pung over the baselines are considerable.
We find that the compressed queries that SealPIR produces and the fewer buckets
that result from mPIR’s encoding result in savings of over 36x (over the XPIR + BC
baseline). In particular, the per-client communication costs are cut down to 7.7 MB
per round for k = 16 in Pung, versus 279 MB in the XPIR + BC baseline. Compared
to k-parallel instances of PIR, the network overheads of Pung are consistent with the

microbenchmarks in Figure 8.5, and the accompanying discussion (§8.3).

8.4.4 What costs does Pung impose on clients?

Since Pung’s client applications participate in every round to ensure privacy (§4.1),
clients incur CPU and network costs regardless of whether the user is idle or not.
In the previous section we discussed the total network costs that clients incur dur-
ing one round of communication. These costs are the result of submitting (label, c)-

tuples, PIR queries, and downloading bloom filters (or using BST-ReTrIEVAL). We
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CPU time costs scale linearly with

Conversation (§4.1)

Key derivation 6.05 s N/A
Label generation 1.60 ps retrieval rate (k)
Message encryption 1.56 us send rate (s)
Message decryption 1.37 us retrieval rate (k)
Dialing (§4.5.2)

Token generation 3.11 us dialing rate
Token lookup 0.07 us # friends
Add friend (§4.5.3)

Signing key generation 18.18 s N/A
Encryption key generation 17.99 ms N/A
Sign friend request 18.13 us friend request rate
Verify request signature 53.11 ps # real friend requests
Encrypt request 43.9 ms friend request rate
Decrypt request 5.25 ms # total friend requests in Pung

Figure 8.12: Microbenchmarks for Pung’s client operations. The cost of PIR oper-
ations are given in Figure 8.2. The second column gives the CPU time required to
compute one operation. The last column describes what parameters cause these costs
to increase linearly.

now turn our attention to the computational costs incurred by clients. We give the
results in Figure 8.12.

For a round of communication, the CPU costs to the client are only a few
milliseconds—including the cost to generate a PIR query which we show in Fig-
ure 8.2. Most of these costs scale with the send rate (s) and retrieval rate (k) that
clients choose. Specifically, since a client needs to maintain these rates regardless of
whether they are idle or not, the client always generates s + k labels to send and re-
trieve messages, encrypts s real or dummy messages, generates a PIR multi-query
that supports the retrieval of k elements, and decrypts k of the retrieved elements.
Nevertheless, even for high send and retrieval rates (» 64), these costs are at most
hundreds of milliseconds: the costliest operation is the PIR multi-query, which for
k = 64 would cost 336 ms for the client to generate (Figure 8.2).

We now discuss the less frequent operations, namely dialing (§4.5.2) and
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adding friends (§4.5.3). The costs of these operations should be taken in context:
whereas a round of communication in Pung occurs every few minutes (§4.1), we ex-
pect dialing to be done every tens of minutes, and friend addition to be done once
or twice a day (Vuvuzela [216] and Alpenhorn [147] assume similar frequencies).
Dialing imposes negligible computational costs on a client, and the Bloom filter that
the client downloads for 131K dial tokens is 384 KB. As a result, dialing’s overhead
is likely in line with the rest of Pung’s cost, which we view as undesirable but not
onerous.

The add friend operation, on the other hand, is expensive on all axes. First,
each add friend request is 1.6 KB, and clients must download all of the friend requests
submitted by all users during a friend request round. At 131K users, this results in
each client downloading 209 MB worth of friend requests. Furthermore, clients must
try to decrypt each of these friend requests to determine which ones are meant for
them. Since the cost of each decryption is 5.37 ms, decrypting 131K friend requests
would require 12 CPU minutes. While this operation is highly parallelizable and can
be performed slowly throughout the day (since adding friends occurs once a day),

the computational costs are high for a weak client such as a mobile device.
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Chapter 9

Summary, limitations, and next steps

This dissertation studied how users can communicate over the Internet without any-
body else learning that the communication has taken place, which is a property called
metadata privacy (§3). The motivation is that metadata is itself sensitive; for exam-
ple, if one learns that someone has made repeated calls to a doctor with a particular
specialty, one may infer something about the caller’s health. More vividly, the former
director of the NSA and the CIA admits that inspecting metadata at large scale suf-
fices for these agencies to conduct their operations [72]. This degree of mass surveil-
lance endangers civil liberties and the expression of dissenting opinions, especially
in regimes where other forms of communication would be perilous.

As we discussed in Chapter 2 the goal of hiding metadata is not new; however,
most prior systems assume the existence of some trusted infrastructure. Meanwhile,
our desire to consider strongly adversarial conditions led to a qualitatively different
and stronger variant of the problem in which all infrastructure is untrusted. To hide
metadata in this setting, this dissertation proposed a messaging system called Pung,
and a series of refinements that made Pung less expensive in practice.

Hiding metadata brings several challenges; one of the most difficult is break-
ing the link between a message’s sender and its recipient. Pung breaks this link by hav-
ing senders deposit messages into an untrusted server, and having recipients fetch
these messages using private information retrieval, or PIR (§4.3.1). PIR allows re-

cipients to retrieve a message from the server without revealing to the server which
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message was retrieved. While PIR is a powerful theoretical tool, using it in practice
poses some challenges: PIR has a narrow interface, and its computational and net-
work costs are very high.

To make PIR usable in practice, this dissertation made three key contribu-
tions. First, it leveraged and extended an efficient oblivious binary search proce-
dure that augments PIR with basic search functionality (§4.3.3). This allows users to
search the server for their incoming messages. Without this procedure, users would
need to use some other method to find the location of their messages prior to fetching
them with PIR. Second, it introduced the first mechanism to compress and obliv-
iously decompress queries in PIR (§5). Perhaps surprisingly, both procedures are
computationally inexpensive, and compressing queries cuts their size by up to 273x
(§8.2). Last, this dissertation proposed the use of probabilistic batch codes (PBC)
as a way to amortize PIR’s computational costs (§6). While related data encodings,
namely batch codes (§4.4.2), achieve the same type of amortization, their use re-
sults in onerous network costs (§6.1). In contrast, PBCs achieve orders of magni-
tude lower network costs (§8.3), but in exchange they introduce a small probability
of failure (§6.6.2). However, the nature of the failure is that a client can retrieve only
a subset of his or her desired messages, not that privacy is compromised. In Pung,
this is not an issue since clients can retry at a later time.

With these improvements, our experimental evaluation showed that a small
deployment of our Pung prototype can provide metadata-private communication to
hundreds of thousands of users (§8.4).

Challenges remaining. Pung has many limitations; chief among them are its high
network and computational costs. To support hundreds of thousands of users ex-
changing one message, the communication costs between a client and Pung’s servers
are hundreds of kilobytes per round. While for 3-minute rounds this comes down to
about 16 kbps (low given today’s network speeds), clients must be constantly online
to preserve their privacy; on a monthly basis this cost is north of 5.4 GB, which is
higher than many cellular data plans. Furthermore, adding friends in Pung (§4.5.3)

requires clients to incur hundreds of megabytes of network communication and
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spend over ten minutes of CPU time. Finally, to prevent against attacks where the ad-
versary compromises a client’s friends (§4.6), Pung must give up any type of dialing
mechanism (preventing a client from starting a new communication with a friend)
or incur very high costs (§4.6.5).

In addition to costs, Pung suffers from its inability to hide usage: an adver-
sary in Pung’s threat model knows that a user is part of Pung. This makes censorship
possible—and in particular targeted censorship where only Pung’s communication
is blocked. While this is already true of deployed systems like Tor [96], Pung’s cen-

tralized architecture makes this issue worse.

Next steps. There are several avenues for improving Pung. While Pung’s current
architecture appears hard to scale to billions of users, it might be possible to devise
a hierarchical version in which smaller communities interact with each other. This
would enable incremental deployments akin to the Internet and several social net-
works: cities, universities, or companies can roll out their own deployments of Pung
for their citizens, students, and employees. Over time, these deployments can be in-
terconnected with a deployment of Pung that bridges across institutions. Neverthe-
less, it remains an open question how to instantiate such a hierarchical architecture,
how to ensure that communities are large enough to provide meaningful privacy,
and how to route messages that cross organizations without leaking metadata.

A second path is to investigate ways to instantiate privacy-preserving answer-
ing machines. We described a few ideas and the corresponding challenges in Sec-
tion 4.6; while it presently seems hard to devise an answering machine that is both
privacy-preserving and efficient, we hope that we can improve the existing tradeoff.

Last, Pung and related systems require clients to be constantly online to pre-
serve privacy. An exciting direction is devising ways to incentivize clients to stay
online. One possibility is through the allocation of tokens that hold financial value.
For example, the act of participating in the system produces a token that can be used
to reduce the monthly fee of using Pung.

It might even be possible to go a step further and redesign Pung to be fully

decentralized. After all, none of Pung’s servers need to be trusted for privacy or in-
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tegrity, and Pung’s throughput scales linearly with the number of servers. In a de-
centralized setting, playing the role of a Pung server and processing users’ send and
retrieval requests could generate tokens. As a result, we could bootstrap an entire
economy where clients buy tokens from servers or other clients, and use these tokens
in order to send and receive messages in the system. Finally, clients who participate
for long enough periods of time, in addition to receiving Pung’s privacy guarantees,
also receive tokens as compensation. Of course, this design requires solving many
technical challenges, including developing ways for clients and servers to prove that
they are participating in the system, techniques to prevent or detect malicious servers

that deny service, and mechanisms for transferring and assigning tokens.
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Appendix A

Details and correctness proofs of Seal PIR

A.1 Substitution operator

We now give details on how the substitution operator is implemented. Let ®; be the i-
th cyclotomic polynomial.! As we discuss in Section 5.4, we pick @; = xN+1, where N
is a power of two (hence i = 2N). Recall from that same section that FV plaintexts are
polynomials in the ring R, = Z,[x]/®;(x), and ciphertexts are two polynomials, each
in the ring R, = Z4[x]/®;(x). The secret key sk is a randomly sampled polynomial
in R,.

Let p(x) be the plaintext encrypted by ciphertext ¢ = (¢, ¢;). Our goal is to
substitute in p(x) every instance of x with x* for some integer k, by operating directly
on c. Gentry et al. [108, §4.2] show that if k € Z} (that is, k is odd so that it is coprime
with 7), performing the substitution directly on the ciphertext polynomials (co, ¢;)
and the secret key achieves this goal.

Specifically, let c(¥) be the result of replacing every instance of x in the cipher-
text polynomials ¢y and ¢; with x*. Similarly, let sk(*) be the result of replacing every
instance of x in the secret key sk with x*. The result of decrypting c¢(¥) with sk(®) is
therefore p(x*)—which is exactly what we want.

One issue with the above is that Expanp (Figure 5.3) uses the output cipher-

"The i-th cyclotomic polynomial is the unique irreducible polynomial with integer coefficients
that is a factor of x' — 1 but not of ¥/ — 1 for any j < i.
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text after substitution, ¢(¥), and adds it to the input ciphertext c in each iteration of
the inner loop (see Lines 10 and 11). This operation is not well defined since both
ciphertexts are encrypted under different keys (substitution essentially changes the
key under which the ciphertext is encrypted). To address this, we perform an oper-
ation called key switching [50], which allows us to transform an encryption of ¢(*)
under some public key associated with sk(¥), to an encryption of c(¥) under some
public key associated with the original key sk (which is the key under which c is also
defined).

Note that the server needs some auxiliary information in order to perform key
switching. In particular, the server needs a key-switching matrix showing how to go
from sk®) to sk (see [108, Appendix D] for details), which the client must generate.
Since in ExpanD substitution is called for different values of k (notice that in Line
10 and 11 in Figure 5.3 the value of k depends on j), the client must provide a key-
switching matrix for each of them. However, this only needs to be done once and it
depends only on the size of the database.

The above allows the server to compute Expanp: the server first does the sub-
stitution followed by the appropriate key switch, and finally performs the addition

in the inner loop.

A.2  Correctness of query expansion

Below we prove that Expanp (Figure 5.3) correctly expands one ciphertext into a
vector of n ciphertexts with the desired contents. The following theorem makes this

formal.

Theorem A.2.1. Let N be a power of 2, N > n, and query = Enc(x’) be the client’s
encoding of index i. The n output ciphertexts oy, . . ., 0,_1 of Expanp(query) satisfy,
forall0<k<n-1:
Enc(1) ifi=k
O =
Enc(0) otherwise

Proof. 1t suffices to prove the case for n = 2¢. For j = {0,1,...,¢ - 1}, we claim that
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after the j iteration of the outer loop, we have ciphertexts = [, ..., cl;,, ] such that

Enc(2t1xi7%) ifi=k (mod 2/*1)
ciphertexts[k] =
Enc(0) otherwise

We prove the claim by induction on j. The base case j = 0 is explained in the main text
of Section 5.6. Suppose the claim is true for some j > 0. Then in the next iteration,
we compute an array ciphertexts’.

For the first half of the array, meaning for values of k where 0 < k < 2/*1,
we have ciphertexts'[k] = ciphertexts[k] + Sub(ciphertexts[k],N/2*1 + 1). If i + k
(mod 2/*1), then ciphertexts'[ k] is an encryption of 0; otherwise, there is an integer r
such that i~k = 2/*1.7,and Sub(ciphertexts[k], N/2/*1+1) = Enc(2/* xN/Z"+D(@ ")) =
Enc(2+1(-1)"x""*). Hence, if r is odd, then ciphertexts'[ k] is an encryption of 0; oth-
erwise, ciphertexts'[ k] is an encryption of 2/*2x*. So the claim follows because r is
even if and only if i = k (mod 2/+2).

We now prove the claim for the second half of the array ciphertexts’. The only
interesting case is i = k — 2/*! (mod 2/*!). In this case, we see that ciphertexts'[ k] is
again Enc(2/*1 (—l)Ufk)/ 2jﬂx”"). So the same argument applies.

Finally, with the above claim we show that after the outer loop in Expanp, we

have an array of 2¢ ciphertexts such that:

Enc(2'x7%) ifi=k (mod 2%)

ciphertexts[k] = .
Enc(0) otherwise

However, note that i < n = 2¢, s0 i = k (mod 2¢) implies i = k. Hence
ciphertexts[k] is either an encryption of 0 or an encryption of 2¢. To obtain an en-
cryption of 0 or 1, we multiply ciphertexts[ k] by the inverse of 2¢ modulo # in the last
step (Figure 5.3, Line 16). ]
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A.3 Noise growth of query expansion

One advantage of our query expansion technique over the straw man FHE solution
given in Section 5.3 (besides the one mentioned in that section) is that our approach
has much smaller noise growth. We bound the noise growth of Expanp (Figure 5.3)
in the theorem below. Before stating the theorem, we give some background on noise.
See the SEAL manual [65] for a more detailed explanation. We have that the noise
of the addition of two ciphertexts is the sum of their individual noises. Plain multi-
plication by a monomial %/ (for some j) with coefficient 1 does not change the noise,
and plain multiplication by a constant o multiplies the noise by c. Substitution adds
a constant additive term By, to the noise, which depends on the FV parameters.
One interesting case is Figure 5.3, Line 9, in which the exponent of the mono-
mial is negated (x?), and hence the coefficient is —1 = t — 1 (mod t) (rather than
1 as state above). Even in this case, the noise does not change. This is because SEAL
adjusts the coeflicients of the monomial to be mod g rather than mod #: -1 =t -1
(mod t) becomes g — 1 (mod q). When g — 1 multiplies the noise, the g-multiplies

are irrelevant (mod g), so the absolute value of the noise stays the same.

Theorem A.3.1. Let v,,; be the output noise of Expanp, and v;, be the input noise.

Let t denote the plaintext modulus in Expanp, and let k = [log(n)]. We have that
Vour < t- (zk(vin + 2Bsub))

Proof. Let v; be the noise after the it iteration in Expanp (setting vy = v;,). Then

v; = 2(V;-1 + B ). Carrying out the sum, we get
Vi = 2500 + 2(2% = 1)Byyy, < 2(vy + 2Bgy)

Since inverse < ¢, the final plain multiplication results in v,,; < tv;. This com-

pletes the proof. ]
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Appendix B

Two-choice hashing and batch code hybrid PBC

As part of mPIR, we also implement 4 other PBC constructions (besides the one
described in Chapter 6.5) based on reverse hashing (§6.4) with different allocation
algorithms: replication, single-hashing, two-choice hashing, hybrid of two-choice
hashing and the subcube batch code [127]. The scheme that we use as a baseline
in Section 8.4.3 is the hybrid scheme.

The replication PBC simply creates k buckets and places a replica of each el-
ement in each bucket. This is the most naive batch code and achieves no computa-
tional amortization, but also incurs no network overhead (since it is equivalent to
the baseline which is performing k parallel instances of PIR).

The single-hashing PBC uses a single hash function to map elements to k
buckets. Since this is the standard balls-and-bins scenario considered in the litera-
ture, we can bound the number of tuples that fall in any bucket (the max load) by

1113(11rr11((1;<))) [167, Lemma 5.1]; this bound fails to hold with probability < ;. When using

31In(k)
In(In(k))

to ensure that they can retrieve all of their messages with high probability.

this PBC with PIR, we configure clients to always issue

queries to each bucket

The two-choice hashing PBC is similar to the single-hashing PBC, but it ap-
plies the finding of Azar et al. [30]: in a k balls and k bins scenario, if each ball maps
to w random bins (w > 1), and balls are placed in the bin least full, the highest load in

1“&?3;)) +©(1) with high probability. In other words, by using

any bin is bounded by

two hash functions instead of one, the bound on the max load decreases exponen-
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batch size (k) max CPU gains network overhead scheme

4 1.78x 9% (n,%n,4,9)—subcube
16 4.21x% 9x hybrid
32 8.41x 9x hybrid
64 14.2x 9x hybrid
128 28.4x 9x hybrid
256 56.9x 9x hybrid

Figure B.1: Theoretical CPU gains and network overheads of the hybrid PBC-based
multi-query PIR scheme over retrieving elements one by one using PIR. For k = 4,
the hybrid scheme defaults to a single bucket encoded with a (n, %n, 4,9)-subcube
batch code, since two-choice hashing yields no benefit for such small k.

tially. Again, when using this PBC with PIR, we configure clients to issue % +1
queries to each bucket (we find the constant 1 to be sufficient).

Since the two-choice hashing PBC reduces the number of collisions on any
bucket significantly (usually to 3 or 4), we consider a hybrid where we encode each
of the buckets with a subcube batch code [127] that can handle the retrieval of any
4 elements (§6.5.2). This “hybrid PBC” construction achieves better computational
amortization than the two-choice hashing PBC alone, albeit at a higher network cost.

Figure B.1 gives the maximum theoretical gains that can be achieved by using
a multi-query PIR scheme based on the hybrid PBC (over k parallel instances of PIR).
In all cases, the network overhead is 9x since the PBC splits up the collection into k
buckets, and each bucket is encoded with a (n,, %nh, 4,9)-subcube batch code (where
nyp, is the number of elements in each bucket). As a result, the total number of buckets
is 9k. Note that if one wishes to use a very large k (k > 2980), then one needs to use a
subcube batch code that supports more than 4 queries. This is because for k > 2980,
the expected number of collisions on any bucket after using two-choice hashing is
greater than 4.

The next subcube batch code is the (1, f—énb, 16,27)-subcube batch code
which supports up to 16 queries, but introduces a network overhead of 27x. Hy-
bridizing a two-choice hashing PBC with this subcube batch code results in a PBC

that supports up to k = €278, which is likely sufficient for most applications.
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PBC codewords (m) buckets (b)

k-way replication kn k

Single hashing 3nln(k)/In(In(k)) 3kIn(k)/In(In(k))
Multi-choice hashing 2np kp

Multi-choice + subcube batch code hybrid 27+ ((£+1)/0)°%(") k. (¢+ 1)l°&(")
Cuckoo hashing 3n 1.5k

Figure B.2: Parameters of the different PBC schemes described in Section B. When
used to implement multi-query PIR, CPU costs are proportional to the number of
codewords (m), and network costs are proportional to the number of buckets (b).
The initial number of elements in the database (before encoding) is n. In all cases,
k of the elements retrieved are useful, and the rest are overhead introduced by the
PBC. For multi-choice hashing, p = In(In(k))/In(w) + 1, w > 2, and ¢ > 2 (we use
d=2and/ =2).

B.1 Understanding the costs of different PBCs

In the previous section we discuss four different PBC constructions, in addition to
the Cuckoo PBC described in Section 6.5. In Figure B.2 we give a cost model that
compares the different variants. This model suggests that replication, single-hashing,
and multi-choice are simply not competitive with the other two schemes, yielding
more codewords and buckets (which translate into higher computational and net-
work costs when used for PIR). The two-choice hashing PBC hybridized with a sub-
cube batch code has the ability to produce fewer codewords (by setting the parameter
¢ to a larger value) than the Cuckoo hashing PBC (§6.5), but it results in many more
buckets. If the goal is to achieve good computation and reasonable network costs,
then a good choice is to set £ = 2.

To better understand how the Hybrid PBC performs in practice versus the
Cuckoo PBC, we repeat the experiment in Section 8.3. Figure B.3 gives the results.
We find that mPIR-Cuckoo does a better job than the mPIR-Hybrid at amortizing
CPU costs across all batch sizes. This is a direct effect of the Cuckoo PBC producing
fewer total codewords (see Figure 6.1), since computational costs are proportional
to the number of elements after encoding (m). At k = 256 and 288-byte elements,

mPIR-Cuckoo achieves a 2.6x reduction in CPU cost for the server when answering
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single-query mPIR-Hybrid mPIR-Cuckoo

batch size (k) 1 16 64 256 16 64 256
client CPU costs (ms)

MultiQuery 3.07 29.03 28.50 28.58 6.45 5.26 4.92
MultiExtract 2.51 20.00 16.27 16.36 3.26 3.25 2.70
server CPU costs (sec)

MultiSetup 6.1 2.02 0.64 0.30 1.50 0.38 0.12
MultiAnswer 3.24 1.37 0.49 0.21 0.69 0.23 0.08
network costs (KB)

query 64 577 577 577 96 96 96
answer 384 2,885 2,308 2,308 480 480 384

Figure B.3: Per-request (amortized) CPU and network costs of two multi-query PIR
schemes on a database consisting of 220 elements, with varying batch sizes. The
schemes are mPIR-Hybrid, which uses a two-choice hashing PBC (§B) combined
with a subcube batch code [127], and mPIR-Cuckoo, which is based on the Cuckoo
hashing PBC described in Section 6.5. The second column gives the cost of retriev-
ing a single element (no amortization). The underlying PIR library is SealPIR with
t = 22% and elements are 288 bytes.

queries over the mPIR-Hybrid. Over running k parallel instances of PIR, the per-
request CPU cost of mPIR-Cuckoo is 40.5x lower.

The difference in network costs between mPIR-Hybrid and mPIR-Cuckoo
is more pronounced. This owes to the hybrid PBC building on the subcube batch
code of Ishai et al. [127] which creates a large number of buckets (see Figure 6.1); to
preserve privacy, clients must issue a PIR query to each bucket. In terms of concrete
savings, mPIR-Cuckoo is 6x more network efficient (upload and download) than
mPIR-Hybrid.

The last axis on which to compare these two PBCs is failure probability. We
find that mPIR-Cuckoo also has a lower failure probability (270 to 2720 depending
on k, compared to mPIR-Hybrid’s 2720 to 271¢). This suggests that mPIR-Cuckoo is
superior on all axis, which justifies our use of this PBC as the default in Pung. We

discuss how we measure the failure probability of the Hybrid PBC below.
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k bucket collisions (99th-percentile, max) failure rate

4 4,4 0
16 3,5 1.1x107°
32 3,6 6.2x107°
64 3,5 2.4x107°
128 3,6 2.2x107°
256 3,5 1.0x107°°

Figure B.4: Probability of failure for the Hybrid PBC. The number of bucket colli-
sions after 10 million runs when clients derive 2 labels for each tuple is typically 3
(for k > 4), but can be up to 6 with small probability. More than 4 collisions in a
bucket prevents a client from retrieving all k tuples. The last column quantifies the
probability of this event.

B.2 Probability of failure for hybrid PBC

Recall that PBCs are probabilistically complete. That is, there exists some small prob-
ability that a client will be unable to retrieve all of its desired elements (§6.6.2). We
now empirically quantify this probability. To do this we run an experiment where a
client derives k pairs of labels randomly. We then count the number of bucket colli-
sions (that is, the maximum load on each bucket) when the client uses the following
greedy algorithm. For each pair of labels, the client chooses the label within the pair
that maps to the bucket least full. The client then places the label in its matching
bucket, and continues with the next pair of labels. The client processes the pairs of
labels sequentially. At the end, we count the number of labels in each bucket. We
repeat this experiment 10 million times; the results are in Figure B.4.

We find that the probability that a client fails to retrieve at least one item is
relatively small: 1 in 100K for small k; even lower for larger k. While this is high
enough that it will occasionally affect clients, recall from Section 6.6.2 that clients
can simply retry again. Critically, this is not an unexpected failure: since the client
knows before issuing the multi-retrieval request that it cannot retrieve one or more

of its elements.
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Appendix C

Pung’s security analysis

Section 3.1 provides an informal description of metadata privacy. We now expand
on this description. In particular we target relationship unobservability (UO) [179],
which states that aside from the sender and the recipient, no other party can observe
the existence of a communication. To formalize UO, we use and (minimally) extend
the framework and security games presented by Gelernter and Herzberg [106] (other
works provide related frameworks [31, 202]). We cannot use their framework di-
rectly since it assumes that messages that are sent are automatically received by users.
In contrast, users in Pung fetch messages explicitly, possibly over many rounds (§4.3).
We start by introducing an abstract protocol 7 that models communication
through a round-based mailbox service. 7 exposes four functions: IN1T(+), ROUND(7},),
SEND(i,j, m,r), and RETR(i, j, num, r). INIT initializes the state of the protocol and
loads the shared keys between every pair of clients that intends to communicate
(that is, we assume that the system has been securely bootstrapped). RounD(7;,)
takes as input an untrusted round of communication r;,, and outputs a client-local
Toca TOUund to be used by the subsequent SEND and RETR procedures. SEND takes the
sender’s id i, the recipient’s id j, a plaintext message m (1 if the sender is idle), and the
client-local round of communication 7; it outputs a key-value pair that is sent to the
mailbox service. RETR generates a retrieval request for a message sent to j by i during
the client-local round r. num is an untrusted value that RETR uses to construct the

retrieval request.
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C.1  UO under explicit retrieval

We define our privacy notion, relationship unobservability under explicit retrieval

(UO-ER), based on the following security game.

Security Game for UO-ER. The game consists of a setup-simulation-guess proto-

col played by a challenger C and an adversary .A. An instance of the game,
Gi\,ﬂ,n,t(l)\) = b,

is parameterized by the actions of the adversary, 4; the abstract protocol, 7; the num-
ber of correct users #; the security parameter, \; the number of rounds for which 7
runs, t; and the correct output of the game, b. The actual output of the game is the

adversary’s guess b’. The adversary wins the game if his guess is correct: b’ = b.

Outline. The game is a standard indistinguishability game. In the setup phase, A
specifies two scenarios, M° and M, that describe the behavior of users: what round
they use, what messages they send (and to whom), and what messages they retrieve
(and from whom). In the simulation step C chooses one scenario at random (M?) and
simulates the actions of correct users under this scenario. C does so by translating all
round, send, and retrieve instructions in M? to the corresponding RouND, SEND and
RETR functions in 7, and providing all the resulting application-layer packets to A.
At the end of the simulation, .4 chooses to either move forward onto the guess step
and issue an answer or it can ask for the setup and simulation steps to be rerun from
scratch (meaning that A specifies two new scenarios M° and M!, and C simulates
the new scenario M?). If after a polynomial number of iterations .4 has not issued a

guess, the default value of b’ = 0 is assigned to the game’s output.

Setup. A specifies two scenarios, M and M!, each containing a total of n- ¢ entries.
Each entry corresponds to a tuple of two actions: send, and retr. These actions are per-
formed by a correct user during a round of the protocol. The values for these actions
for user i in scenario b during simulation round r are: M?[i, r].send = {i,j*, mb }

i—j
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and M®[i,r].retr = {i,j*,r5}. i,j* are the ids of users communicating in scenario b
(not necessarily distinct); mf’_>j is the plaintext message sent from i to j°, which could
be 1 to indicate that the user does no send a message in round r of scenario b; and
rb is the round from which to retrieve a message (recall that clients can also retrieve
messages from prior rounds). To model clients sending and retrieving k messages
per round, one can extend the scenarios to contain # - k - t entries. Each client can
then be thought of as k logical clients; A can thus distinguish between M° and M* if
it can distinguish the communication between any of the k logical clients, which is
the expected behavior.

There are three restrictions on the ability of A to construct scenarios. First,
both scenarios have the same number of entries describing the actions of each user
in every round. Furthermore, we assume that each user is the recipient of at most k
messages in any given round. This means that the attack described in Section 4.6 is
out of the scope of this model. This is reasonable since k can be made large enough
to be higher than the maximum number of friends that any user can have (recall that
strangers cannot send messages to users in Pung since retrieving a message requires
pre-sharing a secret). We also assume that clients have already bootstrapped their
communication and have agreed out-of-band on a schedule to use to communicate
(this schedule is captured by the chosen scenario M?).

The second restriction on how A constructs the scenarios is that M° and M!
describe only the actions of correct users. This is because malicious users do not
follow 7, and cannot be simulated by C. The last restriction is that if scenario M? has
an honest user i sending or retrieving a message from a compromised user j during
round 7, then i must also send or retrieve a message from j during round r in scenario
M'-? (we have no such restriction when both i and j are honest). This restriction is
consistent with our goal of relationship unobservability, which provides meaningful
privacy only if both the sender and the recipient of a given message are correct (§3).

A similar approach is taken by Gelernter and Herzberg [106].

Simulation. A provides the two scenarios that it generates to C. If this is the first

iteration, C flips a random coin and obtains bit b. Otherwise, C continues to use
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1: function SIMULATE(A, 7, 1, t, M)
2 requests < [ | /] requests generated by clients
3 responses < [ | /] responses received by clients
4 fori=0ton—-1do
5: i < m.INIT(") // setup an instance of 7 for user i
6 forr=0tot-1do
7 fori=0ton-1do
8 round; < A.GetRound(i,r)
9 rlocal; < 7;.RoUND(round;)
- .
10: requests <—— 7;.SEND(M®[i, r].send, rlocal;)
11: fori=0ton—-1do
12: num; < A.GetNumMessages(i, r, requests)
13: req; < 7. RETR(MP[i, r].retr, num;)
insert
14: requests <—— req;
Cert .
15: responses ——— A.GetResponse(i, r, req;)
16: return (requests, responses)

Figure C.1: Simulation performed by challenger C. A is the adversary’s algorithm; 7
is an explicit retrieval protocol; M? is the scenario to simulate; # is the number of
correct users in the scenario; and ¢ is the total number of rounds for which to run 7.

120



the previously derived bit b. C then chooses scenario M? and follows the protocol
in Figure C.1. Note that C calls A as an oracle through three functions: GetRound,
GetNumMessages, and GetResponses. A can return arbitrary values for these func-
tions; this allows A to drop, reorder, replay, and insert messages (by adding or remov-
ing tuples or storing them in a different order), modify messages from correct users
(by returning bogus results for GetResponses), and force clients out of sync (by return-
ing different values for GetRound). During the oracle calls to .A.GetNumMessages
and A.GetResponses, C exposes the requests that clients generate to A. These requests
(and the corresponding responses) are also given to A at the end of the simulation.
Once the simulation is over, 4 can either issue an answer or ask for a rerun
with new scenarios (but b is kept unchanged). This allows 4 to adapt its strategy
across iterations. This process can repeat a number of times that is polynomial in the

security parameter ), after which the game automatically outputs 0 as A’s guess.

Guess. A outputs a guess b’ indicating that scenario MY was simulated. .4 wins the

game if it guesses b’ = b.

Definition C.1.1. Protocol m provides UO-ER if given security parameter A, for all
probabilistic polynomial time algorithms A, for any polynomial number of rounds

t and correct users , there exists a negligible function negl such that:
| PGl (11)=1] = Pr{Gy -, (1*)=1]] < negl (1)

where the probability is define over the random coins of C. This definition states
that if 7 provides UO-ER, then an adversary gains no meaningful advantage from
observing network packets. In other words, the probability of A distinguishing be-
tween Alice communicating with Bob, and Alice communicating with Charlie (or
not communicating at all) is negligibly better than a random guess (or any prior A

may have obtained through other channels).

Theorem C.1.1. Pung provides UO-ER (Definition C.1.1).

Proof. Recall that Pung uses three primitives (§3.2): authenticated encryption (AE),
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PRE and a computational private information retrieval scheme (CPIR). Each has
a notion of indistinguishability, which we leverage in a series of hybrid games (we
summarize CPIR’s indistinguishability game in Section C.2). We discuss the hybrid

games below.

o Game 0 is the original game Gf’&mvt(l*), where 7 = Pung. In this game Pung’s
RouND procedure for a client i during simulation round r takes as input an un-
trusted value round; (provided by A) and outputs rlocal’. As we describe in Sec-
tion 4.1, Pung monotonically increases the client’s local round (rlocal?, initially
set to 0) and sets it to max(rlocal? + 1, round;), which prevents round re-use.
Pung’s SEND procedure for a client i during simulation round r takes as input

(i,5°, mf’_,j) = MP[i, r].send and rlocal’; it outputs a (label;, ¢) tuple. label; is com-
puted using a PRF keyed with a uniformly random key k; shared between client i

and j* (generated during IN1T), label; = PRFy, (rlocal?||j®), where j? is the recipient
b

specified in scenario M?. The ciphertext ¢ is computed as ¢ = AEy, (mj., rlocal?),
where kg is a uniformly random key shared between i and j* (also generated dur-
ing IN1T), rlocal? is used as a non-secret nonce, and mf;j is the plaintext message
specified in scenario MP.

Pung’s RETR procedure for a client i during round r takes as input (i,j?,r%) =
MP[i, r].retr, and num, which is an untrusted value supplied by .A. Pung’s RETR
procedure outputs a PIR query q = Query(label,, num). The label is computed
as label, = PRFy, (r5]|i), where k; is the same random key shared between i and
j that was used during the SEND procedure, and 1% is the specified round from
which to retrieve the message in scenario M? (possibly in the past). Pung uses this
label as input to a PIR-by-keywords scheme [69] (for example, BST-RETRIEVAL in

Figure 4.4) to produce g = Query(label,, num).

o Game 1 is the same as Game 0 except that label;, which is produced by SEND, is

the output of a truly random function evaluated on input rlocal®||j°.

o Game 2 is the same as Game 1 except that the ciphertext ¢ which is produced by
SEND is an encryption of a random message (of the same size as mf’%j) using AE

with a random nonce and key K.
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« Game 3 is the same as Game 2 except that the RETR procedure uses a label, which

is generated uniformly at random.

Let S, be the event that b = b’ in Game 0, where M? is the chosen scenario
and b’ is A’s guess. Similarly, let S; be the event that b = b’ in Game 1, S, be the event
that b = b’ in Game 2, and S; be the event that b = b’ in Game 3.

Lemma C.1.1. Pr[S;] =1/2.

Proof. Observe that when C and A play Game 3, all the requests and responses pro-
duced by C are independent of b: SEND produces a tuple of a random label and an
encryption of a random message using a random nonce, and RETR issues a PIR query
for a random label. As a result, the ability of A to correctly guess b after inspecting

all requests and responses is no better than a random coin flip. O

Lemma C.1.2. |Pr[S;] - Pr[S;]| < ecpir, Where ecprr is the advantage of an efficient

algorithm that distinguishes CPIR queries.

Proof. Observe that in Game 2, C outputs a CPIR query using label, (which depends
on b, and which A might have seen from some other client during the send phase),
whereas in Game 3, C outputs a CPIR query using a random label. Given the as-
sumption that the CPIR scheme is secure, the advantage of an efficient algorithm to

distinguish which of the two labels is requested is ecpr, which is negligible. ]

Lemma C.1.3. |Pr[S;] — Pr[S,]| < eap, where €45 is the advantage of an efficient

algorithm that distinguishes between two messages encrypted with an AE scheme.

Proof. Observe that in Game 1, C outputs an encryption of mf?_>j under AEj, using
rlocal’ as a non-secret nonce, whereas in Game 2, C outputs an encryption of a ran-
dom message of the same size under AE;, using a random nonce. Given that Pung’s
RouND procedure guarantees that rounds are never repeated and hence the nonce
is unique, and given the assumption that the AE scheme is IND-CCA2 and the key
kg is secret, the advantage of an efficient algorithm to distinguish which of these two
encryptions is outputted is €45, which is negligible. Note that if during a particular

round r, M? specifies the communication between an honest client and a malicious

123



client (and hence A knows kg, violating the secrecy assumption) this gives no infor-
mation to A about b: recall from the game’s setup that any communication between

an honest and a compromised client is the same in both M? and M'-?. O

Lemma C.1.4. |Pr[Sy] — Pr[S;]| < €prr, Where eppr is the advantage of an efficient
algorithm that distinguishes the output of a pseudorandom function from that of a

truly random function.

Proof. Observe that in Game 0, C outputs a label; which is a PRF on an input that
depends on b whereas Game 1 outputs a random label that is independent of b. By
definition, the advantage of an efficient algorithm to distinguish the output of a se-
cure PRF on a given input from the output of a truly random function is epgp, which

is negligible. L
By combining Lemmas C.1.1, C.1.2, C.1.3, and C.1.4, we see that:
| Pr[So] = 1/2| < €prr + €ar + €cpir

and this is negligible. This completes the proof of Theorem C.1.1. O]

C.2  Security of multi-query PIR

We now show that the multi-query PIR scheme (§6.6) retains the privacy guarantees
provided by the underlying PIR scheme. In conjunction with Theorem C.1.1, this
shows that Pung with mPIR continues to provide UO-ER (Definition C.1.1).

Security game for PIR. We use a standard computationally indistinguishability

game for PIR [227, §2.3]. We describe it here for completeness. The game is between

an adversary 4 and a challenger C. We denote an instance of this game by
PGZ\,TA‘,n(l)\) = bl

where 7 = (QuERY, ANSWER, ExTRACT) is a PIR protocol, and A is the security param-

eter.
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A selects a collection DB consisting of n items of equal length, and sends n to C.
A then specifies two indices, i and j, to C such that 0 < i,j < n.

C then generates a random bit b g {0, 1}; it selects i if b is 0 and j otherwise.

L

C then generates a PIR query for the chosen index using 7’s Query procedure
and sends them to A.
5. A then outputs its guess of C’s choice, b’ € {0, 1}.

The adversary A wins the security game if b = b'.

Definition C.2.1. A PIR protocol 7 is secure if for all probabilistic polynomial time

adversaries .4 and DB sizes n:
|Pr[PGY . ,(1")=1]-Pr[PG! . ,(1*)=1]| < negl(1")

where ) is a security parameter and negl is a negligible function of the security pa-

rameter \.

Assumption 1. We denote the PIR protocol used by Pung as 7,;. We take it as a

given that 7, is secure under Definition C.2.1.

Multi-retrieval. We now formalize multi-query PIR and provide the correspond-

ing security game. A multi-query PIR protocol 7’ works over m collections (DB, . .., DB,,)

held by a server, where the ith collection, DB;, consists of #; elements of equal size.
We denote the size of the server’s collection by N = (ny, ..., n,,). Similar to a PIR pro-
tocol, 7’ supports three procedures: MuLTI-QUERY, MULTI-ANSWER, MULTI-EXTRACT.

The Murti-Query (I, N) procedure is run by the client; I is a vector of length
k, and encodes the indices of items that the client is interested in retrieving from
the server’s collections. Each entry in this vector is a tuple, (¢,p), where ¢ speci-
fies the collection (1 < ¢ < m) and p states the index in the ¢th collection (1 <
p < ny). MuLTi-QuERY outputs a set of queries Q that encodes theses indices. The
Murri-ANswer(Q, (DBy, ..., DB,,)) procedure is run by the server; it returns a vec-
tor of encrypted responses A, where each entry encodes the element requested by

the client at the corresponding position in Q. The Murri-ExtracT(A) procedure is
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run by the client; it decrypts each entry in A to recover the desired element in each
of the collections (DB, ..., DB,,).

Security game for multi-query PIR. We extend PIR’s security game and Defini-
tion C.2.1 to the case of PIR retrievals from multiple collections.! Our generalization
to multiple collections is similar in spirit to indistinguishable multiple encryptions
in the case of public key cryptosystems [129, Chapter 10]. We denote an instance of

such a generalized game by

MGZ,TI”,N,I(( 1)\) = b,

where 7/=(MuLt1-QUERY, MULTI-ANSWER, MULTI-EXTRACT) is a multi-query PIR pro-
tocol, and ) is the security parameter.

1. A generates m collections where the ith collection contains n; elements of the
same size; it then communicates N = (71, ..., 1,,) to the challenger C.

2. A specifies two vectors of length k, I and J. Each entry in these vectors is a tuple
(¢, p) where ¢ selects one of the collections (1 < ¢ < m) and p selects one index
from the (** database (1 < p < ny). Additionally, we require that in both vectors,
the number of retrievals from a particular collection must the same.

3. C then flips a random coin b g {0, 1} to select one of the two vectors (as in the
single retrieval game). It then generates PIR queries, Q, using MuLtI-QUERY and
sends them to A.

4. Athen outputs its guess of C’s coin, b'.

The adversary A wins the security game it b = '.

Definition C.2.2. A multi-query PIR protocol, 7/, is secure if for all probabilistic

polynomial adversaries A,
[ PrMGY i (17) = 1] = Pr[MG] 1, (1%) = 1]] < negl(17)

where )\ is the security parameter and negl is a negligible function of the security

IThis is different from multi-database PIR, which is a term often associated with IT-PIR schemes.
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parameter.

Observe that Pung’s multi-query PIR protocol, including all of the variants
presented in Chapter 6, adhere to the above formalism. For instance, in Pung’s single-
hashing PBC scheme (Appendix B), the server simply splits its collection (DB) into
B sub-collections DBy, . . ., DBj (representing the buckets) using a static partitioning
scheme; clients issue PIR queries to each sub-collection independently. Furthermore,
the number of PIR queries that clients need to issue to a particular sub-collection is
given to clients at the end of Pung’s SEND phase (which occurs prior to clients issuing
any PIR queries). Our hybrid scheme (Appendix B) simply splits each bucket (DB;)
into further sub-collections based on the batch code used.

We now show that Pung’s multi-query PIR protocol is secure under Defini-

tion C.2.2 given Assumption 1.

Theorem C.2.1. Pung’s multi-query PIR scheme (§6.6) is secure under Definition C.2.2.

Proof. Suppose Pung’s multi-query PIR scheme is not secure; then there exists a
probabilistic polynomial time adversary, .4, that violates Definition C.2.2. We can
show that one can use such an adversary to construct another adversary, Ap, that
violates definition C.2.1. Since Pung’s multi-query PIR scheme employs 7, which
is assumed secure under Definition C.2.1, this leads to a contradiction.

The reduction proof is identical to the proof of reduction from indistinguish-
able multiple encryptions to indistinguishable single encryption for a public key

cryptosystem [129, Theorem 10.10]. O]
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