
A Graduate Course in Applied Cryptography

Dan Boneh and Victor Shoup

Version 0.4, September 2017

Sebastian Angel
Chapter 2.4—Edited for CIS 331 (cut short and added a note)�

2.3.5.1 A generalization

As it turns out, the above situation is quite generic. Although we do not need it in this chapter, for
future reference we indicate here how the above situation generalizes. There will be a number of
situations we shall encounter where some particular security property, call it “X,” for some crypto-
graphic system, call it “S,” can be defined in terms of an attack game involving two experiments,
Experiment 0 and Experiment 1, where the adversary A’s protocol is the same in both experiments,
while that of the challenger is di↵erent. For b = 0, 1, we define Wb to be the event that A outputs
1 in Experiment b, and we define

Xadv[A, S] :=
���Pr[W0] � Pr[W1]

���

to be A’s “X advantage.” Just as above, we can always define a “bit-guessing” version of the attack
game, in which the challenger chooses b 2 {0, 1} at random, and then runs Experiment b as its
protocol. If W is the event that the adversary’s output is equal to b, then we define

Xadv⇤[A, S] :=
���Pr[W] � 1/2

���

to be A’s “bit-guessing X advantage.”
Using exactly the same calculation as in the proof of Theorem 2.10, we have

Xadv[A, S] = 2 · Xadv⇤[A, S]. (2.11)

2.4 Mathematical details

Up until now, we have used the terms e�cient and negligible rather loosely, without a formal
mathematical definition:

• we required that a computational cipher have e�cient encryption and decryption algorithms;

• for a semantically secure cipher, we required that any e�cient adversary have a negligible
advantage in Attack Game 2.1.

The goal of this section is to provide precise mathematical definitions for these terms. While
these definitions lead to a satisfying theoretical framework for the study of cryptography as a
mathematical discipline, we should warn the reader:

• the definitions are rather complicated, requiring an unfortunate amount of notation; and

• the definitions model our intuitive understanding of these terms only very crudely.

We stress that the reader may safely skip this section without su↵ering a significant loss in under-
standing. Before marching headlong into the formal definitions, let us remind the reader of what
we are trying to capture in these definitions.

• First, when we speak of an e�cient encryption or decryption algorithm, we usually mean one
that runs very quickly, encrypting data at a rate of, say, 10–100 computer cycles per byte of
data.

27

Sebastian Angel

• Second, when we speak of an e�cient adversary, we usually mean an algorithm that runs in
some large, but still feasible amount of time (and other resources). Typically, one assumes
that an adversary that is trying to break a cryptosystem is willing to expend many more
resources than a user of the cryptosystem. Thus, 10,000 computers running in parallel for
10 years may be viewed as an upper limit on what is feasibly computable by a determined,
patient, and financially well-o↵ adversary. However, in some settings, like the Internet roulette
example in Section 2.3.4, the adversary may have a much more limited amount of time to
perform its computations before they become irrelevant.

• Third, when we speak of an adversary’s advantage as being negligible, we mean that it is so
small that it may as well be regarded as being equal to zero for all practical purposes. As
we saw in the Internet roulette example, if no e�cient adversary has an advantage better
than 2�100 in Attack Game 2.1, then no player can in practice improve his odds at winning
Internet roulette by more than 2�100 relative to physical roulette.

Even though our intuitive understanding of the term e�cient depends on the context, our
formal definition will not make any such distinction. Indeed, we shall adopt the computational
complexity theorist’s habit of equating the notion of an e�cient algorithm with that of a (proba-
bilistic) polynomial-time algorithm. For better and for worse, this gives us a formal framework that
is independent of the specific details of any particular model of computation.

2.4.1 Negligible, super-poly, and poly-bounded functions

We begin by defining the notions of negligible, super-poly, and poly-bounded functions.
Intuitively, a negligible function f : Z�0 ! R is one that not only tends to zero as n ! 1, but

does so faster than the inverse of any polynomial.

Definition 2.5. A function f : Z�1 ! R is called negligible if for all c 2 R>0 there exists
n0 2 Z�1 such that for all integers n � n0, we have |f(n)| < 1/nc.

An alternative characterization of a negligible function, which is perhaps easier to work with,
is the following:

Theorem 2.11. A function f : Z�1 ! R is negligible if and only if for all c > 0, we have

lim
n!1

f(n)nc = 0.

Proof. Exercise. 2

Example 2.10. Some examples of negligible functions:

2�n, 2�
p
n, n� logn.

Some examples of non-negligible functions:

1

1000n4 + n2 log n
,

1

n100
. 2

Once we have the term “negligible” formally defined, defining “super-poly” is easy:

Definition 2.6. A function f : Z�1 ! R is called super-poly if 1/f is negligible.

28

Essentially, a poly-bounded function f : Z�1 ! R is one that is bounded (in absolute value) by
some polynomial. Formally:

Definition 2.7. A function f : Z�1 ! R is called poly-bounded, if there exists c, d 2 R>0 such
that for all integers n � 0, we have |f(n)|  nc + d.

Note that if f is a poly-bounded function, then 1/f is definitely not a negligible function.
However, as the following example illustrates, one must take care not to draw erroneous inferences.

Example 2.11. Define f : Z�1 ! R so that f(n) = 1/n for all even integers n and f(n) = 2�n

for all odd integers n. Then f is not negligible, and 1/f is neither poly-bounded nor super-poly. 2

2.4.2 Computational ciphers: the formalities

Now the formalities. We begin by admitting a lie: when we said a computational cipher E = (E, D)
is defined over (K, M, C), where K is the key space, M is the message space, and C is the ciphertext
space, and with each of these spaces being finite sets, we were not telling the whole truth. In the
mathematical model (though not always in real-world systems), we associate with E families of key,
message, and ciphertext spaces, indexed by

• a security parameter, which is a positive integer, and is denoted by �, and

• a system parameter, which is a bit string, and is denoted by ⇤.

Thus, instead of just finite sets K, M, and C, we have families of finite sets

{K�,⇤}�,⇤, {M�,⇤}�,⇤, and {C�,⇤}�,⇤,

which for the purposes of this definition, we view as sets of bit strings (which may represent
mathematical objects by way of some canonical encoding functions).

The idea is that when the cipher E is deployed, the security parameter � is fixed to some value.
Generally speaking, larger values of � imply higher levels of security (i.e., resistance against adver-
saries with more computational resources), but also larger key sizes, as well as slower encryption
and decryption speeds. Thus, the security parameter is like a “dial” we can turn, setting a trade-o↵
between security and e�ciency.

Once � is chosen, a system parameter ⇤ is generated using an algorithm specific to the cipher.
The idea is that the system parameter ⇤ (together with �) gives a detailed description of a fixed
instance of the cipher, with

(K, M, C) = (K�,⇤, M�,⇤, C�,⇤).

This one, fixed instance may be deployed in a larger system and used by many parties — the values
of � and ⇤ are public and known to everyone (including the adversary).

Example 2.12. Consider the additive one-time pad discussed in Example 2.4. This cipher was
described in terms of a modulus n. To deploy such a cipher, a suitable modulus n is generated,
and is made public (possibly just “hardwired” into the software that implements the cipher). The
modulus n is the system parameter for this cipher. Each specific value of the security parameter
determines the length, in bits, of n. The value n itself is generated by some algorithm that may be
probabilistic and whose output distribution may depend on the intended application. For example,
we may want to insist that n is a prime in some applications. 2

29

Sebastian Angel
CIS 331 note: In the book by N. Smart this is called the “Modified Shift Cipher” (Chapter 2.1)

Sebastian Angel

