Chapter 10

Public key tools

We begin our discussion of public-key cryptography by introducing several basic tools that will be
used in the remainder of the book. The main applications for these tools will emerge in the next
few chapters where we use them for public-key encryption, digital signatures, and key exchange.
Since we use some basic algebra and number theory in this chapter, the reader is advised to first
briefly scan through Appendix A.

We start with a simple toy problem: generating a shared secret key between two parties so that
a passive eavesdropping adversary cannot feasibly guess their shared key. The adversary can listen
in on network traffic, but cannot modify messages en-route or inject his own messages. In a later
chapter we develop the full machinery needed for key exchange in the presence of an active attacker
who may tamper with network traffic.

At the onset we emphasize that security against eavesdropping is typically not sufficient for
real world-applications, since an attacker capable of listening to network traffic is often also able
to tamper with it; nevertheless, this toy eavesdropping model is a good way to introduce the new
public-key tools.

10.1 A toy problem: anonymous key exchange

Two users, Alice and Bob, who never met before talk on the phone. They are worried that an
eavesdropper is listening to their conversation and hence they wish to encrypt the session. Since
Alice and Bob never met before they have no shared secret key with which to encrypt the session.
Thus, their initial goal is to generate a shared secret unknown to the adversary. They may later use
this secret as a session-key for secure communication. To do so, Alice and Bob execute a protocol
where they take turns in sending messages to each other. The eavesdropping adversary can hear
all these messages, but cannot change them or inject his own messages. At the end of the protocol
Alice and Bob should have a secret that is unknown to the adversary. The protocol itself provides
no assurance to Alice that she is really talking to Bob, and no assurance to Bob that he is talking
to Alice — in this sense, the protocol is “anonymous.”

More precisely, we model Alice and Bob as communicating machines. A key exchange proto-
col P is a pair of probabilistic machines (A, B) that take turns in sending messages to each other.
At the end of the protocol, when both machines terminate, they both obtain the same value k. A
protocol transcript Tp is the sequence of messages exchanged between the parties in one exe-
cution of the protocol. Since A and B are probabilistic machines, we obtain a different transcript

394

every time we run the protocol. Formally, the transcript Tp of protocol P is a random variable,
which is a function of the random bits generated by A and B. The eavesdropping adversary A
sees the entire transcript Tp and its goal is to figure out the secret k. We define security of a key
exchange protocol using the following game.

Attack Game 10.1 (Anonymous key exchange). For a key exchange protocol P = (A, B)
and a given adversary A, the attack game runs as follows.

e The challenger runs the protocol between A and B to generate a shared key k and
transcript Tp. It gives Tp to A.

e A outputs a guess k for k.
We define A’s advantage, denoted AnonKEadv[A, P], as the probability that k=k O

Definition 10.1. We say that an anonymous key exchange protocol P is secure against an eaves-
dropper if for all efficient adversaries A, the quantity AnonKEadv[A, P] is negligible.

This definition of security is extremely weak, for three reasons. First, we assume the adversary
is unable to tamper with messages. Second, we only guarantee that the adversary cannot guess
k in its entirety. This does not rule out the possibility that the adversary can guess, say, half
the bits of k. If we are to use k as a secret session key, the property we would really like is
that k is indistinguishable from a truly random key. Third, the protocol provides no assurance
of the identities of the participants. We will strengthen Definition 10.1 to meet these stronger
requirements in Chapter 21.

Given all the tools we developed in Part 1, it is natural to ask if anonymous key exchange can
be done using an arbitrary secure symmetric cipher. The answer is yes, it can be done as we show
in Section 10.8, but the resulting protocol is highly inefficient. To develop efficient protocols we
must first introduce a few new tools.

10.2 One-way trapdoor functions

In this section, we introduce a tool that will allow us to build an efficient and secure key exchange
protocol. In Section 8.11, we introduced the notion of a one-way function. This is a function
F : X — Y that is easy to compute, but hard to invert. As we saw in Section 8.11, there are a
number of very efficient functions that are plausibly one-way. One-way functions, however, are not
sufficient for our purposes. We need one-way functions with a special feature, called a trapdoor.
A trapdoor is a secret that allows one to efficiently invert the function; however, without knowledge
of the trapdoor, the function remains hard to invert.
Let us make this notion more precise.

Definition 10.2 (Trapdoor function scheme). Let X and) be finite sets. A trapdoor func-
tion scheme T, defined over (X,)), is a triple of algorithms (G, F,I), where

e G is a probabilistic key generation algorithm that is invoked as (pk, sk) <+ G(), where pk is
called a public key and sk is called a secret key.

o I is a deterministic algorithm that is invoked as y < F(pk,x), where pk is a public key (as
output by G) and x lies in X. The output y is an element of Y.

395

e [is a deterministic algorithm that is invoked as x < I(sk,y), where sk is a secret key (as
output by G) and y lies in Y. The output x is an element of X.

Moreover, the following correctness property should be satisfied: for all possible outputs (pk, sk)
of G(), and for all x € X, we have I(sk, F(pk,z)) = x.

Observe that for every pk, the function F(pk,-) is a function from X to)). The correctness
property says that sk is the trapdoor for inverting this function; note that this property also implies
that the function F(pk,-) is one-to-one. Note that we do not insist that F'(pk,-) maps X onto).
That is, there may be elements y €) that do not have any preimage under F(pk,-). For such y,
we make no requirements on algorithm I — it can return some arbitrary element x € X (one might
consider returning a special reject symbol in this case, but it simplifies things a bit not to do this).

In the special case where X = Y, then F(pk, -) is not only one-to-one, but onto. That is, F'(pk, -)
is a permutation on the set X. In this case, we may refer to (G, F, I) as a trapdoor permutation
scheme defined over X.

The basic security property we want from a trapdoor permutation scheme is a one-wayness
property, which basically says that given pk and F(pk,z) for random = € X, it is hard to compute
x without knowledge of the trapdoor sk. This is formalized in the following game.

Attack Game 10.2 (One-way trapdoor function scheme). For a given trapdoor function
scheme T = (G, F,I), defined over (X,)), and a given adversary A, the attack game runs as
follows:

e The challenger computes
(pk, sk) &+ G(), & X, y<« F(pk,x)
and sends (pk,y) to the adversary.
e The adversary outputs & € X.

We define the adversary’s advantage in inverting 7", denoted OWadv[.A, T, to be the probability
that £ =z. O

Definition 10.3. We say that a trapdoor function scheme T is one way if for all efficient adver-
saries A, the quantity OWadv|A, T] is negligible.

Note that in Attack Game 10.2, since the value z is uniformly distributed over X and F(pk, -)
is one-to-one, it follows that the value y := F(pk,z) is uniformly distributed over the image of
F(pk,-). In the case of a trapdoor permutation scheme, where X = Y, the value of y is uniformly
distributed over X.

10.2.1 Key exchange using a one-way trapdoor function scheme

We now show how to use a one-way trapdoor function scheme 7 = (G, F, I), defined over (X,)),
to build a secure anonymous key exchange protocol. The protocol runs as follows, as shown in
Fig. 10.1:

e Alice computes (pk, sk) <~ G(), and sends pk to Bob.

e Upon receiving pk from Alice, Bob computes z <~ X,y + F(pk,), and sends y to Alice.

396

Alice Bob

(pk, sk) & G()

T
b

vk r

y < F(pk,x)

l l

x + I(sk,y) z

Figure 10.1: Key exchange using a trapdoor function scheme

e Upon receiving y from Bob, Alice computes = < I(sk,y).

The correctness property of the trapdoor function scheme guarantees that at the end of the protocol,
Alice and Bob have the same value x — this is their shared, secret key. Now consider the security of
this protocol, in the sense of Definition 10.1. In Attack Game 10.1, the adversary sees the transcript
consisting of the two messages pk and y. If the adversary could compute the secret x from this
transcript with some advantage, then this very same adversary could be used directly to break the
trapdoor function scheme, as in Attack Game 10.2, with exactly the same advantage.

10.2.2 Mathematical details

We give a more mathematically precise definition of a trapdoor function scheme, using the termi-
nology defined in Section 2.4.

Definition 10.4 (Trapdoor function scheme). A trapdoor function scheme is a triple of
efficient algorithms (G, F,I) along with families of spaces with system parameterization P:

X={XaharY={Mala

As usual, X € Z>1 is a security parameter and A € Supp(P (X)) is a domain parameter. We require
that

1. X is efficiently recognizable and sampleable.

2. Y is efficiently recognizable.

Co

. G is an efficient probabilistic algorithm that on input A\, A, where X € Z>1, A € Supp(P())),
outputs a pair (pk, sk), where pk and sk are bit strings whose lengths are always bounded by
a polynomial in \.

4. F is an efficient deterministic algorithm that on input X\, A, pk,x, where A\ € Z>1, A €
Supp(P(N)), (pk,sk) € Supp(G(X,A)) for some sk, and x € X\ A, outputs an element of

Paa-

397

5. I is an efficient deterministic algorithm that on input X\, A, sk,y, where X € Z>1, A €
Supp(P(N)), (pk,sk) € Supp(G(X,A)) for some pk, and y € Y\ A, outputs an element of
X\A-

6. For all A\ € Z>1, A € Supp(P(N)), (pk,sk) € Supp(G(\,A)), and x € Xya, we have
I(\ A; sk, F(\ A; pk,x)) = 2.

As usual, in defining the one-wayness security property, we parameterize Attack Game 10.2 by
the security parameter A, and the advantage OWadv[A, 7] is actually a function of A. Definition 10.3
should be read as saying that OWadv[A, T]()) is a negligible function.

10.3 A trapdoor permutation scheme based on RSA

We now describe a trapdoor permutation scheme that is plausibly one-way. It is called RSA
after its inventors, Rivest, Shamir, and Adleman. Recall that a trapdoor permutation is a special
case of a trapdoor function, where the domain and range are the same set. This means that for
every public-key, the function is a permutation of its domain, which is why we call it a trapdoor
permutation. Despite many years of study, RSA is essentially the only known reasonable candidate
trapdoor permutation scheme (there are a few others, but they are all very closely related to the
RSA scheme).

Here is how RSA works. First, we describe a probabilistic algorithm RSAGen that takes as
input an integer ¢ > 2, and an odd integer e > 2.

RSAGen(4,e) :=
generate a random ¢-bit prime p such that ged(e,p —1) =1
generate a random /¢-bit prime ¢ such that ged(e,q — 1) =1 and ¢ # p
n < pq
d<+ e ltmod(p—1)(g—1)
output (n,d).

To efficiently implement the above algorithm, we need an efficient algorithm to generate random
£-bit primes. This is discussed in Appendix A. Also, we use the extended Euclidean algorithm
(Appendix A) to compute e~! mod (p—1)(¢—1). Note that since ged(e,p—1) = ged(e,q—1) = 1,
it follows that ged(e, (p—1)(¢—1)) = 1, and hence e has a multiplicative inverse modulo (p—1)(g—1).

Now we describe the RSA trapdoor permutation scheme Trga = (G, F, I). It is parameterized
by fixed values of £ and e.

e Key generation runs as follows:

G():= (n,d) <+ RSAGen(4,e), pk <+ (n,e), sk <+ (n,d)
output (pk, sk).

e For a given public key pk = (n,e), and x € Z,,, we define F(pk,z) := x° € Zj,.
e For a given secret key sk = (n,d), and y € Z,, we define I(sk,y) := y* € Z,.

Note that although the encryption exponent e is considered to be a fixed system parameter, we
also include it as part of the public key pk.

398

A technicality. For each fixed pk = (n,e), the function F(pk,-) maps Z, into Z,; thus, the
domain and range of this function actually vary with pk. However, in our definition of a trapdoor
permutation scheme, the domain and range of the function are not allowed to vary with the public
key. So in fact, this scheme does not quite satisfy the formal syntactic requirements of a trapdoor
permutation scheme. One could easily generalize the definition of a trapdoor permutation scheme,
to allow for this. However, we shall not do this; rather, we shall state and analyze various schemes
based on a trapdoor permutation scheme as we have defined it, and then show how to instantiate
these schemes using RSA. Exercise 10.24 explores an idea that builds a proper trapdoor permutation
scheme based on RSA.

Ignoring this technical issue for the moment, let us first verify that Trga satisfies the correctness
requirement of a trapdoor permutation scheme. This is implied by the following;:

Theorem 10.1. Let n = pq where p and q are distinct primes. Let e and d be integers such that
ed=1 (mod (p—1)(g —1)). Then for all x € Z, we have ¢ = x (mod n).

Proof. The hypothesis that ed =1 (mod (p —1)(¢ — 1)) just means that ed = 1 +k(p —1)(g — 1)
for some integer k. Certainly, if z = 0 (mod p), then 2°¢ = 0 = x (mod p); otherwise, if z # 0
(mod p), then by Fermat’s little theorem (Appendix A), we have

P71 =1 (mod p),

and so
24 = lHk(p=1)(a-1) — ... (:U(p—l))k(q—l) =z 1%@D =& (mod p).

Therefore,
z“=2x (mod p).

By a symmetric argument, we have

=12 (mod q).
Thus, z¢¢ — z is divisible by the distinct primes p and ¢, and must therefore be divisible by their
product n, which means
2’ =z (modn). O

So now we know that Trga satisfies the correctness property of a trapdoor permutation scheme.
However, it is not clear that it is one-way. For Trga, one-wayness means that there is no efficient
algorithm that given n and z¢, where x € Z,, is chosen at random, can effectively compute z. It is
clear that if Trga is one-way, then it must be hard to factor n; indeed, if it were easy to factor n,
then one could compute d in exactly the same way as is done in algorithm RSAGen, and then use
d to compute = = y®.

It is widely believed that factoring n is hard, provided ¢ is sufficiently large — typically, /¢
is chosen to be between 1000 and 1500. Moreover, the only known efficient algorithm to invert
Trsa is to first factor n and then compute d as above. However, there is no known proof that the
assumption that factoring n is hard implies that Trsa is one-way. Nevertheless, based on current
evidence, it seems reasonable to conjecture that Trga is indeed one-way. We state this conjecture
now as an explicit assumption. As usual, this is done using an attack game.

Attack Game 10.3 (RSA). For given integers ¢ > 2 and odd e > 2, and a given adversary A,
the attack game runs as follows:

399

e The challenger computes
(n,d) <+ RSAGen(¢,e), x<*Zn, y< af€Z,
and gives the input (n,y) to the adversary.

e The adversary outputs & € Z,.

We define the adversary’s advantage in breaking RSA, denoted RSAadv[A, ¢, e|, as the probability
that 2 =z. O

Definition 10.5 (RSA assumption). We say that the RSA assumption holds for (¢,e) if for all
efficient adversaries A, the quantity RSAadv[A, ¢, e] is negligible.

We analyze the RSA assumption and present several known attacks on it later on in Chapter 17.

We next introduce some terminology that will be useful later. Suppose (n,d) is an output of
RSAGen(¥, e), and suppose that x € Z,, and let y := z¢. The number n is called an RSA modulus,
the number e is called an encryption exponent, and the number d is called a decryption
exponent. We call (n,y) an instance of the RSA problem, and we call x a solution to this
instance of the RSA problem. The RSA assumption asserts that there is no efficient algorithm that
can effectively solve the RSA problem.

10.3.1 Key exchange based on the RSA assumption

Consider now what happens when we instantiate the key exchange protocol in Section 10.2.1 with
Trsa. The protocol runs as follows:

e Alice computes (n,d) <+ RSAGen(, e), and sends (n,e) to Bob.
e Upon receiving (n,e) from Alice, Bob computes x <* Z,,, y < z¢, and sends y to Alice.
e Upon receiving y from Bob, Alice computes = + y.

The secret shared by Alice and Bob is . The message flow is the same as in Fig. 10.1. Under the
RSA assumption, this is a secure anonymous key exchange protocol.

10.3.2 Mathematical details

We give a more mathematically precise definition of the RSA assumption, using the terminology
defined in Section 2.4.

In Attack Game 10.3, the parameters ¢ and e are actually poly-bounded and efficiently com-
putable functions of a security parameter . Likewise, RSAadv|A, ¢, ¢] is a function of A. As usual,
Definition 10.5 should be read as saying that RSAadv[A, ¢, e]()) is a negligible function.

There are a couple of further wrinkles we should point out. First, as already mentioned above,
the RSA scheme does not quite fit our definition of a trapdoor permutation scheme, as the definition
of the latter does not allow the set X to vary with the public key. It would not be too difficult
to modify our definition of a trapdoor permutation scheme to accommodate this generalization.
Second, the specification of RSAGen requires that we generate random prime numbers of a given
bit length. In theory, it is possible to do this in (expected) polynomial time; however, the most
practical algorithms (see Appendix A) may — with negligible probability — output a number that

400

is not a prime. If that should happen, then it may be the case that the basic correctness requirement
— namely, that I(sk, F(pk,z)) = x for all pk, sk, z — is no longer satisfied. It would also not be too
difficult to modify our definition of a trapdoor permutation scheme to accommodate this type of
generalization as well. For example, we could recast this requirement as an attack game (in which
any efficient adversary wins with negligible probability): in this game, the challenger generates
(pk, sk) <+ G() and sends (pk, sk) to the adversary; the adversary wins the game if he can output
x € X such that I(sk, F(pk,x)) # x. While this would be a perfectly reasonable definition, using
it would require us to modify security definitions for higher-level constructs. For example, if we
used this relaxed correctness requirement in the context of key exchange, we would have to allow
for the possibility that the two parties end up with different keys with some negligible probability.

10.4 Diffie-Hellman key exchange

In this section, we explore another approach to constructing secure key exchange protocols, which
was invented by Diffie and Hellman. Just as with the protocol based on RSA, this protocol will
require a bit of algebra and number theory. However, before getting in to the details, we provide
a bit of motivation and intuition.

Consider the following “generic” key exchange protocol the makes use of two functions £ and
F. Alice chooses a random secret a, computes E(«a), and sends F(«) to Bob over an insecure
channel. Likewise, Bob chooses a random secret /3, computes F(f3), and sends FE(f3) to Alice over
an insecure channel. Alice and Bob both somehow compute a shared key F'(«, 3). In this high-level
description, F and F' are some functions that should satisfy the following properties:

1. E should be easy to compute;

2. given a and E(f), it should be easy to compute F(a, f3);

3. given E(«) and 3, it should be easy to compute F(a, 3);

4. given E(«) and E(f), it should be hard to compute F'(«,).

Properties 1-3 ensure that Alice and Bob can efficiently implement the protocol: Alice computes
the shared key F'(«a,) using the algorithm from Property 2 and her given data o and E(f). Bob
computes the same key F'(a,) using the algorithm from Property 3 and his given data F(«a) and
B. Property 4 ensures that the protocol is secure: an eavesdropper who sees E(a) and E(/3) should
not be able to compute the shared key F(«, f3).

Note that properties 1-4 together imply that E is hard to invert; indeed, if we could compute
efficiently a from F(«), then by Property 2, we could efficiently compute F(«, 5) from E(a), E(S),
which would contradict Property 4.

To make this generic approach work, we have to come up with appropriate functions £ and F.
To a first approximation, the basic idea is to implement E in terms of exponentiation to some fixed
base g, defining F(a) := g® and F(a, B) := g*?. Notice then that

Hence, provided exponentiation is efficient, Properties 1-3 are satisfied. Moreover, if Property 4 is
to be satisfied, then at the very least, we require that taking logarithms (i.e., inverting F) is hard.

401

To turn this into a practical and plausibly secure scheme, we cannot simply perform exponen-
tiation on ordinary integers since the numbers would become too large. Instead, we have to work
in an appropriate finite algebraic domain, which we introduce next.

10.4.1 The key exchange protocol

Suppose p is a large prime and that ¢ is a large prime dividing p — 1 (think of p as being very large
random prime, say 2048 bits long, and think of ¢ as being about 256 bits long).

We will be doing arithmetic mod p, that is, working in Z,. Recall that Zj is the set of nonzero
elements of Z,. An essential fact is that since ¢ divides p — 1, Z;, has an element g of order ¢ (see
Appendix A). This means that g¢ = 1 and that all of the powers g%, for a = 0,...,q — 1, are
distinct. Let G := {g* : @ = 0,...,q — 1}, so that G is a subset of Z; of cardinality ¢. It is not
hard to see that G is closed under multiplication and inversion; that is, for all u,v € G, we have
w € G and uv~' € G. Indeed, g% - ¢°® = ¢g*** = ¢¢ with ¢ := (a + b) mod ¢, and (¢%)~" = ¢? with
d := (—a) mod ¢. In the language of algebra, G is called a subgroup of the group Z.

For every u € G and integers a and b, it is easy to see that u® = u® if @ = b mod ¢. Thus, the
value of u® depends only on the residue class of @ modulo ¢q. Therefore, if @ = [a], € Z, is the
residue class of @ modulo ¢, we can define u® := u® and this definition is unambiguous. From here
on we will frequently use elements of Z, as exponents applied to elements of G.

So now we have everything we need to describe the Diffie-Hellman key exchange protocol. We
assume that the description of G, including g € G and ¢, is a system parameter that is generated
once and for all at system setup time and shared by all parties involved. The protocol runs as
follows, as shown in Fig. 10.2:

1. Alice computes o <+ Zg, u < g%, and sends u to Bob.
2. Bob computes 3 <* Z,,v + ¢” and sends v to Alice.
3. Upon receiving v from Bob, Alice computes w v®
4. Upon receiving v from Alice, Bob computes w < u”®

The secret shared by Alice and Bob is

10.4.2 Security of Diffie-Hellman key exchange

For a fixed element g € G, different from 1, the function from Z, to G that sends o € Z, to g* € G
is called the discrete exponentiation function. This function is one-to-one and onto, and its
inverse function is called the discrete logarithm function, and is usually denoted Dlogg; thus,
for u € G, Dlog,(u) is the unique a € Z, such that u = g%. The value g is called the base of the
discrete logarithm.

If the Diffie-Hellman protocol has any hope of being secure, it must be hard to compute « from
g% for a random «; in other words, it must be hard to compute the discrete logarithm function.
There are a number of candidate group families G where the discrete logarithm function is believed
to be hard to compute. For example, when p and ¢ are sufficiently large, suitably chosen primes,

402

G,g,q G,g,q

Alice Bob

uU<—g

v gP

w v =g w +— uP = g™V

Figure 10.2: Diffie-Hellman key exchange

the discrete logarithm function in the order g subgroup of Zj is believed to be hard to compute
(p should be at least 2048-bits, and ¢ should be at least 256-bits). This assumption is called the
discrete logarithm assumption and is defined in the next section.

Unfortunately, the discrete logarithm assumption by itself is not enough to ensure that the
Diffie-Hellman protocol is secure. Observe that the protocol is secure if and only if the following
holds:

given g%, ¢” € G, where a <& Z, and 3 <~ Z,, it is hard to compute g*’ € G.

This security property is called the computational Diffie-Hellman assumption. Although the
computational Diffie-Hellman assumption is stronger than the discrete logarithm assumption, all
evidence still suggests that this is a reasonable assumption in groups where the discrete logarithm
assumption holds.

10.5 Discrete logarithm and related assumptions

In this section, we state the discrete logarithm and related assumptions more precisely and in
somewhat more generality, and explore in greater detail relationships among them.

The subset G of Z;, that we defined above in Section 10.4 is a specific instance of a general type
of mathematical object known as a cyclic group. There are in fact other cyclic groups that are
very useful in cryptography, most notably, groups based on elliptic curves — we shall study elliptic
curve cryptography in Chapter 15. From now on, we shall state assumptions and algorithms in
terms of an abstract cyclic group G of prime order ¢ generated by g € G. In general, such groups
may be selected by a randomized process, and again, the description of G, including g € G and g,
is a system parameter that is generated once and for all at system setup time and shared by all
parties involved.

We shall use just a bit of terminology from group theory. The reader who is unfamiliar with the
concept of a group may wish to refer to Appendix A; alternatively, for the time being, the reader
may simply ignore this abstraction entirely:

403

