
Chapter 11

Public key encryption

In this chapter, we consider again the basic problem of encryption. As a motivating example,
suppose Alice wants to send Bob an encrypted email message, even though the two of them do not
share a secret key (nor do they share a secret key with some common third party). Surprisingly,
this can be done using a technology called public-key encryption.

The basic idea of public-key encryption is that the receiver, Bob in this case, runs a key gener-
ation algorithm G, obtaining a pair of keys:

(pk , sk) R G().

The key pk is Bob’s public key, and sk is Bob’s secret key. As their names imply, Bob should keep
sk secret, but may publicize pk .

To send Bob an encrypted email message, Alice needs two things: Bob’s email address, and
Bob’s public key pk . How Alice reliably obtains this information is a topic we shall explore later in
Section 13.8. For the moment, one might imagine that this information is placed by Bob in some
kind of public directory to which Alice has read-access.

So let us assume now that Alice has Bob’s email address and public key pk . To send Bob an
encryption of her email message m, she computes the ciphertext

c R E(pk , m).

She then sends c to Bob, using his email address. At some point later, Bob receives the ciphertext
c, and decrypts it, using his secret key :

m D(sk , c).

Public-key encryption is sometimes called asymmetric encryption to denote the fact that
the encryptor uses one key, pk , and the decryptor uses a di↵erent key, sk . This is in contrast with
symmetric encryption, discussed in Part 1, where both the encryptor and decryptor use the same
key.

A few points deserve further discussion:

• Once Alice obtains Bob’s public key, the only interaction between Alice and Bob is the actual
transmission of the ciphertext from Alice to Bob: no further interaction is required. In fact,
we chose encrypted email as our example problem precisely to highlight this feature, as email
delivery protocols do not allow any interaction beyond delivery of the message.
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• As we will discuss later, the same public key may be used many times. Thus, once Alice ob-
tains Bob’s public key, she may send him encrypted messages as often as she likes. Moreover,
other users besides Alice may send Bob encrypted messages using the same public key pk .

• As already mentioned, Bob may publicize his public key pk . Obviously, for any secure public-
key encryption scheme, it must be hard to compute sk from pk , since anyone can decrypt
using sk .

11.1 Two further example applications

Public-key encryption is used in many real-world settings. We give two more examples.

11.1.1 Sharing encrypted files

In many modern file systems, a user can store encrypted files to which other users have read access:
the owner of the file can selectively allow others to read the unencrypted contents of the file. This
is done using a combination of public-key encryption and an ordinary, symmetric cipher.

Here is how it works. Alice encrypts a file f under a key k, using an ordinary, symmetric cipher.
The resulting ciphertext c is stored on the file system. If Alice wants to grant Bob access to the
contents of the file, she encrypts k under Bob’s public key; that is, she computes cB  

R E(pkB, k),
where pkB is Bob’s public key. The ciphertext cB is then stored on the file system near the
ciphertext c, say, as part of the file header, which also includes file metadata (such as the file name,
modification time, and so on). Now when Bob wants to read the file f , he can decrypt cB using his
secret key skB, obtaining k, using which he can decrypt c using the symmetric cipher. Also, so that
Alice can read the file herself, she grants access to herself just as she does to Bob, by encrypting k
under her own public key pkA.

This scheme scales very nicely if Alice wants to grant access to f to a number of users. Only
one copy of the encrypted file is stored on the file system, which is good if the file is quite large
(such as a video file). For each user that is granted access to the file, only an encryption of the
key k is stored in the file header. Each of these ciphertexts is fairly small (on the order of a few
hundred bytes), even if the file itself is very big.

11.1.2 Key escrow

Consider a company that deploys an encrypted file system such as the one described above. One
day Alice is traveling, but her manager needs to read one of her files to prepare for a meeting
with an important client. Unfortunately, the manager is unable to decrypt the file because it is
encrypted and Alice is unreachable.

Large companies solve this problem using a mechanism called key escrow. The company runs
a key escrow server that works as follows: at setup time the key escrow server generates a secret key
skES and a corresponding public key pkES. It keeps the secret key to itself and makes the public
key available to all employees.

When Alice stores the encryption c of a file f under a symmetric key k, she also encrypts k
under pkES, and then stores the resulting ciphertext cES in the file header. Every file created by
company employees is encrypted this way. Now, if Alice’s manager later needs access to f and Alice
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is unreachable, the manager sends cES to the escrow service. The server decrypts cES, obtaining k,
and sends k to the manager, who can then use this to decrypt c and obtain f .

Public-key encryption makes it possible for the escrow server to remain o✏ine, until someone
needs to decrypt an inaccessible file. Also, notice that although the escrow service allows Alice’s
manager to read her files, the escrow service itself cannot read Alice’s files, since the escrow service
never sees the encryption of the file.

11.2 Basic definitions

We begin by defining the basic syntax and correctness properties of a public-key encryption scheme.

Definition 11.1. A public-key encryption scheme E = (G, E, D) is a triple of e�cient algo-
rithms: a key generation algorithm G, an encryption algorithm E, a decryption algorithm
D.

• G is a probabilistic algorithm that is invoked as (pk , sk)  R G(), where pk is called a public
key and sk is called a secret key.

• E is a probabilistic algorithm that is invoked as c  R E(pk , m), where pk is a public key (as
output by G), m is a message, and c is a ciphertext.

• D is a deterministic algorithm that is invoked as m D(sk , c), where sk is a secret key (as
output by G), c is a ciphertext, and m is either a message, or a special reject value (distinct
from all messages).

• As usual, we require that decryption undoes encryption; specifically, for all possible outputs
(pk , sk) of G, and all messages m, we have

Pr[D(sk , E(pk , m) ) = m] = 1.

• Messages are assumed to lie in some finite message space M, and ciphertexts in some finite
ciphertext space C. We say that E = (G, E, D) is defined over (M, C).

We next define the notion of semantic security for a public-key encryption scheme. We stress
that this notion of security only models an eavesdropping adversary. We will discuss stronger
security properties in the next chapter.

Attack Game 11.1 (semantic security). For a given public-key encryption scheme E =
(G, E, D), defined over (M, C), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes (pk , sk) R G(), and sends pk to the adversary.

• The adversary computes m0, m1 2M, of the same length, and sends them to the challenger.

• The challenger computes c R E(pk , mb), and sends c to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.
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Figure 11.1: Experiment b of Attack Game 11.1

If Wb is the event that A outputs 1 in Experiment b, we define A’s advantage with respect to
E as

SSadv[A, E ] :=
���Pr[W0]� Pr[W1]

���. 2

Note that in the above game, the events W0 and W1 are defined with respect to the probability
space determined by the random choices made by the key generation and encryption algorithms,
and the random choices made by the adversary. See Fig. 11.1 for a schematic diagram of Attack
Game 11.1.

Definition 11.2 (semantic security). A public-key encryption scheme E is semantically se-
cure if for all e�cient adversaries A, the value SSadv[A, E ] is negligible.

As discussed in Section 2.3.5, Attack Game 11.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b 2 {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
SSadv⇤[A, E ] as |Pr[b̂ = b]� 1/2|. The general result of Section 2.3.5 (namely, (2.11)) applies here
as well:

SSadv[A, E ] = 2 · SSadv⇤[A, E ]. (11.1)

11.2.1 Mathematical details

We give a more mathematically precise definition of a public-key encryption scheme, using the
terminology defined in Section 2.4.

Definition 11.3 (public-key encryption scheme). A public-key encryption scheme consists
of a three algorithms, G, E, and D, along with two families of spaces with system parameterization
P :

M = {M�,⇤}�,⇤ and C = {C�,⇤}�,⇤,

such that

1. M and C are e�ciently recognizable.
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2. M has an e↵ective length function.

3. Algorithm G is an e�cient probabilistic algorithm that on input �, ⇤, where � 2 Z�1, ⇤ 2
Supp(P (�)), outputs a pair (pk , sk), where pk and sk are bit strings whose lengths are always
bounded by a polynomial in �.

4. Algorithm E is an e�cient probabilistic algorithm that on input �, ⇤, pk , m, where � 2 Z�1,
⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some sk, and m 2 M�,⇤, always outputs an
element of C�,⇤.

5. Algorithm D is an e�cient deterministic algorithm that on input �, ⇤, sk , c, where � 2 Z�1,
⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)) for some pk, and c 2 C�,⇤, outputs either an
element of M�,⇤, or a special symbol reject /2M�,⇤.

6. For all �, ⇤, pk , sk , m, c, where � 2 Z�1, ⇤ 2 Supp(P (�)), (pk , sk) 2 Supp(G(�, ⇤)), k 2
K�,⇤, m 2M�,⇤, and c 2 Supp(E(�, ⇤; pk , m)), we have D(�, ⇤; sk , c) = m.

As usual, the proper interpretation of Attack Game 11.1 is that both challenger and adversary
receive � as a common input, and that the challenger generates ⇤ and sends this to the adversary
before the game proper begins. The advantage is actually a function of �, and security means that
this is a negligible function of �.

11.3 Implications of semantic security

Before constructing semantically secure public-key encryption schemes, we first explore a few con-
sequences of semantic security. We first show that any semantically secure public-key scheme must
use a randomized encryption algorithm. We also show that in the public-key setting, semantic
security implies CPA security. This was not true for symmetric encryption schemes: the one-time
pad is semantically secure, but not CPA secure.

11.3.1 The need for randomized encryption

Let E = (G, E, D) be a semantically secure public-key encryption scheme defined over (M, C) where
|M| � 2. We show that the encryption algorithm E must be a randomized, otherwise the scheme
cannot be semantically secure.

To see why, suppose E is deterministic. Then the following adversary A breaks semantic security
of E = (G, E, D):

• A receives a public key pk from its challenger.

• A chooses two distinct messages m0 and m1 in M and sends them to its challenger. The
challenger responds with c := E(pk , mb) for some b 2 {0, 1}.

• A computes c0 := E(pk , m0) and outputs 0 if c = c0. Otherwise, it outputs 1.

Because E is deterministic, we know that c = c0 whenever b = 0. Therefore, when b = 0 the
adversary always outputs 0. Similarly, when b = 1 it always outputs 1. Therefore

SSadv[A, E ] = 1
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showing that E is insecure.
This generic attack explains why semantically secure public-key encryption schemes must be

randomized. All the schemes we construct in this chapter and the next use randomized encryption.
This is quite di↵erent from the symmetric key settings where a deterministic encryption scheme
can be semantically secure; for example, the one-time pad.

11.3.2 Semantic security against chosen plaintext attack

Recall that when discussing symmetric ciphers, we introduced two distinct notions of security:
semantic security, and semantic security against chosen plaintext attack (or CPA security, for
short). We showed that for symmetric ciphers, semantic security does not imply CPA security.
However, for public-key encryption schemes, semantic security does imply CPA security. Intuitively,
this is because in the public-key setting, the adversary can encrypt any message he likes, without
knowledge of any secret key material. The adversary does so using the given public key and never
needs to issue encryption queries to the challenger. In contrast, in the symmetric key setting, the
adversary cannot encrypt messages on his own.

The attack game defining CPA security in the public-key setting is the natural analog of the
corresponding game in the symmetric setting (see Attack Game 5.2 in Section 5.3):

Attack Game 11.2 (CPA security). For a given public-key encryption scheme E = (G, E, D),
defined over (M, C), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• The challenger computes (pk , sk) R G(), and sends pk to the adversary.

• The adversary submits a sequence of queries to the challenger.

For i = 1, 2, . . . , the ith query is a pair of messages, mi0, mi1 2M, of the same length.

The challenger computes ci  
R E(pk , mib), and sends ci to the adversary.

• The adversary outputs a bit b̂ 2 {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, then we define A’s advantage with respect
to E as

CPAadv[A, E ] :=
���Pr[W0]� Pr[W1]

���. 2

Definition 11.4 (CPA security). A public-key encryption scheme E is called semantically
secure against chosen plaintext attack, or simply CPA secure, if for all e�cient adversaries
A, the value CPAadv[A, E ] is negligible.

Theorem 11.1. If a public-key encryption scheme E is semantically secure, then it is also CPA
secure.

In particular, for every CPA adversary A that plays Attack Game 11.2 with respect to E, and
which makes at most Q queries to its challenger, there exists an SS adversary B, where B is an
elementary wrapper around A, such that

CPAadv[A, E ] = Q · SSadv[B, E ].
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Proof. The proof is a straightforward hybrid argument, and is very similar to the proof of The-
orem 5.1. Suppose E = (G, E, D) is defined over (M, C). Let A be a CPA adversary that plays
Attack Game 11.2 with respect to E , and which makes at most Q queries to its challenger.

We describe the relevant hybrid games. For j = 0, . . . , Q, Hybrid j is played between A and a
challenger who works as follows:

(pk , sk) R G()
Send pk to A

Upon receiving the ith query (mi0, mi1) 2M
2 from A do:

if i > j
then ci  

R E(pk , mi0)
else ci  

R E(pk , mi1)
send ci to A.

Put another way, the challenger in Hybrid j encrypts

m11, . . . , mj1, m(j+1)0, . . . , mQ0,

As usual, we define pj to be the probability that A outputs 1 in Hybrid j. Clearly,

CPAadv[A, E ] = |pQ � p0|.

Next, we define an appropriate adversary B that plays Attack Game 11.1 with respect to E :

First, B chooses ! 2 {1, . . . , Q} at random.

Then, B plays the role of challenger to A: it obtains a public key pk from its own
challenger, and forwards this to A; when A makes a query (mi0, mi1), B computes its
response ci as follows:

if i > ! then
c R E(pk , mi0)

else if i = ! then
B submits (mi0, mi1) to its own challenger
ci is set to the challenger’s response

else // i < !
ci  

R E(pk , mi1).

Finally, B outputs whatever A outputs.

The crucial di↵erence between the proof of this theorem and that of Theorem 5.1 is that for i 6= !,
adversary B can encrypt the relevant message using the public key.

For b = 0, 1, let Wb be the event that B outputs 1 in Experiment b of its attack game. It is
clear that for j = 1, . . . , Q,

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj ,

and the theorem follows by the usual telescoping sum calculation. 2

One can also consider multi-key CPA security, where the adversary sees many encryptions under
many public keys. In the public-key setting, semantic security implies not only CPA security, but
multi-key CPA security — see Exercise 11.10.
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11.4 Encryption based on a trapdoor function scheme

In this section, we show how to use a trapdoor function scheme (see Section 10.2) to build a
semantically secure public-key encryption scheme. In fact, this scheme makes use of a hash function,
and our proof of security works only when we model the hash function as a random oracle (see
Section 8.10.2). We then present a concrete instantiation of this scheme, based on RSA (see
Section 10.3).

Our encryption scheme is called ETDF, and is built out of several components:

• a trapdoor function scheme T = (G, F, I), defined over (X , Y),

• a symmetric cipher Es = (Es, Ds), defined over (K, M, C),

• a hash function H : X ! K.

The message space for ETDF is M, and the ciphertext space is Y ⇥ C. We now describe the key
generation, encryption, and decryption algorithms for ETDF.

• The key generation algorithm for ETDF is the key generation algorithm for T .

• For a given public key pk , and a given message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := x R X , y  F (pk , x), k  H(x), c R Es(k, m)
output (y, c).

• For a given secret key sk , and a given ciphertext (y, c) 2 Y ⇥ C, the decryption algorithm
runs as follows:

D(sk , (y, c) ) := x I(sk , y), k  H(x), m Ds(k, c)
output m.

Thus, ETDF = (G, E, D), and is defined over (M, Y ⇥ C).
The correctness property for T immediately implies the correctness property for ETDF. If H

is modeled as a random oracle (see Section 8.10), one can prove that ETDF is semantically secure,
assuming that T is one-way, and that Es is semantically secure.

Recall that in the random oracle model, the function H is modeled as a random function O

chosen at random from the set of all functions Funs[X , K]. More precisely, in the random oracle
version of Attack Game 11.1, the challenger chooses O at random. In any computation where
the challenger would normally evaluate H, it evaluates O instead. In addition, the adversary is
allowed to ask the challenger for the value of the function O at any point of its choosing. The
adversary may make any number of such “random oracle queries” at any time of its choosing. We
use SSroadv[A, ETDF] to denote A’s advantage against ETDF in the random oracle version of Attack
Game 11.1.

Theorem 11.2. Assume H : X ! K is modeled as a random oracle. If T is one-way and Es is
semantically secure, then ETDF is semantically secure.

In particular, for every SS adversary A that attacks ETDF as in the random oracle version of
Attack Game 11.1, there exist an inverting adversary Bow that attacks T as in Attack Game 10.2,
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and an SS adversary Bs that attacks Es as in Attack Game 2.1, where Bow and Bs are elementary
wrappers around A, such that

SSroadv[A, ETDF]  2 · OWadv[Bow, T ] + SSadv[Bs, Es]. (11.2)

Proof idea. Suppose the adversary sees the ciphertext (y, c), where y = F (pk , x). If H is modeled
as a random oracle, then intuitively, the only way the adversary can learn anything at all about
the symmetric key k used to generate c is to explicitly evaluate the random oracle representing H
at the point x; however, if he could do this, we could easily convert the adversary into an adversary
that inverts the function F (pk , ·), contradicting the one-wayness assumption. Therefore, from the
adversary’s point of view, k is completely random, and semantic security for ETDF follows directly
from the semantic security of Es. In the detailed proof, we implement the random oracle using
the same “faithful gnome” technique as was used to e�ciently implement random functions (see
Section 4.4.2); that is, we represent the random oracle as a table of input/output pairs corresponding
to points at which the adversary actually queried the random oracle (as well as the point at which
the challenger queries the random oracle when it runs the encryption algorithm). We also use many
of the same proof techniques introduced in Chapter 4, specifically, the “forgetful gnome” technique
(introduced in the proof of Theorem 4.6) and the Di↵erence Lemma (Theorem 4.7). 2

Proof. It is convenient to prove the theorem using the bit-guessing versions of the semantic security
game. We prove:

SSroadv⇤[A, ETDF]  OWadv[Bow, T ] + SSadv⇤[Bs, Es]. (11.3)

Then (11.2) follows by (11.1) and (2.10).
Define Game 0 to be the game played between A and the challenger in the bit-guessing version

of Attack Game 11.1 with respect to ETDF. We then modify the challenger to obtain Game 1. In
each game, b denotes the random bit chosen by the challenger, while b̂ denotes the bit output by
A. Also, for j = 0, 1, we define Wj to be the event that b̂ = b in Game j. We will show that
|Pr[W1]�Pr[W0]| is negligible, and that Pr[W1] is negligibly close to 1/2. From this, it follows that

SSroadv⇤[A, ETDF] = |Pr[W0]� 1/2| (11.4)

is also negligible.

Game 0. Note that the challenger in Game 0 also has to respond to the adversary’s random oracle
queries. The adversary can make any number of random oracle queries, but at most one encryption
query. Recall that in addition to direct access the random oracle via explicit random oracle queries,
the adversary also has indirect access to the random oracle via the encryption query, where the
challenger also makes use of the random oracle. In describing this game, we directly implement
the random oracle as a “faithful gnome.” This is done using an associative array Map : X ! K.
The details are in Fig. 11.2. In the initialization step, the challenger prepares some quantities
that will be used later in processing the encryption query. In particular, in addition to computing
(pk , sk) R G(), the challenger precomputes x R X , y  F (pk , x), k  R K. It also sets Map[x] k,
which means that the value of the random oracle at x is equal to k.

Game 1. This game is precisely the same as Game 0, except that we make our gnome “forgetful”
by deleting line (3) in Fig. 11.2.

Let Z be the event that the adversary queries the random oracle at the point x in Game 1.
Clearly, Games 0 and 1 proceed identically unless Z occurs, and so by the Di↵erence Lemma, we
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initialization:
(1) (pk , sk) R G(), x R X , y  F (pk , x)

initialize an empty associative array Map : X ! K

(2) k  R K, b R {0, 1}

(3) Map[x] k
send the public key pk to A;

upon receiving an encryption query (m0, m1) 2M
2:

(4) c Es(k, mb)
send (y, c) to A;

upon receiving a random oracle query x̂ 2 X :
if x̂ /2 Domain(Map) then Map[x̂] R K

send Map[x̂] to A

Figure 11.2: Game 0 challenger

have
|Pr[W1]� Pr[W0]|  Pr[Z]. (11.5)

If event Z happens, then one of the adversary’s random oracle queries is the inverse of y under
F (pk , ·). Moreover, in Game 1, the value x is used only to define y = F (pk , x), and nowhere else.
Thus, we can use adversary A to build an e�cient adversary Bow that breaks the one-wayness
assumption for T with an advantage equal to Pr[Z].

Here is how adversary Bow works in detail. This adversary plays Attack Game 10.2 against a
challenger Cow, and plays the role of challenger to A as in Fig. 11.2, except with the following lines
modified as indicated:

(1) obtain (pk , y) from Cow

(3) (deleted)

Additionally,

when A terminates:
if F (pk , x̂) = y for some x̂ 2 Domain(Map)

then output x̂
else output “failure”.

To analyze Bow, we may naturally view Game 1 and the game played between Bow and Cow

as operating on the same underlying probability space. By definition, Z occurs if and only if
x 2 Domain(Map) when Bow finishes its game. Therefore,

Pr[Z] = OWadv[Bow, T ]. (11.6)

Observe that in Game 1, the key k is only used to encrypt the challenge plaintext. As such,
the adversary is essentially attacking Es as in the bit-guessing version of Attack Game 2.1 at this
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point. More precisely, we derive an e�cient SS adversary Bs based on Game 1 that uses A as a
subroutine, such that

|Pr[W1]� 1/2| = SSadv⇤[Bs, Es]. (11.7)

Adversary Bs plays the bit-guessing version of Attack Game 2.1 against a challenger Cs, and plays
the role of challenger to A as in Fig. 11.2, except with the following lines modified as indicated:

(2) (deleted)

(3) (deleted)

(4) forward (m0, m1) to Cs, obtaining c

Additionally,

when A outputs b̂:

output b̂

To analyze Bs, we may naturally view Game 1 and the game played between Bs and Cs as
operating on the same underlying probability space. By construction, Bs and A output the same
thing, and so (11.7) holds.

Combining (11.4), (11.5), (11.6), and (11.7), yields (11.3). 2

11.4.1 Instantiating ETDF with RSA

Suppose we now use RSA (see Section 10.3) to instantiate T in the above encryption scheme ETDF.
This scheme is parameterized by two quantities: the length ` of the prime factors of the RSA
modulus, and the encryption exponent e, which is an odd, positive integer. Recall that the RSA
scheme does not quite fit the definition of a trapdoor permutation scheme, because the domain of
the trapdoor permutation is not a fixed set, but varies with the public key. Let us assume that X

is a fixed set into which we may embed Zn, for every RSA modulus n generated by RSAGen(`, e)
(for example, we could take X = {0, 1}

2`). The scheme also makes use of a symmetric cipher
Es = (Es, Ds), defined over (K, M, C), as well as a hash function H : X ! K.

The basic RSA encryption scheme is ERSA = (G, E, D), with message space M and ciphertext
space X ⇥ C, where

• the key generation algorithm runs as follows:

G() := (n, d) R RSAGen(`, e), pk  (n, e), sk  (n, d)
output (pk , sk);

• for a given public key pk = (n, e), and message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := x R Zn, y  xe, k  H(x), c R Es(k, m)
output (y, c) 2 X ⇥ C;

• for a given secret key sk = (n, d), and a given ciphertext (y, c) 2 X ⇥ C, where y represents
an element of Zn, the decryption algorithm runs as follows:

D(sk , (y, c) ) := x yd, k  H(x), m Ds(k, c)
output m.
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Theorem 11.3. Assume H : X ! K is modeled as a random oracle. If the RSA assumption holds
for parameters (`, e), and Es is semantically secure, then ERSA is semantically secure.

In particular, for any SS adversary A that attacks ERSA as in the random oracle version of
Attack Game 11.1, there exist an RSA adversary Brsa that breaks the RSA assumption for (`, e)
as in Attack Game 10.3, and an SS adversary Bs that attacks Es as in Attack Game 2.1, where
Brsa and Bs are elementary wrappers around A, such that

SSroadv⇤[A, ERSA]  RSAadv[Brsa, `, e] + SSadv⇤[Bs, Es].

Proof. The proof of Theorem 11.2 carries over, essentially unchanged. 2

11.5 ElGamal encryption

In this section we show how to build a public-key encryption scheme from Di�e-Hellman. Security
will be based on either the CDH or DDH assumptions from Section 10.5.

The encryption scheme is a variant of a scheme first proposed by ElGamal, and we call it EEG.
It is built out of several components:

• a cyclic group G of prime order q with generator g 2 G,

• a symmetric cipher Es = (Es, Ds), defined over (K, M, C),

• a hash function H : G! K.

The message space for EEG is M, and the ciphertext space is G ⇥ C. We now describe the key
generation, encryption, and decryption algorithms for EEG.

• the key generation algorithm runs as follows:

G() := ↵ R Zq, u g↵

pk  u, sk  ↵
output (pk , sk);

• for a given public key pk = u 2 G and message m 2 M, the encryption algorithm runs as
follows:

E(pk , m) := �  R Zq, v  g� , w  u� , k  H(w), c Es(k, m)
output (v, c);

• for a given secret key sk = ↵ 2 Zq and a ciphertext (v, c) 2 G⇥ C, the decryption algorithm
runs as follows:

D(sk , (v, c) ) := w  v↵, k  H(w), m Ds(k, c)
output m.

Thus, EEG = (G, E, D), and is defined over (M,G⇥ C).
Note that the description of the group G and generator g 2 G is considered to be a system

parameter, rather than part of the public key.
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