
Defending against malicious peripherals with Cinch

Sebastian Angel,⋆† Riad S. Wahby,‡ Max Howald,§† Joshua B. Leners,∥

Michael Spilo,† Zhen Sun,† Andrew J. Blumberg,⋆ and Michael Walfish†

⋆The University of Texas at Austin †New York University ‡Stanford University §The Cooper Union ∥Two Sigma

Abstract

Malicious peripherals designed to attack their host com-
puters are a growing problem. Inexpensive and powerful
peripherals that attach to plug-and-play buses have made
such attacks easy to mount. Making matters worse, com-
modity operating systems lack coherent defenses, and
users are often unaware of the scope of the problem.
We present Cinch, a pragmatic response to this threat.
Cinch uses virtualization to attach peripheral devices to
a logically separate, untrusted machine, and includes an
interposition layer between the untrusted machine and
the protected one. This layer regulates interaction with
devices according to user-configured policies. Cinch in-
tegrates with existing OSes, enforces policies that thwart
real-world attacks, and has low overhead.

1 Introduction
Peripheral devices are now powerful, portable, and plenti-
ful. For example, the inexpensive “conference USB sticks”
that we have all received include not only the stored con-
ference proceedings but also a complete computer. Given
this trend, it is easy to create malicious peripheral de-
vices [43, 61, 88, 98]. And yet, it is difficult to defend
against them: commodity machines and operating systems
continue to be designed to trust connected peripherals.

Consider a user who is induced to insert a malicious
USB stick into his or her laptop [91, 135, 148]. There are
now many examples [16, 75, 89] of such devices injecting
malware (most infamously, Stuxnet [94]), by exploiting
vulnerabilities in the host’s drivers or system software.

Another alarming possibility is that, while following
the USB specifications, the malicious device can mas-
querade as a keyboard. The device can then use its
keystroke-producing ability to install a virus or exfiltrate
files [43, 61, 125, 150]. As a last example, a USB de-
vice can eavesdrop on the communication between an-
other device, such as the user’s true keyboard, and the
host [12, 17, 25, 72, 124].

These problems will get worse: on next-generation lap-
tops [5, 10], all ports, including the power port, are USB,
which means that any of the attacks above could be carried
out by a malicious charger. For that matter, your phone
might be compromised right now, if you borrowed a USB
charger from the wrong person.

On the one hand, the concepts needed to solve these
problems have long been understood. For example, in

Rushby’s separation kernel [129] (see also its modern de-
scendants [81, 122]), the operating system is architected
to make different resources of the computer interact with
each other as if they were members of a distributed sys-
tem. More generally, the rich literature on high-assurance
kernels offers isolation, confinement, access control, and
many other relevant ideas. On the other hand, applying
these works in full requires redesigning the operating
system and possibly also the hardware.

Solutions that target device security for today’s com-
modity systems are not adequate for the task, often be-
cause they were designed under different models (§8).
For example, work on device driver containment [80,
83, 93, 95, 96, 105, 112, 114, 127, 143–145, 152] and
reliability [108, 130–132] trusts devices or assumes
they are at worst buggy; the attacks mentioned ear-
lier are largely out of scope. Hotplug control frame-
works [13, 15, 18, 22, 33, 35, 37, 48, 50, 55], of which
a notable example is udev on Linux [56, 110], enable
users to express that certain devices should be denied
access. However, access is all-or-nothing, decisions are
based upon the device’s claimed identity rather than its
ongoing behavior, and a malicious device can disarm the
enforcement mechanism. Qubes [45] protects the OS and
applications from malicious USB devices, but achieves
its strong guarantees at the expense of functionality.

The fundamental issue is that the I/O subsystems in
commodity operating systems do not have an organizing
abstraction that could serve as a natural foundation for
security features. This paper attempts to fill that void.

Our point of departure is a simple suggestion: rather
than design a new framework, why not arrange for at-
tached peripheral devices on commodity operating sys-
tems to appear to the kernel as if they were untrusted
network endpoints? This would create an interposition
point that would allow users and administrators to defend
the rest of the computer, just as firewalls and other net-
work middleboxes defend hosts from untrusted remote
hosts. Our animating hope is that a system based on this
picture would eliminate large classes of vulnerabilities, be
easy to deploy, and enable new functionality. To explore
that vision, this paper describes the design, implemen-
tation, and experimental evaluation of a system called
Cinch. Cinch begins with the following requirements:

• Cinch should make peripheral buses look “remote,” de-
spite the physical coupling, by preventing direct inter-

action with the rest of the computer (memory access,
interrupts, etc.).

• Under Cinch, traffic between the “remote” devices
and the rest of the computer should travel through a
narrow choke point. This choke point then becomes a
convenient location for deploying defenses that inspect
and mediate interactions with untrusted devices.

• Cinch should not require modifying bus standards,
motherboards, OSes, or driver stacks. Any of these
would be massive undertakings, would have to be done
for multiple platforms, and would jettison the immense
effort behind today’s installed base.

• Cinch should be portable, in the sense that Cinch itself
should not need to be re-designed or re-implemented
for different operating systems.

• Cinch should be flexible and extensible: users, opera-
tors, and administrators should be able to quickly de-
velop and deploy a wide range of defenses.

• Cinch should impose reasonable overhead in latency
and throughput.

Cinch responds to these requirements with the follow-
ing architecture, focused on USB as a target (§4). Under
Cinch, USB devices attach to an isolated and untrusted
module; this is enforced via hardware support for virtu-
alizing I/O [70, 71]. The untrusted module tunnels USB
traffic to the protected machine, and this tunnel serves as
a choke point for enforcing policy.

To showcase the architecture, we build several example
defenses (§5). These include detecting attacks by match-
ing against a database of attack signatures (§5.1); sani-
tizing inputs by ensuring that messages and device state
transitions comply with protocol and device specifica-
tions (§5.2); sandboxing device functions and enforcing
hotplug policies (§5.3); device authentication and traffic
encryption (§5.4); and logging and remote auditing (§5.5).

Our implementation of Cinch (§6) instantiates both the
untrusted module and the protected machine as separate
virtual machines. As a consequence, Cinch protects any
OS that runs atop the underlying hypervisor. In principle,
these virtualization layers can be reduced or eliminated,
at the cost of development effort and portability (§4.2).

To study Cinch’s effectiveness, we developed exploits
based on existing vulnerabilities [14], performed fuzzing,
and conducted an exercise with a red team whose mem-
bers were kept isolated from Cinch’s development (§7.1–
§7.3). Our conclusion is that Cinch can prevent many
attacks with relatively little operator intervention. We
also find that developing new defenses on Cinch is con-
venient (§7.4). Finally, Cinch’s impact on performance
is modest (§7.5): Cinch adds less than 3 milliseconds of
latency and can handle USB 3 transfers of up to 2.1 Gbps,
which is 38% less than the baseline of 3.4 Gbps.

Cinch is enabled—and inspired—by much prior work

in peripherals management, hardware-assisted virtualiza-
tion, privilege separation, and network security. We delve
into this work in Section 8. For now, we simply state
that although Cinch’s individual elements are mostly bor-
rowed, it is a novel synthesis. That is, its contributions
are not mechanical but architectural. These contributions
are: viewing peripherals as remote untrusted endpoints,
and the architecture that results from this perspective; the
instantiation of that architecture, which uses virtualiza-
tion techniques to target a natural choke point in device
driver stacks; a platform that allows defenses to existing
attacks to be deployed naturally on commodity hardware,
in contrast to the status quo; and the implementation and
evaluation of Cinch.

Cinch is not perfect. First, it shrinks the attack sur-
face that the protected machine exposes to devices, but
introduces new trusted code elsewhere (§4.2). Second,
although Cinch can reduce the universe of possible inputs
to the drivers and OS on the protected machine (by ruling
out noncompliant traffic), a malicious device might still
exploit bugs in how the code handles compliant traffic.
On the other hand, the user can decide which devices get
this opportunity; further, addressing buggy drivers and
system software is a complementary effort (§8). Third,
Cinch does not unilaterally defend against higher-level
threats (data exfiltration, malware, etc.); however, Cinch
creates a platform by which one can borrow and deploy
known responses from network security (§5). Finally,
some of Cinch’s defenses require changes within the
device ecosystem (§9). For example, defending against
masquerading attacks requires device (but not bus) modifi-
cations. However, these changes are limited: in our imple-
mentation, one person prototyped them in less than two
days (§6.3). Importantly, these changes can be used with
unmodified legacy devices via an inexpensive adapter.

Despite its shortcomings, Cinch is a substantial im-
provement over the status quo when considering the mis-
behavior that it rules out and the functionality that it en-
ables. Moreover, we hope that Cinch’s perspective on
device security will be useful in its own right.

2 Background: Universal Serial Bus (USB)
Commodity computing devices (phones, tablets, laptops,
workstations, etc.) have several peripheral buses for plug-
gable devices. These include USB [57, 58], Firewire [1],
and Thunderbolt [54]. Cinch focuses on USB as an initial
target; we make this choice because USB is ubiquitous
and complex, and because it has become a popular lo-
cus of hardware-based attacks. However, our approach
applies to other buses.

Figure 1 depicts the hardware and software architecture
of USB. USB is a family of specifications for connect-
ing and powering peripheral devices. Bandwidth ranges
from 1.5 Mb/s (USB 1.0) to 10 Gb/s (USB 3.1). Example

2

Software

Hardware

HID driver Mass storage driver

Power
management

Device
enumeration

USB Core

Host controller interface (HCI)

Host controller

Root hub

Printer driver

Hub

Class drivers

FIGURE 1—The hardware and software of a USB stack (§2).
Both physical devices and drivers are arranged hierarchically;
devices are rooted at the host controller, and drivers are rooted
at the host controller interface. Components in dashed boxes are
logically in the same layer of the USB stack.

devices include storage (e.g., memory sticks), keyboards,
sound cards, video cameras, Ethernet adapters, and smart
card readers. These devices connect to a host (for example,
a laptop or desktop). Some computers can act as either
a device or a host; for example, a smart phone or laptop
can appear as a storage device or power consumer to a
desktop, but as a host to a keyboard.

USB hardware. USB has a tree topology. Each device
has an upstream connection to a hub. Hubs multiplex
communication from one or more downstream devices,
and are themselves devices with an upstream connection
to another hub or to the root of the tree. The root is a host
controller, which connects to the host by, for example,
PCIe. The host controller acts as the bus master: it initiates
all transfers to and from devices, and devices are not
permitted to transmit except when polled by the host
controller. Also, the host controller issues interrupts to
the host and has direct access to host memory via DMA.

USB protocol. The USB specifications [57, 58] define a
protocol stack comprising three layers. The bottom layer
includes electrical specifications and a low-level packet
protocol. The middle layer of the stack includes address-
ing, power management primitives, and high-level com-
munication abstractions. USB devices, comprising one
or more functions, sit at the top of the stack. Functions
act as logically separate peripherals that are exposed by
a single physical device. For example, a phone might ex-

pose a camera function, a network adapter function, and
a storage function. Each of these functions is associated
with its own high-level driver software.

USB driver architecture. The USB specification de-
scribes three layers of software abstraction on the host.
The lowest level, the host controller interface or HCI,
configures and interacts with the host controller hardware
via a local bus (e.g., PCIe). An HCI driver is particular
to a host controller’s hardware interface but exposes a
hardware-independent abstraction to the next software
layer, called core. Core manages device addressing and
power management, and exposes an interface for high-
level drivers to communicate with devices. Core also enu-
merates devices when they are attached, which entails
identifying the device and activating its driver.

The uppermost layer, class drivers, are high-level
drivers that interact with functions (as described above).
These drivers provide an interface between USB devices
and the rest of the OS. For example, a keyboard’s class
driver interacts with the kernel’s input subsystem. Another
example is the mass storage class driver, which talks to
the kernel’s storage subsystem. The USB specification
defines a set of generic classes for a broad range of de-
vices, e.g., keyboards, mice, network interfaces, storage,
cameras, audio, and more. Operating systems generally
include support for a large subset of the generic classes,
allowing devices to leverage preexisting drivers.

3 Causes, threat model, and taxonomy
3.1 Why is USB so vulnerable?

The root of the problem is the implicit assumption that
hardware is inherently trustworthy, or at worst buggy
but non-malicious. As a consequence, neither USB nor
mainstream OSes are designed to be robust in the face of
malicious devices. One manifestation of this is the lack of
authentication or confidentiality guarantees at any layer
of the USB standard. As examples, devices self-report
their identity and capabilities without authentication; the
communication primitives at all layers of the protocol
stack (§2) are cleartext; and, prior to USB 3, host-to-
device messages are broadcast across the entire bus [124].

A related issue is that the USB protocol and common
driver stacks emphasize convenience above correctness
and security. For example, hotplugged devices are often
activated without user confirmation. Coupled with the lack
of device authentication, this means that the OS cannot
determine what device the user intended to connect, or
even that a hotplug event was generated by the user rather
than a malicious device [24, 75]. Moreover, malicious
device makers can rely on the near universal availability
of generic class drivers (e.g., for keyboards), since users
expect these devices to “just work.”

3

The range and sophistication of USB-based threats
has escalated substantially in recent years. Whereas hard-
ware design costs were once a barrier to entry, creat-
ing custom USB devices is now cheap, both in dollars
and development time [43, 52, 61, 98, 100]; in fact, to-
day’s commodity USB devices are essentially software
defined [43, 75, 98].

The press plays a role too: demonstrating USB attacks
has become fashionable (e.g., recent media hype [6–8, 39,
53, 118] surrounding USB devices with reprogrammable
firmware [43, 84, 125]). A third factor is ease of trans-
mission: malicious USB devices can easily find their way
into the hands of victims [148]. This is partly due to vul-
nerabilities in the supply chain [38, 74, 101, 141], such
as adversarial manufacturers [102]. Intelligence agencies
have also been known to use their resources to intercept
and “enhance” shipments [27, 97], including conference
giveaways [20, 21].

3.2 Threat model

We assume that devices can deviate from the USB specifi-
cation arbitrarily. They may also violate the user’s expec-
tations, for example by masquerading as other devices or
passively intercepting bus traffic. Alternatively, devices
can present a higher-level threat; for example, a storage
device can contain an invalid filesystem that triggers a
bug in a filesystem driver. However, devices that cause
physical damage to the host, with high voltage [86] for
example, are out of scope.

We assume that the host’s OS and drivers can be buggy
but not malicious. We assume the same for the host’s
hardware besides the USB controller and USB devices.

3.3 A taxonomy of USB attacks

Attacks on USB drivers. USB drivers present an at-
tack surface to devices. For example, a driver with an
unchecked buffer access might allow a malicious device
to overwrite kernel memory via an overflow. The space
of possible misbehavior here is vast. For instance, de-
vices might try to deliver more data to the driver than
indicated by the device’s configuration [31]; claim impos-
sible configurations [28, 30]; exceed limits prescribed by
USB class specifications [4, 32, 42]; or produce otherwise
invalid or nonsensical reports [75, 87–89, 92, 137].

The prevalence of these attacks reflects a difficult soft-
ware engineering situation. Since a driver writer needs to
be prepared for an enormous range of undocumented be-
havior, drivers need lots of error checking code; such code
is often ill-exercised and creates complexity, leading to
more vulnerabilities. Indeed, more than half of the vulner-
abilities related to USB drivers in the CVE database [14]
are the result of improper handling of noncompliant USB
transfers; many more such vulnerabilities likely remain
undisclosed [87, 137].

Other attacks on the host via USB. USB can also ex-
pose the rest of the host system’s kernel or user software
to attacks by malicious devices. Recall that USB class
drivers provide an interface between devices and other
kernel subsystems (§2). Leveraging this interface, a USB
flash drive might be used to attack the kernel’s storage
or filesystem drivers [19, 44, 63, 64]. Or the drive might
carry a virus [94] or covertly steal data [140].

Of particular concern is the possibility of attacks in
which the USB host controller uses DMA (direct memory
access) to bypass the CPU and read or write arbitrarily
to RAM [26, 116, 139, 142]. A successful DMA attack
neutralizes essentially all software security measures, al-
lowing the attacker to steal sensitive data, modify running
software (including the kernel itself), and execute arbi-
trary code [128]. And the host controller does not need to
be malicious: misconfigured DMA-capable hardware is a
proven vector for such attacks [153, 154].

Privacy and authentication threats.
Device masquerading. When a device is plugged in, the

host asks the device for information about its capabilities.
The device can respond, disguised as another device or
even another class [29, 41, 43, 65, 85, 120, 125, 150]. For
example, Psychson [43] enables rewriting the firmware
on a cheap USB storage device so that it will act like
a keyboard; similarly, the commercially available “USB
Rubber Ducky” [61] is a programmable keystroke injector
in the guise of a flash drive. Likewise, a malicious hub
can masquerade as other devices [25]. These examples
are more than idle threats: penetration testers regularly
use such tools to breach security systems [3, 24].

Bus eavesdropping. In USB 2 and earlier versions, hubs
broadcast traffic from their upstream port to all down-
stream ports (§2), so any device on the bus can eavesdrop
on traffic from the host to any other device [124]. In all
protocol versions, malicious hubs can eavesdrop on up-
stream and downstream traffic [17, 72]. Furthermore, a
hub need not be malicious: if its firmware is buggy, it can
be exploited by a malicious device [25].

4 Architecture and rationale
The top-level goal of Cinch is to enforce security policies
that enable safe interactions between devices and the host
machine. This enforcement must be done in a way that
respects the requirements outlined in Section 1. In particu-
lar, we must answer two questions in the context of USB:
(1) Where and how can one create a logical separation
between the bus and the host, while arranging for an ex-
plicit communication channel that a policy enforcement
mechanism can interpose on? (2) How can one instantiate
this separation and channel with no modifications to bus
standards, OSes, or driver stacks?

4

Host controller

Root hub
Hub

IOMMU

Hypervisor

Blue machine

HID Storage

USB Core

HCI

Printer

GatewayRed machine

Tunnel

Trusted components

FIGURE 2—The architecture of Cinch. The trusted components
are surrounded by the dashed line. I/O virtualization separates
the USB host controller from the blue machine’s HCI, redirect-
ing DMA and interrupts to the red machine. The red machine
encapsulates and sends USB transfers through the Tunnel to the
Gateway. Once the Gateway has applied all security policies, it
redirects those transfers to the blue machine’s HCI.

We begin with the logical separation, which Cinch
enforces at the boundary between the host controller and
its driver (HCI), depicted in Figure 1. We choose this
separation point for two reasons: first, it results in a narrow
choke point where software can interpose. Second, the
host controller is “dangerous”—it issues interrupts and
accesses memory via DMA (§2, §3.3)—so there should be
a barrier between it and the rest of the system, including
the modules that administer policy decisions.

The architecture is depicted in Figure 2. After logically
separating the host controller, Cinch attaches it to a new
module, the red machine. The red machine is an endpoint
to a communication channel, the Tunnel. The other end-
point, the Gateway, is positioned at the entrance to the
host that Cinch protects, the blue machine. (These names
are inspired by Lampson’s red/green machine partition-
ing [111].) The Gateway mediates all transfers through
the Tunnel and enforces security policies (for example,
dropping or rewriting USB traffic, as described in §5) be-
fore those transfers reach the blue machine’s USB stack.

To connect the host controller to the red machine, Cinch
uses I/O virtualization hardware, which is widely avail-
able in modern CPUs [70, 71]. Specifically, an IOMMU
provides address translation and protection, which re-
stricts a physical device’s DMA transfers to a designated
memory region (in this case, that of the red machine); and
interrupt remapping provides analogous translation and
protection for interrupts.

4.1 Instantiation

In our current implementation, the lowest layer of
software—the one that manages the hardware resources
and configures the I/O virtualization hardware—is a com-
bination of hypervisor and OS, and is trusted. The red
machine runs on top of this hypervisor and is a full-
fledged virtual machine, with a normal OS that has a
stripped-down USB stack (§6.1). The blue machine is
also a full-fledged virtual machine atop the hypervisor,
and the Gateway is a separate process.

4.2 Discussion

With the instantiation described immediately above,
Cinch meets the requirements described in Section 1. It
isolates devices in the red machine, and its Gateway is
a narrow choke point. It limits overhead to reasonable
factors (§7.5), in part by leveraging hardware-assisted
processor and memory virtualization [68, 123] (as dis-
tinct from I/O virtualization). It works with existing USB
stacks; the main component needed is a driver in the hy-
pervisor, to receive transfers from the Gateway. It works
with a range of OSes because the blue machine runs un-
modified. For the remaining requirements, flexibility is
demonstrated in the next section (§5), and extensibility
arises from Cinch’s software structure (§6.2).

But a disadvantage is the size of the trusted computing
base (TCB) and attack surfaces. Specifically, the TCB
includes a full-featured hypervisor. The attack surface
includes the red machine, which is running a full OS
and which, if compromised, can attack the hypervisor
and the blue machine via the virtualization interface (by
attempting VM escapes, side channel inference, etc.).

There are a number of alternatives that, by tailoring the
hypervisor and red machine, reduce the TCB at the cost
of portability and additional development effort. As an
extreme example, the blue machine could run directly on
the host’s hardware (“bare metal”), with the red machine
running in an untrusted user-level process; the Gateway
would also run in user space. In this setup, there would be
no separate hypervisor; the blue machine would perform
the few required hypervisor-like functions, such as config-
uring the I/O virtualization hardware to connect the host
controller to the red machine process (see [77, 78, 126]).
Compared to Cinch’s instantiation, this one has a smaller
TCB; it also has lower overhead, owing to the absence
of virtual machines. However, it is less portable: each
new blue machine OS needs corresponding “hypervisor”
module and red machine implementations.

One can go further: the Gateway could entirely by-
pass the blue machine’s USB stack, sending device traffic
directly to the corresponding kernel subsystem (for exam-
ple, sending USB keyboard events to the input subsystem).
This would further reduce the TCB, at the cost of even
more development work and less portability.

5

Another design point is a hardware-only solution: the
red machine and Gateway would run on a device placed
between USB devices and the blue machine, which would
run as a normal, unmodified host. Compared to Cinch,
this solution is potentially more portable, in that no soft-
ware modifications or reconfiguration are needed. Further,
this solution does not rely on I/O virtualization (which
is widespread but not universal), and it leaves the host’s
virtualization hardware available for other uses. The dis-
advantages are that a hardware solution is likely to be less
flexible, and that building hardware may be substantially
more effort than building Cinch.

A non-solution, in our view, is to implement the Gate-
way in the host’s USB stack, without a separate red ma-
chine. This setup does not have the separation discussed
earlier; it would leave the host and Gateway vulnerable to
DMA attacks by a compromised host controller.

5 Building defenses with Cinch
This section describes some of the defenses (which we
call Policies) that Cinch supports, and the threats (§3)
against which they defend. These Policies are not new;
we discuss previous implementations in Section 8. The
novelty is in providing a platform that makes a range of
Policies straightforward to develop and deploy.

5.1 Detecting attacks by signature

The first strategy is signature matching: dropping mes-
sages that match a known pattern. Defenses in this class
protect against attacks on drivers and user software (§3.3).
The same strategy is used in network security (intrusion
detection [47]) and desktop security (antivirus [11]) and
has been effective in practice, as a first-line defense. The
advantages and disadvantages hold in our context; we
review them briefly.

To begin with, signature generation is flexible and can
be done by victimized companies, individual users, and
designated experts, based on observations of past attacks
and reverse engineering of malicious devices. Further,
shared databases of observed attack signatures can im-
munize others. This strategy also enables rapid responses
to emerging threats: a signature of an attack is typically
available long before the vulnerability is patched.

The principal disadvantage, of course, is that signatures
generally provide protection only against previously ob-
served attacks. Furthermore, they suffer from both false
positives and false negatives: signatures that are too gen-
eral may disable benign devices, while signatures that are
too specialized can fail to catch all variants of an attack.

Cinch’s signature Policy. We implement a signature
matching module in Cinch that compares all USB traffic
from the red machine to a database of malicious payload
signatures. When a match occurs, Cinch disallows further
traffic between the offending device and the blue machine.

5.2 Sanitizing inputs

Another class of defensive strategies detects when devices
deviate from their specification; this is useful for defend-
ing against attacks on USB drivers (§3.3). Given a speci-
fication (say, provided by the manufacturer or converted
from a standards document), Cinch checks that messages
are properly formatted and that devices respond correctly
to commands. While drivers can (and in some cases, do)
implement such checks, moving enforcement to a dedi-
cated module can eliminate redundant code and reduce
driver complexity (§3.3, “Attacks on USB drivers”).

A related strategy in Cinch modifies apparent device
behavior, either forcing adherence to a strict subset of the
USB spec in order to match driver expectations, or else
relaxing the USB spec by recognizing and fixing device
“quirks”—behavior that is noncompliant but known to be
benign—so that drivers need not do so.1 This is closely
related to traffic normalization [103], in which a firewall
converts traffic to a canonical representation to aid analy-
sis and ensure that decisions are consistent with end-host
protocol implementations.

Cinch’s compliance Policy. This Policy enforces device
compliance with USB specifications. To build it, we man-
ually processed the USB 2 and 3 specifications [57, 58],
along with the specifications of five device classes (mass
storage, HID, printer, power, and debug) [59]. The result
is a module that monitors device states and transitions,
and enforces invariants on individual messages and entire
transactions. As a simple example, the compliance Policy
checks that device-supplied identification strings are well
formed—that is, that they comprise a valid UTF-16 string
of acceptable length—and rewrites noncompliant strings.
More complex state and transition checking is effected by
keeping persistent information about each device for the
duration of its connection.

Cinch’s compliance Policy is conservative in handling
noncompliance: if it cannot easily fix a device’s behav-
ior (for example, by rewriting identification strings as
described above), it assumes the device is malicious and
disables it.

Cinch’s assertion Policy. This Policy implements the
aforementioned relaxations and restrictions, by modifying
how Cinch’s compliance Policy regulates specific devices.
As examples, a user might specify that a particular de-
vice’s requests should be rewritten to work around buggy
firmware. Or Cinch can require that devices handled by
a certain driver must expose an interface that matches
a specified template, obviating bug-prone compatibility
checks in the driver’s code (§3.3).

1In practice, many non-malicious devices fail to comply with the specifi-
cation: the word “quirk” appears about once every 300 lines throughout
the 300 kLoC Linux USB stack (!), and nearly all the devices we tested
deviated from prescribed behavior in at least a small way.

6

5.3 Containing devices

This category includes querying a user for information
about a newly connected device, restricting a device to
a subset of its functionality, and isolating devices in pri-
vate protection domains. Such defenses, which are useful
against attacks on driver and user software and can foil
masquerading attacks (§3.3), are forms of hotplug control.
They decide—say, by asking the user—whether a newly
connected device should be allowed to communicate with
the blue machine, and if so, what functionality should be
allowed. For example, Cinch might ask the user, “I see
you just connected a keyboard. Is this right?”

In practice, such decisions can be much more complex.
Recall from Section 2 that devices can define multiple
functions, each of which is a logically separate peripheral.
A careful user wishing to tether his or her laptop to a
friend’s phone could be informed of available function-
ality upon device connection, and choose to disallow the
phone’s storage function as a precaution against viruses.

Alternatively, the user might choose to connect the
phone’s file storage function to a separate protection
domain—a sandbox—with limited capabilities and a nar-
row interface to the blue machine. In this case, the sand-
box could scan files for viruses, and could expose a high-
level interface (e.g., an HTTP or NFS server) to the blue
machine. This approach leverages existing software de-
signed for interacting with untrusted machines (in this
case, a web or file browser), and can bypass many layers
of software in the blue machine; on the other hand, it
changes the interface to the device.

Cinch’s containment Policy. We implement a “surgical”
hotplug Policy: individual device functions can be al-
lowed or disallowed, and the blue machine never interacts
with disallowed devices. Cinch’s Gateway can also sand-
box whole devices or individual functions by redirecting
selected USB traffic to separate protection domains that
expose functionality to the blue machine through narrow
interfaces, as described above.

5.4 Encryption and authentication

To handle devices that eavesdrop on the bus or masquer-
ade as other devices, Cinch adapts well-known responses—
authentication and encryption—to USB. For example, a
user can disallow all keyboards except those having a cer-
tificate signed by a particular manufacturer. This prevents
a malicious device without such a certificate from acting
as a keyboard.

In more detail, a device authenticates to the Gateway
by leveraging a trust relationship. As examples, manu-
factures sign certificates and install them on devices, and
users are required to use devices whose certificates are
signed by a trusted manufacturer; or users follow a pairing
procedure as in Bluetooth [67] or GoodUSB [146], obvi-

ating a trusted manufacturer but adding a setup step. After
completing a key exchange, the device and host share an
encryption key. The user can then prevent masquerading
and eavesdropping by installing a policy that disallows
unauthenticated, untrusted, or unencrypted devices.

This arrangement raises several potential concerns: de-
velopment overhead to build new devices, computational
overhead for cryptography, and deployment on legacy
devices. Below, we describe a proof-of-concept design
that addresses these concerns. At a high level, the con-
cerns are addressed by, respectively, abundant support for
rapid development of embedded cryptographic applica-
tions [34, 36, 66], the speed of modern embedded pro-
cessors, and a physical adapter that adds cryptographic
functionality to legacy devices.

Proof-of-concept USB crypto support. To support au-
thentication and encryption, we designed a cryptographic
overlay protocol. This mechanism allows compatible de-
vices to communicate with the Gateway via a TLS session
that encapsulates all of their USB transfers.

To evaluate the crypto overlay, we built a crypto
adapter, a physical device that sits between unmodified
legacy devices and a host system running Cinch. The
crypto adapter acts as a USB host for the legacy device,
encapsulating and decapsulating the device’s USB traffic
inside a TLS session. To communicate this TLS-encrypted
traffic to the host system, the crypto adapter also acts as
a USB device attached to the host system, as we detail
below. We refer to the crypto adapter’s USB connection
to the legacy device as the “inner” connection, and its
connection to the host as the “outer” connection.

Two issues arise in designing the crypto overlay and
adapter. First, a TLS session requires a full duplex stream
transport, while USB’s communication primitives are
based on host-initiated polling (§2). This means that the
outer USB connection cannot directly encapsulate a TLS
session. Second, the Gateway does not implement a USB
stack, meaning that, on its own, it cannot communicate
with the crypto adapter via the outer USB connection.

To solve the first issue, Cinch uses an existing USB
class that exposes a full-duplex Ethernet interface [59];
this Ethernet-over-USB traffic is carried by the outer USB
connection. Then Cinch uses TCP over this Ethernet con-
nection as the stream abstraction for TLS, yielding an
indirect encapsulation of TLS in the outer USB connec-
tion.2 To solve the second issue, we observe that, with
the foregoing encapsulation, the Gateway need not handle
the outer USB connection. Instead, the red machine treats
the outer USB connection as an Ethernet device (thereby
terminating the outer USB connection), and it forwards
all packets it receives from that device to the Gateway via
2An alternate approach with less overhead than TCP-over-IP-over-
Ethernet-over-USB is to create a custom USB class providing a full-
duplex stream abstraction with less generality than Ethernet.

7

the Tunnel. Meanwhile, these packets are just the TCP
stream carrying the TLS session, and thus the Gateway
can talk TLS to the crypto adapter without a USB stack.

Note that this arrangement differs from the way that
Cinch handles other USB devices. For unencrypted de-
vices, the Gateway receives USB transfers captured by the
red machine; it inspects these transfers and then forwards
them to the blue machine’s HCI. But here, the Gateway re-
ceives packets (which the red machine decapsulated) that
contain a TLS session. The Gateway decrypts to recover
USB transfers, which it inspects and forwards.

Cinch’s crypto Policy. Given devices implementing the
crypto overlay, Cinch can enforce policies that rule out
eavesdropping and masquerading by requiring authenti-
cated and encrypted devices, as described at the outset of
this section.

5.5 Logging and auditing

Logging is part of many defensive strategies: auditing
logs can reveal anomalous behavior that might indicate a
new attack. Moreover, logs can be used to develop new
signature-based defenses (§5.1).

Cinch’s logging Policy. Cinch’s Gateway can be con-
figured to log some or all traffic to and from the blue
machine. Cinch can also replay logged data; we used
this functionality to help develop attack signatures for
our security evaluation (§7.3). Furthermore, Cinch can be
configured to log to a remote server. This feature could
allow real-time analysis of data from many different blue
machines, for example in a corporate environment.

5.6 Extensions

Cinch enables usage scenarios beyond the ones described
above. One example is data exfiltration prevention, which
is often employed at the network level to address the
threat of data theft [104, 115, 117, 133, 134], but is gen-
erally considered a more difficult problem in the con-
text of USB [140]. By combining real-time remote audit-
ing (§5.5) with signature detection (§5.1), Cinch allows
administrators to apply exfiltration prevention policies to
USB devices.

6 Implementation
We describe the components and the communication paths
in our implementation of Cinch (§6.1). We also discuss
the Policies implemented in Cinch, utilities that we use
to create and test new exploits, and our method for de-
riving payload signatures (§6.2). Finally, we describe the
proof-of-concept crypto adapter (§5.4) that we use to
transparently provide encryption and authentication for
existing USB devices (§6.3).

6.1 Components and communication paths

The hypervisor (§4.1) is Linux with KVM, meaning that
virtual machines run in QEMU processes that are accel-
erated with virtualization hardware [68, 123]. In partic-
ular, Cinch requires hardware support for I/O virtualiza-
tion [70, 71]. We tested with Intel hardware, but KVM
also supports equivalent functionality from AMD.

The red machine runs Linux. It is configured to load
only the HCI and core drivers (§2); higher-level USB
drivers are not needed to capture USB transfers from
devices. (An exception is the case of the crypto overlay,
which requires a USB network driver; §5.4). The blue
machine is another VM and, as stated in Section 4.2, can
be any OS supported by QEMU. The Gateway runs as a
user-level process on the Linux-KVM hypervisor.

The Tunnel between the red machine and the Gateway
appears to both entities as a network device. The appeal of
this approach is that the Tunnel connects to the untrusted
part of the system (Figure 2, §4), and meanwhile IP stacks
have been hardened over decades. Furthermore, this lets
us leverage existing software for remotely accessing USB
devices over a network [60, 73, 106]. Our implementation
uses usbredir [73], which (on the red machine), captures
USB transfers, listens on a network socket, and uses a
custom protocol to encapsulate USB transfers inside a
TCP stream.

As a usbredir client, the Gateway receives usbredir
packets, filters or modifies them, and then, playing the
role of a usbredir server, delivers them to the QEMU pro-
cess running the blue machine. A module in QEMU is
the corresponding client; it decapsulates the USB trans-
fers (using usbredir) and injects them into a virtual host
controller created by QEMU and exposed to the blue
machine. From the virtual host controller, the USB trans-
fers travel into the blue machine’s HCI, with no software
modifications on the blue machine.

Our implementation of Cinch supports USB versions
through USB 3.

6.2 Gateway details

The Gateway is implemented in Rust [46]; it comprises
about 8 kSLoC. Its major modules are parsers for usbredir
packets and USB transfers, and a library that provides
abstractions for creating new Policies. This library is in-
spired by the Click modular router [109] and provides
domain-specific abstractions for USB (as examples, de-
multiplexing usbredir packets into USB transfers and fil-
tering those transfers). As in Click, the user organizes
modules into chains where one module’s output is the
next module’s input. Several such chains can be config-
ured to operate in parallel. Users configure module chains
with files in JSON format.

8

OS exploit identifier exploit description prevention mechanism

Windows 8.1 01:01:00:C:4 Audio device with non-existent streaming interface Signature Policy⋆

01:01:00:C:5 Audio device with invalid streaming interface Signature Policy⋆

03:00:00:C:16 HID device with invalid report usage page Compliance Policy
03:00:00:C:17 HID device with invalid report usage page Compliance Policy
09:00:00:C:9 Hub with invalid number of ports Compliance Policy

Linux 4.2.0 CVE-2016-2184 Sound device with non-existent endpoint Assertion Policy
CVE-2016-2185 RF remote control device with invalid interface or endpoint Assertion Policy
CVE-2016-2186 Multimedia control device with invalid endpoint Assertion Policy
CVE-2016-2187 Digitizer tablet device with invalid endpoint Assertion Policy
CVE-2016-2188 I/O Warrior device with invalid endpoint Assertion Policy
CVE-2016-2384 Audio device with invalid USB descriptor Assertion Policy
CVE-2016-2782 Serial device with no bulk-in or interrupt-in endpoint Assertion Policy
CVE-2016-3136 Serial device without two interrupt-in endpoints Assertion Policy
CVE-2016-3137 Serial device without both in and out interrupt endpoints Assertion Policy
CVE-2016-3138 Communication device without both control and data endpoints Assertion Policy
CVE-2016-3139 Drawing tablet with invalid USB descriptor Assertion Policy
CVE-2016-3140 Serial converter device with invalid USB descriptor Assertion Policy
CVE-2016-3951 Communication device with invalid descriptor and payload Compliance Policy

⋆Exploit can be prevented with the compliance Policy, but we have not yet incorporated the necessary class specification (Audio) into Cinch.

FIGURE 3—Exploits for known-signature exercise (§7.1). Windows exploits were found by Boteanu and Fowler [79] with umap [88];
the reported identifier can be passed to umap using the “-s” flag to reproduce the exploit. We implemented the Linux exploits to
target all USB-related CVEs from January–June 2016. The last column describes which Policy (§5) of Cinch prevents the exploit.

6.3 Proof-of-concept USB crypto adapter

We implement the crypto adapter (§5.4) using a Beagle-
Bone Black [9] single-board computer that has a 1 GHz
ARM Cortex-A8 processor and 512 MB RAM. For au-
thentication, we generate a CA certificate and install it
on the Gateway and crypto adapter. We use that CA cer-
tificate to sign certificates for the Gateway and crypto
adapter, which mutually authenticate during the TLS
handshake. The crypto adapter runs a version of usbredir
that we augmented with support for TLS 1.2 [90] using
OpenSSL [40]; these changes comprise less than 200 lines
of code. The Gateway’s crypto module uses stunnel [49]
to listen for TLS connections.

7 Evaluation
Our evaluation of Cinch answers the following questions:
• How effectively does Cinch defend against attacks? We

subject Cinch to known exploits (§7.1), fuzzing (§7.2),
and a red team exercise (§7.3).

• Can new functionality be developed and deployed on
Cinch with ease? We answer this question qualitatively,
by relating our experiences (§7.4).

• What is Cinch’s performance overhead? We examine
latency and throughput (§7.5).

Experimental hardware and OSes. All of our exper-
iments run on a single machine with a 3.3 GHz Intel
i5-4590 and 16 GB of RAM. The hypervisor is Debian
Jessie running Linux 4.2.0 with KVM enabled. The red
machine’s OS is also Debian Jessie running Linux 4.2.0.
The blue machine’s OS depends on the experiment and is
either Windows 7 Ultimate SP1 (build 7601), Windows

8.1 Professional (build 9600), Debian Jessie with Linux
4.2.0, or Ubuntu 14.04 with a modified 4.2.0 kernel.

7.1 Known-signature attacks

We begin our evaluation of Cinch by subjecting it to syn-
thetic attacks, based on documented vulnerabilities. For
the attacks that succeed, we specify a “rematch” protocol,
in which the operator can install a signature (§5.1) and
then retry. This exercise is intended to address a coun-
terfactual hypothetical: if Cinch had been deployed at
the time of these vulnerabilities, would it have protected
against their exploitation? And, if not, would a subsequent
defensive reaction have been effective?

Method and experiment. We filter the CVE
database [14] to select all the USB-related vulner-
abilities reported from January to June of 2016. The
resulting 13 CVEs apply to Linux 4.5 and earlier. For
each CVE, we construct a payload that exploits it. We
also include five exploits, disclosed by Boteanu and
Fowler [79], that affect the most recent version of
Windows 8.1; the targeted vulnerabilities are not in the
CVE database.

Figure 3 summarizes the exploits. We confirm that
each exploit successfully compromises the blue machine
(Debian Jessie with Linux 4.2.0 or Windows 8.1) in the
absence of Cinch. Once Cinch is enabled, we consider
an attack successful if it compromises either the blue
machine’s kernel or the Gateway.

On the offensive side, we mount the attacks using a
Facedancer [98]—a custom USB microcontroller that can
masquerade as any USB device and issue arbitrary pay-
loads when connected to the target machine. We program

9

exploits prevented

match phase rematch phase
Known exploits (§7.1)
Windows 8.1 3 / 5 5 / 5
Linux 4.2.0 13 / 13 13 / 13

vUSBf [136, 137] payloads (§7.2)
randomized devices 10,000 / 10,000 N/A
sample exploits 13 / 13 N/A

red team round 1 (§7.3)
Windows 7 2 / 2 2 / 2
Linux 4.2.0 3 / 5 5 / 5

red team round 2 (§7.3)
Windows 7 3 / 3 3 / 3
Linux 4.2.0 11 / 16 13 / 16

red team round 3 (§7.3)
Windows 7 3 / 3 3 / 3
Linux 4.2.0 15 / 20 16 / 20

FIGURE 4—Summary of Cinch’s security evaluation.

and control the Facedancer through a Python interface,
using the GoodFET [99] and umap [88] tools.

On the defensive side, we configure Cinch with the sig-
nature, assertion, compliance, and logging Policies (§5).
For the assertion Policy, we install 12 driver-specific con-
figuration restrictions; these fix buggy or nonexistent
checks, identified by the CVEs. For the signature Pol-
icy, we start with an empty signature database and check
whether each attack succeeds; if it does, we craft a signa-
ture based on the payload and associated metadata, then
conduct a rematch.

Results are summarized in Figure 4 (“Known exploits”);
for each exploit, the mechanism that prevented it is listed
in Figure 3. Cinch successfully detects and drops 16 of-
fending payloads with no additional configuration. Two
of the payloads were successful on their first try, but were
blocked in the rematch phase; these payloads targeted
vulnerabilities in the USB Audio class, which we have
not yet included in Cinch’s compliance Policy.

7.2 Fuzzing

Next, we assess the robustness of Cinch’s compliance
Policy (§5.2), via fuzz testing. We limit this exercise to
attacks that target device enumeration, as implemented in
the core and class drivers (§2). On the one hand, this is
not a comprehensive exercise. At the same time, device
enumeration is a common and well-studied source of
vulnerabilities [137], accounting for about half of all USB-
related entries in the CVE database.

In enumerating devices, USB core processes each de-
vice’s USB descriptors: records, generated by the device,
that identify its manufacturer, function, USB version, ca-
pabilities, etc. This process is complex because of the

wide range of possible device configurations. Further-
more, the attack surface includes class driver initialization
functions, since USB core passes descriptors to those func-
tions; Schumilo et al. [137] demonstrate that many OSes
and drivers do not handle device enumeration properly,
especially when the device information is inconsistent or
maliciously crafted.

Method and experiment. On the offensive side, we use
vUSBf [136], a fuzzing tool that generates a random set of
device descriptors and then emulates a device attach event.
We update vUSBf to work with the most recent version of
usbredir (v0.7.1), and we replace the red machine with an
instance of vUSBf (that is, vUSBf communicates directly
with the Gateway). In this setup, vUSBf can emulate
hundreds of randomized devices per minute.

We run two experiments. In the first, we use vUSBf to
emulate 10,000 randomly-generated devices. In the sec-
ond, we use vUSBf to emulate 13 specific configurations
identified by the vUSBf authors (after millions of trials)
that crash some (older) systems.

On the defensive side, we run Cinch, configured with
compliance (§5.2) and logging (§5.5) Policies. If Cinch
allows the emulated device to communicate with the blue
machine, we account this a failure.

We expect that the overwhelming majority of test cases
will not obey the USB specification, and that Cinch’s
compliance Policy will detect and prevent these cases. As
a baseline, we also present the same 10,000 inputs to a
system that is not running Cinch.

Results are summarized in Figure 4 (“vUSBf”). Cinch’s
compliance module prevents all emulated devices from
connecting to the blue machine. The three most commonly
detected violations are: (1) improperly formatted strings,
(2) invalid device classes, and (3) invalid or inconsistent
number of functions. On the one hand, these results could
be argued to be inconclusive because none of these inputs
were successful against the baseline setup without Cinch.
On the other hand, Cinch detected and blocked even the
13 configurations known to crash older systems.

7.3 Red team exercise

Our next set of exercises evaluates Cinch against attacks
that were not known to us a priori. This is intended to
assess Cinch’s effectiveness and to avoid some of the
bias that may arise when developers choose the attack
experiments (as above).

Specifically, we set up a red team that was charged with
developing new USB exploits to compromise blue ma-
chines; this activity included crafting new vulnerabilities
in the blue machine’s OS, which was meant to emulate
the ongoing process of discovering and patching bugs. In
our case, the red team comprised a subset of the authors
who were kept separate from the developers of Cinch and

10

Protocol There are three rounds, each of which has a setup, match and rematch phase.
Setup: Red team chooses an OS (which they can modify arbitrarily) and develops exploits that crash the OS.
Match: Cinch developers configure Cinch to run the OS provided by the red team as the blue machine; both teams
confirm that the exploits crash the OS when Cinch is not present. The Cinch developers deploy Cinch, and the red
team mounts its exploits. The Cinch developers collect traces, and both teams document the outcome of the exercise.
Rematch: Cinch developers get the traces, and are given the opportunity to analyze and react to them. Then the
match phase is rerun.

Attacker
knowledge

Round 1: The red team is given access to a technical report that documents an earlier version of Cinch. This models
an attacker with limited knowledge of Cinch.
Round 2: The red team is given access to a machine that is running Cinch. This models an attacker with black-box
access to Cinch, or an attacker that possesses Cinch’s binaries.
Round 3: The red team is given access to Cinch’s source code. This models an attacker with full knowledge of
Cinch’s logic (but not its configuration).

Developer
ability

Cinch developers freeze Cinch’s code prior to the match phase of round 1. After that, Cinch developers may apply
configuration-only changes: new signatures, etc.

FIGURE 5—Summary of the protocol for the red team exercise. This protocol was codified before the exercise began.

worked independently. Interactions between the red team
and the developers were tightly controlled, following an
evaluation protocol that was documented in advance. Fig-
ure 5 summarizes the protocol.

Summary of red team exploits. The red team devel-
oped 3 exploits for Windows and 20 exploits for Linux
across the three rounds of the protocol. Some exploits
shared the same attack vector but used different payloads.

The Windows exploits attacked a fresh copy of Win-
dows 7; the red team did not install updates because the
vulnerabilities their exploits targeted have been patched.
Since red team members did not have access or visibility
into the Windows USB stack, these exploits were found
primarily through fuzzing, guided by past CVEs.

For Linux, the red team installed a modified version
of kernel 4.2.0 on a fresh copy of Ubuntu 14.04. In par-
ticular, the red team modified a function within HCI that
processes USB request blocks (the data structure repre-
senting a message in the USB subsystem) to trigger a
kernel crash on certain device payloads; introduced a bug
in USB core that causes the kernel to crash whenever a
device with a certain configuration is connected; inserted
a bug in Linux’s HID input subsystem (drivers/input/
input.c) that leads to a null pointer dereference when
it receives a specific sequence of input events; and intro-
duced buggy drivers for a USB printer, camera, audio,
and HID device.

Finally, the red team noticed that the VFAT filesystem
driver in Linux 4.2 does not correctly validate the BIOS
Parameter Block (BPB). While they were unable to ex-
ploit this bug directly, it can result in an invalid filesystem
being mounted. To “enhance” this bug, the red team intro-
duced a null pointer dereference in the BPB handling rou-
tine (fs/fat/inode.c), triggered by a filesystem with
an invalid BPB.

Results are summarized in the last 3 sections of Figure 4.
First round. The red team developed 7 exploits for this

round (2 for Windows and 5 for Linux). In the match
phase, Cinch prevented both Windows exploits and 3
out of the 5 Linux exploits. The Windows exploits were
prevented by Cinch’s architecture rather than by any of its
Policies. Specifically, the red machine runs a Linux kernel;
that kernel is not vulnerable to either of the Windows
exploits and recognizes both connected devices as invalid.
As a result, Cinch does not export these devices in the
first place, protecting the Windows blue machine.

The two Linux exploits that Cinch was unable to pre-
vent occurred at layers that were outside of its semantic
knowledge (VFAT and the input subsystem). Using the
traces—collected with Cinch’s logging module (§5.5)—
the Cinch developers derived signatures. In the rematch
phase, these signatures prevented the exploits.

Second round. In the match phase, Cinch prevented 14
out of 19 attacks, including attacks from the first round.
The rematch phase again relied on signatures; of the re-
maining five exploits, signatures blocked two. The remain-
ing three succeeded because they are polymorphic: they
alter their payload to evade detection.

Third round. In the match phase, Cinch prevented 18
out of 23 attacks, including attacks from prior rounds for
which signatures were available. In the rematch phase,
Cinch was able to defend against an additional exploit
using a signature that prevents a particular sequence of
key presses from triggering a bug in the modified USB
HID driver. The remaining four exploits are polymorphic
and escaped evasion by signature and compliance checks.

These results, while preliminary, suggest that Cinch
is able to prevent several exploits—primarily those that
act as invalid USB devices—without prior configuration;
several more can be prevented after deriving signatures.
The remaining exploits might be prevented with more
intrusive approaches (e.g., sandboxing; §5.3)

11

Tradeoff between security and availability. It is possi-
ble to develop more aggressive signatures to prevent poly-
morphic attacks (for example, using regular expressions);
however, this risks disabling benign devices. To ensure
that our signatures did not cause such false positives, we
established a representative set of benign devices: a USB
flash drive, printer, phone, SSD, keyboard, and mouse.
After each phase of the experiment, we checked that our
signatures did not keep these devices from working.

We found one failure: the signatures for the VFAT ex-
ploit prevented the blue machine from communicating
with any storage device with a VFAT filesystem. We re-
moved the offending signature and accounted that test a
failure (i.e., Cinch did not prevent the exploit), since such
a signature would not be deployable for most users.

7.4 Cinch’s flexibility and extensibility

There are two ways that Cinch can currently be extended:
through new signatures and configurations to enhance ex-
isting Policies (§5), and through new Policies that add new
functionality. We discuss our experience in both cases.

Deriving new signatures. We take a straightforward ap-
proach to deriving signatures for a given attack: we first
log malicious traces, and then replay them in a controlled
debugging environment. This allows us to analyze the
configuration and the attack. We use this information to
derive candidate signatures that are on the order of 10–
15 lines of JSON; deriving a signature for the exploits
in Section 7.3 took roughly 5 to 30 minutes, depending
on: (1) the amount of data the exploit sent, and (2) the
complexity of the subsystem the exploit targeted.

Creating new Policies. Adding a new Policy for Cinch
requires implementing an instance of a Rust trait [2]
(roughly analogous to a Java interface or a C++ abstract
class; this trait is defined in the Gateway library, §6.2)
that processes USB transfers, and adding the new Policy
to Cinch’s configuration file. Based on this configuration,
Cinch’s module subsystem automatically dispatches USB
transfers to configured chains (§6.2). To give an idea of
Policies’ complexity, Cinch’s largest—compliance—is
2500 SLoC while the rest average just 180 SLoC.

7.5 What are the costs of Cinch?

To understand the performance cost associated with us-
ing Cinch, we investigate two microbenchmarks, one for
latency and one for throughput. We use Debian Jessie
(Linux 4.2.0) as the blue machine’s OS.

Is Cinch’s added latency acceptable? To quantify the
delay introduced by the components of Cinch, we connect
the blue machine and another machine on a local network,
using an Ethernet-over-USB adapter. We record the round-
trip time between the two machines (using ping) as we

 0

 2

 4

Dire
ct

Arch
ite

ctu
re

Cinch

Cinch
 +

 T
LS

d
ev

ic
e

to
 t

ar
g
et

 p
in

g
 (

m
s)

FIGURE 6—Round-trip time between the blue machine and
USB device as components of Cinch are progressively added.
Results are averaged over 1000 pings and error bars represent
one standard deviation of the mean.

direct Cinch
USB 2 device (flash drive)
% of CPU cycles 1.8 % 8.1%
memory 9 MB 205 MB
I/O throughput 181.6 Mbps 145.6 Mbps
Encrypted I/O throughput – 35.4 Mbps

USB 3 device (SSD)
% of CPU cycles 5.6% 38.2%
memory 9 MB 207 MB
I/O throughput 3.4 Gbps 2.1 Gbps

FIGURE 7—Resource consumption of Cinch when transferring
a 1 GB file from storage devices to the blue machine. The
“direct” baseline is a setup where devices are connected directly
to the blue machine. Entries are the mean over 20 trials; standard
deviation is less than 5%. We do not report encrypted throughput
for the SSD because the crypto adapter does not support USB 3.

add components of Cinch. Figure 6 shows the results.
For our baseline, we connect the Ethernet-over-USB

adapter directly to a USB port on the host (Fig. 6, “Di-
rect”). We next attach the device to the red machine and
export it to the blue machine through the Tunnel with-
out the Gateway (i.e., the Tunnel runs directly to the
blue machine); this arrangement demonstrates the latency
cost of Cinch’s use of virtualization (Fig. 6, “Architec-
ture”). Next, we add the Gateway to the above configura-
tion, enabling all of Cinch’s Policies (§5), demonstrating
the overhead when the Gateway interposes on all USB
transfers (Fig. 6, “Cinch”). Finally, we place the crypto
adapter (§5.4) in between the Ethernet-over-USB device
and the Gateway (Fig. 6, “Cinch + TLS”).

Each component of Cinch adds moderate delay, with
the full setup (including the crypto adapter) resulting in a
round-trip time of less than 2.5 ms. We believe that this
delay is acceptable for latency-sensitive input devices; as
a comparison, high-performance mechanical keyboards
introduce delays on the order of 5 ms between successive
keystrokes (for debouncing [69, 107]).

12

What is Cinch’s impact on throughput and other re-
sources? We read 1 GB of data from a USB storage
device to the blue machine and measure the throughput,
memory consumption, and CPU load with and without
Cinch; we repeat these experiments 20 times. Storage
devices range in performance, so we experiment with two:
a USB 2 flash drive and a USB 3 SSD.

Figure 7 tabulates the results. For the flash drive, Cinch
achieves 0.8× the baseline’s throughput. There are two
main reasons for this: (1) Cinch copies USB transfers
at several stages in its architecture; and (2) USB 2 flash
drives use exclusively synchronous transfers, meaning
that Cinch’s added latency translates to lower throughput.
For the USB 3 SSD, Cinch achieves 0.6× the baseline’s
throughput. Unlike in USB 2, USB 3 storage devices
use asynchronous transfers and allow multiple in-flight
requests. The primary overhead is thus memory copies.

With regard to CPU and memory use, Cinch has modest
overhead. The memory Cinch consumes, which is primar-
ily allocated to running the red machine, is in line with
the cost of other security applications (e.g., antivirus).

7.6 Summary and critique

Our evaluation shows that Cinch can prevent previously
documented vulnerabilities, fuzzing attempts, and crafted
attacks, even without attack-specific configuration. Aug-
mented with a signature database, its success is even
higher, though none of its Policies are well suited to
defeating polymorphic attacks. In this respect, Cinch is
comparable to related tools in network security: it rules
out certain classes of vulnerabilities and can be adapted
to address specific issues, but it is not perfect. Cinch’s
extensibility also seems reasonable, though our metrics
here are subjective; and the performance impact, while
not negligible, may be a good trade-off.

While this evaluation suggests that Cinch is a step in
the right direction, it is far from definitive. First, we have
likely not explored the full attack space, especially with
regard to attacks on the non-USB portions of the kernel
and on user software. Second, the red team comprised au-
thors rather than disinterested parties, which may bias the
security evaluation. Third, most systems are considered
usable by their implementers; a neutral, non-expert op-
erator may have a different perspective. Finally, Cinch’s
performance impact may be acceptable for a wide range
of devices, but others (e.g., audio and video devices) have
more stringent latency requirements that Cinch might not
meet, especially when using the crypto adapter.

8 Related work
Cinch’s contribution is architectural: most of its mecha-
nisms are adapted from prior works and existing areas
of research. Nevertheless, we are not aware of any other

system that addresses the full space of attacks described
in Section 3.

USB security mechanisms (similar problem, different
mechanisms). One can purchase an adapter that prevents
data interchange on the USB bus, converting the bus into
power lines only [51]. A software version of this protec-
tion is a set of Linux kernel patches known as grsecu-
rity [23], which essentially disable hotplug. This “air gap
ethos”—provide defense by eliminating connectivity—
conflicts with Cinch’s aim of controlled interaction.

Qubes [45] is a distribution of Linux that makes ex-
tensive use of virtualization to create isolated privilege
domains for applications. Qubes can place USB devices
in their own virtual machines (USB VMs). A device’s
transfers are delivered to its USB VM, and hence appli-
cations accessing that device need to live on that VM,
wherein the threats enumerated in Section 3 are reprised.
An exception is that Qubes allows a user to safely share
USB storage devices from a USB VM with other VMs
on the system by exporting them as block devices. Qubes
also supports exporting keyboards and mice from a USB
VM, but its developers warn that doing so risks exposing
the system to attacks [62].

The udev user space daemon on Linux [56, 110] imple-
ments finer-grained policies than Qubes, akin to Cinch’s
containment Policy (§5.3). However, udev can itself be
attacked: udev requires the kernel to interact with every
device that connects, so the device has an opportunity to
attack the host machine before udev makes a policy de-
cision. There are many commercial offerings that enable
access control for USB devices [13, 15, 18, 22, 33, 35,
37, 48, 50, 55]; the issues with these are similar to udev.

USBFILTER [147] enables more precise and expressive
access control policies than udev. Furthermore, these poli-
cies are enforced throughout the lifetime of the interac-
tion rather than only at connection time. In particular, a
user can define rules to dictate which entities (processes
and drivers) can interact with a device (and vice versa).
This is similar to Cinch’s containment Policy (§5.3), but
USBFILTER’s rules support finer-grained statements, for
example, restricting interaction to particular processes.
The tradeoff is that it requires instrumenting the host’s
OS to trace USB transfers all the way to the requesting
processes and drivers. USBSec [149] brings a similar
tradeoff: it extends the USB protocol with mutual au-
thentication between the host and a compatible device
(providing a subset of Cinch’s crypto Policy functionality;
§5.4) but requires changes to the host’s USB stack.

GoodUSB [146] loads devices in a sandboxed environ-
ment and prompts the user to enable functions based on
a device’s claimed identity. This is similar to (but richer
than) Cinch’s containment Policy (§5.3), which could be
enhanced accordingly. GoodUSB’s mechanisms might

13

also be used to bootstrap Cinch’s crypto overlay, as men-
tioned in Section 5.4.

Under UScramBle [124], devices provide a key to the
host that can be used to encrypt further messages; the
message goes upstream and thus is not broadcast across
the bus (§3.3). This prevents eavesdropping for USB 2
and earlier, but unlike Cinch’s crypto overlay (§5.4), it
cannot protect against malicious or compromised hubs
that see the key.

Of the foregoing, only USBFILTER, USBSec, and
GoodUSB address masquerading attacks (with the help of
the user; §5.3); eavesdropping (§3.3) is out of scope for
these systems. In contrast, UScramBle addresses eaves-
dropping but not masquerading.

Device driver isolation and reliability (complemen-
tary problem, overlapping mechanisms). There is a
vast literature on device driver containment and relia-
bility. We will go over some of it, but we can only scratch
the surface (a helpful survey appears in SUD [80]). We
note at the outset that Cinch borrows mechanisms from
many of these works: placing drivers in a separate vir-
tual machine [93, 95, 114], isolating a device with the
IOMMU [105], and leveraging hardware-assisted I/O vir-
tualization [105, 114, 145]. However, the threat and the
resulting architecture are different.

Specifically, work that isolates faulty device drivers [80,
83, 93, 95, 96, 105, 112, 114, 127, 143–145, 152] as-
sumes that hardware obeys its specification (and, with the
exception of SUD [80], that drivers may be buggy, but
not malicious). The same assumption about hardware is
made by work that validates the commands passed to de-
vices [152], eliminates bugs from drivers [130], and syn-
thesizes drivers that are correct by construction [131, 132].
There is work that aims at tolerating hardware faults [108],
but these faults are non-malicious and constrained (for
example, flipped bits) compared to the types of attacks
outlined in Section 3.

As a result of the assumption about faithful hardware,
masquerading and eavesdropping are out of scope; often,
devices that deviate from specification (§3.3) are, too. On
the other hand, Cinch does not provide comprehensive
protection against compromised drivers (though it can
sanitize drivers’ inputs, as outlined in §5.2). For this rea-
son, the works covered above are complementary to—and
in many cases composable with—Cinch.

Secure peripheral interaction (different problem,
overlapping mechanisms). Kells [82], USB Fingerprint-
ing [76, 113], and work by Wang and Stavrou [150] allow
a USB device to establish the identity of a host. The first
two works are defense mechanisms against the host: they
prevent compromised OSes from corrupting devices or
propagating malware; the latter is an attack primitive and

allows a malicious device to compromise hosts selectively.
Cinch’s crypto overlay (§5.4) also allows a device to iden-
tify a host (since connections can be mutually authenti-
cated; §6.3), but the goal is to prevent eavesdropping and
device masquerading.

SeRPEnT [151] and Bumpy [121] provide a safe path-
way from devices, through an untrusted host machine, to
a trusted, remote machine. SeRPEnT provides a similar
abstraction to Cinch’s crypto overlay (§5.4), and its mech-
anism is comparable to Cinch’s crypto adapter. Bumpy’s
goal, however, is remote attestation of user input rather
than prevention of masquerading attacks; its mechanisms
are based on trusted hardware. Both of these works target
wide area networking, while Cinch focuses on intra-host
communication.

Zhou et al. [155] allow trusted applications running
on top of untrusted OSes to securely communicate with
I/O devices. This is done via a trusted hypervisor that
mediates access to hardware by both the trusted and un-
trusted components. Cinch also interacts with peripheral
devices via an untrusted intermediary, but the architecture,
mechanisms, goals, and threat model are all different.

Separation kernels and network security (related
problems, related mechanisms). Two other research ar-
eas deserve special mention. The first is Rushby’s separa-
tion kernel [129], in which the operating system is archi-
tected to make a computer’s components interact as if they
were part of a distributed system (see [81] and [122] for
modern implementations). The foundational observation
of this work—that networks are a useful abstraction for
interposition—is one that we share. However, our goals
and scenario are different. The separation kernel was in-
tended to be a small kernel, with compartmentalized units
that could be formally verified, and it provided separation
through information flow control. In contrast, our scenario
is commodity operating systems, and we are seeking to
apply the conceptual framework of network security.

This brings us to network security itself. Cinch owes
a substantial debt to this field, borrowing as it does con-
cepts like firewalls, deep packet inspection, and virtual
private networks. Moreover, the recent trend toward Net-
work Function Virtualization (NFV) [119, 138] applies
I/O virtualization (as do Cinch and some of the works
cited earlier), but the point in NFV is to make middle-
boxes virtual, for reasons of configurability and cost.

9 Summary and conclusion
Cinch was motivated in large part by the observation
that hardware security is recapitulating the history of net-
work security. Originally, the Internet was a compara-
tively small number of mutually trusting organizations
and users. As a consequence, there was relatively little
focus on support for security within the network infras-

14

tructure. With the explosion of Internet users, spurred by
changing economics, security suddenly became a serious
problem. Similarly, commodity operating systems have
relatively few safeguards against misbehaving hardware,
reflecting a time when peripheral devices could be trusted.
But, with the rapid decline in the barriers to producing
plug and play peripherals, those days have come to an
end—and Cinch aims to be useful in the world ahead.

Although Cinch’s individual mechanisms have ample
precedent in the literature, the architecture and the syn-
thesis is novel, to the best of our knowledge. Moreover,
as the evaluation results make clear, the implementation
is pragmatic and surprisingly powerful. Looking at this
fact, we feel comfortable stating that we have identified a
good abstraction for the problem at hand.

To be clear, we are not saying that Cinch uniquely
enables any one piece of its functionality (§5); rather,
the abstraction makes it natural to develop and deploy
what would require far more work under alternative solu-
tions (§8).

We are also not saying that Cinch is comprehensive.
Indeed, besides the limitations covered earlier (§1, §4.2,
§7.6), some of Cinch’s solutions are effective only with
additional mechanisms. As a key example, providing au-
thentication and privacy with Cinch requires certificates
or pairing, and device modifications. However, certificates
are compatible with the chain of trust inherent in purchas-
ing hardware, pairing is similar to the permissions model
on mobile devices, and the required modifications are
not onerous, as our implementation of the adapter (§6.3)
indicates. As another example, Cinch’s compliance Pol-
icy (§5.2) would be strengthened by formal verification.

Despite the issues, Cinch appears to improve on the
status quo. Of course, it is possible that, if Cinch were
widely deployed, it would only escalate an arms race,
and drive attackers to find ever more esoteric vulnerabili-
ties. On the other hand, security is always about building
higher fences, and the considerations at the heart of our
work could guide the future design of peripheral buses
and drivers.

Acknowledgements

This paper was aided by conversations with Andrew Bau-
mann, Adam Belay, Sergio Benitez, Kevin Butler, Chris-
tian Huitema, Trammell Hudson, Ant Rowstron, Dennis
Shasha, Jeremy Stribling, Ymir Vigfusson, and Junfeng
Yang; and substantially improved by the detailed com-
ments of the SOSP and USENIX Security reviewers. This
work was supported by NSF grants CNS-1055057, CNS-
1423249, and CNS-1514422; AFOSR grant FA9550-15-
1-0302; and ONR grant N00014-14-1-0469.

References
[1] 1394-2008—IEEE standard for a high-performance serial bus.
http://standards.ieee.org/findstds/standard/
1394-2008.html.

[2] Abstraction without overhead: traits in Rust. http:
//blog.rust-lang.org/2015/05/11/traits.html.

[3] Advanced Teensy penetration testing payloads.
https://www.offensive-security.com/offsec/
advanced-teensy-penetration-testing-payloads/.

[4] AnywhereUSB/5 integer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-4459.

[5] Apple macbook tech specs.
http://www.apple.com/macbook/specs/.

[6] BadUSB—now with do-it-yourself instructions.
https://nakedsecurity.sophos.com/2014/10/06/
badusb-now-with-do-it-yourself-instructions/.

[7] BadUSB: Big, bad USB security problems ahead.
http://www.zdnet.com/article/badusb-big-bad-usb-
security-problems-ahead/.

[8] BadUSB: what you can do about undetectable malware on a
flash drive.
http://www.pcworld.com/article/2840905/badusb-
what-you-can-do-about-undetectable-malware-on-
a-flash-drive.html.

[9] BeagleBone Black. http://beagleboard.org/BLACK.
[10] Chromebook pixel.

http://www.google.com/chromebook/pixel/.
[11] ClamAV. http://www.clamav.net/.
[12] Close access SIGADS.

https://www.documentcloud.org/documents/807030-
ambassade.html#document/p1.

[13] CoCoSys Endpoint Protector.
http://www.endpointprotector.com/products/
endpoint_protector.

[14] Common vulnerabilities and exposures.
https://cve.mitre.org.

[15] Comodo Endpoint Security Manager. https:
//www.comodo.com/business-enterprise/endpoint-
protection/endpoint-security-manager.php.

[16] COTTONMOUTH-I. https://nsa.gov1.info/dni/nsa-
ant-catalog/usb/index.html#COTTONMOUTH-I.

[17] COTTONMOUTH-II. https://nsa.gov1.info/dni/nsa-
ant-catalog/usb/index.html#COTTONMOUTH-II.

[18] DeviceLock Data Loss Prevention Suite.
http://www.devicelock.com/products/.

[19] DLL planting remote code execution vulnerability.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-0096.

[20] Equation group: Questions and answers.
https://securelist.com/files/2015/02/Equation_
group_questions_and_answers.pdf.

[21] Equation: The Death Star of Malware Galaxy.
https://securelist.com/blog/research/68750/
equation-the-death-star-of-malware-galaxy/.

[22] GFI EndpointSecurity.
http://www.gfi.com/products-and-solutions/
network-security-solutions/gfi-endpointsecurity.

[23] grsecurity. https://grsecurity.net.
[24] Hackers pierce network with jerry-rigged mouse.

http://www.theregister.co.uk/2011/06/27/mission_
impossible_mouse_attack/.

[25] Hubs—BadUSB exposure. https:
//opensource.srlabs.de/projects/badusb/wiki/Hubs.

[26] Inception. https://github.com/carmaa/inception.
[27] Inside TAO: Documents reveal top NSA hacking unit.

http://www.spiegel.de/international/world/the-
nsa-uses-powerful-toolbox-in-effort-to-spy-on-

15

http://standards.ieee.org/findstds/standard/1394-2008.html
http://standards.ieee.org/findstds/standard/1394-2008.html
http://blog.rust-lang.org/2015/05/11/traits.html
http://blog.rust-lang.org/2015/05/11/traits.html
https://www.offensive-security.com/offsec/advanced-teensy-penetration-testing-payloads/
https://www.offensive-security.com/offsec/advanced-teensy-penetration-testing-payloads/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4459
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4459
http://www.apple.com/macbook/specs/
https://nakedsecurity.sophos.com/2014/10/06/badusb-now-with-do-it-yourself-instructions/
https://nakedsecurity.sophos.com/2014/10/06/badusb-now-with-do-it-yourself-instructions/
http://www.zdnet.com/article/badusb-big-bad-usb-security-problems-ahead/
http://www.zdnet.com/article/badusb-big-bad-usb-security-problems-ahead/
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://beagleboard.org/BLACK
http://www.google.com/chromebook/pixel/
http://www.clamav.net/
https://www.documentcloud.org/documents/807030-ambassade.html#document/p1
https://www.documentcloud.org/documents/807030-ambassade.html#document/p1
http://www.endpointprotector.com/products/endpoint_protector
http://www.endpointprotector.com/products/endpoint_protector
https://cve.mitre.org
https://www.comodo.com/business-enterprise/endpoint-protection/endpoint-security-manager.php
https://www.comodo.com/business-enterprise/endpoint-protection/endpoint-security-manager.php
https://www.comodo.com/business-enterprise/endpoint-protection/endpoint-security-manager.php
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-I
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-I
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-II
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-II
http://www.devicelock.com/products/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0096
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0096
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/
https://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/
http://www.gfi.com/products-and-solutions/network-security-solutions/gfi-endpointsecurity
http://www.gfi.com/products-and-solutions/network-security-solutions/gfi-endpointsecurity
https://grsecurity.net
http://www.theregister.co.uk/2011/06/27/mission_impossible_mouse_attack/
http://www.theregister.co.uk/2011/06/27/mission_impossible_mouse_attack/
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://github.com/carmaa/inception
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html

global-networks-a-940969.html.
[28] Linux audio driver dereferences null pointer under invalid

device. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2184.

[29] Linux default configuration does not warn user before enabling
HID over USB. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0640.

[30] Linux serial driver dereferences null pointer under device with
no bulk-in or interrupt-in endpoints.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2782.

[31] Linux hid-picolcd_core.c buffer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3186.

[32] Linux report_fixup HID functions out-of-bounds write.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3184.

[33] Lumension Device Control.
https://www.lumension.com/device-control-
software/usb-security-protection.aspx.

[34] MatrixSSL open source embedded SSL and TLS.
http://www.matrixssl.org.

[35] McAfee Complete Data Protection.
http://www.mcafee.com/us/products/complete-data-
protection.aspx.

[36] NanoSSL—an SSL library for embedded devices.
http://www.mocana.com/iot-security/nanossl.

[37] Novell ZENworks Endpoint Security Management.
https://www.novell.com/products/zenworks/
endpointsecuritymanagement/.

[38] NSA reportedly installing spyware on US-made hardware.
http://www.cnet.com/news/nsa-reportedly-
installing-spyware-on-us-made-hardware/.

[39] Only half of USB devices have an unpatchable flaw, but no one
knows which half.
http://www.wired.com/2014/11/badusb-only-
affects-half-of-usbs/.

[40] OpenSSL. https://www.openssl.org.
[41] OS X does not warn user before enabling HID over USB.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0639.

[42] OS X USB hub descriptor memory corruption.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-3723.

[43] Phision 2251-03 (2303) custom firmware & existing firmware
patches (BadUSB).
https://github.com/adamcaudill/Psychson.

[44] QEMU usb_host_handle_control function buffer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-0297.

[45] Qubes OS project. https://www.qubes-os.org.
[46] The Rust programming language.

https://www.rust-lang.org/.
[47] Snort.Org. https://www.snort.org/.
[48] Sophos Endpoint Security and Control.

http://www.sophos.com/en-
us/support/documentation/endpoint-security-and-
control-for-windows.aspx.

[49] Stunnel. http://www.stunnel.org.
[50] Symantec Endpoint Protection.

http://www.symantec.com/endpoint-protection/.
[51] SyncStop. http://syncstop.com.
[52] Teensy USB development board.

https://www.pjrc.com/teensy.
[53] This thumbdrive hacks computers.

http://arstechnica.com/security/2014/07/this-
thumbdrive-hacks-computers-badusb-exploit-makes-
devices-turn-evil/.

[54] Thunderbolt technology.
http://www.intel.com/content/dam/doc/technology-
brief/thunderbolt-technology-brief.pdf.

[55] Trend Micro Enterprise Data Protection.
http://www.trendmicro.com/us/enterprise/data-
protection/endpoint/.

[56] udev. http://www.freedesktop.org/software/systemd/
man/udev.html.

[57] Universal Serial Bus revision 2.0 specification.
http://www.usb.org/developers/docs/usb20_docs/
usb_20_031815.zip.

[58] Universal Serial Bus revision 3.1 specification. http:
//www.usb.org/developers/docs/usb_31_031815.zip.

[59] USB device class specifications. http:
//www.usb.org/developers/docs/devclass_docs/.

[60] USB over network. http://www.usb-over-network.com.
[61] USB Rubber Ducky. http://usbrubberducky.com.
[62] Using and Managing USB devices. Qubes OS Project.

https://www.qubes-os.org/doc/usb/.
[63] Windows crafted .LNK or .PIF arbitrary code execution.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2568.

[64] Windows disk partition driver elevation of privilege
vulnerability. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-4115.

[65] Windows does not warn user before enabling HID over USB.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0638.

[66] wolfSSL. http://www.yassl.com.
[67] Bluetooth user interface flow diagrams for Bluetooth secure

simple pairing devices. Technical report, Bluetooth Usability
Expert Group, Sept. 2007.

[68] AMD-V nested paging. Technical report, AMD, July 2008.
[69] Cherry MX series keyswitch, 2014.

http://cherrycorp.com/product/mx-series/.
[70] Intel virtualization technology for directed I/O, Oct. 2014.

http://www.intel.com/content/www./us/en/embeded/
technology/virtualization/vt-directed-io-
spec.html.

[71] AMD I/O virtualization technology (IOMMU) specification,
Feb. 2015.
http://support.amd.com/TechDocs/48882_IOMMU.pdf.

[72] TURNIPSCHOOL - an open source reimagining of
COTTONMOUTH-I, 2015. https://github.com/
mossmann/cc11xx/tree/master/turnipschool.

[73] usbredir, 2015. https://github.com/SPICE/usbredir.
[74] C. Arthur. China’s Huawei and ZTE pose national security

threat, says US committee.
http://www.theguardian.com/technology/2012/oct/
08/china-huawei-zte-security-threat.

[75] D. Barrall and D. Dewey. “Plug and Root,” the USB key to the
kingdom. In Proceedings of the Black Hat USA Conference, July
2005.

[76] A. Bates, R. Leonard, H. Pruse, D. Lowd, and K. R. B. Butler.
Leveraging USB to establish host identity using commodity
devices. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), Feb. 2014.

[77] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis. Dune: Safe, user–level access to privileged CPU
features. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Oct.
2012.

[78] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A protected dataplane operating system for
high throughput and low latency. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 2014.

[79] D. Boteanu and K. Fowler. Bypassing self-encrypting drives

16

http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0640
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0640
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3186
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3186
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3184
https://www.lumension.com/device-control-software/usb-security-protection.aspx
https://www.lumension.com/device-control-software/usb-security-protection.aspx
http://www.matrixssl.org
http://www.mcafee.com/us/products/complete-data-protection.aspx
http://www.mcafee.com/us/products/complete-data-protection.aspx
http://www.mocana.com/iot-security/nanossl
https://www.novell.com/products/zenworks/endpointsecuritymanagement/
https://www.novell.com/products/zenworks/endpointsecuritymanagement/
http://www.cnet.com/news/nsa-reportedly-installing-spyware-on-us-made-hardware/
http://www.cnet.com/news/nsa-reportedly-installing-spyware-on-us-made-hardware/
http://www.wired.com/2014/11/badusb-only-affects-half-of-usbs/
http://www.wired.com/2014/11/badusb-only-affects-half-of-usbs/
https://www.openssl.org
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0639
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0639
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723
https://github.com/adamcaudill/Psychson
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0297
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0297
https://www.qubes-os.org
https://www.rust-lang.org/
https://www.snort.org/
http://www.sophos.com/en-us/support/documentation/endpoint-security-and-control-for-windows.aspx
http://www.sophos.com/en-us/support/documentation/endpoint-security-and-control-for-windows.aspx
http://www.sophos.com/en-us/support/documentation/endpoint-security-and-control-for-windows.aspx
http://www.stunnel.org
http://www.symantec.com/endpoint-protection/
http://syncstop.com
https://www.pjrc.com/teensy
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://www.intel.com/content/dam/doc/technology-brief/thunderbolt-technology-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/thunderbolt-technology-brief.pdf
http://www.trendmicro.com/us/enterprise/data-protection/endpoint/
http://www.trendmicro.com/us/enterprise/data-protection/endpoint/
http://www.freedesktop.org/software/systemd/man/udev.html
http://www.freedesktop.org/software/systemd/man/udev.html
http://www.usb.org/developers/docs/usb20_docs/usb_20_031815.zip
http://www.usb.org/developers/docs/usb20_docs/usb_20_031815.zip
http://www.usb.org/developers/docs/usb_31_031815.zip
http://www.usb.org/developers/docs/usb_31_031815.zip
http://www.usb.org/developers/docs/devclass_docs/
http://www.usb.org/developers/docs/devclass_docs/
http://www.usb-over-network.com
http://usbrubberducky.com
https://www.qubes-os.org/doc/usb/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4115
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4115
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0638
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0638
http://www.yassl.com
http://cherrycorp.com/product/mx-series/
http://www.intel.com/content/www./us/en/embeded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www./us/en/embeded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www./us/en/embeded/technology/virtualization/vt-directed-io-spec.html
http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://github.com/mossmann/cc11xx/tree/master/turnipschool
https://github.com/mossmann/cc11xx/tree/master/turnipschool
https://github.com/SPICE/usbredir
http://www.theguardian.com/technology/2012/oct/08/china-huawei-zte-security-threat
http://www.theguardian.com/technology/2012/oct/08/china-huawei-zte-security-threat

(SED) in enterprise environments. In Proceedings of the Black
Hat Europe Conference, Nov. 2015.

[80] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the USENIX Annual
Technical Conference (ATC), June 2010.

[81] R. Buerki and A.-K. Rueegsegger. Muen–an x86/64 separation
kernel for high assurance. Technical report, University of
Applied Sciences Rapperswil (HSR), Switzerland, Aug. 2013.
http://muen.codelabs.ch/muen-report.pdf.

[82] K. R. B. Butler, S. E. McLaughlin, and P. D. McDaniel. Kells: A
protection framework for portable data. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC),
Dec. 2010.

[83] S. Butt, V. Ganapathy, M. M. Swift, and C.-C. Chang. Protecting
commodity operating system kernels from vulnerable device
drivers. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), Dec. 2009.

[84] A. Caudill. Making BadUSB work for you.
https://adamcaudill.com/2014/10/02/making-
badusb-work-for-you-derbycon/.

[85] A. Crenshaw. Plug and Prey: Malicious USB devices. In
Proceedings of ShmooCon, Jan. 2011.

[86] Dark Purple. USB killer.
http://kukuruku.co/hub/diy/usb-killer, 2015.

[87] A. Davis. Lessons learned from 50 bugs: Common USB driver
vulnerabilities. Technical report, NCC Group, Jan. 2013.

[88] A. Davis. umap: the USB host security assessment tool, 2014.
https://github.com/nccgroup/umap.

[89] A. Davis. USB attacks need physical access right? Not any
more. . . . In Proceedings of the Black Hat Asia Conference, Mar.
2014.

[90] T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol version 1.2, Aug. 2008. RFC 5246.

[91] C. Doctorow. Dropped infected USB in the company parking lot
as a way of getting malware onto the company network.
http://boingboing.net/2012/07/10/dropped-
infected-usb-in-the-co.html.

[92] R. Dominguez Vega. USB attacks: Fun with Plug and 0wn. In
Proceedings of the DEF CON Hacking Conference, Aug. 2009.

[93] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual environments
for unreliable extensions. Technical Report MSR-TR-05-82,
Microsoft Resesearch, June 2005.

[94] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet dossier.
http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_stuxnet_dossier.pdf.

[95] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. In Proceedings of the Workshop on Operating
System and Architectural Support for the On-Demand IT
Infrastructure, Oct. 2004.

[96] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift,
and S. Jha. The design and implementation of microdrivers. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Mar. 2008.

[97] D. Goodin. Photos of an NSA “upgrade” factory show Cisco
router getting implant. http://arstechnica.com/tech-
policy/2014/05/photos-of-an-nsa-upgrade-factory-
show-cisco-router-getting-implant/.

[98] T. Goodspeed. Facedancer21. http:
//goodfet.sourceforge.net/hardware/facedancer21/.

[99] T. Goodspeed. GoodFET.
https://github.com/travisgoodspeed/goodfet.

[100] T. Goodspeed. Emulating USB devices with Python, July 2012.
http://travisgoodspeed.blogspot.com/2012/07/
emulating-usb-devices-with-python.html.

[101] G. Greenwald. How the NSA tampers with US-made internet

routers. http://www.theguardian.com/books/2014/may/
12/glenn-greenwald-nsa-tampers-us-internet-
routers-snowden.

[102] J. A. Halderman and E. W. Felten. Lessons from the Sony CD
DRM episode. In Proceedings of the USENIX Security
Symposium, Aug. 2006.

[103] M. Handley, V. Paxson, and C. Kreibich. Network intrusion
detection: Evasion, traffic normalization, and end-to-end
protocol semantics. In Proceedings of the USENIX Security
Symposium, Aug. 2001.

[104] F. Hao, M. Kodialam, T. V. Lakshman, and K. P. N. Puttaswamy.
Protecting cloud data using dynamic inline fingerprint checks.
In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), Apr. 2013.

[105] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Fault isolation for device drivers. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), June 2009.

[106] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara.
USB/IP—a peripheral bus extension for device sharing over IP
network. In Proceedings of the USENIX Annual Technical
Conference (ATC), Apr. 2005.

[107] P. Horowitz and W. Hill. The Art of Electronics, chapter 9,
Digital Meets Analog: Switch Bounce, pages 576–577.
Cambridge University Press, 2nd edition, 1989.

[108] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2009.

[109] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems (TOCS), 18(3), Aug. 2000.

[110] G. Kroah-Hartman. udev – a userspace implementation of devfs.
In Proceedings of the Ottawa Linux Symposium, July 2003.

[111] B. Lampson. Accountability and freedom.
http://research.microsoft.com/en-
us/um/people/blampson/slides/
accountabilityandfreedomabstract.htm, 2005.

[112] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and G. Heiser.
User-level device drivers: Achieved performance. Journal of
Computer Science and Technology, 20, 2005.

[113] L. Letaw, J. Pletcher, and K. Butler. Host identification via usb
fingerprinting. In Proceedings of the IEEE International
Workshop on Systematic Approaches to Digital Forensic
Engineering (SADFE), May 2011.

[114] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Dec.
2004.

[115] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and
D. Ghosal. SIDD: A framework for detecting sensitive data
exfiltration by an insider attack. In Proceedings of the Hawaii
International Conference on System Sciences, Jan. 2009.

[116] F. Lone Sang, V. Nicomette, and Y. Deswarte. I/O attacks in
Intel PC-based architectures and countermeasures. In
Proceedings of the SysSec Workshop, July 2011.

[117] K. S. Long. Catching the cyber spy: ARL’s interrogator.
Technical Report ADA432198, Army Research Laboratory, Dec.
2004.

[118] A. Mamiit. How bad is BadUSB? security experts say there is
no quick fix. http://www.techtimes.com/articles/
17078/20141004/how-bad-is-badusb-security-
experts-say-there-is-no-quick-fix.htm.

[119] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the art of network
function virtualization. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation

17

http://muen.codelabs.ch/muen-report.pdf
https://adamcaudill.com/2014/10/02/making-badusb-work-for-you-derbycon/
https://adamcaudill.com/2014/10/02/making-badusb-work-for-you-derbycon/
http://kukuruku.co/hub/diy/usb-killer
https://github.com/nccgroup/umap
http://boingboing.net/2012/07/10/dropped-infected-usb-in-the-co.html
http://boingboing.net/2012/07/10/dropped-infected-usb-in-the-co.html
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
http://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
http://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/travisgoodspeed/goodfet
http://travisgoodspeed.blogspot.com/2012/07/emulating-usb-devices-with-python.html
http://travisgoodspeed.blogspot.com/2012/07/emulating-usb-devices-with-python.html
http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden
http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden
http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm

(NSDI), Apr. 2014.
[120] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham. Mouse

trap: Exploiting firmware updates in USB peripherals. In
Proceedings of the USENIX Workshop on Offensive
Technologies, Aug. 2014.

[121] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage for
passwords and other sensitive data. In Proceedings of the
Network and Distributed System Security Symposium (NDSS),
Feb. 2009.

[122] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general
purpose to a proof of information flow enforcement. In
Proceedings of the IEEE Symposium on Security and Privacy,
May 2013.

[123] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel
virtualization technology: Hardware support for efficient
processor virtualization. Intel Technology Journal, 10(3), 2006.

[124] M. Neugschwandtner, A. Beitler, and A. Kurmus. A transparent
defense against USB eavesdropping attacks. In Proceedings of
the European Workshop on System Security (EUROSEC), Apr.
2016.

[125] K. Nohl and J. Lell. BadUSB—on accessories that turn evil. In
Proceedings of the Black Hat USA Conference, Aug. 2014.

[126] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2014.

[127] M. J. Renzelmann and M. M. Swift. Decaf: Moving device
drivers to a modern language. In Proceedings of the USENIX
Annual Technical Conference (ATC), June 2009.

[128] M. Rushanan and S. Checkoway. Run-DMA. In Proceedings of
the USENIX Workshop on Offensive Technologies, Aug. 2015.

[129] J. Rushby. The design and verification of secure systems. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1981.

[130] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming
device drivers. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Mar. 2009.

[131] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser.
Automatic device driver synthesis with Termite. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2009.

[132] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath,
M. Stumm, and M. Vij. User-guided device driver synthesis. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2014.

[133] K. Scarfone and P. Mell. Guide to intrusion detection and
prevention systems (IDPS). Technical report, NIST, Feb. 2007.

[134] N. Schear, C. Kintanna, Q. Zhang, and A. Vahdat. Glavlit:
Preventing exfiltration at wire speed. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), Nov. 2006.

[135] B. Schneier. Yet another “people plug in strange USB sticks”
story. https://www.schneier.com/blog/archives/
2011/06/yet_another_peo.html.

[136] S. Schumilo. virtual USB fuzzer, 2015.
https://github.com/schumilo/vUSBf/.

[137] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust your
USB! How to find bugs in USB device drivers. In Proceedings
of the Black Hat Europe Conference, Oct. 2014.

[138] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and implementation of a consolidated middlebox architecture. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Apr. 2012.

[139] R. Sevinsky. Funderbolt: Adventures in Thunderbolt DMA
attacks. In Proceedings of the Black Hat USA Conference, July
2013.

[140] G. Silowash and T. Lewellen. Insider threat control: Using

universal serial bus (USB) device auditing to detect possible data
exfiltration by malicious insiders, 2013.
CMU/SEI-2013-TN-003,
http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=35427.

[141] S. Stecklow. U.S. nuclear lab removes Chinese tech over
security fears.
http://www.reuters.com/article/2013/01/07/us-
huawei-alamos-idUSBRE90608B20130107.

[142] P. Stewin and I. Bystrov. Understanding DMA malware. In
Proceedings of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), July 2012.

[143] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. ACM Transactions on Computer
Systems (TOCS), 24(4), 2006.

[144] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. ACM Transactions
on Computer Systems (TOCS), 23(1), 2005.

[145] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M.
David, and R. H. Campbell. iKernel: Isolating buggy and
malicious device drivers using hardware virtualization support.
In Proceedings of the IEEE International Symposium on
Dependable, Autonomic and Secure Computing (DASC), Sept.
2007.

[146] D. Tian, A. Bates, and K. Butler. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), Dec.
2015.

[147] J. Tian, N. Scaife, A. Bates, K. R. B. Butler, and P. Traynor.
Making USB great again with USBFILTER. In Proceedings of
the USENIX Security Symposium, Aug. 2016.

[148] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey. Users really do plug in USB drives
they find. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2016.

[149] Z. Wang, R. Johnson, and A. Stavrou. Attestation &
authentication for USB communications. In Proceedings of the
IEEE International Conference on Software Security and
Reliability Companion, June 2012.

[150] Z. Wang and A. Stavrou. Exploiting smart-phone USB
connectivity for fun and profit. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), Dec.
2010.

[151] D. Weinstein, X. Kovah, and S. Dyer. SeRPEnT: Secure remote
peripheral encryption tunnel. Technical Report MP120013, The
MITRE Corporation, 2012.

[152] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference validation
mechanism. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Dec.
2008.

[153] R. Wojtczuk. Subverting the Xen hypervisor. In Proceedings of
the Black Hat USA Conference, Aug. 2008.

[154] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. On the
DMA mapping problem in direct device assignment. In
Proceedings of the ACM International Systems and Storage
Conference (SYSTOR), May 2010.

[155] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy
kernels for on-demand isolated I/O. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2014.

18

https://www.schneier.com/blog/archives/2011/06/yet_another_peo.html
https://www.schneier.com/blog/archives/2011/06/yet_another_peo.html
https://github.com/schumilo/vUSBf/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=35427
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=35427
http://www.reuters.com/article/2013/01/07/us-huawei-alamos-idUSBRE90608B20130107
http://www.reuters.com/article/2013/01/07/us-huawei-alamos-idUSBRE90608B20130107

	1 Introduction
	2 Background: Universal Serial Bus (USB)
	3 Causes, threat model, and taxonomy
	3.1 Why is USB so vulnerable?
	3.2 Threat model
	3.3 A taxonomy of USB attacks

	4 Architecture and rationale
	4.1 Instantiation
	4.2 Discussion

	5 Building defenses with Cinch
	5.1 Detecting attacks by signature
	5.2 Sanitizing inputs
	5.3 Containing devices
	5.4 Encryption and authentication
	5.5 Logging and auditing
	5.6 Extensions

	6 Implementation
	6.1 Components and communication paths
	6.2 Gateway details
	6.3 Proof-of-concept USB crypto adapter

	7 Evaluation
	7.1 Known-signature attacks
	7.2 Fuzzing
	7.3 Red team exercise
	7.4 Cinch's flexibility and extensibility
	7.5 What are the costs of Cinch?
	7.6 Summary and critique

	8 Related work
	9 Summary and conclusion

