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Abstract

A hypergraph spectral sparsifier of a hypergraph G is a weighted subgraph H that approximates
the Laplacian of G to a specified precision. Recent work has shown that similar to ordinary graphs,
there exist Õ(n)-size hypergraph spectral sparsifiers. However, the task of computing such sparsifiers
turns out to be much more involved, and all known algorithms rely on the notion of balanced weight
assignments, whose computation inherently relies on repeated, complete access to the underlying
hypergraph. We introduce a significantly simpler framework for hypergraph spectral sparsification
which bypasses the need to compute such weight assignments, essentially reducing hypergraph spar-
sification to repeated effective resistance sampling in ordinary graphs, which are obtained by oblivious
vertex-sampling of the original hypergraph.

Our framework immediately yields a simple, new nearly-linear time algorithm for nearly-linear
size spectral hypergraph sparsification. Furthermore, as a direct consequence of our framework, we
obtain the first nearly-optimal algorithms in several other models of computation:

1. The first nearly-optimal size linear sketches for spectral hypergraph sparsification. For hyper-
graphs on n vertices, with hyperedges of arity ≤ r and with ≤ m hyperedges, these sketches
require only Õ(nr polylog(m)/ϵ2) bits and recover a (1± ϵ) spectral-hypergraph sparsifier with
high probability. It is known that linear sketches require Ω(nr log(m)) bits even for the easier
task of cut sparsification (Khanna-Putterman-Sudan FOCS 2024).

2. The first nearly-optimal fully dynamic (1 ± ϵ) spectral (and cut) hypergraph sparsification

algorithm. Our algorithm has an amortized, expected update time of Õ(r polylog(m)/ϵ2), and

produces sparsifiers with Õ(npolylog(m)/ϵ2) hyperedges. This is nearly-optimal as even to read
a single hyperedge takes time Ω(r).

3. The first nearly-optimal algorithm for online hypergraph spectral sparsification. On a sequence
of m (unweighted) hyperedges, our algorithm creates a (1 ± ϵ) hypergraph spectral sparsifier

with Õ(npolylog(m)/ϵ2) hyperedges in an online manner. When m ≤ poly(n), this improves
upon the work of Soma, Tung, and Yoshida (IPCO 2024) by a factor of r, who created online

sparsifiers with Õ(n(r+log(m))/ϵ2) hyperedges. We complement this result with an Ω(n log(m))
lower-bound for any online sparsifier, thus provably separating the classical and online settings.

Our main conceptual and technical contributions are introduction of (a) the vertex sampling
framework to reduce spectral sparsification in hypergraphs to ordinary graphs, and (b) a notion of
collective energy in hypergraphs that may be seen as a continuous generalization of k-cuts.
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1 Introduction

Ever since its conception in the work of Karger [Kar93], graph sparsification has been a powerful algo-
rithmic tool in the design of efficient graph algorithms. Roughly speaking, given a graph G = (V,E),
sparsification is the process of choosing a re-weighted subgraph G′ ⊆ G such that certain properties of
G are preserved. In the works of Karger [Kar93] and Benczúr and Karger [BK96], these properties took

the form of the cut sizes in the graph, and this research culminated in the design of an Õ(n +m) time
algorithm that produces a “nearly-linear size cut-sparsifier.” Specifically, they showed that there exists
a re-weighted subgraph of G with only O(n log(n)/ϵ2) edges that preserves the weight of every cut to a
(1 ± ϵ)-factor. This result continues to play a central role in obtaining significantly more space-efficient
and time-efficient algorithms for cut and flow problems on graphs across many models of computation.

Subsequently, other works extended the notion of cut sparsification in different directions. Perhaps
most notably, the landmark works of Spielman and Teng [ST11], Spielman and Srivastava [SS11], and
Batson, Spielman, and Srivastava [BSS12] studied spectral graph sparsification. Here, instead of simply
preserving the cuts in the graph, their sparsifiers preserve the entire spectrum of the graph Laplacian.
Recall that for a graph G, the Laplacian LG = D − A, where D is a diagonal matrix of vertex degrees,
and A is the adjacency matrix. One can check that for S ⊆ [n], 1T

SLG1S = |cutG(S)|. Thus, preserving
the spectrum of LG to a (1 ± ϵ) factor is a stronger notion than (1 ± ϵ) cut-sparsification. Yet, [ST11,
SS11, BSS12] still showed the existence of spectral sparsifiers of (nearly) linear size.

Paralleling the work in graphs, recent efforts in sparsification have focused heavily on the hypergraph
setting. Originally proposed in the cut setting by Kogan and Krauthgamer [KK15], here one is tasked
with selecting a re-weighted sub-hypergraph, such that all cuts have their weight preserved to a (1 ± ϵ)-
factor. As in graphs, a cut is given by a subset S ⊆ V of vertices, and a hyperedge e ⊆ V is said to be
crossing the cut if e ∩ S ̸= ∅ and e ∩ (V − S) ̸= ∅. Likewise, there is a notion of a hypergraph Laplacian
(see [CLTZ18]), where for a hypergraph H = (V,E) and a vector x ∈ Rn, we say that

QH(x) =
∑
e∈E

we · max
(u,v)∈e

(x[u]− x[v])2.

Initially studied by Soma and Yoshida [SY19] and Bansal, Svensson, and Trevisan [BST19], a (1 ± ϵ)
hypergraph spectral sparsifier H ′ of a hypergraph H is thus a re-weighted sub-hypergraph such that
∀x ∈ Rn, (1− ϵ)QH(x) ≤ QH′(x) ≤ (1 + ϵ)QH(x).

As with graphs, for a set S ⊆ V , it is also the case that QH(1S) = |cutH(S)|, and hence hyper-
graph spectral sparsification generalizes cut sparsification. In a long line of works [CKN20, KKTY21b,

KKTY21a, Lee23, JLS23, JLLS23, OST23, Qua24, KPS24a] the existence of nearly-optimal size Õ(n/ϵ2)
cut and spectral sparsifiers was established, along with a host of efficient algorithms for computing such
sparsifiers.

1.1 Computing Sparsifiers in Modern Computational Settings

However, the extensive research into efficient algorithms for hypergraph sparsifiers has so far primarily
focused on the classical model of computation where the underlying hypergraph is static and the algorithm
has unrestricted random access to the hypergraph. In contrast, one highlight of the extensive literature
on graph sparsification algorithms has been the deployment of these algorithms in modern computational
settings where either the underlying graph is not static or the algorithm has only a restricted access to the
underlying graph, say, via linear measurements only. For instance, the work of [AGM12], and [KLM+14]
established algorithms for creating cut and spectral sparsifiers of graphs in the linear sketching model of
computation which require only Õ(n/ϵ2) bits of space. These algorithms are then immediately amenable
to other computational settings such as the massively parallel computation (MPC) model (see e.g.,
[ACL+22, AKLP22]) and the dynamic streaming setting (where edges in the stream can be both inserted
and deleted).
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In a different vein, the work of [ADK+16] studied algorithms for dynamically maintaining sparsifiers
of ordinary graphs. In this model, the graph is no longer static but is undergoing edge insertions and
deletions, and the goal is to maintain a sparsifier without recomputing it from scratch after each update.
The work of [ADK+16] showed that one can maintain a (1± ϵ)-cut sparsifier of a graph with worst-case
update time poly(log(n), 1/ϵ), and spectral sparsifiers with an amortized update time of poly(log(n), 1/ϵ).
Beyond this, there has also been work on graph sparsification in the small space regime by [DMVZ20]
(i.e., designing spectral sparsification algorithms that use a small work-tape but have an unrestricted
access to the input graph) and development of deterministic algorithms for computing spectral sparsifiers
of graphs by Batson, Spielman, and Srivastava [BSS09].

In contrast, hypergraph sparsification is well-understood only in a small number of settings. Guha,
McGregor, and Tench [GMT15] gave the first linear sketches for hypergraph cut-sparsifiers. However,

the linear sketches of [GMT15] require Õ(nr2 polylog(m)/ϵ2)1 bits to recover a (1 ± ϵ) cut-sparsifier
for hypergraphs on n vertices, with at most m hyperedges of arity bounded by r. A very recent work
of Khanna, Putterman, and Sudan [KPS24b] constructed linear sketches for hypergraph cut-sparsifiers

that achieve a nearly-optimal size of Õ(nr log(m)/ϵ2) bits. As mentioned above, this immediately yields
space-efficient dynamic streaming algorithms and communication-efficient MPC algorithms. Finally, the
very recent work of Soma, Tung, and Yoshida [STY24] studied hypergraph spectral sparsification in the
online model. Here, hyperedges arrive one at a time, and the sparsifier must decide, upon each arrival,
whether to keep the hyperedge or not: if the hyperedge is kept, the algorithm must decide its weight
immediately. The work of [STY24] shows that one can compute (1 ± ϵ) hypergraph spectral sparsifiers

with Õ(n(r + log(m))/ϵ2) hyperedges, where r is the maximum arity of any hyperedge. However, to the
best of our knowledge, neither hypergraph cut-sparsification nor spectral-sparsification has been studied
in the fully dynamic setting.

To summarize, there are many computational models where our understanding of hypergraph sparsi-
fication significantly lags behind our understanding of the graph setting, with either no non-trivial results
known or there is a striking gap between upper bounds achieved by algorithmic results and known lower
bound results.

Because spectral hypergraph sparsification has found numerous applications in e.g., semi-supervised
learning [ZHTC20], clustering [LVS+21, ZLS22], and practical compression [BWG+19], designing efficient
sparsifiers is ever more important. Indeed, in these modern applications, one is often facing a staggering
volume of data, which is itself evolving in real-time. Thus, these applications vastly benefit from the
ability to process this kind of data in a space- and time-efficient manner.

Motivated by this, our work introduces a new unifying framework that significantly narrows these
gaps in our understanding by providing nearly-tight algorithms for hypergraph sparsification (both cut
and spectral) in the settings of linear sketching, fully-dynamic algorithms, and online algorithms. In the
following section, we describe in detail our contributions to hypergraph sparsification in these settings.

1.2 Our Contributions

As a step towards overcoming the gap in our understanding of computing hypergraph sparsifiers in
restricted settings, we introduce a general framework for reducing hypergraph sparsification to an inher-
ently graph-theoretic task. Our starting point, as in prior works on spectral hypergraph sparsification,
is the notion of a weight assignment. Vaguely speaking, hypergraph sparsification relies on computing
appropriate estimates of the importance of each hyperedge. After computing a probability distribution
pe over the hyperedges e ∈ E, one then samples every hyperedge e with probability pe, and reweighs the
hyperedge to have weight 1

pe
. Weight assignments provide a mechanism for computing these probabilities

by carefully studying an associated ordinary multi-graph for the hypergraph at hand. Unfortunately,
these algorithms iteratively refine the weight assignment to the underlying multi-graph, and therefore
rely on repeated, complete access to the entire hypergraph, which we do not have in restricted models of

1Throughout the paper, we use Õ to hide polylog(n) factors.
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computation such as linear sketching. Our first contribution is to provide a simple algorithm for static
hypergraph sparsification which removes the need for computing these weight assignments to identify
important hyperedges, and instead relegates them entirely to the analysis.

Vertex-Sampling Framework for Hypergraph Sparsification. We introduce a notion of vertex-
sampling whereby we repeatedly, independently, sample subsets of the vertex set V . On these vertex-
sampled hypergraphs, we then associate a canonical multi-graph which replaces each hyperedge with a
clique on the corresponding vertices. We show that sampling the multi-edges in proportion to their ef-
fective resistance (and then recovering the corresponding hyperedges for whichever multi-edges survive)
suffices for recovering the hyperedges with “high importance”. Further, when we build sparsifiers using
this framework, the sparsity of the returned hypergraphs is nearly-optimal. While the technique of sam-
pling vertices and looking at the resulting induced subgraphs has been used previously for ordinary graph
sparsification [FKN21, CKL22], to the best of our knowledge, we are the first to use it for sparsification
of hypergraphs.

Note that we only present our results for unweighted hypergraphs, but one can extend them to
weighted graphs by standard geometric weight grouping tricks (see [KLM+14] or [ADK+16]). Specifically,
we show the following result:

Theorem 1.1 (Informal). There is a randomized algorithm that reduces the task of creating a (1 ± ϵ)
spectral-sparsifier for a hypergraph H with at most m hyperedges to the task of sampling multi-edges at
rate polylog(m,n)/ϵ2 times their effective resistance in a collection G of ordinary graphs. The graphs
in G are created in an oblivious manner, and moreover, the total number of vertices in graphs in G is
bounded by n polylog(m,n), thus ensuring that the sparsifier has only Õ(n polylog(n,m)/ϵ2) hyperedges.

Since our algorithm is conceptually fairly simple, we present its full pseudocode in Section 2.1. Our
framework immediately yields a novel and simple nearly-linear time algorithm for computing hypergraph
spectral sparsifiers of nearly-linear size (see Section 4.3).

Linear Sketches for Hypergraph Spectral Sparsification. Furthermore, due to the simplicity of
our framework, we are able to directly take advantage of many well-developed techniques for estimating
effective resistances in ordinary graphs and extend these to the hypergraph setting. Our first such
extension is in designing linear sketches for hypergraph spectral sparsification, where we take advantage
of the prior work of [KLM+14] which designed linear sketches for effective resistance sampling in ordinary
graphs. A linear sketch for a hypergraph H is specified by a matrix P ∈ Rs×2n , where a hypergraph is
represented by an indicator vector in {0, 1}2n . The sketch itself is then P · H, and the number of bits

required to store the sketch is typically Õ(s) (there are only s entries in the sketch, but they may require
more precision to represent). In this regime, we show the following:

Theorem 1.2. There is a linear sketch for hypergraphs on n vertices, ≤ m hyperedges, and arity ≤ r
which uses Õ(nr polylog(m)/ϵ2) bits of space, and can be used to recover a (1± ϵ) spectral-sparsifier with
probability 1− 1/poly(n,m).

Recall that the work of [KPS24b] showed a lower bound of Ω(nr log(m)) bits even for the simpler task
of computing a (1±ϵ) cut-sparsifier of a hypergraph using a linear sketch. Thus, a dependence on logm is
unavoidable in the linear sketching setting. Our linear sketch has nearly the same size and succeeds even
in computing (1 ± ϵ) spectral -sparsifiers. As an immediate corollary of the above theorem, we also get
the first nearly-optimal space complexity algorithm for recovering hypergraph spectral sparsifiers from
dynamic streams, and show that its complexity nearly-matches that of the cut-sparsification setting:

Corollary 1.3. For any ϵ ∈ (0, 1), there is a randomized dynamic streaming algorithm using Õ(nr polylog(m)/ϵ2)
bits of space that, for any sequence of insertions / deletions of hyperedges in an n-vertex unweighted hy-
pergraph H with at most m edges of arity bounded by r, allows recovery of a (1± ϵ) spectral-sparsifier of
H with probability 1− 1/poly(n,m) at the end of the stream.
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Fully Dynamic Hypergraph Spectral Sparsification. We also present the first construction of
fully-dynamic hypergraph sparsifiers with nearly-optimal update time and sparsity (for both the cut and
spectral settings). Recall that in the fully-dynamic setting, there is a sequence of insertion / deletion
operations of hyperedges, and after each such operation, the algorithm must output a list of changes that
must be made to the existing hypergraph sparsifier such that it maintains a (1± ϵ)-approximation to the
spectrum (or cut-sizes). Along these lines, we show the following:

Theorem 1.4. There is a fully dynamic data structure that for a hypergraph H on n vertices with ≤ m
hyperedges, and arity ≤ r undergoing a sequence of updates maintains a (1 ± ϵ)-spectral-sparsifier (and
thus cut-sparsifier too) with probability 1−1/poly(n,m). The expected, amortized update time of the data

structure is O(r polylog(m,n) · (1/ϵ)2 log(1/ϵ)), and it maintains a sparsifier with Õ(npolylog(m)/ϵ2)
hyperedges.

Note that even to maintain a (1 ± ϵ) ordinary graph spectral sparsifier in the fully dynamic setting,
the best known result is an amortized update time of poly(log n, ϵ−1) by [ADK+16]. We also observe
that our update-time is essentially the best possible, as simply to read each hyperedge requires Ω(r)
time. This result also resolves in the affirmative the open question 6.3 of [STY24] about the existence of
efficient fully dynamic hypergraph spectral sparsification algorithms.

In real-world applications, fully-dynamic sparsifiers allow for maintaining a sparse representation of
the hypergraph, even as it undergoes hyperedge insertions / deletions, without re-computing the sparsifier
from scratch. Because of the broad applicability of hypergraph spectral sparsifiers for faster clustering
algorithms [LM17, LM18, VBK20, VBK21, LVS+21, ZLS22], this immediately yields faster clustering as
the underlying hypergraph evolves. We note that our results hold only for the oblivious adversary fully-
dynamic model, where the hyperedge updates are independent of the current sparsifier (as opposed to
adaptive adversary models, such as the one considered in the work of [BvdBG+22] for ordinary graphs).

Online Hypergraph Spectral Sparsification. Finally, we also present a new nearly-optimal algo-
rithm for online hypergraph spectral sparsification. Here, the algorithm is presented with a stream of
hyperedges to be inserted. After seeing each hyperedge, the algorithm must immediately decide whether
or not to keep the hyperedge (as well as what weight should be assigned if kept). Once a hyperedge is kept,
the algorithm cannot remove it and cannot change its weight. In the context of hypergraphs, this problem
was first studied in [STY24], who showed the existence of online hypergraph spectral sparsification algo-

rithms which require only Õ(n2 log(m)) bits of space, and produce sparsifiers with Õ(n(r + log(m))/ϵ2)
hyperedges. Using our framework, we are able to improve the sparsity by a factor of r in the case when
m ≤ poly(n):

Theorem 1.5. There is an online hypergraph spectral sparsification algorithm, which for hypergraphs H
on n vertices with ≤ m hyperedges, and arity ≤ r undergoing a sequence of insertions maintains a (1±ϵ)-
spectral-sparsifier (and thus cut-sparsifier too) with probability 1 − 1/poly(n,m). The space complexity

of the algorithm is Õ(nr polylog(m)/ϵ2) bits and the sparsifier contains Õ(npolylog(m)/ϵ2) hyperedges.

The space complexity of Õ(nr polylog(m)/ϵ2) bits of our online algorithm matches exactly the bound
proposed in the open question 6.2 of [STY24], thus resolves it affirmatively.

We complement the algorithmic result of Theorem 1.5 with an Ω(n log(m)) lower-bound on the number
of hyperedges that must be kept by any online sparsifier in the worst-case (Section 10.1). Hence, unlike
the static setting, in the online setting a dependence on logm is unavoidable.

The following table depicts the landscape of hypergraph sparsification in different models of computa-
tion, with our contributions highlighted in red which includes as a reference a linear sketching algorithm
for hypergraph spectral sparsification that can be easily derived from known results (see Appendix A).
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Work Setting Sparsification Space Complexity Time Complexity

[KPS24b] Linear Sketching Cut Õ(nr log(m)/ϵ2) bits N/A

Naive (Appendix A) Linear Sketching Spectral Õ(nr2 polylog(m)/ϵ2) bits N/A

This work Linear Sketching Spectral Õ(nr polylog(m)/ϵ2) bits N/A

This work Fully-Dynamic Cut Õ(n polylog(m)/ϵ2) edges Õ(r polylog(m)/ϵ2)

This work Fully-Dynamic Spectral Õ(n polylog(m)/ϵ2) edges Õ(r polylog(m)/ϵ2)

[STY24] Online Spectral O(n(r + log(m))/ϵ2) edges N/A

This work Online Spectral Õ(n polylog(m)/ϵ2) edges N/A

Table 1: Summary of our results.

2 Technical Overview

In this section, we give a high level overview of our techniques. Throughout this section, we focus on
unweighted hypergraphs that only have hyperedges of arity (cardinality) between [r, 2r], as one can extend
our results to general weighted hypergraphs of arbitrary arity by geometrically grouping hyperedges by
arity and weights.

2.1 A New Hypergraph Spectral Sparsification Framework

We now present our new unified framework for spectral hypergraph sparsification which as we will see
later, lends itself easily to efficient implementation in a variety of different computational models. At a
high-level, our meta-algorithm is based on a very natural strategy for sparsification. Given a hypergraph
H(V,E), identify a set F ⊆ E of critical hyperedges that almost certainly needs to be included in
any sparsifier. The remaining hyperedges in E − F are not critical, and we can afford to subsample
them with probability 1/2 to create a new hypergraph H ′(V,E′). One can then focus on the task of
recursively building a sparsifier for the graph H ′ which contains only half as many hyperedges as the
starting hypergraph H. The main challenge then is in efficiently identifying the set of critical hyperedges.

Our meta-algorithm is completely specified by a pair of subroutines that implement the strategy
above. The first subroutine, given by Algorithm 1, reduces the problem of identifying critical hyperedges
to effective resistance sampling in ordinary graphs. The second subroutine, given by Algorithm 2, then
recursively builds a sparsifier by invoking Algorithm 1 to identify critical hyperedges at each level of
recursion. The heart of our approach is Algorithm 1 for recognizing critical hyperedges, and we describe
it next.

As mentioned before, our key new insight is that the task of identifying critical hyperedges can be
reduced to effective resistance sampling in a suitable collection of ordinary graphs, generated by sub-
sampling vertices of the hypergraph. Specifically, for a hypergraph H = (V,E), vertex-sampling at rate
p refers to sampling each vertex in V independently with probability p. If we denote the resulting vertex
set by V ′, then it defines a new hypergraph H ′ = (V ′, E′), where E′ = {e ∩ V ′ : e ∈ E}. Another key
notion that we will utilize is the notion of a multi-graph of a hypergraph H, denoted by Φ(H), which is an
ordinary graph obtained by replacing each hyperedge with a clique on the vertices of the hyperedge. Note
that since a pair of vertices may be contained in multiple hyperedges, this gives rise to a multi-graph.
Notationally, we also write RG(u, v) for an ordinary (multi-)graph G to denote the effective resistance
between u, v in G.
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Algorithm 1: VS(H,λ)

Input : A hypergraph H with ≤ m hyperedges of arity [r, 2r], and an oversampling rate λ ≥ 1.
Output: A set of hyperedges F .

1 Initialize F ← ∅.
2 for r polylog(n,m) rounds do
3 Vertex sample H at rate 1/r to get H ′, with Φ(H ′) being its multi-graph.

4 Independently sample each multi-edge (u, v) of Φ(H ′) with probability λ ·RΦ(H′)(u, v).
5 Let F ′ contain all hyperedges of H for which at least one associated multi-edge got sampled.
6 Let F ← F ∪ F ′ and delete F ′ from H.

7 end
8 return F .

Algorithm 2: HypergraphSpectralSparsify(H, ϵ, r,m)

Input : A hypergraph H with ≤ m hyperedges of arity [r, 2r], and a parameter ϵ.
Output: A reweighted subgraph of H.

1 Let H0 = H.
2 for i = 0, . . . , log(m) do
3 Let Fi = VS(Hi,polylog(n,m)/ϵ2).
4 Let Hi+1 = Hi − Fi with its hyperedges sampled at rate 1/2.

5 end

6 return
⋃log(m)

i=0 2i · Fi, i.e. put weight 2
i on hyperedges in Fi.

2.2 Analysis of Our Meta-Algorithm

In spectral sparsification of ordinary graphs, critical/important edges are defined to be edges whose effec-
tive resistance is Ω(1/ log n) [SS11]. For spectral sparsification of hypergraphs, previous work [KKTY21a,
JLS23, Lee23] determined important edges based on the notion of a weight assignment which are com-
puted by an iterative refinement approach. In contrast, Algorithm 1 above identifies important hyperedges
by implementing effective resistance sampling in ordinary graphs that are obtained by oblivious vertex
sampling of the original hypergraph, completely bypassing the need for computing a weight assignment.
The analysis of Algorithm 1, however, will rely on the notion of weight assignments, to argue correctness
of our approach.

Weight Assignments. Recall that given a hypergraph H = (V,E), we can associate with it a multi-
graph, denoted by G = Φ(H), where for each hyperedge e ∈ E, we replace it with a clique Ke on the
corresponding vertices. A weight assignment W assigns a weight wf to every multi-edge in G such that
for every hyperedge e ∈ H, the sum of the weights of the corresponding multi-edges in G is 1.

As shown in [KKTY21a, JLS23, Lee23], for any weight assignment W of G, sampling each hyperedge
e with probability given by pe = ϵ−2 polylog(n) ·max(u,v)∈e R

G(W )(u, v) suffices to yield a (1± ϵ)-spectral

sparsifier, where we write G(W ) to denote G with edges weighted by W , and write RG(W )(u, v) to denote
the effective resistance between u, v in G(W ).

That is, the sampling rate for each hyperedge e is proportional to the maximum over all multi-edges
f = (u, v) ∈ e of the effective resistance between u, v in G(W ). Consequently, the important hyperedges
are the ones that contain some u, v between which the effective resistance is at least 1/polylog(n,m) in the
graph G(W ). Naturally then, the difficulty comes in showing that one can compute weight assignments

such that
∑

e∈E pe is not too large (in particular, the number of important hyperedges is Õ(n)), as
this then immediately yields small spectral hypergraph sparsifiers. Unfortunately, finding such weight
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assignments requires an iterative refinement procedure that needs repeated, complete access to the entire
hypergraph, which we do not have in modern models of computation such as linear sketching.

Bypassing Weight Assignments Algorithmically. Instead, we present a sampling procedure that
operates on the underlying (unweighted) multi-graph, i.e. VS(H,λ) in Algorithm 1, to recover the impor-
tant hyperedges. This procedure samples multi-edges without needing to compute a weight assignment.
Then, for each sampled multi-edge f , we recover the corresponding hyperedge (i.e., the e ∈ H such that
f ∈ e). In order to show the correctness of our procedure, the key is to show that there exists a single
weight assignment W ∗ to the multi-graph Φ(H) such that every hyperedge e with a large sampling rate
under W ∗ is recovered by our procedure. For the remaining hyperedges which are not recovered, this
weight assignment W ∗ is a certificate to the fact that their sampling rates are small, and therefore they
do not yet need to be recovered. Crucially, we do not need to explicitly compute such a W ∗, but only
need its existence for our analysis.

There is a delicate and complex argument needed to show the existence of a weight assignment W ∗ to
which we can couple the success of the scheme. In particular, our key technical theorem is the following:

Theorem 2.1 (Key Technical Theorem). For any θ ∈ (0, 1), given a hypergraph H and its multi-graph
G = Φ(H), there exists a single weight assignment W ∗ of G such that for every hyperedge e ∈ H, one of
the following statements holds:

(a) either max(u,v)∈e R
G(W∗)(u, v) ≤ θ, or

(b) we have that Pr
[
e ∈ VS(H,λ = θ−1 polylog(n,m))

]
≥ 1−1/poly(n,m), where the poly(n,m) in the

success probability depends on the polylog(n,m) in the parameter λ of Algorithm 1.

By setting θ = ϵ2/ polylog(n,m) in Theorem 2.1, we get that there exists a weight assignmentW ∗ such
that each hyperedge either (i) can be recovered by our vertex sampling algorithm VS(H,polylog(n,m))
with high probability, or (ii) can be sampled with probability 1/2 while preserving the entire spectrum to
within 1± ϵ/ polylog(n,m). We thus classify the hyperedges satisfying (i) as important ones, and sample
the rest with probability 1/2 in Algorithm 2.

At a high level, the proof of Theorem 2.1 consists of two parts. First, we connect important hyperedges
to a new notion of multi-way energy that we call collective energy2, defined for a set of potential vectors
x1, . . . , xk ∈ Rn as

EH(x1, . . . , xk)
def
=
∑
e∈H

max
(a,b)∈e

(
k∑

i=1

(xi[a]− xi[b])
2

)
. (1)

Notably, EH(x1, . . . , xk) is solely determined by the hypergraph H and the potential vectors, without
reference to any weight assignments. We derive that each important hyperedge is “witnessed” by a set
of k potential vectors with small collective energy (in particular, ≤ k polylog(n,m)). Then in the second
part, we show that the existence of such a set of potential vectors witnessing important hyperedges can
be in turn used to show that the witnessed hyperedges can be recovered by our vertex sampling algorithm
with high probability. Crucially, we do not ever need to compute these potential vectors explicitly - they
are only used in our analysis.

The formal statement of the first part is summarized in our Collective Energy Lemma (Lemma 2.4),
and the formal statement of the second part is summarized in our Vertex Sampling Lemma (Lemma 2.5).
We also refer the reader to our Proof of Theorem 2.1 for how we combine the two parts to prove the
above theorem.

Due to space limitations, we defer a detailed discussion of the proof of Theorem 2.1 to Section 2.6,
with the first part discussed in Section 2.6.1 and the second part discussed in Section 2.6.2.

For now, we proceed by understanding the correctness of Algorithm 2, as well as describing the
implementation of our framework in modern models of computation.

2This may be seen as a continuous generalization of k-cuts, just as ordinary energy vs. 2-cuts; see Remark 2.1 below.
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Correctness of Algorithm 2. We now show how Algorithm 2 leverages Theorem 2.1 into a simple
algorithm for sparsifying the overall hypergraph. This type of framework is relatively standard, appearing
in many works ([KX16, GMT15, ADK+16, CKL22, KPS24b] to name a few).

To understand the above algorithm, let us focus on the first iteration, as it turns out the reasoning
extends to future iterations as well. When we run the vertex-sampling algorithm on H0 = H, we recover
some set F0 ⊆ H0 of hyperedges. By Theorem 2.1, we can then argue that with high probability, there
exists a single weight assignment W ∗ for which all remaining non-recovered hyperedges H0 − F0 would

have maximum pairwise resistance ≤ ϵ2

polylog(m,n) in the multi-graph weighted by W ∗. Per [JLS23], by

choosing an appropriate polylog(n,m), when we now sample at rate 1/2 to get H1, it will be the case
that F0 ∪ 2 ·H1 is a (1± ϵ) spectral-sparsifier for H0 with high probability.

In general, we can extend this reasoning beyond the first iteration: in the ith iteration Fi ∪ 2 ·Hi+1 is
a (1± ϵ)-spectral sparsifier for Hi with high probability. By composing the sparsifiers, if ϵ ≤ O(1/ logm),
we see that the final returned result is a (1 ± O(ϵ log(m)))-sparsifier to H with high probability. By
instead running the sparsification algorithm with ϵ′ = ϵ/ log(m), we then get our desired result.

To see the sparsity of the sparsifier, we see that each hyperedge which is recovered must correspond to a
multi-edge that is recovered. But, recall that we are doing effective resistance sampling on r polylog(m,n)
multi-graphs, each on npolylog(n,m)/r vertices, with an oversampling factor of polylog(m,n)/ϵ2. On

each multi-graph, we therefore recover Õ(n polylog(m)
rϵ2 ) multi-edges, and in total across all rounds, and

all log(m) levels of sampling, we recover Õ(npolylog(m)/ϵ2) multi-edges. Because hyperedges are recov-

ered only if a corresponding multi-edge is recovered, the final sparsity is therefore Õ(n polylog(m)/ϵ2)
hyperedges. To summarize, we get the following lemma:

Lemma 2.2. Given as input a hypergraph H and parameter ϵ ∈ (0, 1), Algorithm 2 creates a (1 ± ϵ)

spectral sparsifier H̃ of H with only Õ(n polylog(m)/ϵ2) hyperedges with probability 1− 1/poly(n,m).

In the next few sections, we show how to implement our new sparsification framework in various
modern models of computation.

2.3 Linear Sketching Hypergraph Spectral Sparsifiers

The key observation is that Algorithm 2 relies only on the ability to sample ordinary edges in proportion
to their effective resistance in various vertex-sampled multi-graphs. The work of [KLM+14] initiated the
study of linear sketches for creating spectral-sparsifiers, and in fact, this work already shows the existence
of a linear sketch (in small space) which can sample edges at rates proportional to their effective resistance.

Specifically, [KLM+14] showed that for a graph G on n vertices and a parameter ϵ > 0, there is a

linear sketch of size Õ(n/ϵ2) bits which can be used to recover a (1± ϵ) spectral-sparsifier of G with high
probability. Extending this linear sketch to work for our multi-graphs is straightforward, and requires
only blowing up the space by a factor of Õ(r log(m)) bits (a factor of roughly r for the “universe size”,
i.e., number of distinct multi-edge slots, and a factor of roughly log(m) for the support size, i.e., the
maximum number of multi-edges ever present in one multi-graph). Because this linear sketch already
enables sampling in proportion to effective resistance, all that remains to implement Algorithm 2 is to
recover the indices of the corresponding hyperedges whenever we recover a multi-edge. However, this

is essentially canonical: the hypergraph is represented by a vector in {0, 1}(
n
r), and the corresponding

multi-graph is represented by a vector in {0, 1}(
n
r)·r

2

(where each hyperedge creates O(r2) multi-edge
slots). Whenever the linear sketch recovers a multi-edge, this is reported as an index in [

(
n
r

)
· r2]. But,

given this index, there is a single hyperedge which corresponds to this index, and therefore this hyperedge
must be present.

The total space required for the linear sketch is just that of Õ(r polylog(m,n)) linear sketches for multi-
graph effective resistance sampling, with each multi-graph defined on O(

(
n
r

)
·r2) multi-edge slots, a support

of O(mr2) multi-edges, and O(npolylog(n,m)/r) vertices, and each linear sketch using an over-sampling

rate of Õ(polylog(m,n)/ϵ2). For each multi-graph, the space required is Õ(nr · r polylog(m)/ϵ2), and
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across all levels of sampling, and iterations of recovery, the number of multi-graphs is O(r polylog(m,n)).

Thus, the total space required by the linear sketch is Õ(nr polylog(m)/ϵ2) bits. This yields Theorem 1.2.

2.4 Recursive Recovery Framework

Unfortunately, re-using the same strategy for the fully-dynamic and online settings does not work. This
is primarily due to the fact that while there are linear sketches which can accomplish effective-resistance
sampling of multi-edges, there are no known fully-dynamic (or online) algorithms which can maintain
effective-resistance samples of a graph as it undergoes insertions and deletions. In prior works on designing
spectral sparsifiers of graphs in the fully-dynamic setting [ADK+16], this is tackled by maintaining disjoint
spanners at different levels of sampling.

More clearly, given a graph G, one can store a sequence T = T1 ∪ · · · ∪ Tpolylog(n,m)/ϵ2 of disjoint
spanners, where each Ti is a log(n)-spanner of G−T1− . . . Ti−1. In [ADK+16], the authors showed via a

simple combinatorial argument that any edge of effective resistance ≥ ϵ2

polylog(n) must be contained in this

set T of spanners. Immediately, this implies a simple algorithm for computing spectral sparsifiers whereby
one recursively stores these disjoint spanners, and then subsamples the remaining edges at rate 1/2. The
correctness follows from the fact that the remaining edges have small effective resistance, whereby one
can argue the concentration from [ST11, SS11], who showed that effective resistance sampling creates
spectral sparsifiers. This leads to the following algorithm for creating spectral sparsfiers:

Algorithm 3: GraphSpannerSparsification(G,n,m, ϵ)

1 Let G1 = G.
2 for i ∈ [log(m)] do

3 Let T (i) = T
(i)
1 ∪ . . . T

(i)
polylog(n,m)/ϵ2 be a sequence of polylog(n,m)/ϵ2 disjoint spanners of Gi.

4 Let Gi+1 be the result of sampling Gi − T (i) at rate 1/2.

5 end

6 return T (1) ∪ 2 · T (2) ∪ . . . 2log(m) · T (log(m))

In [ADK+16], the authors showed that this framework leads to fully-dynamic algorithms for spectral
sparsifiers, as one can design decremental algorithms for maintaining these disjoint collections of spanners
(and then bootstrap the decremental solution into a fully-dynamic one). Unfortunately for us however,
our analysis still relies on being able to do effective-resistance sampling, which is not directly in line with
the above procedure.

In this direction, another one of our contributions is to show that the above procedure essentially simu-
lates effective resistance sampling, up to some small degradations in the sampling probability. Specifically,
we show the following:

Lemma 2.3. Let Q ⊆ G denote a set of multi-edges, and let ϵ > 0 be a parameter. Then, if we let S
denote the set of multi-edges recovered in spanners as a result of running Algorithm 3 on G, we have that

Pr[S ∩Q ̸= ∅] ≥ min

2/3,
∑
e∈Q

Reff,G(e)/ϵ
2

− log(m)

n20
.

In particular, for a hypergraph H, and for each hyperedge e ∈ H, we let the set Q = Ke, i.e.,
the set of multi-edges corresponding to e. Per Theorem 2.1, if the hyperedge e is to be recovered by
vertex sampling and effective-resistance sampling, then the constituent multi-edges in Ke must at some

have a significant effective resistance (≥ ϵ2

polylog(n,m) ). Then, by instead running our recursive recovery

procedure that stores spanners, we will be guaranteed that some multi-edge in Ke is recovered, which
then suffices for recovering the hyperedge e itself. Due to the degradation in error probability, we run the
recursive recovery procedure some polylog(n,m) times to boost the probability of recovering all necessary
hyperedges.
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2.5 Fully Dynamic Sparsification and Online Sparsification

As a consequence of the above recursive recovery framework, we are able to construct fully-dynamic
algorithms for building hypergraph sparsifiers and online algorithms for building hypergraph spectral
sparsifiers. Roughly speaking, the key intuition here is that we have reduced the task of spectrally
sparsifying a hypergraph to the task of maintaining a set of disjoint spanners of some corresponding
multi-graphs.

Fully-Dynamic In the fully-dynamic setting, our starting point is existing constructions of decremen-
tal spanners of simple graphs [ADK+16]. By developing some supplementary data structures, we are in
fact able to extend these decremental spanners to arbitrary multi-graphs, and thus create a decremen-
tal implementation of hypergraph spectral sparsifiers. As in [ADK+16], we are then able to leverage
this decremental sparsifier data structure into a fully-dynamic sparsifier data structure using a well-
known reduction. All that remains then is to calculate the time complexity and space complexity of
the fully-dynamic algorithm: it turns out that we store r polylog(m,n)/ϵ2 vertex-sampled multi-graphs
(each on n/r vertices). For any hyperedge e of arity r, this means that we expect there to be at most
r polylog(m,n)/ϵ2 corresponding multi-edges across all multi-graphs. Upon removing a hyperedge, this
leads to an amortized expected time-complexity of O(r polylog(m,n)/ϵ2), as removing a single multi-
edge from a single spanner requires time O(polylog(n,m)). The sparsity of the construction will be

Õ(npolylog(m)/ϵ2) hyperedges, as it is exactly in line with Lemma 2.2. This yields a proof of Theo-
rem 1.4.

Online In the online setting, the algorithm is presented with a stream of hyperedge insertions and must
decide immediately after seeing each hyperedge, whether or not to keep it, and decide on the corresponding
weight to assign it. Fortunately, we have already reduced the task of hypergraph spectral sparsification
to storing spanners, and creating spanners in an online manner is exceptionally straightforward: given a
spanner constructed so far T , and the new edge f to be inserted, we simply check if f creates any cycles
of length ≤ log(n) in T . If not, we include f in the spanner, and otherwise, we do not include f .

From a global perspective, whenever a hyperedge e arrives, we try inserting all of the corresponding
multi-edges to e in each of the respective vertex-sampled multi-graphs. If, in any vertex-sampled multi-
graph, a multi-edge e is included in one of the spanners, then we know that we must keep the hyperedge
e with weight 1. Otherwise, we flip a coin; with probability 1/2 the hyperedge e is deleted, and with
probability 1/2 we instead try inserting the hyperedge e into the second level of spanners. We continue
on in this manner for log(m) levels of spanners, until the hyperedge e does not “survive” one of the coin
flips. This reasoning yields the proof of Theorem 1.5. Observe that the space of the online sparsifier
follows from the fact that we store r polylog(m,n)/ϵ2 O(log(n)) spanners on graphs with O(nr ) vertices.

This requires storing at most O(npolylog(m)/ϵ2) multi-edges, which stores at most Õ(npolylog(m)/ϵ2)
hyperedges.

Thus, we have seen how the statement of Theorem 2.1 is powerful, and yields a host of novel sublinear
spectral sparsification results for hypergraphs. In the following section, we provide more insight into the
proof of Theorem 2.1.

2.6 Overview of Key Technical Theorem (Theorem 2.1)

We now give an overview for our key technical theorem (Theorem 2.1). We first discuss our Collective
Energy Lemma (Lemma 2.4) in Section 2.6.1, and then discuss our Vertex Sampling Lemma (Lemma 2.5)
in Section 2.6.2. We refer the reader to our Proof of Theorem 2.1 for how we combine the two lemmas
to prove our key technical theorem.

Before diving into the discussion, we first set up some definitions and notation, as well as present
the formal statements of the lemmas we are about to discuss. For reasons that will be clear later in our
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discussion in Section 2.6.2, we restrict to only vertex potentials with entries in [0, 1] when presenting the
statements of the two lemmas.

Definition 2.1 (Vertex Potentials and Spanning Hyperedges). A set of vertex potentials is a real-valued
vector x ∈ [0, 1]n supported on the n vertices of a hypergraph H (or its multi-graph G which has the
same set of vertices). We say a hyperedge e ∈ H spans x if ∃(u, v) ∈ e such that x[u] = 1 and x[v] = 0.

Recall that given vertex potentials x1, . . . , xk ∈ Rn, their collective energy is

EH(x1, . . . , xk)
def
=
∑
e∈H

max
(u,v)∈e

(
k∑

i=1

(xi[u]− xi[v])
2

)
.

We also define for a set of hyperedges F the following minimax resistance optimization:

OPTF
def
= min

W∈W
max
e∈F

max
(u,v)∈e

RG(W )(u, v),

whereW denotes the set of all valid weight assignments of the multi-graph G = Φ(H) of H. That is, OPTF
characterizes the minimum max sampling rates of the hyperedges in F over all valid weight assignments.

We present the formal statements of our two key lemmas below.

Lemma 2.4 (Collective Energy Lemma). For any θ ∈ (0, 1), given a hypergraph H, and a hyperedge set
F in H, if OPTF ≥ θ, then there exists a set of potentials x1, . . . , xk ∈ [0, 1]n with k ≤ poly(n) such that
the following two statements both hold:

1. Each xi is spanned by at least one hyperedge in F (cf. Definition 2.1).

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.

Lemma 2.5 (Vertex Sampling Lemma). Suppose we are given a θ ∈ (0, 1) satisfying θ ≥ 1/poly(n), a
hypergraph H, and a hyperedge set F in H, along with sets of potentials x1, . . . , xk ∈ [0, 1]n such that the
following both hold:

1. Each xi is spanned by at least one hyperedge in F (cf. Definition 2.1).

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.

Then, there (deterministically) exists an f ∈ F that spans at least one xi for which we have

Pr
[
f ∈ VS(H, θ−1 polylog(n,m)

]
≥ 1− 1/poly(n,m),

where the poly(n,m) in the success probability depends on the polylog(n,m) in the vertex-sampling
scheme.

2.6.1 Important Hyperedges and Collective Energy

Our goal in this section is to connect important hyperedges to a new notion of multi-way energy that we
call collective energy, defined for a set of potential vectors x1, . . . , xk as

EH(x1, . . . , xk)
def
=
∑
e∈H

max
(a,b)∈e

(
k∑

i=1

(xi[a]− xi[b])
2

)
. (2)

We will eventually derive that each important hyperedge is witnessed by a set of k potential vectors with
small collective energy (in particular, ≤ k polylog(n,m)). We refer the reader to the Collective Energy
Lemma (Lemma 2.4) for the formal statement.
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This can be seen as the spectral analog of the work by Quanrud [Qua24], where they showed how
to identify important hyperedges for cut sparsification by looking at the ratio k-cuts. As we discuss in
Remark 2.1 below, their notion of ratio k-cuts can indeed be seen as special cases of our collective energy.
However, we will take an entirely different approach, as the cut counting bound derivation in [Qua24]
does not extend to spectral sparsification where we have to deal with real-valued vectors.

Remark 2.1 (Collective Energy and k-Cuts). We highlight an interesting connection between our notion
of collective energy and the size of k-cuts in hypergraphs.

Specifically, consider the case when x1, . . . , xk are the indicator vectors of a k-way partition V1, . . . , Vk

of the vertices. That is, x1, . . . , xk are all 0/1 vectors with disjoint supports that form a partition of V .
Then, one can verify that their collective energy EH(x1, . . . , xk) equals exactly twice the size of the
corresponding k-cut in H. Consequently, in this special case, our small collective energy condition means
that this k-cut has size at most k polylog(n,m), which is exactly the criteria for determining important
hyperedges for cut sparsification by Quanrud [Qua24] based on their notion of ratio k-cuts.

We start by discussing a conceptual idea for identifying the important hyperedges that leads us to a
certain optimization problem of effective resistances.

Minimax Optimization of Resistances. Consider the following idea of identifying the important
hyperedges. First, if we were able to choose a weight assignment W such that simultaneously for all
hyperedges e we have

max
(u,v)∈e

RG(W )(u, v) < 1/ polylog(n,m),

then it would be great since we would have concluded that there are no important hyperedges that we
need to keep in our sparsifier. On the other hand, if no such weight assignment exists, we would like to
find a certain “certificate” that certifies the absence of such weight assignments, which can in turn help us
find the “bottleneck” hyperedges preventing us from finding the desired W . Ideally, the certificate should
be oblivious to any weight assignment. We will then classify the bottleneck hyperedges as important
hyperedges.

Let us now rephrase the idea above from an optimization point of view. Consider the following
minimax optimization problem of effective resistances, whose optimal value we denote by OPTH :

OPTH
def
= min

W∈W
max
e∈H

max
(u,v)∈e

RG(W )(u, v), (3)

where we writeW to denote the collection of all possible valid weight assignments. If OPTH < 1/ polylog(n,m),
then we conclude that there are no important hyperedges that we are bound to keep in our sparsifier.
Otherwise, we want to find some certificate certifying OPTF ≥ 1/polylog(n,m), which can in turn help
us find the “bottleneck” hyperedges that prevent OPTF from ever going below 1/polylog(n,m). Since we
want the certificate to be oblivious to any weight assignments, a natural candidate is vertex potentials,
which are known to characterize effective resistances through their energies.

Indeed, we will exploit the following well-known connection between effective resistances and energies
of vertex potentials. Specifically, for any u, v ∈ V , we have the following energy minimization view of
effective resistance:

1/RG(W )(u, v) = min
x∈Rn:x[u]=1,x[v]=0

EW (x), (4)

where we call x a set of vertex potentials, and define EW (x) =
∑

(a,b)∈G w(a, b)(x[a] − x[b])2 to be the

energy of x in G(W ), with w being the edge weight function specified by W .
Let us now define a few useful notations that will simplify the presentation below. Let (u1, v1), . . . , (ut, vt)

be the set of all vertex pairs such that each (ui, vi) ∈ e for some e ∈ H. Furthermore, let EWi be the
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minimum energy for the effective resistance optimization problem (4) for RG(W )(ui, vi), i.e.

EWi
def
= min

x∈Rn:x[ui]=1,x[vi]=0
EW (x).

Then OPTH satisfies the following identity:

1

OPTH
= max

W∈W
min
i
EWi . (5)

Our goal then is to find a certificate that certifies (5) ≤ polylog(n,m). One attempt to do so is to look
at the optimal W ∗ of the outer maximization problem, as well as the corresponding vertex potentials
achieving the energies EW∗

i ’s, hoping to use the optimality conditions of W ∗ to connect the energies of
the latter to the value of (5). This however turns out to be difficult as the inner minimization problem
is not strictly convex, and in particular may admit multiple minimizers.

To get around this, we will instead look at the dual of (5).

Dual of (5). In order to take the dual of (5), a first technicality we have to resolve is to make the inner
minimization problem over a convex domain. We do so by perhaps the most straightforward way where
we extend the inner domain to all convex combinations of EWi ’s, which does not change the optimal value:

1

OPTH
= max

W∈W
min

β∈∆t−1

∑
i∈[t]

β[i] · EWi , (6)

where ∆t−1 denotes the simplex of dimension t − 1, containing all convex combination coefficients of t
numbers. This reformulation has the following nice properties:

Claim 2.6 (Proposition 5.2 and Proposition 5.3). The objective function
∑

i∈[t] β[i] · EWi is convex in β
and concave in W .

The claim above allows us to invoke (generalizations of) von Neumann’s Minimax Theorem (see e.g.,
Corollary 37.3.2 of [Roc70]) and deduce strong duality for (6). In particular, we have

1

OPTH
= min

β∈∆t−1
max
W∈W

∑
i∈[t]

β[i] · EWi . (7)

Now, letting β∗ to be the minimizer of the outer minimization problem, we can rewrite the dual (7) as

1

OPTH
= max

W∈W

∑
i∈[t]

β∗[i] · EWi . (8)

That is, we have ended up with a single maximization problem over all valid weight assignments, with
the objective function being a fixed convex combination of the optimal energies between the ui, vi’s.
Moreover, the objective function is friendly, as its partial derivatives w.r.t. W have simple forms:

Claim 2.7 (Proposition 5.5). We have for any valid weight assignment W ∈ W, any i ∈ [t], and any
multi-edge (a, b) ∈ G in the multi-graph,

∂EWi
∂w(a, b)

=
(
xW
i [a]− xW

i [b]
)2

, (9)

where xW
i is defined to be the energy-minimizing potential vector for ui, vi in G(W ) (cf. (4)). That is,

the derivative of EWi w.r.t. w(a, b) is exactly the energy contribution by the multi-edge (a, b).
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Finally, by exploiting the KKT optimality conditions (see e.g., Theorem 28.2 of [Roc70]) on (8), we
show that whenever OPTH ≥ 1/ polylog(n,m), there are potential vectors {x1, . . . , xk} ⊆

{
xW∗

1 , . . . , xW∗

t

}
satisfying

1

k
· EH(x1, . . . , xk) ≤ polylog(n,m). (10)

Here, we define

EH(x1, . . . , xk)
def
=
∑
e∈H

max
(a,b)∈e

(
k∑

i=1

(xi[a]− xi[b])
2

)
(11)

to be the collective energy of x1, . . . , xk in H, W ∗ to be the maximizer of (8), and xW∗

i to be the energy-
minimizing potential vector for ui, vi in G(W ∗) (cf. (4)). These potential vectors x1, . . . , xk thus together
serve as certificate for OPTH ≥ 1/ polylog(n,m), and the hyperedges containing (ui, vi)’s corresponding
to x1, . . . , xk are considered the “bottleneck” hyperedges.

We refer the reader to the Collective Energy Lemma (Lemma 2.4) for a formal statement. What we
discussed above is of course a vast simplification of the proof of the collective energy lemma. We refer
the reader to Section 5 for the full derivation, in particular Proposition 5.7 and Corollary 5.8 which show
how KKT conditions allow us to bypass weight assignments completely.

2.6.2 Recovering Important Hyperedges by Vertex Sampling

Our next step is then to show that the certificate x1, . . . , xk could help us recover the important hyper-
edges. This can be seen as the spectral analog of the work by Khanna, Putterman, and Sudan [KPS24b],
where they showed how to recover important hyperedges to cut sparsification by carefully exploiting the
(small) ratio k-cuts, which are special cases of our certificate (cf. Remark 2.1). Although our task is more
challenging as the certificates are arbitrarily real-valued as opposed to 0/1-valued, we will nonetheless
use a drastically simpler algorithm, namely vertex sampling, that readily reduces the task to effective
resistance sampling in ordinary graphs, and relegate much of the complication to the analysis. We refer
the reader to the Vertex Sampling Lemma (Lemma 2.5) for the formal statement.

From now on, we restrict our attention to potential vectors in [0, 1]n. This is without loss of generality
since we only deal with energy-minimizing potential vectors x with the constraints that x[u] = 1 and
x[v] = 0 for some vertex pair u, v. As such, any vector can be made in [0, 1]n by setting all entries > 1
to 1 and all entries < 0 to 0 without increasing its energy or violating the constraints.

Let us now introduce the notion of potential-spanning hyperedges that will facilitate our presentation.
For a given potential vector x ∈ [0, 1]n, we say a hyperedge e spans x if there exist u, v ∈ e with
x[u] = 1, x[v] = 0. For the vectors x1, . . . , xk serving as certificate in (10), each xi is bound to be spanned
by at least one hyperedge, in particular the hyperedge that contains the vertex pair uj , vj for which xi is
energy-minimizing.

Extending OPTH to Subsets of Hyperedges. Observe that in our definition of OPTH in (3), the inner
maximization is over multiedges within the entire set of hyperedges in H. However, there is nothing
special about the entire set of hyperedges - one can in fact change the inner maximization domain to any
subset of hyperedges F and obtain a new minimax optimization problem whose optimal value we denote
by OPTF :

OPTF
def
= min

W∈W
max
e∈F

max
(u,v)∈e

RG(W )(u, v). (12)

Similarly, when OPTF ≥ 1/ polylog(n,m), by taking the dual and invoke the KKT optimality conditions,
we get a certificate x1, . . . , xk such that each xi is spanned by a hyperedge f ∈ F , and moreover

1

k
· EH(x1, . . . , xk) ≤ polylog(n,m). (13)
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Once again, we refer the reader to Lemma 2.4 for the formal statement and to Section 5 for its proof.

Thought Process for Identifying Important Hyperedges. Now consider the following thought
process for identifying important hyperedges:

1. Initially, let F0 contain all hyperedges in H.

2. While OPTF0
≥ 1/polylog(n,m):

(a) Find certificate x1, . . . , xk with collective energy ≤ k polylog(n,m) such that each xi is spanned
by some fi ∈ F .

(b) Remove a (deterministically chosen) hyperedge in f1, . . . , fk from F0.

3. Identify all hyperedges not in F0 as important.

No matter how we choose the hyperedge at Line 2b to remove, by the condition of the while loop, for
the final F0, there exists a single weight assignment W ∗ such that all multiedges within hyperedges in F0

have effective resistances at most 1/ polylog(n,m) in G(W ∗). Thus we do not consider hyperedges in F0

as important. It then remains to show a good way to choose a hyperedge fi at Line 2b to remove from
F0 so that (i) we are able to recover fi algorithmically, and (ii) the number of important hyperedges is
bounded by npolylog(n,m). These will both follow by analyzing our vertex sampling algorithm VS(H,λ)
presented in Algorithm 1, which we restate below.

Remark 2.2. Crucially, the thought process itself, along with the certificate x1, . . . , xk, are only used
in our analysis of the vertex sampling algorithm. Algorithmically speaking, VS(H) is the only action we
take to recover important hyperedges.

Algorithm 1: VS(H,λ)

Input : A hypergraph H with ≤ m hyperedges of arity [r, 2r], and an oversampling rate λ ≥ 1.
Output: A set of hyperedges F .

1 Initialize F ← ∅.
2 for r polylog(n,m) rounds do
3 Vertex sample H at rate 1/r to get H ′, with Φ(H ′) being its multi-graph.

4 Independently sample each multi-edge (u, v) of Φ(H ′) with probability λ ·RΦ(H′)(u, v).
5 Let F ′ contain all hyperedges of H for which at least one associated multi-edge got sampled.
6 Let F ← F ∪ F ′ and delete F ′ from H.

7 end
8 return F .

It is clear that the total number of hyperedges recovered by this process is at most nλ polylog(n,m)
due the resistance sampling. We also show in Section 6 that given any certificate x1, . . . , xk for OPTF ≥
1/ polylog(n,m), there deterministically exists a hyperedge fi ∈ F spanning xi such that

Pr [fi ∈ VS(H)] ≥ 1− 1/poly(n,m). (14)

Thus this fi will be the one we remove from F0 in the above thought process that identifies important
hyperedges. We refer the reader to the Vertex Sampling Lemma (Lemma 2.5) for a formal statement.

Our proof of Lemma 2.5 is rather delicate and contains several ideas carefully pieced together, thus
we do not intend to cover it fully in this technical overview. Rather, in an effort to provide intuition
behind the proof, we will explain how to prove a (distinctly) weaker version of the claim. Then we will
discuss the challenges we face in extending this warm-up solution to the full generality, and sketch what
more we have to do to overcome them.
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Warm-Up: Proving the 0/1-Case. Specifically, recall that in Remark 2.1, we noted that the ratio
k-cuts in [Qua24] are special cases where a collection of k 0/1-valued vectors with disjoint supports have
small collective energy. In light of this connection, for illustration purpose, we consider proving the
following 0/1-version of the vertex sampling lemma as a warm-up.

Lemma 2.8 (0/1-Vertex Sampling Lemma). Suppose we are given 0/1-valued vectors x1, . . . , xk ∈ {0, 1}n
with disjoint supports, such that each xi is spanned by at least one hyperedge in H, and

1

k
· EH(x1, . . . , xk) ≤ polylog(n,m). (15)

Then there (deterministically) exists an f ∈ H spanning at least one xi such that

Pr [f ∈ VS(H,polylog(n,m))] ≥ 1− 1/poly(n,m).

Note that we are doing effective resistance sampling in each vertex sampled multi-graph in VS. Thus
intuitively, in order to recover a hyperedge f ∈ H, it only helps if (i) at least one multi-edge within f
survives the vertex sampling, and (ii) the surviving multi-edge(s) within f has high resistance so they are
likely to be sampled. If, during one round of vertex sampling, a certain multi-edge (u, v) ∈ f survives and
it spans some xi, we then hope to resort to the energy minimization view (cf. (4)) of effective resistance
to show (u, v) has large resistance.

Specifically, let H ′ be the vertex-sampled hypergraph that contains (u, v) ∈ f , and let G′ = Φ(H ′) be
its multi-graph. Suppose some xi satisfies xi[u] = 1 and xi[v] = 0. Recall the energy minimization view
of effective resistance:

1/RG′
(u, v) = min

x:x[u]=1,x[v]=0
EG

′
(x)

= min
x:x[u]=1,x[v]=0

∑
(a,b)∈G′

(x[a]− x[b])2.

This in particular means that the energy EG′
(xi) of xi in G′ is an upper bound on 1/RG′

(u, v). As a
result, it suffices to show that EG′

(xi) is small, which will imply RG′
(u, v) is large.

An immediate takeaway of the above discussion is that only multi-edges that span at least one xi

are useful. We call these spanning multi-edges. Our first step of the analysis is to characterize these
multi-edges by stars, whose structure is friendly to analysis under vertex sampling.

Characterizing Spanning Multi-edges by Stars. Consider a potential vector xi and a hyperedge
f spanning it. Then f has at least one vertex with potential 0 and at least one vertex with potential 1
in xi. If the majority of them have potential 1 in xi, then for each vertex u ∈ f with potential 0 in xi,
we create a star with u being the center and all vertices in e with potential 1 in xi as leaves. Otherwise,
conversely, for each vertex u ∈ f with potential 1 in xi, we create a star with u being the center and
all vertices in e with potential 0 in xi as leaves. This way each star has Ω(r) multi-edges each has a
potential difference 1 between its endpoints in xi. Let S(xi) be the set of all stars we create from xi for
all hyperedges. Clearly, S(xi) captures all multi-edge energy contributions of xi.

For ease of our analysis, we want to restrict to a subset of xi’s each with a roughly similar num-
ber of stars. By a standard geometric grouping trick, there exists {y1, . . . , yℓ} ⊆ {x1, . . . , xk} such
that ℓ ≥ k/polylog(n,m) and each |S(yj)| is within polylog(n,m) of some number h. We now con-
sider the hyperedge f∗ ∈ H that contains the most number of stars across all y1, . . . , yℓ. Note that
ℓ ≥ k/ polylog(n,m) implies that E(y1, . . . , yℓ) ≤ ℓ polylog(n,m), which in turn yields that at most
ℓpolylog(n,m) hyperedges can contain stars, as each of them contributes at least energy 1 to their collec-
tive energy EH(y1, . . . , yℓ) (cf. (11)). Thus by an averaging argument, there exists one hyperedge f∗ that
contains at least h/polylog(n,m) stars across all y1, . . . , yℓ. Since y1, . . . , yℓ have disjoint supports, the
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stars in f∗ must have at least h/polylog(n,m) different centers. We next show that f∗ can be recovered
by VS(H,polylog(n,m)) with high probability.

Within one round of vertex sampling at rate 1/r, the probability that one (out of h/polylog(n,m))
star center in f∗ survives is Ω(h/(r polylog(n,m))). Conditioned on a specific center being sampled, one
of its star multi-edges gets sampled with constant probability, as there are Ω(r) of them. On the other
hand, conditioned on a specific star center being sampled, the total energy of the yj corresponding to
the star center becomes ≤ 1/r times smaller in expectation - this is because multi-edges incident on the
center survive with probability 1/r, whereas other multi-edges survive with probability 1/r2 ≤ 1/r. Since
the ≤ hpolylog(n,m) stars in S(yj) capture all energy of yj , we expect the total energy EG′

(yj) to be
≤ hpolylog(n,m). Thus, we expect the survival star multi-edge in f∗ to have effective resistance at least
Ω(1/(hpolylog(n,m))). Together, in one round of vertex sampling, f∗ gets recovered with probability at
least

Ω(h/(r polylog(n,m))) · Ω(1/(hpolylog(n,m))) = Ω(1/(r polylog(n,m))).

As a result, f∗ gets recovered with high probability in r polylog(n,m) rounds of vertex sampling.

Proof Sketch of the General Vertex Sampling Lemma. In the proof of the 0/1-vertex sampling
lemma above, we are exploiting the fact all multi-edges with non-zero energy contribution to the energy
of the multi-graph can be useful in recovering their parent hyperedges. This is however not true when the
vertex potentials have arbitrary real values. In particular, multi-edges of small energy contribution are
not helpful in our recovery since the corresponding vertex potential vector does not serve as a certificate
of their resistances being high. Yet, if their number is large, their total energy contribution may still be
large enough to overshadow the interesting multi-edges that do have large energy contribution.

There is however a remedy for this, namely rounding of the vertex potential vector. For instance, if
the multi-edges contributing small energy have potentials between [0, ϵ] on their endpoints for some small
ϵ > 0, then we can round the potential vector by setting all potentials ≤ ϵ to ϵ. This can only decrease
the total energy, while also preserving the multi-edges contributing large energy (e.g., Ω(1)).

Making the rounding work in general turns out to require a more delicate analysis, due the fact that
we do not have this clear separation of the vertex potentials in general. Our recipe for the general case
is to build a hierarchy of star collections. Specifically, we start from the star multi-edges we want to
recover, which we call the top-level stars. If there is a way to round vertex potentials to make these
multi-edges stand out in terms of their energy contribution, then we are in good shape; otherwise, we
show that out of the multi-edges overshadowing the top-level stars, we are able to create another level of
stars of geometrically more total energy, thus effectively expanding our star hierarchy by a new level. We
show that by choosing the potential rounding scheme carefully, we can make sure (i) all stars we add to
our hierarchy have large enough energy contribution to make themselves useful in our recovery algorithm,
and (ii) the hierarchy can have at most polylog(n,m) levels. Our recovery then proceeds in a bottom-
up manner. Each level takes r polylog(n,m) rounds of vertex sampling to recover. So polylog(n,m)
repetitions of these rounds can finally recover the top-level star multi-edges we are interested in.

Once again, this is a vast simplification of the actual proof. We refer the reader to Section 6 for the
full proof detail.

2.7 Organization

Section 3 establishes preliminary definitions and concepts that will be used throughout the paper. In
Section 4, we present our main vertex sampling algorithm for spectral hypergraph sparsification and its
analysis assuming the collective energy lemma and vertex sampling lemma, which are then proved in
Section 5 and Section 6 respectively. Section 7 shows how to implement our framework in the linear
sketching model. Section 8 develops our recursive recovery framework that forms the basis for both our
online and dynamic algorithms. In Section 9, we generalize a result of [ADK+16] to recovering large
effective resistance multi-edges in a multi-graph. Section 10 presents our algorithm for online spectral
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hypergraph sparsification and establishes its near-optimality via a matching lower bound in Section 10.1.
Section 11 extends our framework to the fully dynamic setting.

3 Preliminaries

3.1 Vertex Sampling

In this paper we will make use of the notion of vertex-sampling.

Definition 3.1. For a hypergraph H = (V,E), a vertex-sampling at rate p is the result of keeping
every vertex (independently) with probability p. We denote the resulting vertex set by V ′. The new
hypergraph H ′ = (V ′, E′), where E′ = {e ∩ V ′ : e ∈ E}.

Note that if e ∩ V ′ = ∅, then the hyperedge disappears after vertex-sampling. If e ∩ V ′ ̸= ∅, we call
e ∩ V ′ the projected hyperedge of e.

We also make use of the corresponding multi-graph for any hypergraph.

Definition 3.2. For a hypergraph H = (V,E), the corresponding multi-graph for H, denoted by Φ(H)
has the same vertex set V , and edge set

⋃
e∈E Ke, where Ke is the clique on vertices in e.

Note that if a hypergraph has arity bounded by r, then the number of multi-edges in the corresponding
hypergraph is at most |E| ·

(
r
2

)
.

3.2 Linear Sketches

As an application of our results, we create linear sketches for hypergraph spectral sparsification. We
define linear sketches below:

Definition 3.3. A linear sketch of a hypergraph G is given by a (randomized) matrix S of dimension
s×2n, chosen independently of the hypergraph. We associate the hypergraph G with its indicator vector
1G ∈ {0, 1}2

n

, and then the sketch of the graph is given by M · 1G. The space complexity of the sketch
is given by the number of bits required to represent M · 1G.

Note that linear sketches satisfy many convenient properties. For instance, when we wish to add or
remove a hyperedge e from G, we can simply add or delete the linear sketch of this hyperedge. That is,

M · 1G±e = M · 1G ±M · 1e.

3.3 Dynamic Algorithms

In this paper we will be studying dynamic algorithms for hypergraph problems. In general, for a graph
(or hypergraph), a sparsifier may require Ω(n) (hyper)edges. Thus, it is infeasible to return the entire
description of a hypergraph after each update to the underlying graph (i.e., each insertion or deletion of a
(hyper)edge). Instead, in a dynamic sparsifier, upon any update to the underlying graph, the algorithm
responds with the necessary updates to the corresponding sparsifier. We make this more formal below:

Definition 3.4. An algorithm A is a (1± ϵ) dynamic hypergraph sparsification algorithm if:

1. At every timestep t, A receives a new update to the underlying hypergraph Ht−1. The update is
either the insertion of a new hyperedge, or deletion of an existing hyperedge. We denote the new
resulting hypergraph by Ht.

2. At every timestep t, A outputs a sequence of changes to update the previous sparsifier H̃t−1 to H̃t.
This sequence of changes is either re-weighting of hyperedges, the addition of new hyperedges to
the sparsifier, or the removal of hyperedges from the sparsifier. With probability ≥ 1− 1/poly(n),

H̃t must be a (1± ϵ) sparsifier to Ht.
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There are two key quantities that we will be interested in with respect to a dynamic hypergraph
sparsification algorithm. First, we want to understand the sparsity of the resulting hypergraph. It is
trivial to see that if we do not care about the sparsity, then we can simply keep / delete every hyperedge
as it is inserted / deleted. Second, we care about the update time after each new insertion / deletion.
If we allow the update time to be too large, we can simply re-calculate the entire sparsifier after each
new insertion / deletion, therefore getting optimal sparsity, but going against the spirit of a dynamic
algorithm. So, we add the following quantifiers to our description of a dynamic algorithm:

Definition 3.5. We say that an algorithm A is a (1 ± ϵ) dynamic hypergraph sparsification algorithm
of sparsity s and update time f if the algorithm satisfies the conditions of Definition 3.4, while also
maintaining ≤ s hyperedges in each H̃t and each update requiring amortized, expected time ≤ f .

We will use the following result from the dynamic graph algorithms literature.

Theorem 3.1. [ADK+16] For every k ≥ 2 there is a decremental algorithm for maintaining a 2k − 1
spanner H of expected size O(k2n1+1/k log(n)) for an undirected graph G on n vertices with non-negative
edge weights that has an expected total update time of O(k2m log(n)). Additional H has the following
property: Every time an edge is added to H, it stays in H until it is deleted from G.

Remark 3.1. Of particular note in this theorem is the final sentence. This monotonicity (or what we
call “laziness” later in the paper) property will be very useful for us as we design dynamic hypergraph
sparsification algorithms, as it was in [ADK+16].

4 Spectral Hypergraph Sparsification by Vertex Sampling

We give a meta algorithm for spectral hypergraph sparsification by vertex sampling which is for now
stated without regard to any specific algorithmic implementation. We will discuss implementation details
in various settings in the following sections.

Notation. We use H to denote a hypergraph of arity ∈ [r, 2r] and use G = Φ(H) to denote H’s
underlying multi-graph where we replace each hyperedge with a clique (of unit edge weights) on those
vertices. We write W to denote a weight assignment of the edges in G where the edge weights of
each hyperedge’s clique sum up to exactly 1, and write W to denote the collection of all such weight
assignments. We write G(W ) to denote the multi-graph weighted by W .

For an ordinary multi-graph G, we write RG(u, v) to denote the effective resistance between u and v.
We also write RG(e) to denote the effective resistance between the endpoints of edge e ∈ G.

4.1 Vertex-Sampling Algorithm

We will use the following result from [JLS23] in a black-box manner.

Theorem 4.1 ([JLS23]). For any weight assignment W ∈ W of the underlying multigraph G of a
hypergraph H, and ϵ ∈ (0, 1), importance sampling each hypergraph e ∈ H with probability

pe ≥ max
(u,v)∈e

RG(W )(u, v) polylog(n,m)/ϵ2

gives a (1 + ϵ)-spectral sparsifier of H with high probability in n,m.

Now consider the following vertex sampling algorithm. Note that the output set F contains at most
O(nλ polylog(n,m)) hyperedges.
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Algorithm 1: VS(H,λ)

Input : A hypergraph H with ≤ m hyperedges of arity [r, 2r], and an oversampling rate λ ≥ 1.
Output: A set of hyperedges F .

1 Initialize F ← ∅.
2 for r polylog(n,m) rounds do
3 Vertex sample H at rate 1/r to get H ′, with Φ(H ′) being its multi-graph.

4 Independently sample each multi-edge (u, v) of Φ(H ′) with probability λ ·RΦ(H′)(u, v).
5 Let F ′ contain all hyperedges of H for which at least one associated multi-edge got sampled.
6 Let F ← F ∪ F ′ and delete F ′ from H.

7 end
8 return F .

We will prove the following theorem, which essentially shows that whenever a hyperedge f cannot be
recovered by vertex sampling at oversampling rate θ−1 polylog(n,m), we must be able to sample f with
probability θ polylog(n,m)/ϵ2 while preserving the spectrum of the hypergraph. Thus by setting θ to
some O((ϵ/ logm)2/ polylog(n,m)) and repeating O(logm) times we get a (1 + ϵ)-spectral sparsifier of
O(npolylog(n,m)/ϵ2) hyperedges.

Theorem 2.1 (Key Technical Theorem). For any θ ∈ (0, 1), given a hypergraph H and its multi-graph
G = Φ(H), there exists a single weight assignment W ∗ of G such that for every hyperedge e ∈ H, one of
the following statements holds:

(a) either max(u,v)∈e R
G(W∗)(u, v) ≤ θ, or

(b) we have that Pr
[
e ∈ VS(H,λ = θ−1 polylog(n,m))

]
≥ 1−1/poly(n,m), where the poly(n,m) in the

success probability depends on the polylog(n,m) in the parameter λ of Algorithm 1.

To prove Theorem 2.1, we need to connect resistance to vertex potentials and their (collective) energies.

Definition 2.1 (Vertex Potentials and Spanning Hyperedges). A set of vertex potentials is a real-valued
vector x ∈ [0, 1]n supported on the n vertices of a hypergraph H (or its multi-graph G which has the
same set of vertices). We say a hyperedge e ∈ H spans x if ∃(u, v) ∈ e such that x[u] = 1 and x[v] = 0.

Definition 4.1 (Collective Energies). Given vertex potentials x1, . . . , xk ∈ Rn, their collective energy is

EH(x1, . . . , xk)
def
=
∑
e∈H

{
max

(u,v)∈e

[
k∑

i=1

(xi[u]− xi[v])
2

]}
.

Definition 4.2 (Minimax Resistance Characterization). For a set of hyperedges F , define

OPTF
def
= min

W∈W
max
e∈F

max
(u,v)∈e

RG(W )(u, v).

That is, OPTF characterizes the minimum max sampling rates of the hyperedges in F over all valid weight
assignments.

The following lemma will be proved in Section 5.

Lemma 2.4 (Collective Energy Lemma). For any θ ∈ (0, 1), given a hypergraph H, and a hyperedge set
F in H, if OPTF ≥ θ, then there exists a set of potentials x1, . . . , xk ∈ [0, 1]n with k ≤ poly(n) such that
the following two statements both hold:

1. Each xi is spanned by at least one hyperedge in F (cf. Definition 2.1).

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.
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We prove the following lemma in Section 6.

Lemma 2.5 (Vertex Sampling Lemma). Suppose we are given a θ ∈ (0, 1) satisfying θ ≥ 1/poly(n), a
hypergraph H, and a hyperedge set F in H, along with sets of potentials x1, . . . , xk ∈ [0, 1]n such that the
following both hold:

1. Each xi is spanned by at least one hyperedge in F (cf. Definition 2.1).

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.

Then, there (deterministically) exists an f ∈ F that spans at least one xi for which we have

Pr
[
f ∈ VS(H, θ−1 polylog(n,m)

]
≥ 1− 1/poly(n,m),

where the poly(n,m) in the success probability depends on the polylog(n,m) in the vertex-sampling
scheme.

Now, we show how to prove our main theorem using this lemma. Roughly, the intuition is that we
start by considering F = E (i.e., the entire hyperedge set). Now, either there is a hyperedge which is
recovered with high probability from F , or every hyperedge in F can afford to be sampled at probability
1/2 while still preserving the spectrum of the hypergraph. In the second case, we are already done,
and in the first case, we then simply define F = F − {e}, where e is a hyperedge which is recovered
with high probability. Then, we continue on inductively. Observe that the construction of this set F
is deterministic, and independent of the randomness used for vertex sampling. Thus, when we actually
begin vertex sampling, we must only take a union bound over the ≤ m hyperedges that are explicitly
recovered.

Proof of Theorem 2.1. For any given θ ∈ (0, 1), we prove that there exists a hyperedge set F0 such that
OPTF0

≤ θ and for each hyperedge e /∈ F0 we have

Pr
[
e ∈ VS(H, θ−1 polylog(n,m))

]
≥ 1− 1/poly(n,m).

This will immediately imply the proposition. To see why such an F0 exists, we consider the following
process for (implicitly) constructing it.

1. Initially, let F0 contain all hyperedges in H.

2. While OPTF0
≥ θ:

(a) By composing Lemma 2.4 and Lemma 2.5, ∃f ∈ F0 such that

Pr
[
f ∈ VS(H, θ−1 polylog(n,m))

]
≥ 1− 1/poly(n,m).

(b) Remove such an f from F0.

3. Return F0.

Then it is clear that the while loop terminates in ≤ m iterations, and the returned F0 has our desired
property, completing the proof.

In the following sections, we first describe the algorithmic implementations / consequences of vertex-
sampling. Then, we provide the proofs of Lemma 2.4, Lemma 2.5.
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4.2 Sparsification via Vertex-Sampling

In this section, we show how to use Algorithm 1 to create (1± ϵ) spectral sparsifiers for hypergraphs. We
present the algorithm below:

Algorithm 2: HypergraphSpectralSparsify(H, ϵ, r,m)

Input : A hypergraph H with ≤ m hyperedges of arity [r, 2r], and a parameter ϵ.
Output: A reweighted subgraph of H.

1 Let H0 = H.
2 for i = 0, . . . , log(m) do
3 Let Fi = VS(Hi,polylog(n,m)/ϵ2).
4 Let Hi+1 = Hi − Fi with its hyperedges sampled at rate 1/2.

5 end

6 return
⋃log(m)

i=0 2i · Fi, i.e. put weight 2
i on hyperedges in Fi.

The key claim is the following:

Claim 4.2. Let i ∈ [log(m)], and let Hi be as constructed by an iteration of Algorithm 2. Then, with
probability 1− 1/poly(m), Fi ∪ 2 ·Hi+1 is a (1± ϵ) hypergraph spectral sparsifier for Hi.

Proof. Given the hypergraph Hi, Algorithm 2 recovers a set of hyperedges of Hi via running Algorithm 1.
Now, by Theorem 2.1, there exists a single weight assignment W ∗

i of the multi-graph of Hi, such that
every hyperedge satisfying

max
(u,v)∈e

RΦ(Hi)(W
∗
i ) ≥ ϵ2

polylog(n,m)

is recovered with probability ≥ 1 − 1/poly(m). Now, every hyperedge satisfying the above condition
is essentially sampled with probability 1, while all remaining hyperedges are sampled at rate 1/2. In
particular, for each hyperedge e, this means that the sampling rates we use satisfy

pe ≥
C log(n) log(m)

ϵ2
· max
(u,v)∈e

R
Φ(Hi)(W

∗
i )

eff (u, v).

By [JLS23], this then means that the above sampling scheme (whereby we sample edges with probability
pe, and give weight 1/pe), yields a (1± ϵ) spectral-sparsifier with probability 1− 1/poly(m). 2 ·Hi+1 is
exactly the hyperedges who survive the sampling at rate 1/2, and Fi is exactly the hyperedges that we
keep with probability 1 (and hence weight 1). This then yields the desired claim.

Now, we can conclude that Algorithm 2 produces spectral sparsifiers:

Lemma 4.3. With probability 1 − 1/poly(m), the result of Algorithm 2 called on a hypergraph H with
parameter ϵ is a (1± ϵ)-spectral sparsifier of H.

Proof. Let us suppose by induction that F1∪2·F2∪· · ·∪2i ·Fi∪2i+1 ·Hi+1 is a (1±2iϵ) spectral sparsifier of
H. Then, in the i+1st iteration of sparsification, we replace Hi+1 with Fi+1∪2 ·Hi+2. By composition of
sparsifiers, if Fi+1∪2·Hi+2 is a (1±ϵ) spectral sparsifier ofHi+1, then F1∪2·F2∪· · ·∪2i+1 ·Fi+1∪2i+2 ·Hi+2

is a (1± 2(i+ 1)ϵ) spectral-sparsifier of H.
By Claim 4.2, and a union over all log(m) levels, this yields a (1 ± O(ϵ log(m))) sparsifier with

probability 1 − 1/poly(m). Further, observe that after some i = O(log(m)) iterations, every hyperedge
in the hypergraph will be removed (i.e., sampled away) with probability 1 − 1/poly(m), and hence Hi

will be empty. Thus, all that remains is the Fi’s, and their union is the sparsifier.
Finally, observe that we can use an error parameter ϵ′ = ϵ/ log(m) while only incurring a log2(m)

blow-up in the vertex-sampling parameter (which we absorb into the polylog(m)). Thus, the result of
Algorithm 2 on H will be a (1± ϵ) spectral sparsifier with probability 1− 1/poly(m), as we desire.
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4.3 Nearly-Linear Time Implementation

Corollary 4.4 (Nearly-Linear Time Implementation). Algorithm 2 can be implemented on a static hy-

pergraph H with ≤ m hyperedges in time Õ((
∑

e∈H |e|) polylog(m)/ϵ2) to get a (1±ϵ)-spectral sparsifier of

H with Õ(npolylog(m)/ϵ2) hyperedges, where |e| denotes the arity of hyperedge e. The algorithm succeeds
with probability 1− 1/poly(m).

Proof. Note that we can always group hyperedges by their arity into O(log n) geometric groups such
that hyperedges in the same group have arity within a factor of 2. Thus, we focus on implementing
Algorithm 2 in Õ((mr + n) polylog(m)/ϵ2) time, where the input hypergraph only has arity [r, 2r]. Our
implementation is fairly simple, using only linked list data structures and effective resistance sampling in
[SS11].

Note that all Algorithm 2 does is, for O(logm) adaptive iterations, sampling/deleting hyperedges
and repeatedly calling Algorithm 1. Thus it suffices to show that Algorithm 1 can be implemented in
Õ((mr + n) polylog(m)/ϵ2) time. We describe an implementation of Algorithm 1 as follows.

We first simulate the N := r polylog(n,m) rounds of vertex-sampling upfront as they are oblivious
to other algorithmic actions. Our goal is to obtain a linked list γu for each vertex u that denotes the
rounds in which u gets sampled. To do so, for each vertex u, we first sample from Binomial distribution
a number Ku that corresponds to the number of successes when a coin with success prob. p = 1/r is
tossed N times. We then repeatedly sample a random number between 1 and N until we have collected
K(u) distinct numbers. This corresponds to the rounds in which u is selected, and we store them as a
linked list γu. This process takes npolylog(n,m) time in expectation, since Ku ≤ polylog(n,m) with
high probability in m.

We then do another preprocessing step that will be helpful for us to build each vertex-sampled multi-
graphs. Specifically, we go through each hyperedge one by one. For each hyperedge e, we obtain linked lists
ℓe1, . . . , ℓ

e
N such that ℓei contains all e’s endpoints that were sampled in the i-th round of vertex sampling.

This can be done by going through the endpoints of e one by one and for each endpoint u appending u
to the linked lists ℓei for which i ∈ γu. This preprocessing step takes running time Õ(mr log(m)) with
high probability, since with high probability in m the arity of each hyperedge is bounded by O(log(m))
in each round of vertex-sampling.

We then simulate the r polylog(n,m) adaptive rounds of effective resistance sampling. For each round
i, we first create the vertex-sampled multigraph. We do so by going through each remaining hyperedge e
that has not been deleted yet, and creating a clique supported on e’s vertices sampled in round i which
we have stored in linked list ℓei . We also label each (multi-)edge in the created clique by the identifier

of the edge e. Note that the creation of the vertex-sampled multigraph takes running time Õ(m log2 m)
since with high probability in m each hyperedge’s arity becomes O(log(m)) after vertex sampling. Then
we run the nearly-linear time effective resistance sampling scheme in [SS11] to sample the multi-edges,

which has a running time of Õ(mϵ−2 polylog(n,m)) since with high probability in m the vertex-sampled

multi-graph has Õ(m log(m)2) edges, and we over-sample the multi-edges by λ = polylog(n,m). By
looking at the labels of the sampled multi-edges, we recover the corresponding hyperedges as well. We
then simply delete the recovered hyperedges from the graph and proceed to the next round.

Our total running time adds up to Õ((mr + n) polylog(m)/ϵ2) as desired.

5 From Minimax Resistance to Collective Energies

In this section, we will prove Lemma 2.4.
We consider a valid weight assignment to be valid only if (i) the weights of the multi-edges within

the clique of any single hyperedge sums up to exactly 1, and (ii) every multi-edge in the multi-graph has
weight at least3 1/(8r2). We denote the collection of valid weight assignments by W.

3This is to make the multi-graph always connected under any valid weight assignment, assuming the original hypergraph
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Consider the following definition:

Definition 5.1 (Minimax Resistance Characterization). For a set of hyperedges F , define

OPTF
def
= min

W∈W
max
e∈F

max
(u,v)∈e

RG(W )(u, v).

That is, OPTF characterizes the minimum max sampling rates of the hyperedges in F over all valid weight
assignments.

Also consider the following collective energy lemma, which we seek to prove in this section.

Lemma 5.1 (Collective Energy Lemma). For any θ ∈ (0, 1) and hyperedge set F , if OPTF ≥ θ, then there
exists sets of potentials x1, . . . , xk with k ≤ poly(n) such that the following two statements both hold:

1. Each xi is spanned by at least one hyperedge in F .

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.

Let us fix a hyperedge set F and a θ ∈ (0, 1) such that OPTF ≥ θ. Let PF be the set of vertex pairs
(u, v)’s such that u, v both belong to a same hyperedge in F . Note that even if (u, v) appears in more
than one hyperedge in F , we only keep one copy of it in PF . As a result, |PF | ≤

(
n
2

)
. Then we can

rewrite the minimax optimization problem as

OPTF = min
W∈W

max
(u,v)∈PF

RG(W )(u, v). (16)

Our first step is to write the effective resistance in the optimization problem as energy of vertex potentials.
To this end, let us set up some notation for vertex potentials and their energies.

Let (u1, v1), . . . , (ut, vt) where t = |PF | be the vertex pairs in PF .

Vertex Potentials and Energies. Given a weight assignment W of the underlying multigraph, we
write the energy of a vector x ∈ Rn in the multigraph G weighted by W as

EW (x)
def
=

∑
(a,b)∈G

w(a, b)(x[a]− x[b])2. (17)

It is known that the reciprocal of effective resistance of an edge (ui, vi) is equal to the minimum energy
of any vertex potential spanned by (ui, vi):

1

RG(W )(ui, vi)
= min

x:x[ui]=1,x[vi]=0
EW (x).

We write xW
i to denote the optimal potentials for RG(W )(ui, vi), and EWi

def
= EW (xW

i ) to denote the
corresponding minimum energy. Then OPTF can alternatively be written as

1

OPTF
= max

W∈W
min
i∈[t]

min
x:x[ui]=1,x[vi]=0

EW (x)

= max
W∈W

min
i∈[t]
EWi . (18)

is connected to start with.
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Dual of 1/OPTF . We will now look at the dual of 1/OPTF . First we make the minimization problem
have a convex feasible solution space by equivalently writing 1/OPTF as

1

OPTF
= max

W∈W
min

β∈∆t−1

∑
i∈[t]

β[i] · EWi . (19)

where ∆t−1 denotes the simplex of dimension t − 1 (which contains all vectors denoting a distribution
over [t]). Note that now both domains W and ∆t−1 are convex and compact. We then prove that the

objective function
〈
β, E⃗WF

〉
is convex in β and concave in W .

Proposition 5.2. For any fixed W ∈ W,
∑

i∈[t] β[i] · EWi is convex in β on ∆t−1.

Proof. For any fixed W ∈ W,
∑

i∈[t] β[i] · EWi is a linear function of β, and thus is also convex.

Proposition 5.3. For any fixed β ∈ ∆t−1,
∑

i∈[t] β[i] · EWi is concave in W on W.

Proof. It suffices to show that each EWi is concave on W. Note that we have

EWi = min
x:x[ui]=1,x[vi]=0

∑
(a,b)∈G

w(a, b)(x[a]− x[b])2.

It suffices to show EWi is concave in W . To this end, consider any weight assignments U, V,W ∈ W such
that W = λU + (1− λ)V for λ ∈ [0, 1]. We have

EWi =EW (xW
i )

=λEU (xW
i ) + (1− λ)EV (xW

i ) (EW (x) is linear in W when x fixed)

≥λEU (xU
i ) + (1− λ)EV (xV

i ) (xU
i , x

V
i minimize corresponding energies)

=λEUi + (1− λ)EVi .

This implies that EWi is concave in W , as desired.

The above propositions allow us to invoke (generalizations of) von Neumann’s Minimax Theorem (see
Corollary 37.3.2 of [Roc70]) and deduce strong duality for (19):

Proposition 5.4 (Strong Duality for 1/OPTF ). We have

1

OPTF
= max

W∈W
min

β∈∆t−1

∑
i∈[t]

β[i] · EWi

= min
β∈∆t−1

max
W∈W

∑
i∈[t]

β[i] · EWi . (20)

If we define β∗ to be the minimizer of (20):

β∗ = argmin
β∈∆t−1

max
W∈W

∑
i∈[t]

β[i] · EWi .

then we have

1

OPTF
= max

W∈W

∑
i∈[t]

β∗[i] · EWi . (21)

We will then analyze the optimality conditions of (21) and connect it to vertex potentials and their
collective energy.
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Optimality Conditions. We now analyze the optimality conditions of (21). To this end, we first show
that the derivative of the energy with respect to W has the following simple form.

Proposition 5.5 (Energy’s Derivative with respect to Weight Assignment). We have for any valid weight
assignment W ∈ W, any i ∈ [t], and any multi-edge (a, b) ∈ G in the multi-graph,

∂EWi
∂w(a, b)

=
(
xW
i [a]− xW

i [b]
)2

. (22)

Proof. We resort to the fact that

EWi =
1

RG(W )(ui, vi)
=

1

χT
i L

†
Wχi

.

Here, we define χi to be the incidence vector of (ui, vi), where we have χi[ui] = 1, χi[vi] = −1 and
χi[u] = 0,∀u ̸= ui, vi. We also define LW to be the Laplacian matrix of the weighted multi-graph

G(W ), and L†
W to denote its pseudo-inverse. Note that since any valid weight assignment ensures that

the corresponding weighted multi-graph is connected, the pseudo-inverse here always means taking the
inverse in the maximal subspace orthogonal to the all-one vector, with no exceptions.

Using the chain rule, we get

∂EWi
∂w(a, b)

= − 1(
χT
i L

†
wχi

)2 · ∂χT
i L

†
wχi

∂w(a, b)
.

Computing the derivative via rank-one update formula for the pseudo-inverse [SM50, Mey73], we get

∂χT
i L

†
wχi

∂w(a, b)
=− χT

i

∂L†
w

∂w(a, b)
χi

=− χT
i L

†
W

(
χabχ

T
ab

)
L†
wχi

=−
(
χT
i L

†
wχab

)2
,

where χab denotes the incidence vector of (a, b). Plugging this back into the chain rule we get

∂EWi
∂w(a, b)

=

(
χT
i L

†
wχab

χT
i L

†
wχi

)2

=

(
χT
ab

L†
wχi

χT
i L

†
wχi

)2

.

If we view z :=
L†

wχi

χT
i L†

wχi
as a potential vector, then the above equals exactly the squared difference between

z[a] and z[b]. Note that by definition, z[ui]− z[vi] = 1. Thus it suffices to show z minimizes the energy,
which is indeed true since

EW (z) = zTLW z =
χT
i L

†
wLwL

†
wχi(

χT
i L

†
wχi

)2 =
χT
i L

†
wχi(

χT
i L

†
wχi

)2 =
1

χT
i L

†
wχi

= EWi .

This finishes the proof.

We will then use KKT conditions (see Theorem 28.2 of [Roc70]) to reason about optimality. We first
show that the optimization problem (21) satisfy some regularity conditions.
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Proposition 5.6. The value of (21) is finite and there is feasible point in the relative interior of W (i.e.
Slater’s condition is met).

Proof. The value of (21) is bounded since each hyperedge contributes at most
(
n
2

)
to the total energy,

leading to a m
(
n
2

)
upper bound on the value of (21). Moreover, the weight assignment that assigns

uniform weight 1/
(|e|
2

)
to the multiedges of a hyperedge e is feasible and in the relative interior of W

(since all weights are strictly bigger than 1/(8r2) by |e| ∈ [r, 2r]).

Now we can invoke KKT conditions and get the following. Here we let W ∗ be the optimal weight
assignment minimizing (21):

W ∗ = argmax
W∈W

∑
i∈[t]

β∗[i] · EWi ,

and w∗ be the weight function corresponding to W ∗. Also Define x∗
i

def
= xW∗

i and E∗i
def
= EW∗

i . That is,
we have

1

OPTF
=
∑
i∈[t]

β∗[i] · E∗i . (23)

Proposition 5.7 (Optimality Conditions for (21)). For any hyperedge f ∈ H and any (a, b), (c, d) ∈ f ,
we have

1. If w∗(a, b) > 1/(8r2) and w∗(c, d) > 1/(8r2), then∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2
=
∑
i∈[t]

β∗[i] (x∗
i [c]− x∗

i [d])
2
. (24)

2. If w∗(a, b) > 1/(8r2) and w∗(c, d) = 1/(8r2), then∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2 ≥

∑
i∈[t]

β∗[i] (x∗
i [c]− x∗

i [d])
2
. (25)

Proof. We first explicitly write (21) as a constrained maximization problem:

maximize
∑
i∈[t]

β∗[i] · EWi

subject to

∀(a, b) ∈ G, w(a, b) ≥ 1/(8r2)

∀f ∈ H,
∑

(a,b)∈f

w(a, b) = 1. (26)

The corresponding Lagrangian function is

L(W ;µ, λ) =
∑
i∈[t]

β∗[i] · EWi +
∑

(c,d)∈G

µab ·
(
w(c, d)− 1

8r2

)
+
∑
f∈H

λf ·

 ∑
(c,d)∈f

w(c, d)− 1

 , (27)

where we have that the optimal value to (26) is equal to

max
W

min
µ≥0,λ

L(W ;µ, λ).

By KKT conditions (see Theorem 28.2 of [Roc70]), there exist µ∗ ≥ 0 and λ∗ such that:
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1. (Stationarity) For every hyperedge f ∈ H and (a, b) ∈ f ,

∂

∂w(a, b)
L(W ∗;µ∗, λ∗) = 0.

2. (Complementary Slackness) For every hyperedge f ∈ H and (a, b) ∈ f ,

µ∗
ab > 0 ⇒ w∗(a, b) = 0.

By Proposition 5.5, for a multi-edge (a, b) in a hyperedge f ∈ H, we have

∂

∂w(a, b)

∑
i∈[t]

β∗[i] · EWi =
∑
i∈[t]

β∗[i]
(
xW
i [a]− xW

i [b]
)2

.

As a result, we have

∂

∂w(a, b)
L(W ;µ, λ) =

∑
i∈[t]

β∗[i]
(
xW
i [a]− xW

i [b]
)2

+ µab + λf .

By the stationarity condition above, this partial derivative is zero at W ∗, µ∗, λ∗, implying that∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2
= −µ∗

ab − λ∗
f .

If w∗(a, b) > 1/(8r2), then by the complementary slackness condition above, we have µ∗
ab = 0, and thus∑

i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2
= −λ∗

f ,

This is the same value for all (a, b) ∈ f with w∗(a, b) > 1/(8r2), proving the first claim of the proposition.
Otherwise (w∗(a, b) = 1/(8r2)), using the fact that µ∗

ab ≥ 0, we get∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2
= −µ∗

ab − λ∗
f ≤ −λ∗

f ,

proving the second claim of the proposition.

Getting Rid of Weight Assignments. We then prove the following useful inequality that character-
izes OPTF without resorting to any weight assignment at all.

Corollary 5.8 (of Proposition 5.7). The vectors x∗
i , (ui, vi) ∈ PF satisfy that

∑
f∈H

max
(a,b)∈f

(
t∑

i=1

β∗[i] (x∗
i [a]− x∗

i [b])
2

)
≤ 2

OPTF
. (28)

Proof. Consider the clique of a hyperedge f and the multiedges (a, b) therein satisfying

t∑
i=1

β∗[i] (x∗
i [a]− x∗

i [b])
2
< max

(c,d)∈f

(
t∑

i=1

β∗[i] (x∗
i [c]− x∗

i [d])
2

)
.
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By Proposition 5.7, each such multi-edge (a, b) has weight 1/(8r2) with respect to W ∗, and thus these
multi-edges have total weight at most 1/2 with respect to W ∗. As a result we have

∑
f∈H

max
(a,b)∈f

(
t∑

i=1

β∗[i] (x∗
i [a]− x∗

i [b])
2

)

≤2
∑
f∈H

∑
(a,b)∈f

w∗(a, b)

∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2

 (Proposition 5.7)

=2
∑
i∈[t]

β∗[i]
∑
f∈H

∑
(a,b)∈f

w∗(a, b) (x∗
i [a]− x∗

i [b])
2

(reordering summation)

=2
∑
i∈[t]

β∗[i]E∗i

=
2

OPTF
, (29)

as desired.

Proof of Collective Energy Lemma. We now prove the collective energy lemma, which we recall
below.

Lemma 5.9 (Collective Energy Lemma). For any θ ∈ (0, 1) and hyperedge set F , if OPTF ≥ θ, then there
exists sets of potentials x1, . . . , xk with k ≤ poly(n) such that the following two statements both hold:

1. Each xi is spanned by at least one hyperedge in F .

2. EH(x1, . . . , xk) ≤ k polylog(n,m)/θ.

Proof. It suffices to exhibit vectors x1, . . . , xk such that

1

k
· EH(x1, . . . , xk) ≤

12 log2 n

OPTF
(30)

and each xi is spanned by at least one hyperedge in F . To this end, let us consider the set of vectors
x∗
1, . . . , x

∗
t , which are optimal vertex potentials for each vertex pair (ui, vi) ∈ PF when the multi-edges

are weighted by W ∗ (optimal weight to (21)). Clearly, each x∗
i is spanned by at least one hyperedge in

F which contains ui, vi both.
By Corollary 5.8, we know

∑
f∈H

max
(a,b)∈f

∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2

 ≤ 2

OPTF
. (31)

The difference between the LHS of the above equation and the definition of collection energy is the
parameters β∗[i]’s. In particular, if β∗ corresponded to the uniform distribution (i.e. β∗[i] = 1/t for all
i), then the LHS would be the collective energy of x∗

i ’s divided by t, and we would be done. To deal
with the general case, consider doing geometric grouping of indices i ∈ [t] based on their β∗[i] values.
Specifically, for j = 0, 1, . . . , log2 n

3 − 1, the j-th group Rj contains indices i with

β∗[i] ∈ (2−j−1, 2−j ],

whereas the last group Rlog2 n3 contains indices i with

β∗[i] ∈ (−∞, n−3].
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Then we pick a group Rj∗ whose total β∗ values is at least 1/ log2 r
3. Note that it must be the case that

j∗ < log2 n
3, since there are

(
n
2

)
pairs (ui, vi) in total and thus the last group can have total β∗ values at

most 1/n. Now restricting the inner summation of (31) to group Rj∗ , we have

2

OPTF
≥
∑
f∈H

max
(a,b)∈f

∑
i∈[t]

β∗[i] (x∗
i [a]− x∗

i [b])
2

 (by (31))

≥
∑
f∈H

max
(a,b)∈f

 ∑
i∈Rj∗

β∗[i] (x∗
i [a]− x∗

i [b])
2

 (restricting inner sum to Rj∗)

≥
∑
f∈H

max
(a,b)∈f

 ∑
i∈Rj∗

2−j∗−1 (x∗
i [a]− x∗

i [b])
2

 (β∗[i] > 2−j∗−1,∀i ∈ Ri∗)

≥ 1

log2 n
3
· 1

2 |Rj∗ |
∑
f∈G

max
(a,b)∈f

 ∑
i∈Rj∗

(x∗
i [a]− x∗

i [b])
2

 (Rj∗ has total β∗ value ≥ 1/ log2 n
3)

=
1

2 log2 n
3
· 1

|Rj∗ |
· EH

(
{x∗

i }i∈Rj∗

)
.

This implies

1

|Rj∗ |
· EG

(
{x∗

i }i∈Rj∗

)
≤ 12 log2 n

OPTF
,

recovering (30) as desired.

6 Proof of the Vertex Sampling Lemma

In this section, we will provide a complete proof of Lemma 2.5. To start, let us recall some definitions:

Definition 2.1 (Vertex Potentials and Spanning Hyperedges). A set of vertex potentials is a real-valued
vector x ∈ [0, 1]n supported on the n vertices of a hypergraph H (or its multi-graph G which has the
same set of vertices). We say a hyperedge e ∈ H spans x if ∃(u, v) ∈ e such that x[u] = 1 and x[v] = 0.

Definition 6.1 (Collective Energies). Given vertex potentials x1, . . . , xk ∈ Rn, their collective energy is

EH(x1, . . . , xk)
def
=
∑
e∈H

{
max

(u,v)∈e

[
k∑

i=1

(xi[u]− xi[v])
2

]}
.

Definition 6.2 (Minimax Resistance Characterization). For a set of hyperedges F , define

OPTF
def
= min

W∈W
max
e∈F

max
(u,v)∈e

RG(W )(u, v).

That is, OPTF characterizes the minimum max sampling rates of the hyperedges in F over all valid weight
assignments.

Now, we let x1, . . . xk be real-valued vectors with entries in [0, 1]. We will show that there exist
{y1, . . . , yℓ} ⊆ {x1, . . . , xk} with ℓ = Ω(k) such that for all j ∈ [ℓ], the energy of yj in the multi-graph G
is bounded by

EG(yj) ≤ O(r2θ−1 polylog(n,m)). (32)
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Recall that for a vector x, we define its energy in a multi-graph G by

EG(x) =
∑

e=(u,v)∈G

(x[u]− x[v])2.

In what follows, whenever we say “energy”, we refer to the energy in a multi-graph; we will explicitly say
“collective energy” to refer to the collective energy in a hypergraph.

Note that because y1, . . . , yℓ is a subset of x1, . . . , xk and ℓ = Ω(k), together these imply that the
collective energy of the former is bounded by

EH(y1, . . . , yℓ) ≤ ℓ polylog(n,m)/θ, (33)

with the polylog(n,m) factor being potentially larger than the polylog(n,m) promised by the condition
of the lemma.

We will from now on restrict our attention to y1, . . . , yℓ, with a goal to prove that ∃f ∈ F that spans
at least one yj for which we have

Pr
[
f ∈ VS(H, θ−1 polylog(n,m)

]
≥ 1− 1/poly(n,m).

We start by supplying the proof for (32).

Lemma 6.1. There exist {y1, . . . , yℓ} ⊆ {x1, . . . , xk} with ℓ = Ω(k) such that for all j ∈ [ℓ]

EG(yj) ≤ O(r2θ−1 polylog(n,m)).

Proof. Note that by definition, we have

k∑
i=1

EG(xi) =

k∑
i=1

∑
e∈H

∑
(u,v)∈e

(xi[u]− xi[v])
2

=
∑
e∈H

∑
(u,v)∈e

k∑
i=1

(xi[u]− xi[v])
2 (reordering summations)

≤
∑
e∈H

(
r

2

){
max

(u,v)∈e

[
k∑

i=1

(xi[u]− xi[v])
2

]}

=

(
r

2

)
EH(x1, . . . , xk)

≤
(
r

2

)
k polylog(n,m)/θ.

Then the lemma follows by a standard application of Markov’s inequality.

Characterization of Potentials by Stars. Now, let us consider a single hyperedge e, as well as a
potential vector yj . We will be interested in characterizing the energy contributed in the multi-edges
corresponding to e. To this end, we introduce the notion of a star. We establish a single vertex c ∈ e as
the center of the star, and all other vertices are leaf vertices of the star. Clearly, if we choose every single
vertex to be a center, then our set of stars will capture all of the energy contributed by the multi-edges
of the multi-graph. Our goal will be to carefully construct a set of stars which still captures the majority
of the energy, yet also allows us to argue that certain hyperedges will be recovred with high probability.

Hence, we now construct a hierarchy of collections of stars for each potential vector yj . We want that
for each star center, within its incident multi-edges in G, the ones that appear in our star collections
contribute overwhelmingly more energy compared to the ones that do not.
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We always create stars with the following structure - each star contains multi-edges within a single
hyperedge e, with one endpoint as its center, and all other endpoints as its leaves. We will also ensure
that the center has potential 0, and at least |e|/2 leaves have potential Ω(1). For each star, we call the
leaf with the ⌈|e|/2⌉th largest potential the median leaf. We always guarantee that each star’s median
leaf has potential Ω(1). Additionally, for a single potential vector, all stars we create will have the same
center (though the stars will be for different hyperedges).

More specifically, consider a potential vector yj ∈ [0, 1]n that is spanned by some hyperedge f ∈ F .
If f has more endpoints with potentials in [0, 1/2] than in (1/2, 1], then we modify yj by letting yj [u]←
1−yj [u] for all vertices u. Note that this does not change the collective energy of y1, . . . , yℓ or the energy
EG(yj) at all. Now let (c∗, d∗) ∈ f be such that yj [c

∗] = 0 and yj [d
∗] = 1. For a η ∈ [0, 1], we write yηj to

denote the rounded version of yj where we set all potentials below η to η. We use the following process

to construct a hierarchy Syj
= S1yj

∪ S2yj
∪ . . .SO(logn)

yj of collections of stars. Crucially, we will ensure
that all stars we create throughout the hierarchy will have c∗ as their center.

1. Initializing Syj : We create the first level of stars, denoted S1yj
, which contains the single star star

with c∗ as the center, and f ’s other endpoints as leaves.

2. Checking if the top level is good: Let Spyj
be the current top level of stars in our hierarchy (i.e.

p is the number of levels which have been created so far). Among all median leaves in Spyj
, let b be

the one with smallest potential, and define

ηp
def
=

(
1− 1

log2 n

)
yj [b].

We then check, for the rounded potential vector y
ηp

j , whether the following inequality is true:∑
u:(c∗,u)∈G\Syj

(
y
ηp

j [u]− y
ηp

j [c∗]
)2 ≤ 16p+1 · r. (34)

If (34) is true, then we terminate with our current hierarchy; otherwise we proceed.

3. Expanding our hierarchy: In the case that (34) is false, we next expand our hierarchy by adding
another level Sp+1

yj
of stars that is initialized to be empty.

Define η′p
def
= (1 − 1/ log2 n)ηp. Let us restrict our attention to the multi-edges (c∗, u) ∈ G \ Syj

satisfying yj [u] > ηp, which contribute non-zero energy to the violation of (34). We say one such
multi-edge (c∗, u) is expandable if, for the hyperedge e that contains (c∗, u), the majority of its
vertices are assigned potentials ≥ η′p by yj , and non-expandable otherwise (i.e. majority of e’s
vertices have potentials < η′p in yj). If a hyperedge e contains one multi-edge (c∗, u) ∈ G \ Syj that
is expandable, then we add to the next level of collection Sp+1

yj
the star with c∗ being center and all

of e’s other vertices as leaves. Otherwise, we ignore e and the non-expandable multi-edges therein,
if any.

4. Repeat: Go back to Step 2 with Sp+1
yj

being the new top level.

At first glance, it may be unclear why we round the values in the potential vector, as this kinda of
rounding can only decrease the energy contained in any particular multi-edge. However, the key point is
that when it comes to sampling multi-edges and ultimately recovering a hyperedge, we only care about
the relative amount of energy contained in a specific multi-edge. Creating the star hierarchy as described
above ensures that the energy of the stars contributes a large fraction of the energy under the specific
rounded potential vector that we create. Constructing the hierarchy is essential, as it allows us to define
a new set of stars at each level, where each group of stars now uses a different potential vector.

We now make some simply observations and remarks about the star hierarchy.
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Remark 6.1. In each iteration, every star we add to Sp+1
yj

has the same center c∗, and always has median
leaf having potential at least η′p with respect to yj .

Remark 6.2. We define expandability at multi-edge level because this will make it easier to talk about
their energy when we analyze vertex sampling later. However, expandability is in fact entirely determined
by the hyperedge that contains the multi-edge of interest - a hyperedge either only has expandable multi-
edges or only has non-expandable multi-edges (or has neither), where “neither” happens when c∗ does
not belong to the hyperedge, or all its vertices have potentials ≤ ηp in yj .

Remark 6.3. Note that for each level p, the expandable and non-expandable multi-edges together
entirely capture the non-zero energy contribution to the energy of y

ηp

j from multi-edges incident on c∗

but outside of S1yj
∪ . . .Spyj

.

We show that the reason we can ignore non-expandable multi-edges is because their number is small.

Claim 6.2. For the first O(log n) iterations of the above procedure, the number of non-expandable
multi-edges is at most O(rθ−1 polylog(n,m)).

Proof. For each non-expandable multi-edge (c, u) belonging to some hyperedge e, the multi-edges con-
necting u to the Ω(r) (majority) vertices of e with potentials < η′ in yj each has potential difference (in
yj) at least

η − η′ = η/ log2 n ≥
(
1− 1

log2 n

)O(logn)

/ log2 n ≥ Ω(1/ log2 n),

resulting in a total energy contribution of Ω(r/ log4 n) to the energy of yj . Moreover, if we were to sum
up this contribution over all non-expandable multi-edges (c, u), we would only count the contribution
from each multi-edge at most twice, as it only has two endpoints. This coupled with the fact that
EG(yj) ≤ O(r2θ−1 polylog(n,m)) implies that the number of non-expandable multi-edges (c, u) can be
at most O(rθ−1 polylog(n,m)).

We show that whenever we expand, we obtain geometrically more new stars in our collection.

Claim 6.3. For the first q = O(log n) iterations with q ≥ 2, the number of stars in Sqyj
is at least∣∣∣Sqyj

∣∣∣ ≥ 16q−1 −O(θ−1 polylog(n,m)).

Proof. By the violation of (34), we know that, during the q-th iteration, the incident multi-edges of
c not in Syj have energy at least 16q · r. Thus the expandable multi-edges therein have energy ≥
16q · r − O(rθ−1 polylog(n,m)) by Claim 6.2. Finally, since each new star in Sqyj

collects at most 2r
energy from the expandable multi-edges, we have the desired lower bound on the number of stars.

The above claim coupled with the energy upper bound of yj gives a total iteration count of O(log n).

Claim 6.4. Our process for constructing Syj
terminates in O(log n) iterations.

Proof. By Remark 6.1, for q = O(log n), each median leaf b of our stars in Sq+1
yj

has potential in yj at
least

η′q ≥
(
1− 1

log2 n

)O(logn)

≥ Ω(1).

Thus by Claim 6.3 and that EG(yj) ≤ O(r2θ−1 polylog(n,m)), the process must terminate in O(log n)
iterations before violating the energy upper bound.

33



Claim 6.4 immediately implies the following:

Claim 6.5. Each star in our star collection hierarchy has Ω(r) multi-edges each with Ω(1) energy in yj .

For each potential vector yj , let
∣∣levels (Syj

)∣∣ be the number of levels of the star collection hierarchy

we created for yj , and let
∣∣stars (Syj

)∣∣ be the total number of stars across all levels.
Consider the following process for recovering a hyperedge in F . In the process, for the sake of analysis,

we will make changes to the set of potential vectors, our star collection hierarchy, and the hypergraph.
However, only Step 4 is what we actually do in our algorithm, and the other steps are for analysis only.

1. Let µ be the average of
∣∣stars (Syj

)∣∣ over the remaining potential vectors in y1, . . . , yℓ.

2. Discard all potential vectors yj with
∣∣stars (Syj

)∣∣ ≥ µ log2 n and all their stars.

3. For each yj :

(a) While p :=
∣∣levels (Syj

)∣∣ ≥ 2 and the current last level only has |Spyj
| ≤ 16p stars:

i. Delete the current last level of Spyj
and all stars therein from our star collection hierarchy.

ii. Repeat until the while condition is false.

4. F1 ← VS(H, θ−1 polylog(n,m)) and delete hyperedges in F1 from the hypergraph H.

5. Delete the stars in hyperedges in F1 from our star collection hierarchy.

6. If F1 contains a hyperedge also in F , then we terminate; otherwise, we go back to Step 1.

We first show that whenever a hyperedge contains sufficiently many stars compared to the current
upper bound we have on the total number of stars, then we can recover it by vertex sampling. We will
next show that if no such hyperedges exist, then we must be able to get a geometrically smaller upper
bound on the total number of stars, and can then make progress by analyzing the next level of stars.

Claim 6.6. Whenever we execute Step 4 in an iteration of the above process, for any hyperedge e ∈ H
containing Ω(µθ/polylog(n,m)) stars of different centers, we have

Pr
[
e ∈ VS(H, θ−1 polylog(n,m))

]
≥ 1− 1/poly(n,m).

Proof. This proof relies on several ingredients: First, we perform some simplifications to reduce our
analysis to the case where only a single center ci ∈ e survives the vertex-sampling. Our goal is to show
that when this center ci survives, then with relatively high probability, our effective resistance sampling
will recover a multi-edge from e which is incident on ci. For this, we recall that the effective resistance of
a multi-edge is equal to the maximum over all vertex-potentials of the fraction of energy contributed by
this multi-edge. Naturally then, there are two quantities we want to bound: 1) an upper bound on the
total energy of the entire vertex-sampled multi-graph, and 2) a lower bound on the energy contributed
by the multi-edges corresponding to e. For the upper bound, we break the multi-edges into two parts,
namely the multi-edges incident on ci, and those not incident on ci. For the lower bound, we simply argue
that some multi-edge in e incident on ci will survive the vertex sampling. Now, we begin the rigorous
proof:

Note that we can assume wlog that the µθ/polylog(n,m) in the claim is O(r), since e can only contain
≤ 2r stars of different centers (it only has ≤ 2r vertices by our assumption on the arity of the hyperedge).
Let N = Ω(µθ/polylog(n,m)) be the number of stars of e of different centers. Let S1, . . . , SN be stars
of e where each Si has a unique center ci ∈ e. If N > r/4, we discard N − r/4 arbitrary stars and their
respective centers from this collection, so that the total number of stars become exactly r/4 (doing so
only changes the number of stars by a constant factor), and update N ← r/4.
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Let E1 denote the event that in one round of vertex sampling, at least one star center gets sampled.
Since the stars have different centers, we have

Pr [E1] =1−
(
1− 1

r

)N

≥1− exp {−N/r}

≥1

e
·N/r (as N ≤ r/4)

≥Ω(µθr−1/polylog(n,m)).

For an i ∈ [N ], let E i
2 be the event that in a single round of vertex sampling, the center ci gets sampled.

but all other star centers cj , j ̸= i do not get sampled. Note that events E i
2’s are mutually disjoint

for different indices i’s, and their probabilities are all equal by symmetry. Moreover, letting N ′ be the
number of star centers sampled in c1, . . . , cN , we have

Pr

[
N⋃
i=1

E i
2|E1

]
=Pr [N ′ = 1|N ′ > 0]

=
N(1/r)(1− 1/r)N−1

1− (1− 1/r)N
(binomial distribution)

≥N(1/r)(1− (N − 1)/r)

1− (1−N/r)
(first Bernoulli ineq. in here)

≥N/(4r)

N/r
(N ≤ r/4)

=1/4.

As a result,

Pr

[
N⋃
i=1

E i
2

]
= Pr

[
N⋃
i=1

E i
2|E1

]
· Pr [E1] = Ω(µθr−1/ polylog(n,m)).

We divide the rest of the proof into the µ ≥ θ−1 case and the µ < θ−1 case.

The µ ≥ θ−1 Case: Consider conditioning on E i
2 for a single arbitrary fixed i ∈ [N ]. Let yj be the

potential vector from which the star Si is created, let q be the level where the star is created, and let
ηq be the threshold we used to check if level q is good. Thus Si ∈ Sqyj

. We then look at the rounded

potential vector y
ηq

j . We consider how much y
ηq

j ’s energy becomes after vertex sampling conditioned

on E i
2. For multi-edges not incident on ci, their survival probability is either 1/r2 or 0, depending on

whether they are incident on another star center, so by (32) their expected total energy after vertex
sampling conditioned on E i

2 is

O(1/r2) · EG(yηj ) ≤ O(1/r2) · EG(yj) ≤ O(θ−1 polylog(n,m)).

We then restrict our attention to multi-edges incident on ci only. Specifically, we consider the following
two cases:

1. q is the last level of Syj that hasn’t been deleted: In this case, either q is the last level of
Syj we have ever created, or there was a level q + 1 in Syj but it has already been deleted. In the
former case, we know the multi-edges incident on ci but outside of Syj

contribute energy at most
16q+1r, which was the reason we stopped expanding Syj

. In the latter case, we know the multi-edges
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incident on ci but outside of Syj contributing non-zero energy are the non-expandable multi-edges,
plus those that were in Sq+1

yj
, which were deleted because it has ≤ 16q+1 stars. Therefore, in either

case, we know that the total energy of y
ηq

j contributed by multi-edges incident on ci is at most

O(µr log2 n) +O(16q+1 · r) +O(rθ−1 polylog(n,m)), (35)

with the first term contributed by multi-edges still remaining in Syj
, the second term contributed

by the (expandable) multi-edges outside of Syj , and the third contributed by the non-expandable
multi-edges outside of Syj .

Note that
µ ≥ |Syj |/ log

2 n ≥ |Sqyj
|/ log2 n ≥ 16q/ log2 n,

where the first inequality follows from Step 2, and the last inequality follows since level q is the last
level that hasn’t been deleted. Also, recall that we are in the µ ≥ θ−1 case. So the total energy of
y
ηq

j of multi-edges incident on ci is less than or equal to µr polylog(n,m).

2. There is a level q + 1 in Syj that hasn’t been deleted: In this case, all multi-edges incident
on ci contributing nonzero energy to the energy of y

ηq

j are either in Sq+1
yj

or non-expandable. Thus
the total energy of multi-edges incident on ci can be bounded by

O(µr log2 n) +O(rθ−1 polylog(n,m)). (36)

Recall once again that we are in the µ ≥ θ−1 case. So the total energy of y
ηq

j of multi-edges incident
on ci can similarly bounded by µr polylog(n,m).

Conditioned on E i
2, each multi-edge incident on ci survives vertex sampling with probability either

1/r or 0, depending on whether they are incident on other star centers. Thus the expected total energy
of these multi-edges becomes at most µpolylog(n,m) after vertex sampling conditioned on E i

2.
Overall, in the case when µ ≥ θ−1, we can bound the expected total energy of yηj of all multi-edges

by µpolylog(n,m) after vertex sampling conditioned on E i
2.

On the other hand, we also have that with Ω(1) probability conditioned on E i
2, we sample one of Si’s

star leaves with potential in yj bigger than that of its median leaf. This is because there are at least
r/2 such leaves, and at least r/2 −N ≥ r/4 of them are not star centers, each of which survives vertex
sampling with probability 1/r even conditioned on E i

2. As a result, the corresponding star multi-edge to
the sampled leaf contributes Ω(1/ log4 n) energy to y

ηq

j via the corresponding star multi-edge. Thus with

oversampling rate λ = θ−1 polylog(n,m), conditioned on E i
2, we recover hyperedge e with probability

Ω(µ−1θ−1/polylog(n,m)). Since this is the case if conditioned on any single E i
2 for all indices i ∈ [N ],

the overall probability we recover e in a single round of vertex sampling is at least

Ω(µ−1θ−1/polylog(n,m)) · Pr

[
N⋃
i=1

E i
2

]
=Ω(µ−1θ−1/ polylog(n,m)) · Ω(µθr−1/ polylog(n,m))

=Ω(r−1/polylog(n,m)).

Thus in r polylog(n,m) rounds, we recover e with probability 1− 1/poly(n,m), as desired.

The µ < θ−1 Case: Finally we discuss the case when µ < θ−1. In this case, the lower bound on the
number of stars e has becomes 1 since it is an integral number. With µ < θ−1, the dominating part in the
energy in (35) and (36) is now rθ−1 polylog(n,m). Thus, the expected energy of y

ηq

j after vertex sampling

is now O(θ−1 polylog(n,m)). Fixing an arbitrary star center (which is potentially the only star center)
of e, we know that with high probability, we will sample it in at least one round of vertex sampling,
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conditioned on which happening, we also sample a star multi-edge of Ω(1/ log4 n) energy in y
ηq

j with Ω(1)

probability. This coupled with the θ−1 polylog(n,m) oversampling rate implies e will be recovered with
high probability.

As promised, we show that we get a geometrically smaller upper bound on the number of stars after
each iteration.

Claim 6.7. At the end of each iteration, the total number of remaining stars satisfies with probability
1− 1/poly(n,m) ∑

remaining yj

∣∣Syj

∣∣ ≤ µℓ/ log n.

Proof. Define each hyperedge e’s contribution to the collective energy as

EHe ({yj})
def
= max

(u,v)∈e

 ∑
remaining yj

(yj [u]− yj [v])
2

 .

Note that we always have ∑
e∈H

EHe ({yj}) = EH({yj}) ≤ ℓpolylog(n,m)/θ, (37)

where the inequality follows from (33). Let f(n) be the polylog(n,m) factor in (37) (which is also the
factor in (33)) multiplied with another log n. Consider all hyperedges e whose total number of stars
across all remaining potential vectors is at least

µθ

f(n)
· EHe ({yj}). (38)

Since EHe ({yj}) captures the maximum multi-edge energy contribution, this implies that e much have at

least Ω(1) · µθ
f(n) stars of different centers. By Claim 6.6, all those hyperedges can be recovered by vertex

sampling with probability 1 − 1/poly(n,m). Thus, all remaining hyperedges must contain at most (38)
stars. Summing this upper bound over all remaining hyperedges and plugging in the upper bound of
collective energy in (37), we get an upper bound on the total number of remaining stars as µℓ/ log n as
desired.

We finally finish the proof of Lemma 2.5 with the following claim.

Claim 6.8. With probability 1− 1/poly(n,m), the above process terminates in O(log n/ log log n) iter-
ations, with at least one hyperedge in F recovered.

Proof. Since each time we only discard potential vectors whose number of stars is more than O(log2 n)
times of the average, we discard O(1/ log2 n) fraction of the vectors by Markov’s inequality. Thus for the
first O(log n) iterations, we have Ω(1) fraction of the vectors remaining. Thus by Claim 6.7, the total
number of stars drops from Ω(µℓ) to O(µℓ/ log n), reducing by a O(1/ log n) factor after each one of the
first O(log n) iterations. Thus we only have O(log n) iterations before µ drops to θ−1 or below.

If µ does not drop below θ−1, it must be the case that we have already recovered some hyperedge in
F and thus terminated. If µ does drop below θ−1, then by Claim 6.6, we can recover all hyperedges that
contain at least one star, among which one must be in F since the first level star collection of every yj
contains a single star in a hyperedge in F .
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7 Linear Sketching Hypergraph Spectral Sparsifiers

In this section, we will use the following linear sketch:

Theorem 7.1 (Multi-graph Effective Resistance Sampler). [KLM+14] Given any parameter ϕ ∈ R, there
is a linear sketch S such that for any multi-graph G on ℓ vertices with ≤ u potential edge slots, and ≤ κ
edges, for any edge e = (u, v) ∈ G, S(G) recovers e (independently) with probability at least ϕ ·reff,G(u, v).
Further, S requires only Õ(ℓϕ log(u) polylog(κ)) bits of space to store.

The above theorem follows from the linear sketch of [KLM+14] (among others). Although not explicit
in their theorem statement, they independently sample each edge with probability at least as large as the
leverage score (equal to the effective resistance for unweighted graphs), (see page 11, under “Correctness”
section for more details). We discuss this theorem more completely in the appendix, see Appendix B.

Now, we will show that by storing copies of the above sketch for the vertex-sampled multi-graphs, we
can create a linear sketch that can be used to recover a hypergraph sparsifier. We present an outline of
the algorithm below:

Algorithm 4: LinearSketchSpectralSparsificationConstruction(H, ϵ)

1 Let H0 = H.
2 for i = 0, 1 . . . 10 log(m) do
3 for j ∈ [r polylog(n,m)] do
4 Vertex sample H1 at rate 1/r to get H ′

(i,j), with Φ(H ′
(i,j)) being its multi-graph.

5 Store S(Φ(H ′
(i,j)), Ri,j) with parameter ϕ = C log(n) log2(m)/ϵ2, and new randomness

Ri,j .
6 end

7 end

Algorithm 5: LinearSketchSpectralSparsificationRecovery(H, ϵ)

1 Let H0 = H.
2 for i = 0, 1 . . . 10 log(m) do
3 Fi = ∅.
4 for j ∈ [r polylog(n,m)] do

5 Open S(Φ(H ′
(i,j) − ∪ℓ≤iFℓ, Ri,j)) to yield a set of multi-edges F̃

(j)
i .

6 Let F
(j)
i be the set of corresponding hyperedges for the multi-edges in F̃

(j)
i .

7 Fi ← Fi ∪ F̃
(j)
i .

8 end

9 end
10 return ∪i2i · Fi.

Claim 7.2. Algorithm 5 yields a (1 ± ϵ) spectral-sparsifier for the hypergraph H with probability 1 −
1/poly(m).

Proof. First, observe that S(Φ(H ′
(i,j) − ∪ℓ≤iFℓ, Ri,j)) is efficiently computable given our linear sketch.

Indeed, because we store S(Φ(H ′
(i,j)), Ri,j), and we have already explicitly recovered ∪ℓ≤iFℓ, it follows

that S(Φ(H ′
(i,j) − ∪ℓ≤iFℓ), Ri,j) = S(Φ(H ′

(i,j)), Ri,j) − S(Φ(∪ℓ≤iFℓ), Ri,j). Here, we use our knowledge
of the vertex-sampled partitions to compute the corresponding multi-edges that should be removed in
correspondence with ∪ℓ≤iFℓ.

Next, observe that because Ri,j is a random string independent of all other Ra,b, a ̸= i, b ̸= j, this
means that the set of recovered edges ∪ℓ≤iFℓ is independent of Ri,j . In particular, when we calculate
S(Φ(H ′

(i,j) − ∪ℓ≤iFℓ), Ri,j) = S(Φ(H ′
(i,j)), Ri,j) − S(Φ(∪ℓ≤iFℓ), Ri,j), this does not change the failure
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probability of the sketch, as we are simply performing an update operation which is independent of the
randomness it is using (a similar fact is used in [AGM12]).

We must also show that we are able to recover F
(j)
i , which is the set of corresponding hyperedges for

the multi-edges in F̃
(j)
i . This is essentially a triviality: the linear sketch operates over a universe of size

O(
(
n
r

)
·r2), where there is one index in the universe for each multi-edge slot. We can view this universe as

first choosing a hyperedge in
(
n
r

)
ways, and then choosing a constituent multi-edge (in

(
r
2

)
ways). Thus,

whenever the linear sketch recovers an index ∈ [O(
(
n
r

)
· r2)], it is explicit what the parent hyperedge that

should be recovered is.
Finally, to conclude the correctness, we must only observe that Algorithm 5 is exactly implementing

Algorithm 2, as the sketch S performs the multi-edge effective resistance sampling, and the hyperedge
recovery is exactly

Claim 7.3. Algorithm 5 can be implemented with a (randomized) linear sketch of size Õ(nr polylog(m)/ϵ2).

Proof. The space required by the above sketch is that of storing r polylog(m,n) multi-graph effective

resistance samplers, each on a vertex set of size Õ(nr ) with ≤ O(nr · r2) multi-edge slots, ≤ O(mr2)

edges, and ϕ = polylog(m,n)/ϵ2. This translates to a space complexity of Õ(nr · r polylog(m,n)/ϵ2) bits

per multi-graph sketch (using Theorem 7.1), and thus a total space requirement of Õ(nr polylog(m)/ϵ2)
across all the sketches, as we desire.

With this, we can state our final theorem for this section:

Theorem 7.4. For hypergraphs of arity ≤ r, with ≤ m hyperedges and an accuracy parameter ϵ ∈ (0, 1),

there is a linear sketch using Õ(nr polylog(m)/ϵ2) bits that can be used to recover a (1 ± ϵ)-spectral
sparsifier with probability 1− 1/poly(n).

Proof. The linear sketch itself is given by Algorithm 4. The accuracy of the recovery procedure is given
by Claim 7.2, and the size bound on the linear sketch is given by Claim 7.3.

We also discuss the application of this linear sketch to the dynamic streaming setting:

Corollary 7.5. For any ϵ ∈ (0, 1), there is a randomized dynamic streaming algorithm in Õ(nr polylog(m)/ϵ2)
bits of space that, for any sequence of insertions / deletions of hyperedges in an n-vertex unweighted hy-
pergraph H with at most m edges of arity bounded by r, allows recovery of a (1± ϵ) spectral-sparsifier of
H with probability 1− 1/poly(n,m) at the end of the stream.

Proof. We use the linear sketch from Theorem 7.4. Let us denote this sketch by S and denote its
randomness by R. Observe that for a hypergraph H and a hyperedge e, we have

S(H ± e,R) = S(H,R)± S(e,R),

by the definition of a linear sketch. Thus, given a dynamic stream of a hypergraph, we must only store
the randomness R, in addition to the current linear sketch S(H,R), and add / subtract the sketch of
hyperedges that are inserted or deleted.

The only remaining subtlety is to argue that the randomness R need not be too large (namely, that

it requires Õ(nr polylog(m)/ϵ2) bits). For this, we refer the reader to Claim 7.1 in [KPS24b], which
provides a general non-uniform derandomization result for hypergraph linear sketches. This then yields
the corollary.
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8 Recursive Recovery Framework

8.1 General Framework

From the previous sections, we have established that Algorithm 1 recovers all hyperedges whose sampling

rate would be ≥ ϵ2

polylog(n,m) in accordance with a weight assignment and Theorem 4.1. In this section,

we will show how we can implement Algorithm 1 in an recursive manner which will be amenable to both
online and fully-dynamic algorithms for sparsification.

Specifically, we will use the following algorithm, which operates on a multi-graph G on n vertices,
with ≤ m multi-edges, and accuracy parameter ϵ.

Algorithm 6: RecursiveRecovery(G,n,m, ϵ)

1 Let G1 = G.
2 for i ∈ [log(m)] do

3 Let Fi be such that {e ∈ Gi : Reff,Gi(e) ≥
(1/2)2

1000 log(n) log2(m)
} ⊆ Fi.

4 Let Gi+1 be the result of sampling Gi − Fi at rate 1/2.

5 end
6 return S = F1 ∪ F2 ∪ . . . Flog(m)

First, we argue that the above procedure yields (1± ϵ) spectral sparsifiers:

Claim 8.1. For every i ∈ [log(m)], F1 ∪ · · · ∪ 2i · Fi ∪ 2i+1 · Gi+1 is a (1 ± O(i · 1/2 log(m)))-spectral
sparsifier for G, with probability 1− log(m)/n20.

Proof. Let us assume inductively that F1 ∪ · · · ∪ 2i · Fi ∪ 2i+1 ·Gi+1 is a (1 ± 2(i · 1/2 log(m)))-spectral
sparsifier for G with probability 1− i/n20. Then, in the next iteration, observe that Fi+1 ∪ 2 ·Gi+2 is a
(1±1/2 log(m))-spectral sparsifier for Gi+1 with probability 1−1/n20, as we are only sampling each edge

e independently with marginal probability ≥ 1000Re log2(m) log(n)
ϵ2 , where ϵ = 1/2. Composing sparsifiers,

and then taking a union bound over all log(m) levels then yields our claim.

Using the above, we can obtain simple bounds on the effective resistance of each edge as we go through
levels of sampling.

Claim 8.2. With probability ≥ 1− log(m)/n20, for every i ∈ [log(m)], and for every u, v ∈
(
V
2

)
, it is the

case that
Reff,Gi(u, v) ≥ 2i · 1/2 ·Reff,G(u, v).

Proof. First, from the previous claim, we know that with probability ≥ 1 − log(m)/n20, for every i ∈
[log(m)], it is the case that F1 ∪ · · · ∪ 2i−1 · Fi−1 ∪ 2i · Gi is a (1 ± 1/2)-spectral sparsifier for G. In
particular, this means that

Reff,F1∪···∪2i−1·Fi−1∪2i·Gi
(u, v) ≥ 1/2 ·Reff,G(u, v),

and therefore,
R2i·Gi

(u, v) ≥ 1/2 ·Reff,G(u, v).

Finally, when we remove the weight from Gi, we get that

RGi
(u, v) ≥ 2i1/2 ·Reff,G(u, v),

as we desire.

Now, going forward, we will adopt a different perspective for the sub-sampling of edges. Indeed,
instead of viewing the sub-sampling operation as taking place after certain edges are recovered, let us
instead fix a set of “filter” functions beforehand, where for each edge, a filter function keeps the edge
with probability 1/2, and deletes it otherwise. If edges are recovered in a round i, then we simply do not
apply the filter functions for future levels.
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Claim 8.3. Let Q ⊆ G denote a set of multi-edges. Then, if we let S denote the result of running
Algorithm 6 on G, we have that

Pr[S ∩Q ̸= ∅] ≥ min

2/3,
∑
e∈Q

Reff,G(e)/ϵ
2

− log(m)

n20
.

Proof. Let W =
∑

e∈Q Reff,G(e). First, observe that there must be some level of sampling i ∈ [log(m)]

such that edges e ∈ Q with effective resistance in [ 12i ,
1

2i−1 ] contribute a ≥ 1/ log(m) fraction of W .

Denoting this set by Q(i), we specifically are saying that∑
e∈Q(i)

Reff,G(e) ≥
W

log(m)
.

We remark that this immediately implies that there are ≥ W ·2i
2 log(m) edges in Q(i).

Next, let us consider the graph after sampling at rate

1

2j
=

100 log(n) log(m)

2i(1/2)2
.

By the previous claim, with probability 1− log(m)/n20, for every (u, v) ∈ Q, it will be the case that

Reff,Gi(u, v) ≥
2i(1/2)2

100 log(n) log(m)
(1− ϵ) · 1

2i
≥ (1/2)2

100 log(n) log(m)
.

In particular, conditioned on this event happening, as long as some edge in Q(i) survives the first j
filter functions, it will be the case that an edge in Q(i) is present and has large enough effective resistance,
and therefore is recovered (and hence S ∩Q ̸= ∅).

Thus, it remains only to compute the probability that an edge inQ(i) survives the first j filter functions.

For this observe that when combined, the first j filter functions are sampling at rate 1/2j = 100 log(n) log(m)
2i(1/2)2 .

Further, the number of edges in Q(i) is ≥ 2i·W
2 log(m) . Thus,

Pr[edge in Q(i) survives filters] ≥ 1− (1− 100 log(n) log(m)

2i(1/2)2
)

2i·W
log(m)2

≥ 1− e
− 50W log(n)

(1/2)2 .

Now, we observe that if e−x ≥ 1/3, then e−x ≤ 1−x/2. This means that either Pr[edge in Q(i) survives filters] ≥
2/3, or

Pr[edge in Q(i) survives filters] ≥ 50W log(n)

2(1/2)2
,

when 50W log(n)
(1/2)2 ≤ ln(3). Thus, we can conclude that

Pr[edge in Q(i) survives filters] ≥ min(2/3,
50W log(n)

2(1/2)2
).

In particular, this means that

Pr[edge in Q(i) survives filters] ≥ min(2/3,W ).

Finally, we observe that the only failure case for our recovering an edge from Q is when either the
sequence of graphs we construct fails to be a spectral sparsifier, or an edge in Q(i) fails to survive the j
filter functions. Thus,

Pr[S ∩Q = ∅] ≤ Pr[Sparsifier fail] + Pr[Filter fail] ≤ (1−min(2/3,W )) +
log(m)

n20
.

This yields our stated claim.
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8.2 Re-Implementing Vertex-Sampling Recovery

In this subsection, we will show that a variant of the above recursive recovery procedure can be used to
implement the vertex-sampling recovery procedure. Specifically, for a fixed hyperedge f , let us set Q to
be the set of multi-edges corresponding to the clique-expansion of f . Observe that if Q is to be recovered
in the r polylog(m,n) ≤ r2 ≤ n2 rounds of vertex-sampling with high probability, then in certain rounds
of vertex-sampling, the multi-edges in Q must have a lot of effective resistance (i.e., the sum of their
effective resistances must be large). This is because multi-edges are sampled directly proportional to
their effective resistance.

Finally, once we have established that the multi-edges have a lot of effective resistance, then we can
use the previous section to argue that a multi-edge in Q is recovered with high probability. Below, we
make this intuition more formal.

First, we introduce some notation: for a hyperedge f , and a round of vertex-sampling ℓ, we let Q(ℓ,f)

denote the multi-edges correpsonding to f in the ℓth round. We let W (ℓ,f) denote the combined effective
resistances for multi-edges in Q(ℓ,f) with respect to the ℓth vertex-sampled multi-graph.

Claim 8.4. Suppose that a hyperedge f is recovered with probability ≥ 1/2 in K ≤ n2 rounds of vertex
sampling (as defined in Algorithm 1). Then,∑

ℓ∈[K]:W (ℓ,f)≥1/n3

W (ℓ,f) ≥ ϵ2

polylog(m,n)
.

Proof. First, observe that if a hyperedge is recovered with probability ≥ 1/2, then this must mean across
all rounds ℓ ∈ [K], ∑

ℓ∈[K]

W (ℓ,f) ≥ ϵ2

polylog(m,n)
.

Indeed, if we suppose for the sake of contradiction that∑
ℓ∈[K]

W (ℓ,f) <
ϵ2

polylog(m,n)
,

then
Pr[sample an edge from Q] ≤

∑
ℓ∈[K]

∑
u,v∈Q(ℓ,f)

reff(u, v) · polylog(m,n)/ϵ2

≤
∑
ℓ∈[K]

W (ℓ,f) · polylog(m,n)/ϵ2 < 1/2.

Next, observe that ∑
ℓ∈[K]:W (ℓ,f)≤1/n3

W (ℓ,f) ≤ 1/n,

as there are at most n2 rounds total, and under the above assumption, each such round is contributing
at most 1/n to the total sampling mass.

Finally, putting these together gives that ∑
ℓ∈[K]:W (ℓ,f)≥1/n3

W (ℓ,f)

≥
∑
ℓ∈[K]

W (ℓ,f) −
∑

ℓ∈[K]:W (ℓ,f)≤1/n3

W (ℓ,f) ≥ ϵ2

polylog(m,n)
.
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With this, we now consider the following algorithm:

Algorithm 7: RepeatedRecursiveRecovery(G,n,m, ϵ)

1 Initialize F̃ ← ∅ and H1 ← H.
2 for r polylog(n,m)/ϵ2 rounds do
3 Vertex sample H1 at rate 1/r to get H ′, with G being its multi-graph.
4 Let G1 = G.
5 for i ∈ [log(m)] do

6 Let Fi be such that {e ∈ Gi : Reff,Gi(e) ≥
(1/2)2

1000 log(n) log2(m)
} ⊆ Fi.

7 Let Gi+1 be the result of sampling Gi − Fi at rate 1/2.

8 end
9 Let S = F1 ∪ F2 ∪ . . . Flog(m).

10 Let S̃ contain all hyperedges of H1 who have at least one clique multi-edge in S.

11 Let F̃ ← F̃ ∪ S̃ and delete S̃ from H1.

12 end

13 return F̃

Lemma 8.5. Let f be any hyperedge which is recovered by Algorithm 1 with probability ≥ 1/2 (for a fixed
set of vertex-samplings). Then, f is recovered by Algorithm 7 (with the same fixed set of vertex-samplings)
with probability ≥ 1− 1/poly(n,m).

Proof. First, by Claim 8.4, we know that this means∑
ℓ∈[K]:W (ℓ,f)≥1/n3

W (ℓ,f) ≥ ϵ2

polylog(m,n)
.

Now, by Claim 8.3, in each iteration where W (ℓ,f) ≥ 1/n3, we know that a multi-edge from Q(ℓ,f) is
recovered with probability ≥ min(2/3,W (ℓ,f))/2. Thus, because

∑
ℓ∈[K]:W (ℓ,f)≥1/n3

W (ℓ,f) ≥ ϵ2

polylog(m,n)
,

we also know that across these same rounds of vertex-sampling,

Pr[edge from Q is recovered] ≥ ϵ2

polylog(m,n)
.

Finally, because we repeat this procedure some polylog(m,n)/ϵ2 times, we get that any hyperedge which
is recovered by Algorithm 1 with probability ≥ 1/2 is also recovered by Algorithm 7 with probability
1− 1/poly(m,n).

8.3 Sparsification Algorithm

The preceding subsections showed that we can use this recursive recovery procedure to recover the
“sensitive” hyperedges (i.e., those with large sampling rate). Next, we show how we can turn this into an
actual sparsification algorithm. The key observation is that we must only bootstrap the above algorithm
log(m) times. In each iteration, we are sub-sampling the edges at rate 1/2 and recovering the important
hyperedges in the resulting hypergraph.

Now, we re-analyze Algorithm 2 but with Algorithm 7 as a sub-routine:
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Algorithm 8: HypergraphSparsify(H,m, n, ϵ)

1 Let Hi = H.
2 for i ∈ [log(m)] do

3 Let Fi = RepeatedIterativeRecovery(Hi, λ = polylog(m,n)
ϵ2 ).

4 Let Hi+1 be the result of keeping each hyperedge in Hi − Fi with probability 1/2.

5 end
6 return

⋃
i∈[log(m)] 2

i · Fi.

Claim 8.6. With probability 1 − 1/poly(n), for every i ∈ [log(m)], 2i+1 ·Hi+1

⋃
j≤i 2

i · Fi as returned
from Algorithm 8 is a (1±O(i · ϵ)) hypergraph spectral sparsifier for H.

Proof. Recall that given the hypergraph Hi, Algorithm 2 recovers a set of hyperedges of Hi via running
Algorithm 1. Now, by Theorem 2.1, there exists a single weight assignment W ∗

i of the multi-graph of Hi,
such that every hyperedge satisfying

max
(u,v)∈e

RΦ(Hi)(W
∗
i ) ≥ ϵ2

polylog(n,m)

is recovered with probability ≥ 1 − 1/poly(m). Now, every hyperedge satisfying the above condition
is essentially sampled with probability 1, while all remaining hyperedges are sampled at rate 1/2. The
only new aspect of Algorithm 8 is that we have used Algorithm 7 as a sub-routine. By Lemma 8.5 and
taking a union bound over every hyperedge recovered by Algorithm 2, we know that with probability
1− 1/poly(n,m), every hyperedge recovered by Algorithm 2 is also recovered in Algorithm 8.

In particular, for each hyperedge e, this means that the sampling rates we use satisfy

pe ≥
C log(n) log(m)

ϵ2
· max
(u,v)∈e

R
Φ(Hi)(W

∗
i )

eff (u, v).

By Theorem 4.1[JLS23], this then means that the above sampling scheme (whereby we sample edges with
probability pe, and give weight 1/pe), yields a (1± ϵ) spectral-sparsifier with probability 1− 1/poly(m).
2 ·Hi+1 is exactly the hyperedges who survive the sampling at rate 1/2, and Fi is exactly the hyperedges
that we keep with probability 1 (and hence weight 1). This then yields the desired claim.

Lemma 8.7. With probability 1 − 1/poly(m), the result of Algorithm 8 called on a hypergraph H with
parameter ϵ is a (1± ϵ)-spectral sparsifier of H.

Proof. Let us suppose by induction that F1∪2·F2∪· · ·∪2i ·Fi∪2i+1 ·Hi+1 is a (1±2iϵ) spectral sparsifier of
H. Then, in the i+1st iteration of sparsification, we replace Hi+1 with Fi+1∪2 ·Hi+2. By composition of
sparsifiers, if Fi+1∪2·Hi+2 is a (1±ϵ) spectral sparsifier ofHi+1, then F1∪2·F2∪· · ·∪2i+1 ·Fi+1∪2i+2 ·Hi+2

is a (1± 2(i+ 1)ϵ) spectral-sparsifier of H.
By Claim 8.6, and a union over all log(m) levels, this yields a (1 ± O(ϵ log(m))) sparsifier with

probability 1 − 1/poly(m). Further, observe that after some i = O(log(m)) iterations, every hyperedge
in the hypergraph will be removed (i.e., sampled away) with probability 1 − 1/poly(m), and hence Hi

will be empty. Thus, all that remains is the Fi’s, and their union is the sparsifier.
Finally, observe that we can use an error parameter ϵ′ = ϵ/ log(m) while only incurring a log2(m)

blow-up in the vertex-sampling parameter (which we absorb into the polylog(m)). Thus, the result of
Algorithm 8 on H will be a (1± ϵ) spectral sparsifier with probability 1− 1/poly(m), as we desire.

9 Disjoint Spanners for Recovering High Effective Resistance
Multi-Edges

In this section, we will generalize a result of [ADK+16] to recovering large effective resistance multi-edges
in a multi-graph. To this end, we introduce some definitions first:
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Definition 9.1. A subgraph T ⊆ G is a log(n)-spanner of G if for every pair u, v, dT (u, v) ≤ log(n) ·
dG(u, v). Here, dG(u, v) is understood to be the distance from u to v in G.

We generalize this to disjoint spanners as follows:

Definition 9.2. We say that T1, . . . Tℓ form a disjoint collection of log(n)-spanners if for every i ∈ [ℓ],
Ti ⊆ G− T1 − . . . Ti−1, and Ti is a log(n)-spanner of G− T1 − . . . Ti−1.

Our key claim (as in [ADK+16]) is the following:

Claim 9.1. Let T1, . . . Tℓ be a disjoint collection of log(n)-spanners of a multi-graph G. Then, every

multi-edge e = (u, v) for which Reff,G(u, v) ≥ log(n)
ℓ is contained in T1 ∪ · · · ∪ Tℓ.

Proof. Our proof proceeds in the same manner as [ADK+16]. Indeed, consider any multi-edge (u, v)
which is not contained in T1 ∪ · · · ∪ Tℓ. We will show every such multi-edge has effective resistance

≤ log(n)
ℓ . Indeed, if a multi-edge (u, v) is not recovered in any of T1, . . . Tℓ, then it must be the case that

(u, v) is present in each graph G − T1 − . . . Ti−1 when the ith spanner Ti is being created. This means
that there must be a path from u to v of length ≤ log(n) in Ti. Because the Ti’s are disjoint, this means
that across T1, . . . Tℓ there are ℓ disjoint paths of length ≤ log(n) from u to v. By the resistor network

interpretation of graphs, this means that the effective resistance between u and v in G must be ≤ log(n)
ℓ ,

yielding our claim.

10 Online Spectral Hypergraph Sparsification

In this section, we will show the following theorem:

Theorem 10.1. Let H be a hypergraph on n vertices, ≤ m hyperedges, and arity [r, 2r], whose hyperedges
are revealed one by one. Then, there is an online algorithm for computing a (1± ϵ) spectral sparsifier for

H which retains only Õ(n log(m)/ϵ2) hyperedges.

Recall that in the online sparsification setting, the hyperedges are presented in a stream e1, . . . em
(where we know the value m before-hand). After each hyperedge ei is revealed, the algorithm must
immediately decide whether or not to include ei in the sparsifier, and if included, must also decide on
its weight. In particular, the sparsifier for ei must be decided without having seen the future hyperedges
ei+1, . . . em.

To this end, we use the following claim:

Claim 10.2. Given a sequence of multi-edge insertions, there is an online algorithm which creates a
log(n)-spanner by keeping only O(n) multi-edges.

Proof. The algorithm is very simple: the algorithm stores the spanner it has built so far, which is denoted
by T . For the ith multi-edge (u, v) that is revealed, the algorithm checks if (u, v) are already connected
by a path of length ≤ log(n). If so, the algorithm does not include (u, v), and otherwise the algorithm
does include (u, v). Clearly, this builds a log(n)-spanner, as for any edge (u, v) in G, (u, v) are connected
by a path of length ≤ log(n) in T .

Next, we show that T will never have a cycle of length ≤ log(n). Indeed, in order for this to be
the case, there must have been some time step i where adding the edge (u, v) created a cycle of length
≤ log(n). This means that (u, v) were connected by a path of length ≤ log(n) − 1, and the cycle was
then completed by adding (u, v). But, if there is already such a path of length ≤ log(n) − 1, then the
edge (u, v) would not be included. Thus, there must not be any cycles of length ≤ log(n) in T .

Finally, it remains to bound the number of edges in T . This follows because any graph on n vertices
with no cycles of length ≤ k must have n1+O(1/k) edges (see for instance, Proposition 2.3 in [ABS+20]).
Plugging in k = log(n) then yields that T must have O(n) edges.

45



Now, by a simple bootstrapping of the above claim, we can also get the following:

Claim 10.3. Given a sequence of multi-edge insertions, there is an online algorithm which creates a
disjoint collection of ℓ log(n)-spanners, keeping only O(ℓn) multi-edges.

Proof. The algorithm again is very simple. The algorithm maintains the spanners T1, . . . Tℓ with the
invariant that Ti is a log(n)-spanner of G− T1 − · · · − Ti−1.

Upon receiving a multi-edge (u, v), the algorithm checks if (u, v) can be added to T1 without creating
a cycle of length log(n). If so, the (u, v) is added to T1, otherwise, the algorithm tries adding (u, v) to
T2, and so on.

Each Ti has O(n) edges by the same logic as the previous claim. Likewise, each Ti is a log(n)-spanner
of G − T1 − · · · − Ti−1, as we can simply view Ti as the spanner that is build by applying the previous
algorithm Claim 10.2 to the sequence of online edges with T1, . . . , Ti−1 removed. Thus, we get a set of ℓ
disjoint log(n)-spanners, each with O(n) edges, yielding our claim.

Now we are ready to present our online algorithm for spectral hypergraph sparsification. We adopt the
mold of Algorithm 7 and Algorithm 8, but replace the black-box step of storing large-effective resistance
multi-edges with storing a set of disjoint spanners:

Algorithm 9: RepeatedRecursiveRecoverySpanner(G,n,m, ϵ)

1 Initialize F̃ ← ∅ and H1 ← H.
2 for r polylog(n,m)/ϵ2 rounds do
3 Vertex sample H1 at rate 1/r to get H ′, with G being its multi-graph.
4 Let G1 = G.
5 for i ∈ [log(m)] do

6 Store a set T1, . . . T4000 log2(n) log2(m) of 4000 log
2(n) log2(m) disjoint spanners of Gi.

7 Let Fi be the set of multi-edges {f : ∃j ∈ [4000 log2(n) log2(m)], f ∈ Tj}.
8 Let Gi+1 be the result of sampling Gi − Fi at rate 1/2.

9 end
10 Let S = F1 ∪ F2 ∪ . . . Flog(m).

11 Let S̃ contain all hyperedges of H1 who have at least one clique multi-edge in S.

12 Let F̃ ← F̃ ∪ S̃ and delete S̃ from H1.

13 end

14 return F̃

We can then adopt the following sparsification algorithm:

Algorithm 10: HypergraphSparsifySpanner(H,m, n, ϵ)

1 Let Hi = H.
2 for i ∈ [log(m)] do

3 Let Fi = RepeatedIterativeRecoverySpanner(Hi, λ = polylog(m,n)
ϵ2 ).

4 Let Hi+1 be the result of keeping each hyperedge in Hi − Fi with probability 1/2.

5 end
6 return

⋃
i∈[log(m)] 2

i · Fi.

Claim 10.4. Algorithm 10 produces a (1 ± ϵ) spectral hypergraph sparsifier of H with probability
1− 1/poly(m).

Proof. First, by Claim 9.1, it follows that in the multi-graph Gi, any multi-edge of effective resistance ≥
log(n)

4000 log2(n) log2(m)
= (1/2)2

1000 log(n) log2(m)
is recovered in Fi, as the disjoint log(n)-spanners T1, . . . T4000 log2(n) log2(m)

will include these multi-edges. Thus, Algorithm 9 is a concrete instantiation of an algorithm which im-
plements Algorithm 7.
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Then, we must only observe that Algorithm 10 is exactly implementing Algorithm 8. The correctness
directly follows.

Claim 10.5. Algorithm 10 can be implemented as an online algorithm, storing only Õ(npolylog(m)/ϵ2)
hyperedges.

Proof. First we show the bound on the number of hyperedges that are stored. The algorithm stores
O(r polylog(m,n)/ϵ2) log(n)-spanners, each on a vertex set of size Õ(n/r). Each spanner therefore stores

Õ(n/r) multi-edges, and in total, the number of multi-edges stored is Õ(npolylog(m)/ϵ2). Because each
hyperedge that is recovered requires one of its corresponding multi-edges to be recovered, this means that
the total number of recovered hyperedges is Õ(npolylog(m)/ϵ2).

Next, we show that the algorithm can be implemented in an online manner. This follows from the fact
that we can construct the disjoint collections of spanners in an online manner (as per Claim 10.3) and
perform the sampling in an online manner. Before starting, the algorithm initializes all spanners to be
empty, and uses public randomness to construct the vertex-sampled subsets of the original hypergraph.
We will show that Algorithm 9 can be implemented in an online manner. From there, observe that
implementing Algorithm 10 online is straightforward, as we simply check if a hyperedge e is stored by
Algorithm 9. If so, the hyperedge is kept with weight 1. Otherwise, we flip a coin: with probability 1/2
we delete the hyperedge, and with probability 1/2 we check if e is stored by Algorithm 9 at the second
level of sampling. If it is recovered here, then we assign it weight 2, and so on.

Finally, to implement Algorithm 9 as an online algorithm, let us use T
(i,j)
1 , . . . T

(i,j)

4000 log2(n) log2(m)
to

denote the disjoint spanners for the jth round of vertex sampling (out of r polylog(n,m)/ϵ2 rounds), and
i ∈ [log(m)] round of sub-sampling multi-edges. Whenever a new hyperedge e arrives, we first calculate
the vertex-sampled version of the hyperedge e(1), and attempt to insert the multi-edges corresponding to

Ke(1) into T
(1,1)
1 , . . . T

(1,1)

4000 log2(n) log2(m)
. This can be done online as per Claim 10.3. Next, whichever multi-

edges are not recovered, we sample at rate 1/2 before attempting to insert into T
(2,1)
1 , . . . T

(2,1)

4000 log2(n) log2(m)

(via Claim 10.3) and so for i ∈ [log(m)]. After the log(m) levels, if any multi-edge from Ke(j) has been
recovered, then we terminate. Otherwise, we continue on to the second vertex-sampled multi-graph and

repeat trying to insert Ke(2) into T
(1,2)
1 , . . . T

(1,2)

4000 log2(n) log2(m)
, repeating the same logic. If no spanner

ever recovers a multi-edge from Ke(j) across all rounds, then we do not store the hyperedge. Otherwise,
we report it as being stored. This yields the online implementation.

Finally, we can conclude:

Theorem 10.6. There is an online hypergraph spectral sparsification algorithm, which for hypergraphs H
on n vertices with ≤ m hyperedges, and arity ≤ r undergoing a sequence of insertions maintains a (1±ϵ)-
spectral-sparsifier (and thus cut-sparsifier too) with probability 1−1/poly(m). The space complexity of the

algorithm is Õ(nr polylog(m)/ϵ2) bits and the sparsity of the sparsifier is Õ(npolylog(m)/ϵ2) hyperedges.

Proof. The algorithm and size of the sparsifier follows from Claim 10.5 (the bit complexity follows because

there are Õ(n polylog(m)/ϵ2) stored multi-edges, but each multi-edge has a label of size O(r) bits to its
parent hyperedge). The correctness of the sparsifier follows from Claim 10.4.

10.1 Online Sparsification Lower Bound

In this section, we detail a lower bound for online hypergraph (cut) sparsification in the model where we
can re-weigh hyperedges that have already been included in the sparsifier. Note that this is a strictly
easier setting than the setting discussed above, where required spectral sparsification (stronger than cut),
and did not allow the sparsifier to alter the weights of the hyperedges it kept.

Further, we restrict the model to only allow insertions of one copy of each hyperedge, and that inserted
hyperedges must be unweighted.
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10.1.1 Lower Bound Set-up

Now, we explain the set-up for the lower bound. We will let k denote the number of rounds of insertions
that we will perform. We partition the vertex set into a left side L = [n] and a right side R = [n]. For
each round j ∈ [k], we randomly partition the left side L into two pieces L1

j , L
2
j , and the right side into

two pieces R1
j , R

2
j . Then, for each left vertex u ∈ L1

j , we add n2j random hyperedges of arity n/4 from

to R1
j , and likewise for every u ∈ L2

j we add n2j random hyperedges from to R2
j .

10.2 Lower Bound Analysis

First, we establish that if the sparsifier is small, then necessarily all of its edges must be crossing between
the partition established in R with high probability.

Claim 10.7. Suppose that after round j − 1, the sparsifier contains ≤ n2 hyperedges. Then, with
probability 1− n2/2Ω(n), each hyperedge in the sparsifier crosses from R1

j to R2
j .

Proof. Indeed, consider any hyperedge e in the sparsifier. Note that the partition R1
j , R

2
j is chosen

independently of the sparsifier. So, the probability that e is completely contained in exactly one of
R1

j , R
2
j is bounded by (1/2)n/4−1 = 1/2Ω(n). Taking the union bound over all edges e in the sparsifier

yields our claim.

Next, we show that with high probability, there is no way to re-weigh existing hyperedges to match
certain cut sizes without necessarily violating other cuts.

Claim 10.8. Suppose that after round j − 1, the sparsifier contains ≤ n2 hyperedges. Then, in round j,
the sparsifier must include Ω(n) new hyperedges in the sparsifier.

Proof. Indeed, consider a single vertex u ∈ L, and let us assume WLOG that u ∈ L1
j . Now, in the jth

round, we insert nj hyperedges that are incident upon u. For the sake of contradiction, let us assume
that the sparsifier does not include any of these hyperedges, and instead re-weighs existing hyperedges.
Because the degree of u must be preserved in order to be a (1 ± ϵ) cut-sparsifier, this means that the
hyperedges incident to u in the sparsifier must be re-weighed by an average factor of Ω(n) to compensate.
However, now let us consider cut defined by S = L1

j ∪R1
j . In the actual hypergraph (not the sparsifier),

the size of this cut is bounded by
∑

i≤j−1 n
2i+1 = O(n2j−1). However, in the sparsifier, with probability

1− 1/2Ω(n) (from the previous claim), every hyperedge incident to u is now crossing from R1
j to R2

j . The

sum of the weights of these hyperedges is Ω(n2j), and therefore the cut is exceeded by a factor of n, and
therefore not a sparsifier.

This means that the sparsifier must select a new hyperedge among those incident on u to be included.
Hence, n new hyperedges must be included, as there is one for each left-vertex.

Claim 10.9. After k ≤ n/10 rounds, the size of the sparsifier is Ω(nk).

Proof. For each of the k rounds, the sparsifier adds Ω(n) hyperedges.

Theorem 10.10. Online hypergraph cut-sparsifiers with re-weighing allowed require Ω(n log(m)/ log(n))
hyperedges .

Proof. Given an allotment ofm hyperedges, this allows us to perform the above procedure for Ω(logn(m)) =
Ω(log(m)/ log(n)) rounds. By the previous claim, this leads to a total of Ω(n log(m)/ log(n)) hyperedges
that must be in the sparsifier.
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11 Fully Dynamic Algorithms for Spectral Hypergraph Sparsi-
fication

In this section, we explain how to implement a fully-dynamic algorithm for spectral hypergraph spar-
sification. We will use Algorithm 10 as a starting point, and show how we can leverage decremental
algorithms for maintain spanners in multi-graphs to create a fully-dynamic sparsification algorithm. To
this end, we start by explaining the well-known reduction from fully-dynamic sparsification algorithms
to decremental sparsification algorithms.

11.1 Reducing Fully-Dynamic to Decremental

We use the well-known reduction for turning decremental sparsifiers into fully dynamic sparsifiers (see
for instance, [ADK+16]). Note that the previous reductions were specifically done for graphs, hence our
motivation here is to re-produce it for hypergraphs. We follow the exposition and statement of [ADK+16]
closely.

We show the following lemma:

Lemma 11.1. [ADK+16] Given a decremental algorithm for maintaining a (1± ϵ) spectral-sparsifier of
size S(m,n, ϵ) for an undirected hypergraph with total update time m ·T (m,n, ϵ), there is a fully dynamic
algorithm for maintaining a (1± ϵ)-cut sparsifier of size O(S(m,n, ϵ) log(m)) with amortized update time
O(T (m,n, ϵ) log(m)).

As in [ADK+16], this lemma relies on a notion of decomposability.

Claim 11.2. Let H = (V,E) be a hypergraph, and let E1, . . . Ek be a partition of the edge-set into k

pieces. Let H̃i be a (1 ± ϵ)-spectral sparsifier for Hi = (V,Ei). Then, H̃ = ∪ki=1H̃i is a (1 ± ϵ)-spectral
sparsifier for H.

Proof. Consider any vector x ∈ RV . We have that QH(S) =
∑k

i=1 QHi
(S). Thus, because QH̃i

(S) ∈
(1± ϵ)QHi

(S), we see that

QH̃(S) =

k∑
i=1

QH̃i
(S) ∈ (1± ϵ)QH(S),

as we desire.

Now, we are ready to prove the overall lemma.

Proof of Lemma 11.1. Set k = ⌈log(m)⌉. For each 1 ≤ i ≤ k, we maintain a set Ei ⊆ E of edges, and
an instance Ai of the decremental algorithm running on the hypergraph Hi = (V,Ei). We also keep a
binary counter C that counts the number of insertions mod m with the least significant bit in C being
the right most one.

A deletion of an edge e is carried out by simply deleting e from the set Ei it is contained in, and
propagating the deletion to instance Ai of the decremental algorithm. An insertion of an edge e is more
involved: we let j be the highest (i.e., left-most) bit that gets flipped in the counter when increasing the
number of insertions. Thus, in the updated counter, the jth bit is 1, and all lower bits are 0. We first
add the edge e, as well as all edges in ∪j−1

i=1Ei to Ej . Then, we set Ei = ∅ for all 1 ≤ i ≤ j − 1. Finally,
we re-initialize the instance Aj on the hypergraph Hj = (V,Ej).

Now, we can bound the total update time for each instance Ai of the decremental algorithm. First, we
observe that the ith bit of the binary counter is reset after every 2i edge insertions. A simple induction
then shows that at any time |Ei| ≤ 2i, for all 1 ≤ j ≤ k. Now, consider an arbitrary sequence of updates
of length ℓ. The instance Ai is re-initialized after every 2i insertions. It therefore is re-initialized at most
ℓ/2i times. For every re-initialization, we pay a total update time of |Ei| · T (|Ei|, n, ϵ) ≤ 2i · T (m,n, ϵ).
For the entire sequence of ℓ updates, the total time spent for instance Ai is therefore (ℓ/2

i)·2i ·T (m,nϵ) =
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ℓ · T (m,n, ϵ). Thus, we spend total time O(ℓ · T (m,n, ϵ) log(m)) for the entire algorithm, which gives an
amortized update time of O(T (m,n, ϵ) log(m)).

11.2 Building Decremental Disjoint Multi-graph Spanners

Recall that the key building block in Algorithm 10 and Algorithm 9 is the construction of disjoint spanners
in a multi-graph. The work of [ADK+16] already studied constructing these in ordinary (simple) graphs.
In this section, we will show how we can extend their result to work for multi-graphs. Roughly speaking,
the difficulty comes from the fact that whenever we recover a multi-edge, we must also recover the
corresponding label (i.e., parent hyperedge) corresponding to it.

We start with the spanners of [ADK+16]:

Theorem 11.3. [ADK+16] For every k ≥ 2 there is a decremental algorithm for maintaining a log(n)
spanner H of expected size O(n log3(n)) for an undirected graph G on n vertices with non-negative edge
weights that has an expected total update time of O(m log3(n)). Additionally, H has the following property:
Every time an edge is added to H, it stays in H until it is deleted from G.

Recall that we refer to this additional property as the “lazy” property. Next, recall our notion of
disjoint spanners:

Definition 11.1. Let G = (V,E) be a multi-graph. We say that a set of spanners T1, . . . Tℓ is an ℓ-bundle
of log(n)-spanners for G if Ti is a log(n)-spanner of G− T1 − T2 − · · · − Ti−1.

Notationally, for i ∈ [ℓ], we will let Gi denote the (simple) graph for which Ti is a spanner. That is,
Gi is the result of taking the multi-graph G−T1− · · · −Ti−1, and then putting only a single copy of any
present multi-edge. Note that the same edge (u, v) may be used in different spanners if there are multiple
copies of the edge present. Now, as a warm-up, we show that there is a decremental data structure for
maintaining ℓ-bundles of spanners in multi-graphs.

Claim 11.4. There is a decremental algorithm for maintaining an ℓ-bundle of log(n)-spanners of an
undirected, unweighted multi-graph G with amortized update time O(ℓ log(ℓ) log3(n)). Moreover, the
algorithm satisfies the “lazy” property, in the following sense: Every time an edge e is inserted, the only
potential change is the insertion of e to the bundle of spanners. Whenever an edge e is deleted, the only
potential changes are the removal of e from the bundle of spanners, and the addition of a single new edge
to the bundle of spanners.

Proof. In addition to maintaining the ℓ disjoint spanners (using Theorem 11.3), we maintain a simple
table data structure. This table data structure maps each possible edge e = (u, v) to a tuple with three
elements. The first element in the tuple is the number of copies of the multi-edge, denoted we, the second
is the number of spanners which contain the multi-edge te, and the final element is a self-balancing binary
search tree (e.g., AVL tree) containing the indices ⊆ [ℓ] of all the spanners which contain this multi-edge,
as well as a pointer to the final index fe ∈ [ℓ] in the AVL tree. Note that since different multi-edges
connecting the same pair of vertices are interchangeable for the purpose of building spanners, we only
keep a counter for the number of spanners using e rather than track which copies they are using.

Now, let us consider what happens when an edge e is inserted. First, if we > te, then the multi-edge is
already present in every copy of the graph (i.e., every Gi), and all we do is increment we. So, we consider
the case when we = te, that is, every copy of the multi-edge is already being used in spanners. We first
increment we by 1. Then, we access fe. Starting i = fe + 1, we insert the edge e into Gi. If Ti updates
to include the edge (u, v), then increment te, and set fe = i. Otherwise, we continue on, incrementing
i. Eventually, either every graph Gi has e inserted, or some spanner Ti adds the edge, in which case we
increment ti and set fe = i, and add i to the AVL tree and stop the process. Thus, the total update time
for an insertion is bounded by the table updates, which are constant time, insertion of i into an AVL
tree that takes O(log ℓ) time, and the ≤ ℓ insertions into the graphs Gi for which we are maintaining the
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spanners (amortized time O(ℓ log2(n))). Note that we trivially satisfy the laziness condition, i.e., either
one tree adds the edge e, or no tree adds the edge e.

Next, we consider deletions. Indeed, let some multi-edge e = (u, v) be deleted. First, we access the
table. If we ≥ te + 1, then this means that not every copy of the edge is being used. So, we simply
decrement we by 1. If we = te + 1, then we must also go to fe, and starting with i = fe + 1, remove the
edge e from Gi, Gi+1, . . . . However, since e /∈ Ti, Ti+1, . . . , this leads to no cascading changes, as we are
removing an edge not present in the spanners.

So, let us consider the remaining case, when we = te, which means that every copy of the multi-
edge is being used in the spanners. As we mentioned at the beginning of the proof, all copies of e are
interchangeable, so we can always assume without loss of generality that the feth spanner is using the
copy of the multi-edge that is being deleted. When we remove the edge e, we first decrement we. Then,
we store the index fe, and also delete fe from the AVL tree. We then access the new index of the final
spanner that contains the edge e, which we denote by f ′

e (and update this in the table to be the new
final spanner index). For all the indices i ∈ [f ′

e + 1, fe − 1], we remove the edge e from Gi. Note that
this causes no cascading changes, as e was not used in any of these spanners. Then, we remove the edge
e from Gfe . Because e was also used in Tfe , this does cause a change, as Tfe now potentially adds a new
edge. Indeed, if Tfe does not add a new edge, then nothing changes, so the only interesting case is when
Tfe does add a new edge, let us call this e′. We insert fe into the AVL tree of spanners containing e′.
But, because we inserted a copy of e′ into Tfe , we must also ensure that there are not too many copies
of e′ present in the spanners. So, we find we′ and compare this with te′ . If we′ = te′ (i.e., every copy of
e′ was being used), then we simply go to fe′ , and remove e′ from Tfe′ , repeating the above procedure.
Note that the number of deletions is bounded by ℓ, as each time a new edge is inserted (i.e., a spanner
deletes e and adds e′), the indices we consider go from fe → fe′ → fe′′ . So, the indices of the spanners
we update are monotonically increasing. Thus we have total amortized update time O(ℓ log(ℓ) log2(n))
for the deletion.

However, this still is not enough for our purposes. Recall that in Algorithm 10, our target is not
only to store spanners, but to have spanners report the corresponding hyperedges for each edge. So, to
capture this, we introduce the notion of a labelling for each multi-edge.

Definition 11.2. Let G = (V,E) be a multi-graph, where for each multi-edge there is a corresponding
label ∈ U where U admits a total ordering. We say that a set of spanners T = T1, . . . Tℓ is a label-
respecting ℓ-bundle of spanners for G if Ti is a spanner of G− T1 − T2 − · · · − Ti−1, and for any update
to T , T reports the change in edge e = (u, v) as well as the corresponding label for the edge (u, v) that
was changed.

We now show how to implement such a label-respecting ℓ-bundle of spanners in the decremental
model.

Claim 11.5. There is a decremental algorithm for maintaining a label-respecting ℓ-bundle of spanners of
an undirected, unweighted multi-graph G with label set U , with ≤ m edges total. The amortized update
time is O(ℓ log(ℓ) log2(n) + log(m) log(U)). Moreover, the algorithm satisfies the “lazy” property, in the
following sense. Whenever an edge e with corresponding label x is deleted, the only potential changes are
the removal of e with label x from the bundle of spanners, and the addition of a single new edge (with
label) to the bundle of spanners. Further, the data structure can be initialized on an instance with m
edges in time O(mℓ log(ℓ) log2(n) +m log(m) log(|U|)).

Proof. In addition to maintaining the spanners (using Theorem 11.3), we maintain a simple table data
structure. This table data structure maps each possible edge e = (u, v) to a tuple with four elements.
The first element in the tuple is the number of copies of the multi-edge we, the second is the number of
spanners which contain the multi-edge te, the third element is an AVL tree containing the indices ⊆ [ℓ] of
all the spanners which contain this multi-edge, as well as a pointer to the final index fe ∈ [ℓ] in the AVL
tree, and the final element is an AVL tree of all valid labels for edge (u, v). After the initialization of
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the data structure, and throughout the entire process of processing the (decremental) updates, we always
associate the labels for edge e = (u, v) in the te spanners using e with the first te labels (i.e., the first te
labels in the sorted order).

Now we show how to handle deletions. Let some multi-edge e = (u, v) with corresponding label x be
deleted. First, we access the table. If we ≥ te + 1, then this means that not every copy of the edge is
being used. So, we simply decrement we by 1. If we = te + 1, then we must also go to fe, and starting
with i = fe + 1, remove the edge e from Gi, Gi+1, . . . . We also search in the AVL tree of valid labels
for (u, v) to find the label x, and remove x. If x is among the first te labels, we also access the new teth
label, x′. The data structure reports a change that edge (u, v) has changed from label x to label x′.

Now, let us consider the remaining case, when we = te, which means that every copy of the multi-edge
is being used. When we remove the edge e, we first decrement we. Then, we store the index fe, and also
delete fe from the AVL tree. We then access the new index of the final spanner to contain the edge e,
which we denote by f ′

e (and update this in the table to be the new final spanner index). We also remove
the label x from the AVL tree. The data structure reports that edge e with label x has been removed
from the spanner.

For all the indices i ∈ [f ′
e+1, fe−1], we remove the edge e from Gi. Note that this causes no cascading

changes, as e was not used in any of these spanners. Then, we remove the edge e from Gfe . Because e
was also used in Tfe , this does cause a change, as Tfe now potentially adds a new edge. Indeed, if Tfe

does not add a new edge, then nothing changes, so the only interesting case is when Tfe does add a new
edge, let us call this e′, so we focus on this case: First, we insert fe into the AVL tree of the indices of
which spanners contain e′. But, because we inserted a copy of e′ into Tfe , we must also ensure that there
are not too many copies of e′ present in the spanners. So, we find we′ and compare this with te′ :

1. If we′ = te′ (i.e., every copy of e′ was being used), then we simply go to fe′ , and remove e′ from
Tfe′ , repeating the above procedure. Note that this cascading effect can only happen ℓ times at
most, as each time we go from fe → fe′ , the value increases by at least one.

2. If we′ > te′ (i.e. there were available copies of e′), the data structure increments te′ by 1, and sets
fe′ = max(fe′ , fe). If we′ now equals te′ , then we additionally remove e′ from the final ℓ−fe′ graphs
(but this causes no cascading changes, as none of these graphs were using e′). The data structure
outputs that edge e′ has been added to the bundle of spanners with label x′, where x′ is the te′st
label among the sorted labels for edge e′.

The total run-time thus sums up to O(ℓ log(ℓ) log2(n)). For maintaining the labels, observe that there
are ≤ m labels present in any edge slot. Assuming that the label universe is U and supports comparison
operations in time O(log(|U|)), we can insert / delete the labels in time O(log(m) log(|U|)). Since at most
O(1) labels are updated, this yields our final update-time.

Finally, to see the initialization time, observe that given a list of multi-edges / labels, we can construct
the data structure of Claim 11.4 in total time O(mℓ log(ℓ) log2(n)). From this point, all that remains is
to create the AVL tree of labels. This can be done by (for instance) inserting the labels of each (u, v) into
the AVL tree one by one. This requires time O(m log(m) log(|U|)) to construct, yielding our run-time.

Finally, we require one more tool before being able to present our decremental sparsifier. Recall that
we repeatedly vertex-sample the hypergraph H to get a smaller vertex set V ′, and so for any hyperedge
e, we must insert the multi-edges in KV ′∩e into the graph. However, because there are r polylog(m,n)
different vertex sampled graphs, if we just naively compute this intersection separately for each graph, we
will be doomed to have a running time of Ω(r2) (since each intersection requires time Ω(r) to calculate).
Thus, we now show that just using a table suffices for computing all of these intersections in time
Õ(r polylog(m,n)).

Claim 11.6. Let V (1), . . . V r polylog(m,n) denote the result of independently vertex sampling V at rate
1
r . There exists a data structure such that given any hyperedge e ⊆ V of arity r, we can compute

e ∩ V (i),∀i ∈ [r polylog(m,n)] in time O(r polylog(m,n)).
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Proof. We store a table that for every vertex v ∈ [n], maps it to a list of the corresponding indices
i ∈ [r polylog(m,n)] for which v ∈ V (i).

Now, for any hyperedge e, we first initialize r polylog(m,n) empty lists (one for each V (i)), and denote
these by L1, . . . Lr polylog(m,n). Then, we iterate through e, and for each v ∈ e, we access the table to find

which V (i) contain v. For any such i, we then add v to corresponding list Li. Clearly then, at the end of
this procedure Li contains exactly e ∩ V (i).

Next, we bound the run-time. Initializing the lists takes time O(r polylog(m,n)). For each v ∈ e, we
access the table to see which V (i) contain v. The time for this is bounded by the number of V (i) that
contain v. For this, observe that we are vertex sampling at rate 1

r for r polylog(m,n) rounds. Hence,

the number of such V (i) is bounded by O(polylog(m,n)) in expectation. Repeating this for all v ∈ e
(of which there are ≤ 2r), yields an expected running time of O(r polylog(m,n)) (or also a worst-case
run-time with probability 1− 2−Ω(log(n) log(m))).

11.3 Decremental Recovery Algorithm

Finally, we are now able to present a decremental data structure for Algorithm 9.

Claim 11.7. There is a decremental data structure which, given parameters r, ϵ, maintains a set of
hyperedges F in accordance with Algorithm 9. The data structure can be implemented with amortized
update time O(r polylog(m,n, 1/ϵ) · (1/ϵ)2).

Proof. First, we describe the data structure. We store the data structure of Claim 11.6 so that we
can efficiently compute the intersections of each hyperedge with the vertex-sampled subsets. We then
additionally store the data structure of Claim 11.5, with parameter ℓ = polylog(m,n)/ϵ2 on each vertex-
sampled multi-graph.

However, it remains to show how we can implement Line 11 of Algorithm 9. In particular, we need
to show how, given only the (labelled) spanners, we can also exactly recover the corresponding set of
hyperedges.

For this, we first explain how to implement the step using a naive method. Indeed, if we simply let
the label of each multi-edge denote the corresponding hyperedge, then in addition to the spanners, we
can maintain a sorted set of all the labels for which there is a multi-edge in the bundle of spanners using
that label, along with a counter for how many occurrences there are for that label. After any deletion
of an edge / label pair, the data structure of Claim 11.5 either does nothing (i.e., no changes to the
data structure) or reports the inclusion of a new edge / changing of a label, and we simply increment
/ decrement the corresponding counters in our set of labels. The only overhead here beyond that of
Claim 11.5 is in updating the counters of labels (which takes an additional time O(r log(n)) to binary
search, since |U| ≈ nr). Note that whenever a new label is introduced for the first time, we also update all
down-stream spanners (i.e., to remove the edges corresponding to this newly recovered hyperedge from
the later multi-graphs Φ(H(i+1)), . . . ).

Now, we can bound the run-time. The key claim is the following, which is a consequence of the
laziness of our data structure.

Claim 11.8. Let F (i) be as defined in Algorithm 10 when the disjoint spanners are implemented with
the above data structure. If no hyperedges are inserted into H, then this also holds for H −

⋃
j<i F

(j)

for every i ∈ [16r log(m) log(n)2].

Proof. We can prove this by induction on i. The claim is trivially true for i = 1. Let us now assume it
holds by induction up to i−1, and we will show it holds true for i. Indeed, suppose that if no hyperedges
are inserted into H, then no hyperedges are inserted in to H −

⋃
j<i−1 F

(j). Thus, the only way for a

hyperedge to be inserted into H −F (i), would be to remove a hyperedge from the i− 1st set of recovered
hyperedges (F (i) − F (i−1)). However, this will never happen, as the only time a hyperedge is removed
from a recovered set of hyperedges is when the hyperedge itself is deleted, by the laziness of our data
structure.
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Note that there might be cascading deletion happening in the vertex-sampled multi-graphs - if in
a multi-graph we recover a new hyperedge due to deletion of another previously recovered hyperedge,
then we shall remove this hyperedge from all subsequent multi-graphs, potentially causing polylog(n,m)
multi-edge deletions in those multi-graphs. And the latter might trigger further edge deletions for the
same reason. However, as we argue below, this does not blow up our amortized runtime since each
hyperedge (and their corresponding multi-edges) can only be deleted once from each multi-graph.

Now, the remainder of our proof follows from observing that the hyperedges (and their correspond-
ing multi-edges) can only be deleted once from each vertex-sampled multi-graph. Thus, we finish by
bounding the total run-time of deleting all the hyperedges once. Indeed, consider a single hyperedge
e. To delete the hyperedge, we first compute all of the corresponding multi-edges for each sub-sampled
hypergraph. This can be done via Claim 11.6 in time O(r polylog(m,n)) total. Next, each hyper-
edge becomes ≤ r polylog(m,n) multi-edges. For each multi-edge, deleting it from each label-respecting
spanner and reporting the changes can be done in time O(polylog(m,n) · (1/ϵ)2 · log(1/ϵ) log2(n) +
log(m) log(U)) = O(polylog(m,n) · (1/ϵ)2 log(1/ϵ) + log(m) log(U)) via Claim 11.5. Thus, because there
are ≤ m · r polylog(m,n) total multi-edges, the total-time spent by the data structure in removing every
hyperedge is bounded by

O(m · r log2(m) log3(n)) +O(m · r polylog(m,n) · (1/ϵ)2 · log(1/ϵ) log2(n) +m · r log(m) log(U))

= O(mr polylog(m,n) · (1/ϵ)2 log(1/ϵ) +mr log(m) log(U)).

Thus, the amortized update time, per hyperedge deletion, isO(r polylog(m,n)·(1/ϵ)2 log(1/ϵ)+r log(m) log(|U|)).
Note however, that this is not quite the bound that we would like. Indeed, because we are simply using
U to be the entire set of hyperedges of arity [r, 2r], log(|U|) = Ω(r log(n)). Thus, the amortized update
time would be Ω(r2), when ideally we would only have a linear dependence on r.

To fix this, we introduce our final trick. Instead of associating each multi-edge of a hyperedge e with
itself as the label, we instead associate e with a random C · log(m) bit label, which we call xe. We
include a table which maps xe to e (and like-wise one which maps e to xe), and additionally, for the data
structure Claim 11.6, instead of accessing this table with the hyperedge e, we instead access it with the
label xe. The main insight is that with overwhelmingly high probability, we have no collisions within
the new (smaller) labels, because the hypergraph itself never has more than m hyperedges. Additionally,
for each internal operation, we can use log(|U|) = O(log(m)). Thus, the new amortized update (i.e.,
deletion) time is O(r polylog(m,n) · (1/ϵ)2 log(1/ϵ)).

We also show that the data structure of Claim 11.7 can be initialized efficiently.

Claim 11.9. The data structure of Claim 11.7 can be initialized on a hypergraph H on n vertices, m
hyperedges, arity [r, 2r], and error parameter ϵ in time O(mr polylog(m,n)(1/ϵ)2 log(1/ϵ)).

Proof. Let E denote the edge set with m hyperedges. First, we choose the vertex-sample subsets which
requires time Õ(n log(m)) (for each vertex v, choose which rounds of vertex sampling v will be present
for). Then, we initialize the data structure of Claim 11.6, which takes time O(r polylog(m,n)). Then,
we choose the random labels we assign to each hyperedge to decrease the time for binary searching. This
takes time O(r + log(m)) per hyperedge to store the label, hyperedge pair in the table. We also create
a binary search tree of the hyperedges, such that for each hyperedge one can find the corresponding
label assigned. This takes time O(m log(m) · r log(n)) to compute (m edges to sort, time r log(n) per
comparison).

Next, we also store a list of all the active hyperedge labels (i.e., labels for which the corresponding
hyperedge has not already been recovered in some spanner). Initially, this is just the set of all hyperedge
labels. Now, for the first vertex sampled hypergraph, we insert all of the corresponding multi-edges (with
their corresponding labels) into the data structure of Claim 11.5, by using Claim 11.6 to find the multi-
edges to insert. This takes timeO(mℓ log(ℓ) log2(n)+m log(m) log(|U|)) = O(mpolylog(m,n)(1/ϵ)2 log(1/ϵ)),
using the determined values of ℓ, log(|U|). Note that this data structure will report some labels as being
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used, because some hyperedges will have multi-edges stored in the spanner. Hence, for each of these
labels which is used, we remove them from our list of active hyperedge labels. If we let κ1 denote the
number of hyperedges recovered in this round, this takes time κ1 log

2(m) to remove (κ1 times, binary
search in the list which requires log(m) comparisons, each in time log(m)). Now, we simply repeat this
procedure for the second vertex-sampled graph, and so on up until the r polylog(m,n)th round. It must
be the case that κ1+κ2+ · · ·+κr polylog(m,n) ≤ m, because no hyperedge can be stored in different rounds
of vertex sampling. Thus, the total insertion time across all the rounds of vertex sampling is bounded
by O(mr polylog(m,n)(1/ϵ)2 log(1/ϵ)) Finally, to report the hyperedges which have been recovered, we
simply take the labels of hyperedges which were recovered, and use our table to recover the corresponding
hypergraph labels. This takes time ≤ m · r log(n) (m hyperedges to search, recovering r log(n) bits each).
Thus, the total time to build this data structure is

O(mr polylog(n,m)) +O(mr polylog(m,n)(1/ϵ)2 log(1/ϵ)) = O(mr polylog(m,n)(1/ϵ)2 log(1/ϵ)).

Finally, we can use the data structure from the preceding section to implement our overall sparsifier
data structure as in Algorithm 10. In particular, we simply store the data structure of Claim 11.7 for
each of log(m) levels of sparsification. We formalize the claim below:

Claim 11.10. There is a decremental data structure maintaining a (1± ϵ)-spectral sparsifier of a hyper-
graph H of arity [r, 2r], ≤ m hypredges (with probability 1 − 1/poly(m)) with amortized update time
O(r polylog(m,n) · (1/ϵ)2 log(1/ϵ)). Further, the intialization time of the data structure is

O(mr polylog(m,n)(1/ϵ)2 log(1/ϵ)).

Proof. We avoid repeating the details from the previous proof. However, the key insight remains the
same. Because the data structures are lazy, hyperedges can only be removed a single time. In order
to implement the log(m) levels of sampling, we associate each new hyperedge with log(m) random bits,
where the ith bit dictates whether the hyperedge survives the ith level of sampling. Note that, as before,
this property does not alter the laziness of the data structure. Thus, it suffices to bound the update time
for the operations involving only a single hyperedge, ignoring any cascading effects. The update time for
any single hyperedge deletion is simply log(m) times that of Claim 11.7 (for the at most log(m) rounds)
thus yielding the above claim. Note that the correctness of the data structure follows from Claim 10.4
(and probability of correctness), as we are exactly implementing the same algorithm (only with a different
spanner implementation).

To see the initialization time, we simply use the initialization time bound of Claim 11.9. Note that
each time we store this data structure, it reports some hyperedges as being recovered. Thus, we maintain
an “active list” of hyperedges as in the proof of Claim 11.9, when initializing the data structure at different
levels. The initialization is thus at most log(m) times that of Claim 11.9.

We are thus ready to conclude:

Theorem 11.11. For a hypergraph on n vertices and ≤ m hyperedges, there is a fully dynamic algorithm
for maintaining a (1 ± ϵ)-spectral sparsifier of size Õ(n polylog(m)/ϵ2) hyperedges with an amortized,

expected update time of Õ(r polylog(m)/ϵ2).

Proof. This follows from Lemma 11.1, Claim 11.10, and Claim 11.9. The bound on the number of
hyperedges follows from the same bound as in the online setting (since the number of spanners that are
stored is small) Claim 10.5.
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Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Re-
search, pages 3020–3029. PMLR, 2018.

[LVS+21] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. Strongly local hypergraph
diffusions for clustering and semi-supervised learning. In Jure Leskovec, Marko Grobelnik,
Marc Najork, Jie Tang, and Leila Zia, editors, WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 2092–2103. ACM / IW3C2,
2021.

[Mey73] Carl D Meyer, Jr. Generalized inversion of modified matrices. Siam journal on applied
mathematics, 24(3):315–323, 1973.

58



[OST23] Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa. Nearly tight spectral sparsifica-
tion of directed hypergraphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors,
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023,
July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 94:1–94:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Qua24] Kent Quanrud. Quotient sparsification for submodular functions, pages 5209–5248. SIAM,
2024.

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton Mathematics Series. Princeton Univer-
sity Press, Princeton, New Jersey, 1970.

[SM50] Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix. The Annals of Mathematical Statistics,
21(1):124–127, 1950.

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

[STY24] Tasuku Soma, Kam Chuen Tung, and Yuichi Yoshida. Online algorithms for spectral
hypergraph sparsification. In Jens Vygen and Jaroslaw Byrka, editors, Integer Programming
and Combinatorial Optimization - 25th International Conference, IPCO 2024, Wroc law,
Poland, July 3-5, 2024, Proceedings, volume 14679 of Lecture Notes in Computer Science,
pages 405–417. Springer, 2024.

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Timothy M.
Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2570–
2581. SIAM, 2019.

[VBK20] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut
objectives in hypergraphs. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash,
editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 1708–1718. ACM, 2020.

[VBK21] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Approximate decomposable submod-
ular function minimization for cardinality-based components. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
3744–3756, 2021.

[ZHTC20] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T.-H. Hubert Chan. Re-revisiting
learning on hypergraphs: Confidence interval, subgradient method, and extension to mul-
ticlass. IEEE Trans. Knowl. Data Eng., 32(3):506–518, 2020.

[ZLS22] Yu Zhu, Boning Li, and Santiago Segarra. Hypergraph 1-spectral clustering with general
submodular weights. In 56th Asilomar Conference on Signals, Systems, and Computers,
ACSSC 2022, Pacific Grove, CA, USA, October 31 - Nov. 2, 2022, pages 935–939. IEEE,
2022.

59



A A Naive Linear Sketching Algorithm

As before, we assume the input hypergraph H has hyperedges of arity within [r, 2r] only, which is
without loss of generality up to a log r factor in the sparsity of the sparisifer. As we mentioned in our
technical overview, a balanced weight assignment of the multi-graph is hard to compute in the linear
sketching setting as that requires repeat and complete access to the underlying hypergraph. However,
one can naively sparsify the hypergraph using the uniform weight assignment, where for each multi-
edge associated with a hyperedge e, we assign a weight 1/

(|e|
2

)
. We then resort to the sampling rate

pe = ϵ−2 polylog(n) · max(u,v)∈e R
G(W )(u, v) by [KKTY21a, Lee23, JLS23] with W being the uniform

weight assignment. By the analysis in [BST19] (see Section 5.2), we know that

pe ≤ ϵ−2 polylog(n)
1

r

∑
(u,v)∈e

RG(W )(u, v). (39)

Note that in the uniform weight assignment W , all edge weights are within a constant factor of 1/r2,
as the input hypergraph H has hyperedges of arity within [r, 2r] only. Therefore we can in fact work with
the unweighted multi-graph Φ(H) of H, and do effective resistance sampling with an oversampling rate
of r polylog(n)ϵ−2, and recover a hyperedge e if it has an associated multi-edge that got sampled. This is
guaranteed to be an oversampling compared to pe by (39). Moreover, by Theorem 7.1, this can be done

by a linear sketch of Õ(nr2 polylog(m)/ϵ2) bits using the algorithm in [KLM+14].

B Space Bounds for [KLM+14]

B.1 ℓ2 Heavy-Hitters

In this section, we explain in more detail how to derive the space bounds of [KLM+14] when dealing with
multi-graphs. We will let u denote the universe size (i.e., the total number of possible multi-edge slots),
and let m denote the support size (i.e., the actual maximum number of present multi-edges).

Recall that [KLM+14] require the following notion of an ℓ2 heavy-hitter:

Definition B.1. For a parameter η ∈ (0, 1) and a vector x ∈ Ru, we say that a vector w is an ℓ2
heavy-hitter for x with parameter η if

∥x− w∥∞ ≤ η∥x∥2.

In [KLM+14], they show the existence of a linear sketch implementing an η ℓ2 heavy-hitter that
requires O(log2(u)/η2) bits to store. Here, we show that this bound can more tightly be written as
O(log(u) log(m)/η2).

Claim B.1. For vectors x ∈ Ru with support size bounded by m, and all entries bounded in magnitude
by C, there is a linear sketch (using public randomness) implementing an η ℓ2 heavy-hitter that requires
O(log(u) log(mC)/η2 + log(u) log(1/δ)) bits to represent, returns a vector of sparsity O(1/η2) and has
success probability 1− 1/poly(u)− δ.

Proof. We simply follow the standard CountSketch protocol. In each copy of CountSketch, we initialize
a uniformly random hash function h which maps [u] → [100/η2], and for each i ∈ [u], we also associate
a random sign σi ∈ ±1. For each of the j ∈ [100/η2] buckets, we store cj =

∑
i:h(i)=j σixi. From

prior work ([JW18] for instance, or https://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/
15859-fall17/weekEight.pdf), it is known that if we simply store O(log(u)) rounds of this CountSketch

(initialized independently), and let c
(p)
j , h(p) denote the sketch values, hash function respectively in the

pth round, then we can acquire a good estimator for each value xi. Indeed, we get an unbiased estimator

for xi by looking at σ
(j)
i · c

(j)

h(j)(i)
and taking the median over these values across j = 1, . . . , O(log(u)). In
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these prior works, it is established that this yields estimates to each xi with additive error at most η∥x∥2

10
with probability 1 − 1/poly(u). Note then, by additionally storing a linear sketch for estimating the ℓ2
norm of x (which can be done to accuracy η/1000 with probability 1− δ in space O(log(u) log(1/δ)/η2)

via [AMS96]), we can then return every element xi which attains a value of at least 8η ˆℓ2(x)
10 , where

ℓ̂2(x) is our estimate of the ℓ2 norm of x. Because we overestimate ∥x∥2 by at most (η/1000), and we
have additive error at most η∥x∥2/10, any element xi of size at least η∥x∥2 will report a size which is

≥ 9η∥x∥2

10 ≥ 8η(1+η/1000)∥x∥2

10 , and thus be recovered.
Further, note that the sparsity of the returned vector will be O(1/η), as at most 10

7η elements can

contribute ≥ 7η∥x∥2/10 and thus be recovered.
Finally, assuming that the randomness is provided to us via a re-readable random tape, we can see

that the total space required by this linear sketch is O( 1
η2 · log(u) · log(mC) + log(u) log(1/δ)), where the

final log(mC) term is for storing the running sum cj in each bucket, and δ is the failure probability of
the [AMS96] sketch.

Claim B.2. For a multi-graph with u possible edge slots, and at most m multi-edges inserted, one can
implement the sketch of [KLM+14] in space Õ(n log(u) polylog(m)/ϵ2) with failure probability at most
1− 1/poly(n), where n is the number of vertices in the multi-graph.

Proof. Recall that [KLM+14] simply stores heavy-hitter sketches of the down-sampled incidence matrices.
Letting B denote the incidence matrix, there are at most O(log(m)) levels of sampling we must do until
the matrix is empty. For each level, we store a heavy-hitter sketch with parameter η = ϵ

c1·
√

log(m)
.

We initialize the failure probability δ = 1/poly(n), where n is the number of vertices in the multi-
graph. It follows then that the total space required is bounded by O((n log(m)) · (log(u) polylog(m)/ϵ2 +

log(u) log(n))) = Õ(n log(u) polylog(m)/ϵ2) (here we are also using that the entries of the vector we
sketch with ℓ2 heavy hitters is bounded by poly(m) as well). Correctness follows exactly from the work
of [KLM+14], as they use Claim B.1 as a black-box in their sketch.
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