
Cryptography: An Introduction

(3rd Edition)

Nigel Smart

Sebastian Angel
Chapter 10 (second half) 



160 10. HASH FUNCTIONS AND MESSAGE AUTHENTICATION CODES

4. Message Authentication Codes

Given a message and its hash code, as output by a cryptographic hash function, ensures that
data has not been tampered with between the execution of the hash function and its verification,
by recomputing the hash. However, using a hash function in this way requires the hash code itself
to be protected in some way, by for example a digital signature, as otherwise the hash code itself
could be tampered with.

To avoid this problem one can use a form of keyed hash function called a message authentication
code, or MAC. This is a symmetric key algorithm in that the person creating the code and the
person verifying it both require the knowledge of a shared secret.

Suppose two parties, who share a secret key, wish to ensure that data transmitted between
them has not been tampered with. They can then use the shared secret key and a keyed algorithm
to produce a check-value, or MAC, which is sent with the data. In symbols we compute

code = MACk(m)

where
• MAC is the check function,
• k is the secret key,
• m is the message.

Note we do not assume that the message is secret, we are trying to protect data integrity and not
confidentiality. If we wish our message to remain confidential then we should encrypt it before
applying the MAC. After performing the encryption and computing the MAC, the user transmits

ek1(m)∥MACk2 (ek1(m)) .

This is a form of encryption called a data encapsulation mechanism, or DEM for short. Note, that
different keys are used for the encryption and the MAC part of the message and that the MAC is
applied to the ciphertext and not the message.

Before we proceed on how to construct MAC functions it is worth pausing to think about what
security properties we require. We would like that only people who know the shared secret are able
to both produce new MACs or verify existing MACs. In particular it should be hard given a MAC
on a message to produce a MAC on a new message.

4.1. Producing MACs from hash functions. A collision-free cryptographic hash function
can also be used as the basis of a MAC. The first idea one comes up with to construct such a MAC
is to concatenate the key with the message and then apply the hash function. For example

MACk(M ) = h(k∥M ).

However, this is not a good idea since almost all hash functions are created using methods like
the Merkle–Damg̊ard construction. This allows us to attack such a MAC as follows: We assume
that first that the non-length strengthed Merkle–Damg̊ard construction is used with compression
function f . Suppose one obtains the MAC c1 on the t block message m1

c1 = MACk(m1) = h(k∥m1)

We can then, without knowledge of k compute the MAC c2 on the t + 1 block message m1∥m2 for
any m2 of one block in length, via

c2 = MACk(m1∥m2)
= f(c1∥m2).

Clearly this attack can be extended to a appending an m2 of arbitrary length. Hence, we can also
apply it to the length strengthed version. If we let m1 denote a t block message and let b denote



4. MESSAGE AUTHENTICATION CODES 161

the block which encodes the bit length of m1 and we let m2 denote an arbitrary new block, then
from the MAC of the message m1 one can obtain the MAC of the message

m1∥b∥m2.

Having worked out that prepending a key to a message does not give a secure MAC, one might
be led to try appending the key after the message as in

MACk(M ) = h(M∥k).

Again we now can make use of the Merkle–Damg̊ard construction to produce an attack. We first,
without knowledge of k, find via a birthday attack on the hash function h two equal length messages
m1 and m2 which hash to the same values:

h(m1) = h(m2).

We now try to obtain the legitimate MAC c1 on the message m1. From, this we can deduce the
MAC on the message m2 via

MACk(m2) = h(m2∥k)
= f (h(m2)∥k)
= f (h(m1)∥k)
= h(m1∥k)
= MACk(m1)
= c1.

assuming k is a single block in length and the non-length strengthened version is used. Both of
these assumptions can be relaxed, the details of which we leave to the reader.

To produce a secure MAC from a hash function one needs to be a little more clever. A MAC,
called HMAC, occurring in a number of standards documents works as follows:

HMAC = h(k∥p1∥h(k∥p2∥M )),

where p1 and p2 are strings used to pad out the input to the hash function to a full block.

4.2. Producing MACs from block ciphers. Apart from ensuring the confidentiality of
messages, block ciphers can also be used to protect the integrity of data. There are various types
of MAC schemes based on block ciphers, but the best known and most widely used by far are the
CBC-MACs. These are generated by a block cipher in CBC Mode. CBC-MACs are the subject of
various international standards dating back to the early 1980s. These early standards specify the
use of DES in CBC mode to produce a MAC, although one could really use any block cipher in
place of DES.

Using an n-bit block cipher to give an m-bit MAC, where m ≤ n, is done as follows:
• The data is padded to form a series of n-bit blocks.
• The blocks are encrypted using the block cipher in CBC Mode.
• Take the final block as the MAC, after an optional postprocessing stage and truncation

(if m < n).
Hence, if the n-bit data blocks are

m1,m2, . . . ,mq



162 10. HASH FUNCTIONS AND MESSAGE AUTHENTICATION CODES

then the MAC is computed by first setting I1 = m1 and O1 = ek(I1) and then performing the
following for i = 2, 3, . . . , q

Ii = mi ⊕ Oi−1,

Oi = ek(Ii).

The final value Oq is then subject to an optional processing stage. The result is then truncated to
m bits to give the final MAC. This is all summarized in Fig. 1.

Figure 1. CBC-MAC: Flow diagram

m1

❄

ek

✲

m2

❄
⊕
❄

ek

✲

mq

❄
⊕
❄

ek

❄

Optional

❄
MAC

Just as with hash functions one needs to worry about how one pads the message before applying
the CBC-MAC. The three main padding methods proposed in the standards, are as follows, and
are equivalent to those already considered for hash functions:

• Method 1: Add as many zeros as necessary to make a whole number of blocks. This
method has a number of problems associated to it as it does not allow the detection of the
addition or deletion of trailing zeros, unless the message length is known.

• Method 2: Add a single one to the message followed by as many zeros as necessary to
make a whole number of blocks. The addition of the extra bit is used to signal the end of
the message, in case the message ends with a string of zeros.

• Method 3: As method one but also add an extra block containing the length of the
unpadded message.

Before we look at the “optional” post-processing steps let us first see what happens if no post-
processing occurs. We first look at an attack which uses padding method one. Suppose we have a
MAC M on a message

m1,m2, . . . ,mq,

consisting of a whole number of blocks. Then one can the MAC M is also the MAC of the double
length message

m1,m2, . . . ,mq,M ⊕ m1,m2,m3, . . . ,mq.

To see this notice that the input to the (q + 1)’st block cipher envocation is equal to the value of
the MAC on the original message, namely M , xor’d with the (q + 1)’st block of the new message,
namely M ⊕ m1. Thus the input to the (q + 1)’st cipher envocation is equalk to m1, and so the
MAC on the double length message is also equal to M .

One could suspect that if you used padding method three above then attacks would be impos-
sible. Let b denote the block length of the cipher and let P(n) denote the encoding within a block



Chapter Summary 163

of the number n. To MAC a single block message m1 one then computes

M1 = ek (ek(m1) ⊕ P(b)) .

Suppose one obtains the MAC’s M1 and M2 on the single block messages m1 and m2. Then one
requests the MAC on the three block message

m1, P(b),m3

for some new block m3. Suppose the recieved MAC is then equal to M3, i.e.

M3 = ek (ek (ek (ek(m1) ⊕ P(b)) ⊕ m3) ⊕ P(3b)) .

Now also consider the MAC on the three block message

m2, P(b),m3 ⊕ M1 ⊕ M2.

This MAC is equal to M ′
3, where

M ′
3 = ek (ek (ek (ek(m2) ⊕ P(b)) ⊕ m3 ⊕ M1 ⊕ M2) ⊕ P(3b))

= ek (ek (ek (ek(m2) ⊕ P(b)) ⊕ m3 ⊕ ek (ek(m1) ⊕ P(b)) ⊕ ek (ek(m2) ⊕ P(b)))
⊕ P(3b))

= ek (ek (m3 ⊕ ek (ek(m1) ⊕ P(b))) ⊕ P(3b))
= ek (ek (ek (ek(m1) ⊕ P(b)) ⊕ m3) ⊕ P(3b))
= M3.

Hence, we see that on their own the non-trivial padding methods do not protect against MAC
forgery attacks. This is one of the reasons for introducing the post processing steps. There are two
popular post-processing steps, designed to make it more difficult for the cryptanalyst to perform
an exhaustive key search and to protect against attacks such as the ones explained above:

(1) Choose a key k1 and compute

Oq = ek (dk1(Oq)) .

(2) Choose a key k1 and compute

Oq = ek1(Oq).

Both of these post-processing steps were invented when DES was the dominant cipher, and in such
a situation the first of these is equivalent to processing the final block of the message using the
3DES algorithm.

Chapter Summary

• Hash functions are required which are both preimage, collision and second-preimage resis-
tant.

• Due to the birthday paradox the output of the hash function should be at least twice the
size of what one believes to be the limit of the computational ability of the attacker.

• More hash functions are iterative in nature, although most of the currently deployed ones
have recently shown to be weaker than expected.

• A message authentication code is in some sense a keyed hash function.
• MACs can be created out of either block ciphers or hash functions.



164 10. HASH FUNCTIONS AND MESSAGE AUTHENTICATION CODES

Further Reading

A detailed description of both SHA-1 and the SHA-2 algorithms can be found in the FIPS
standard below, this includes a set of test vectors as well. The recent work on the analysis of
SHA-1, and references to the earlier attacks on MD4 and MD5 can be found in the papers og Wang
et. al., of which we list only one below.

FIPS PUB 180-2, Secure Hash Standard (including SHA-1, SHA-256, SHA-384, and SHA-512).
NIST, 2005.

X. Wang, Y.L. Yin and H. Yu. Finding Collisions in the Full SHA-1 In Advances in Cryptology –
CRYPTO 2005, Springer-Verlag LNCS 3621, pp 17-36, 2005.


