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Abstract

Correlation clustering is a widely-used approach for clustering large data sets based only on
pairwise similarity information. In recent years, there has been a steady stream of better and
better classical algorithms for approximating this problem. Meanwhile, another line of research
has focused on porting the classical advances to various sublinear algorithm models, including
semi-streaming, Massively Parallel Computation (MPC), and distributed computing. Yet, these
latter works typically rely on ad-hoc approaches that do not necessarily keep up with advances
in approximation ratios achieved by classical algorithms. Hence, the motivating question for
our work is this: can the gains made by classical algorithms for correlation clustering be ported
over to sublinear algorithms in a black-box manner? We answer this question in the affirmative
by introducing the paradigm of graph de-sparsification.

A versatile approach for designing sublinear algorithms across various models is the graph
(linear) sketching. It is known that one can find a cut sparsifier of a given graph—which approx-
imately preserves cut structures—via graph sketching, and that this is sufficient information-
theoretically for recovering a near-optimal correlation clustering solution. However, no efficient
algorithms are known for this task as the resulting cut sparsifier is necessarily a weighted graph,
and correlation clustering is known to be a distinctly harder problem on weighted graphs.

Our main result is a randomized linear sketch of Õ(n) size for n-vertex graphs, from which one
can recover with high probability an (α+o(1))-approximate correlation clustering in polynomial
time, where α is the best approximation ratio of any polynomial time classical algorithm for
(unweighted) correlation clustering. This is proved via our new de-sparsification result: we

recover in polynomial-time from some Õ(n) size linear sketch of a graph G, an unweighted, simple
graph that approximately preserves the cut structure of G. In fact we show that under some mild
conditions, any spectral sparsifier of a graph G can be de-sparsified into an unweighted simple
graph with nearly the same spectrum. We believe the de-sparsification paradigm is interesting
in its own right as a way of reducing graph complexity when weighted version of a problem is
harder than its unweighted version.

Finally, we use our techniques to get efficient algorithms for correlation clustering that match
the performance of best classical algorithms, in a variety of different models, including dynamic
streaming, MPC, and distributed communication models.
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1 Introduction

Correlation clustering is a widely studied problem in theoretical computer science with applications
to various areas. Given an undirected graph G = (V,E), the goal is to cluster the vertices in a way
that minimizes the cost, defined as the number of edges between the clusters and the number of non-
edges1 inside the clusters. We present a new approach for solving correlation clustering via graph
sketching with approximation guarantees that can match the performance of any polynomial time
algorithm for this problem. This immediately leads to improved algorithms for this problem across
different sublinear algorithms models for processing massive graphs. The core to our approach is a
new problem of its own independent interest: how do we de-sparsify an already sparsified graph in
an efficient manner? We now elaborate more on our results and their context.

1.1 Correlation Clustering and Graph Sketches

Motivated by applications to processing massive graphs, there has been a rapidly growing interest
in algorithms for correlation clustering across various sublinear algorithms models such as semi-
streaming, Massively Parallel Computation (MPC), distributed computing, and alike. The key
challenge in these models is that the resources available to the algorithm, say, its space or com-
munication, is much smaller than the input size. Thus, the algorithms often need to ‘compress’ or
‘sparsify’ the input graphs before they are able to solve the problem in these models.

A highly successful paradigm here, especially when it comes to flexibility and portability across
different models, is graph sketching pioneered by [AGM12a]: one compresses the graph into a
sketch through a small number of linear measurements (say, of its adjacency or Laplacian matrix)
and then solve the original problem given only this sketch (see Definition 2.7). Graph sketching
has been quite successful for various graph problems including edge connectivity [AGM12a], ver-
tex connectivity [AS23], cut sparsification [AGM12b], spectral sparsification [KLM+14a], densest
subgraph [MTVV15], maximum matchings [AKLY16], and subgraph counting [AGM12b], among
many others. This leads to the following natural question:

Can we approximate correlation clustering via graph sketching?

In some sense, this question was already settled in [BCMT23] (building on [ACG+15]): it turns
out the cost of any clustering can be specified as a sum of cut sizes of the clusters plus some
normalization; as such, to preserve (near-)optimal correlation clusterings, it suffices to preserve cut
values of the graph in the sketch. But this latter task is precisely the goal of cut sparsifiers [BK96],
which are weighted subgraphs of the input with only Õ(n/ε2) edges that preserve the value of every
cut to within a (1± ε) factor, and already admit efficient graph sketches [AGM12b]. Thus, we can
also find (1 + ε)-approximate correlation clusterings using graph sketching.

There is a however a serious caveat with this approach: while information-theoretically we can
recover a near-optimal solution from the sparsifier, we do not know how to do this in polynomial-
time. In particular, recovering any solution from the sparsifier essentially amounts to solving a
weighted version of correlation clustering (given that sparsification necessarily generates a weighted
graph in general), which currently only admits an O(log n)-approximation [DEFI06]2. Thus, when
it comes to polynomial time algorithms, the above approach appears to hit a dead end.

As a result of the above shortcoming, recent work has come up with different graph sketches,
or more often even entirely different techniques, for solving correlation clustering in this context;

1By a non-edge, we mean a pair of vertices with no edges between them in the graph.
2In fact, it is shown by [DEFI06] that weighted correlation clustering is equivalent to the minimum multicut

problem and is thus difficult to approximate better than a Θ(logn) factor, and does not admit any constant factor
approximation under the Unique Games Conjecture.
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these results mostly collect “enough” information from the graph through the compression so as to
simulate a specific classical algorithm (often, the pivot algorithm of [ACN08] but also recently more
improved combinatorial algorithms in [CLP+24]). These approaches then lead to a host of different
sublinear algorithms for this problem with different guarantees across many of these models; again,
see Section 1.5 for a brief summary. However, this means that these techniques do not necessarily
keep up with the improvements on classical algorithms on this problem—which have seen many
exciting developments just recently; see Section 1.5—and rely on an ad hoc approach each time
for porting these improvements to sublinear algorithms as well. Thus, we can ask a more nuanced
version of our original question:

Can we approximate correlation clustering via graph sketching in polynomial time,
matching the approximation ratio of best polynomial-time classical algorithms?

We show that the answer to this question is indeed yes. Let αbest denote the best approximation
ratio possible for correlation clustering in polynomial time (via classical algorithms), which satisfies

1.042 ⩽
[CCL+24]

αbest ⩽
[CCL+24]

1.437. (1)

due to the APX-hardness established in [CGW03,CCL+24] and the recent approximation algorithm
of [CCL+24].

Result 1. For any n-vertex graph G, there is a randomized linear sketch of Õ(n) size from
which one can recover with high probability an (αbest+o(1))-approximate correlation clustering
of G in polynomial time.

We establish this result by introducing a new direction of research, termed de-sparsification,
and then use it for our particular application to correlation clustering.

1.2 A New Question: Graph Simplification via de-sparsification?

Let us revisit the approaches of [ACG+15, BCMT23] that designed (1 + ε)-approximate graph
sketches for correlation clustering (information-theoretically) via weighted cut sparsifiers. As stated
earlier, the weights in the sparsifier forces us to solve a weighted correlation clustering instance which
is a much harder version of the problem than the unweighted one. But what if these instances can
be made unweighted3 while preserving their correlation clustering structure? This will then allow
us to run any approximation algorithm for unweighted correlation clustering on this instance and
recover essentially the same approximation guarantee on the original graph.

To address this, we ask a general question that is entirely independent of correlation clustering:

Can we efficiently de-sparsify a weighted cut sparsifier H to an unweighted, simple (but
not necessarily sparse) graph G while (nearly) preserving the value of every cut?

Two important remarks are in order: (a) firstly, the cut structure of weighted graphs is more
general than unweighted ones, and thus in general, we cannot hope for approximating an arbitrary
weighted graph with a (simple) unweighted graph; however, in our case, the weighted graph H
is a sparsifier of an unweighted graph and thus certainly can be approximated by an unweighted

3Here, and throughout the paper, we use unweighted to also mean simple (i.e., that there are no multi-edges
permitted).
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graph; (b) secondly, information-theoretically it is impossible to recover the original graph from its
weighted sparsifier due to the many-to-one nature of the sparsification; but here our goal is to find
some graph that approximates the cut structure of H (and by extension the original graph), and
hence, we do not run into this information-theoretic barrier. Note that there has been prior work on
a topic called “densification” [HST12]. This line of work seeks to understand when weighted graphs
admit dense sparsifiers. In our case, the question is not an existential one, but an algorithmic one.
I.e., how do we efficiently recover these denser sparsifiers.

Unfortunately, we do not know a definitive answer to the above question in this formulation. It
seems likely that the answer is no as it is even NP-hard to determine if a given weighted graph H
is a cut sparsifier of a given graph G or not4. This suggests that preserving only the structure of
the cuts may not allow for an efficient recovery/de-sparsification. But this then naturally suggests
an alternative direction: what if we instead use spectral sparsifiers [ST11] that are generally known
to be a robust strengthening of cut sparsifiers?5

Leveraging spectral sparsifiers, we obtain the following general de-sparsification result:

Result 2. For any n-vertex unweighted graph G and any ε ∈ (0, 1), there is a randomized linear
sketch of Õ(n/ε2) size from which one can recover in polynomial-time with high probability
another n-vertex unweighted graph G̃ with the same number of edges as G such that G̃ is a
(1± ε)-spectral sparsifiera of G.

aWe note that using the term ‘sparsifier’ might be an abuse of notation here: graph G̃ has the same exact
number of edges as G and thus is not sparser than G in any way (nor is a subgraph of G). We only use the term
spectral sparsifier, here and throughout the paper, to mean that its spectrum is nearly the same as G.

As we will show later, Result 2 turns out to be sufficient to obtain Result 1 by simply setting
ε = o(1), and then running any α-approximation correlation clustering algorithm on the graph G̃.

Result 2 gives efficient de-sparsification for sparsifiers obtained by a particular linear sketching
scheme. Specifically, it relies on the linear sketches for spectral sparsification given in [KLM+14a]
that faithfully implement effective resistance-based sampling. One may ask the question if in fact
any arbitrary spectral sparsifier can be efficiently de-sparsified, no matter how it was created. We
show that the answer to this question is in the affirmative as well, assuming some mild conditions
on the underlying graph.

Result 3. For any ε ∈ (0, 1) and n-vertex unweighted graph G, there is a randomized polynomial-
time algorithm that given any (1± ε)-spectral sparsifier H of G, recovers with high probability

(a) an n-vertex unweighted graph G̃ with the same number of edges as G such that G̃ is a
(1± 2ε)-cut sparsifier of G, provided the minimum cut in G is Ω(log n/ε2).

(b) an n-vertex unweighted graph G̃ with the same number of edges as G such that G̃ is a
(1±2ε)-spectral sparsifier of G, provided maximum effective resistance in G is O(ε2/ log n).

We believe the de-sparsification question posed in this paper to be of its own independent interest
specifically from the view point of graph simplification: while traditionally one often considers

4We suspect this result is folklore but do not know a reference for it and thus we prove it in Appendix A.2.
5Formally, using LG and LH to denote the Laplacian matrix of G and H, respectively, a cut sparsifier H of G

satisfies x⊤ ·LH ·x = (1±ε) ·x⊤LG ·x for all x ∈ {0, 1}n whereas a spectral sparsifier satisfies the same for all x ∈ Rn.
Note that the evidence earlier no longer holds as checking if H is a spectral sparsifier of G boils down to checking if
all singular values of LH and LG are within (1± ε) factor of each other, which can be easily done in polynomial time.
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simplifying a graph as making it sparser, it is also quite natural to simplify a graph by making it
unweighted even at the cost of increasing its density (given that many problems are easier to solve
on unweighted graphs such as correlation clustering considered here). Such simplification questions
have also recently been considered for other graph problems in entirely different contexts, e.g., for
preserving shortest path structures without using very large weights [BBW24], or for approximating
weighted matching via unweighted matching algorithms [BDL21,BCD+25].

1.3 Implication to Sublinear Algorithms

Finally, we can use our efficient graph sketches for correlation clustering in Result 1 to obtain
new sublinear algorithms for this problem across a variety of different models, that can achieve
approximation ratios nearly matching αbest defined in Eq (1).

Our first algorithm is in the distributed communication model, studied for various clustering
problems in [CSWZ16,ABB+19,ZZL+19] (although we are not aware of prior work on correlation
clustering here). In this model, the input graph G = (V,E) is edge-partitioned across k machines
plus a coordinator that receives no input. The machines and the coordinator can communicate in
a distributed point-to-point manner. The goal is to limit the total communication while allowing
the coordinator to output a correlation clustering of the entire input.

Corollary 1.1. There is a polynomial-time randomized algorithm for correlation clustering in the
distributed communication model with k machines that uses Õ(nk) communication in total, and
with high probability, achieves an (αbest + o(1))-approximation.

The second algorithm is in the Massively Parallel Computation (MPC) model [KSV10,BKS17].
Here, the input graph G = (V,E) is edge-partitioned across multiple machines. Computation
happens in synchronous rounds wherein each machine can send and receive Õ(n)-size messages.
After the last round, one designated machine outputs a solution to the problem.

Corollary 1.2. There is a polynomial-time randomized algorithm for correlation clustering in the
MPC model that uses O(1) rounds and Õ(n)-size messages per-machine, and with high probability,
achieves an (αbest + o(1))-approximation.

Corollary 1.2 improves upon the 1.87-approximation MPC algorithm of [CLP+24] (given Eq (1)),
although we note that the algorithm of [CLP+24] runs in O(1) rounds even when memory per
machine is nδ for any constant δ ∈ (0, 1). But importantly, our algorithm in Corollary 1.2 has the
benefit of automatically improving in future using any other advances on classical algorithms for
correlation clustering.

We can also implement our algorithm in the dynamic streaming model. Here, the input graph
G = (V,E) is presented to the algorithm as a stream of edge insertions and deletions, and the
algorithm can make a single pass (or a few passes) over this stream and should output the answer
to the problem on the graph G at the end.

Corollary 1.3. There is a polynomial-time randomized streaming algorithm for correlation clus-
tering that uses Õ(n) memory when making a single pass over a dynamic stream, and with high
probability, achieves an (αbest + o(1))-approximation.

Again, our result improves upon the prior 3-approximation algorithm of [CKL+24] in dynamic
streams and 1.84-approximation algorithm of [CLP+24] in insertion-only streams.

Finally, our approach also have an interesting consequence to insertion-only streams using non-
sketching techniques (in particular using Result 3 and not Result 2 used in our other algorithms):
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it provides the first polynomial time algorithm that processes the stream deterministically and
uses randomness only at the end of the stream. This guarantee in particular satisfies the notion
of adversarially-robust streaming algorithms [BJWY22] in the strongest possible sense as it works
even against an adversary that sees its internal state; see also [CGS22].

Corollary 1.4. There is a polynomial-time streaming algorithm for correlation clustering that uses
Õ(n) memory to deterministically build a data structure D using a single pass over an insertion-
only stream, and only at the end, uses randomization to, with high probability, recover from D an
(αbest + o(1))-approximation for correlation clustering.

Before moving on, an important remark about our sublinear algorithms is in order.

Remark 1.5. Our approach inherently bounds the size of the sketch it computes and not the
post-processing algorithms (given we have no control over the space-complexity of the best classical
algorithm we run at the end beside it being polynomial). For our distributed algorithms, this is
inconsequential. In the MPC model, this means the in- and out-communication by each machine
will be bounded by Õ(n) (but not the internal memory) which is inline with the original definitions
in [BKS17] (see also [RVW18]) that allow for any complex operations to be done on each machine.
For the streaming algorithms, this means that the memory of the algorithm during the stream
is bounded by Õ(n) but after the stream finishes, to recover the solution, the space used by the
algorithm may become larger. We note that to our knowledge, all existing streaming lower bounds
only bound the space of the algorithm during the stream6.

1.4 Our Techniques

Our approach in establishing Result 3 consists of two steps: (1) recovering a fractional sparsifier,
namely, a graph with all edge-weights in [0, 1], from the given spectral sparsifier H of G, and
then, (2) rounding this fractional sparsifier into a simple unweighted graph to obtain the graph
G̃. We implement the first step (for both parts of this result) by formulating the problem as a
convex program and devising a separation oracle to run Ellipsoid algorithm on this program (the
separation oracle crucially relies on H being a spectral sparsifier, as the oracle for cut sparsifiers
is solving an NP-hard problem in general). The second part is done via a randomized rounding
approach—which, additionally ensures the number of sampled edges exactly matches the original
graph—but requires different analysis for each part: a union bound approach using Karger’s cut-
bounding bound (see Proposition 3.7) relying on the assumption that minimum cut is not too
small, or, following the standard effective resistance sampling approach (see Proposition 4.1) for
constructing spectral sparsifiers, using the assumption that effective resistances are not too large.

To obtain our sketch in Result 2 from Result 3, we first use a sketch due to [AGM12a,KPS24]
that identifies Õ(n) edges, whose removal partitions the graphs into subgraphs with large enough
minimum cut as required by Result 3; in parallel, we also use a sketch by [KLM+14a] for spectral
sparsification, and use linearity of these sketches to recover a sketch for each of these large-min-
cut subgraphs. A final argument then shows we can use the recovered edges plus the unweighted
sparsifiers on each component obtained via Result 3 to get an unweighted sparsifier of the entire
graph as well (in Section 3, we show how the plan outlined above can recover a cut sparsifier from
the sketch, which is a weaker version of Result 2 but is sufficient for proving Result 1 for correlation
clustering; we then improve this to recover a spectral sparsifier in Section 4).

6Specifically, the techniques in communication complexity and branching programs used for proving streaming
lower bounds are inherently oblivious to the post-processing space of the algorithm.
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Finally, to obtain Result 1 from our Result 2, we follow previous arguments in [ACG+15,
BCMT23] that show cut sparsifiers (information-theoretically) preserve correlation clustering struc-
ture; the new part here is to ensure the problem reduces to an instance of correlation clustering
on the (unweighted) sparsifier (not some rather arbitrary computation as in [ACG+15,BCMT23]),
which further requires us to exactly match the number of edges in the original graph and the
unweighted sparsifier (which was an additional property obtained in Result 2).

1.5 Related Work

The last couple of years has witnessed a flurry of results on correlation clustering both for sublinear
as well as classical algorithms. For instance, [CLM+21] designed O(1)-round MPC algorithms for
correlation clustering, and building on this, [AW22] obtained single-pass streaming and sublinear
time O(1)-approximation algorithms for this problem7 (see also [ACG+15,CDK14] and references
therein for earlier work on this problem). These results were subsequently improved in a se-
ries of work in [BCMT22, BCMT23, DMM24,MC23, CKL+24, CLP+24] culminating in the work
of [CLP+24] that achieves a 1.847-approximation via single-pass streaming or sublinear time algo-
rithms and 1.876-approximation in O(1) MPC rounds (considerably simpler algorithms achieving
a (3 + ε)-approximation were also developed in [MC23,CKL+24] by adapting the landmark Pivot
algorithm of [ACN08] to these models).

Meanwhile, there has also been exciting progress on classical algorithms for correlation cluster-
ing. Early work on this problem led to 3-approximation combinatorial and 2.5-approximation LP
based algorithms for this problem [ACN08], which was then improved to a 2.06 [CMSY15]. Re-
cently, [CLN22] broke the 2-approximation barrier—the integrality gap of the LP of [ACN08]—and
achieved a 1.995-approximation which was then improved to a 1.73-approximation in [CLLN23]
and subsequently 1.437-approximation in [CCL+24]. Finally, [CLP+24] gave a combinatorial 1.84-
approximation algorithm which, as stated earlier, can also be implemented in streaming and sub-
linear time (and with some small loss MPC) models.

2 Preliminaries

Notation. Throughout, we work with undirected graphs G = (V,E) and use n to denote the
number of vertices in G. For a set S ⊆ V , we use G[S] to denote the induced subgraph of G on S,
and δ(S) to denote the edges crossing the cut induced by S. For a vertex v ∈ V , we use N(v) and
deg(v) = |N(v)| to denote its neighbors and its degree, respectively.

For weighted graphs, we use wG : E → R to denote the weights. We often treat unweighted
graphs as weighted graphs with weight one on every edge (primarily, to avoid repeating definitions
for them separately). For a cut S ⊆ V , we use cutG(S) :=

∑
e∈δ(S)wG(e) to denote the weight of

the edges in the cut. We use mincut(G) to denote the minimum cut value in G. Additionally, we
use LG to denote the Laplacian matrix of the graph G, where (LG)u,u is the weighted degree of
each vertex u ∈ V , and (LG)u,v = −wu,v for each edge (u, v) ∈ E and 0 otherwise.

We say an event happens with high probability if its probability is at least 1− 1/poly(n) where
n is the number of vertices in the underlying graph (which will be clear from the context).

Likewise, we will often use the shorthand a ∈ (1± ε)b to mean that (1− ε)b ⩽ a ⩽ (1 + ε)b.

Correlation clustering. For a partition V1, . . . Vk, we use E+
G(V1, . . . Vk) to denote all the edges

in G which are crossing between V1, . . . Vk. Likewise, we use E−
G(Vi) to denote the set of non-edges

(i.e., not present edges in G) which are contained in Vi.

7The constants in these algorithms are quite large, around 700 for [CLM+21] and more than 10000 for [AW22].
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Definition 2.1. Let G = (V,E) be an arbitrary unweighted graph. Then, for a partition V1, . . . Vk,
the value of the partition under the correlation clustering objective is:

CCG(V1, . . . Vk) =
∑
i∈[k]

|E−(Vi)|+ |E+(V1, . . . Vk)|.

The goal in the correlation clustering problem is to find a partition that minimizes this objective.

2.1 Cut and Spectral Sparsifiers

We will frequently be concerned with graph sparsifiers and specifically cut sparsifiers [BK96] and
spectral sparsifiers [ST11]. We review their definitions here.

Cut sparsifiers. A basic notion of sparsification is cut sparsification introduced by [BK96].

Definition 2.2 ([BK96]). Given a graph G = (V,E) and ε ∈ (0, 1), a graph G̃ is said to be a (1±ε)
cut sparsifier of G iff for every cut S ⊆ V ,

(1− ε) · cutG(S) ⩽ cut
G̃
(S) ⩽ (1 + ε) · cutG(S).

We note that one often requires a cut sparsifier of a graph to be its subgraph. However, as
stated in Result 2, this is not the case in our paper due to our de-sparsification approach (which
does not require this guarantee, nor can provide it without trivializing the problem).

A key quantity of interest when designing cut sparsifiers is known as the strength of an edge:

Definition 2.3. Given a graph G = (V,E), the strength of an edge e ∈ E is defined as

λe = max
S⊆V :e⊆S

mincut(G[S]).

Spectral sparsifiers. A strictly stronger notion than cut sparsifiers are spectral sparsifiers [ST11].

Definition 2.4 ([ST11]). Given a graph G = (V,E), a graph G̃ is considered a (1 ± ε) spectral
sparsifier of G iff for every vector x ∈ RV ,

(1− ε) · x⊤LGx ⩽ x⊤L
G̃
x ⩽ (1 + ε) · xTLGx,

where LG and L
G̃

denote the Laplacian matrix of G and G̃, respectively.

Similar to strength of edges defined in the context of cut sparsifiers, we have effective resistances
for spectral sparsifiers.

Definition 2.5. For a graph G = (V,E), and a pair of vertices (u, v) ∈
(
V
2

)
, we say that the

effective resistance of (u, v) in G is:

Reff,G(u, v) = max
x∈RV ,x ̸=0

(xu − xv)
2

xTLGx
.

Finally, we need some additional properties from sparsifiers captured in the following definition.

Definition 2.6. Given a (1 ± ε) cut/spectral sparsifier G̃ of a graph G = (V,E), we say that G̃
is total weight preserving if it additionally satisfies

∑
e∈GwG(e) =

∑
e∈G̃w

G̃
(e). Similarly, we

say G̃ is simple iff it is an unweighted simple graph.
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2.2 Graph Sketches

In this work, we will frequently be concerned with designing (linear) graph sketches, introduced in
the work of [AGM12a] (for graph problems).

Definition 2.7. A linear sketch of a graph G is identified by a (possibly randomized) matrix M
of dimensions s×

(
n
2

)
, chosen independently of the graph. Then, given an unweighted graph G with

edge incidence vector 1G ∈ {0, 1}(
n
2), the sketch of the graph is given by M · 1G. Finally, there is

a recovery algorithm that given only the sketch and the sketching matrix, with no direct access
to G, outputs the solution to a given problem on G.

The convention is that the entries in the linear sketch should be bounded in magnitude by
poly(n), and thus the space complexity of the linear sketch is O(s log(n)) bits.

We note that even though we work with both weighted and unweighted graphs in this work,
we have opted to define the sketching only for unweighted graphs given certain subtleties in the
definition for weighted graphs, which will not be relevant to our work (see [CKL22] for more details).

Linearity of these sketches allows one to use them in various sublinear algorithms models; we
elaborate more on this in Section 5 when designing our sublinear algorithms.

3 Desparsification for Correlation Clustering: Proof of Result 1

In this section, we prove the following theorem that formalizes Result 1.

Theorem 1. Let αbest be the best possible approximation ratio for correlation clustering on simple
graphs in polynomial time. There is a linear sketch of size Õ(n) bits, which for any simple graph
G on n vertices can be used to recover an (αbest + o(1)) approximation to correlation clustering in
G in polynomial time with high probability.

The key building block in the proof of Theorem 1 is the following general de-sparsification result,
which is a weaker version of Result 2 (we opted to start with this weaker version as it suffices for
our application and contains many of ideas for the full result as well).

Theorem 2. There is a (randomized) linear sketch using Õ(n/ε2) bits of space which, for any
simple graph G, can be used to recover with high probability a simple, (1±ε) total weight preserving
cut sparsifier of G in polynomial time.

In the rest of this section, we first show how to use total weight preserving sparsifiers to solve
correlation clustering and prove Theorem 1 using Theorem 2. We then switch to the proof of The-
orem 2 by presenting its sketch first, and then going through the two separate steps outlined
in Section 1.4 needed for its proof.

3.1 Correlation Clustering from Total Weight Preserving Sparsifiers

The following lemma motivates total weight preserving cut sparsifiers for correlation clustering.

Lemma 3.1. Let G and H be graphs on the same vertex set such that H is a (1± ε) total weight
preserving cut sparsifier of G. Then, for any partition V1, . . . Vk of vertices,

CCH(V1, . . . Vk) ∈ (1± 2ε) · CCG(V1, . . . Vk).

We note that similar but not identical statements as Lemma 3.1 have been used in prior work
in [ACG+15,BCMT23]; as such, we postpone the proof of this lemma to Appendix A. With this
lemma, we can immediately obtain Theorem 1, assuming Theorem 2.
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Proof of Theorem 1. The linear sketch is exactly the one of Theorem 2. Let G̃ denote the recovered
simple graph which is a (1± ε) total weight preserving cut sparsifier of G. By Lemma 3.1, we see
that for any clustering V1, . . . Vk,

CC
G̃
(V1, . . . Vk) ∈ (1± 2ε) · CCG(V1, . . . Vk).

So, if we let OPT(G) denote the minimum correlation clustering value on G, we know that

OPT(G̃) ⩽ (1 + 2ε) ·OPT(G).

Now, let us run any black-box αbest-approximation, polynomial time algorithm for correlation
clustering on G̃ in (crucially using the fact that G̃ is simple). We are guaranteed that this recovers
a partition P = (V1, . . . , Vk) of vertices such that

CC
G̃
(P ) ⩽ α ·OPT(G̃).

Returning P as the answer on G, by Lemma 3.1 satisfies

CCG(P ) ⩽ (1 + 2ε) · CC
G̃
(P ) ⩽ (1 + 2ε) · α ·OPT(G̃) ⩽ α · (1 + 2ε)2 ·OPT(G).

Finally, by setting ε = o(1), the linear sketch we use requires only Õ(n) bits, yet still recovers
an (αbest + o(1))-approximate solution to correlation clustering on G in polynomial time.

3.2 Building the Linear Sketch used in Theorem 2

We now switch to proving Theorem 2 which is the main technical contribution of this section. We
will require three distinct linear sketches for constructing our total-weight preserving sparsifier:

1. First, we require a linear sketch which, for some parameter λ = Θ(log(n)/ε2) to be chosen
later, can be used to (exactly) recover all edges of strength at most λ in the graph G, denoted
by S1(G). This is done via the following result.

Proposition 3.2 (cf. [AGM12a], [KPS24, Claim 4.9]). For any given λ ⩾ 1, there is a linear
sketch for (unweighted) graphs G on n vertices for recovering all edges of strength ⩽ λ with
high probability in polynomial time, using Õ(nλ) space.

2. Second, we require a linear sketch which recovers a (1 ± ε) spectral sparsifier of the graph G,
denoted by S2(G). This is done via the following result.

Proposition 3.3 ( [KLM+14b]). For any given ε ∈ (0, 1), there is a linear sketch for (un-
weighted) graphs G on n vertices for recovering a (1 ± ε) spectral sparsifier of G with high
probability in polynomial time, using Õ(n/ε2) space.

3. Finally, our remaining linear sketch is simply the total number of edges present in the graph.
This is a deterministic linear sketch that simply tracks the size of the support of the

(
n
2

)
dimensional vector describing the graph G, and we denote this sketch by S3(G), but will often
implicitly refer to this quantity as m.

The lemma below shows how these these three linear sketches can be used to recover structural
information about G that will be sufficient for de-sparsification.
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Lemma 3.4. Given the linear sketches S1(G), S2(G), S3(G), one can recover:

1. a set of edges T ⊆ G such that G− T has minimum cut > λ,

2. a (1± ε)-spectral sparsifier of the graph G− T , and

3. the total number of edges in G− T .

Further, the space complexity of these sketches is Õ(nλ+ n/ε2) bits.

Proof. We start by using S1(G) to recover the edges of strength at most λ in G, denoted by T .
Importantly, because we recover only these edges, the resulting graph G − T has all edges of
strength greater than λ. This step implicitly partitions the vertex set V into V1, V2, ..., Vk such that
for i ∈ [k], the subgraph of G − T induced by Vi has minimum cut greater than λ. We rely here
on the basic property of edge strengths, namely, the certificate of an edge having strength greater
than λ in G never uses an edge of strength at most λ. In other words, any edge in T necessarily
connects a vertex in some Vi to a vertex in some Vj for 1 ⩽ i ̸= j ⩽ k.

Next, because we have recovered the set T ⊆ G of edges, we can simply delete these edges from
the linear sketch S2(G), yielding a linear sketch S2(G− T ). Now, invoking the recovery algorithm
of Proposition 3.3, we can recover a (1± ε)-spectral sparsifier for each of G[V1], G[V2], ..., G[Vk].

Finally, number of edges in G−T is obtained by subtracting the number of edges in T from m.

The space complexities of linear sketches S1(G) and S2(G) follow from Proposition 3.2 and
Proposition 3.3, respectively. The sketch S3(G) takes only O(log n) space.

The combination of S1, S2, S3 is the entirety of the linear sketches that we will store. The rest
of the complexity in our procedure is in recovering a specific type of sparsifier. We discuss this
more in the coming subsections.

3.3 Recovering Fractional Total Weight-preserving Sparsifiers

We now describe how given a total weight preserving spectral sparsifierH of some unweighted graph
G with m edges, we can recover in polynomial time a fractional, total weight preserving sparsifier
G̃. We say G̃ is fractional in the sense that every edge e ∈ G̃ will have a fraction Ye ∈ [0, 1] assigned
to it, which can be seen as its weight. In the next subsection we will show how G̃ can be rounded
to an unweighted graph that is a total weight-preserving cut-sparsifier of H and as such G as well.

In this section, we prove the following lemma:

Lemma 3.5. Given a (potentially weighted) graph H which is promised to be a (1 ± ε) spectral
sparsifier of some unweighted graph G, along with the number of edges in G, one can recover (in
polynomial time) a (1± 3ε) fractional total weight preserving spectral sparsifier of the graph G.

Proof. Consider the following convex program in R(
V
2), for which we wish to find a feasible point:

Ye ∈ [0, 1] ∀e ∈
(
V

2

)
,∑

e∈(V2)

Ye · z⊤Lez ⩾ (1− ε)z⊤LHz ∀z ∈ RV : ∥z∥2 = 1,
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∑
e∈(V2)

Ye · z⊤Lez ⩽ (1 + ε)z⊤LHz ∀z ∈ RV : ∥z∥2 = 1,

∑
e∈(V2)

Ye = m.

Here, Le is the Laplacian matrix of the n-vertex graph consists of only the single edge e.

Each of the infinitely many constraints of this program are linear in the variables Ye since
z⊤LHz (and similar for LG) are simply numbers for each fixed z. This program also has a feasible
solution, as the original graph G is a (1± ε) spectral sparsifier of H (and vice versa), with m edges
and weights that are {0, 1} and hence the characteristic vector of its edges form a feasible solution
to this program.

We now show there is a polynomial time separation oracle for this program. Fix any assignment
to Ye’s yielding a fractional graph which we will denote by G(Y ), where the weight of edge e is
Ye. We can check in polynomial time whether the total edge weights in G(Y ) equal m, that each
Ye ∈ [0, 1], and that G(Y ) and H have the same connected components. If any of these checks fail,
we have found a violated constraint. We now focus on verifying that LG(Y ) is a (1 ± ε) spectral
sparsifier of LH . That is, we wish to check whether

(1− ε) · LH ⪯ LG(Y ) ⪯ (1 + ε) · LH ,

where ⪯ refers to the Loewner order of PSD matrices. Observe that this condition passes if and
only if G(Y ) is a (1± ε)-spectral sparsifier of H, as

(1− ε) ·LH ⪯ LG(Y ) ⪯ (1 + ε) ·LH ⇐⇒ ∀z ∈ RV : (1− ε) · zTLHz ⩽ zTLG(Y )z ⩽ (1 + ε) · zTLHz,

by the definition of the Loewner order.

By left and right multiplying by L
†/2
H , where L†

H is the pseudo-inverse of LH (and restricting
our attention to the image of LH), this is equivalent to checking whether

(1− ε) · IIm(LH) ⪯ L
†/2
H · LG(Y ) · L

†/2
H ⪯ (1 + ε) · IIm(LH), (2)

where IIm(LH) is simply the projection operator on to Im(LH)8. Next, we note that Eq (2) is true

if and only if all non-trivial eigenvalues of L
†/2
H · LG(Y ) · L

†/2
H are in (1± ε). This shows that G(Y )

is a (1± ε) spectral sparsifier of H if and only if every (non-trivial) eigenvalue of L
†/2
H ·LG(Y ) ·L

†/2
H

is in the range (1± ε).

Next, we want to show that if we identify an eigenvector v of L
†/2
H ·LG(Y ) ·L

†/2
H with eigenvalue

λ /∈ (1± ε), then we can use this to find a violated constraint in our convex program.

Indeed, let us suppose that we recover such a v and λ:

L
†/2
H · LG(Y ) · L

†/2
H · v = λ · v;

by left multiplying with vT this yields

v⊤ · L†/2
H · LG(Y ) · L

†/2
H · v = λ · v⊤v.

8This technicality is due to the fact that LH and L†
H have a non-trivial null-space (i.e., they will always contain

the vector of all 1’s).
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However, for the vector L
†/2
H · v, we also see that

v⊤ · L†/2
H · LH · L†/2

H · v = v⊤ · L†/2
H · L1/2

H · L1/2
H · L†/2

H · v = vT v.

Thus, if λ /∈ (1± ε), we have

v⊤ · L†/2
H · LG(Y ) · L

†/2
H · v = λ · v⊤v /∈ (1± ε) · v⊤v = (1± ε) · v⊤ · L†/2

H · LH · L†/2
H · v,

and so we can use the constraint specified by z = L
†/2
H · v as a violated constraint in the convex

program. Since calculating pseudo-inverses, multiplying matrices, and finding eigenvalues can all
be done in polynomial time, the procedure above gives a polynomial-time separation oracle.

To conclude, since the feasible region for the above convex program is non-empty, and we have
a polynomial time separation oracle, we can find an assignment to the Ye’s which satisfies all of the
above constraints in polynomial time by using the ellipsoid method (see [GLS88, Theorem 6.4.1],
for instance). For the feasible solution Y found at the end, the fractional graph G(Y ) defined by
the assignment Y is a (1 ± ε)2 spectral sparsifier of G (it is a (1 ± ε) sparsifier of H, which is in
turn a (1± ε) sparsifier of G), with the same total weight as the graph G.

3.4 Rounding the Fractional Sparsifier

Finally, in this section we will show how, given a fractional total weight preserving graph H, we
can round the weights in such a way that we get a simple (unweighted) graph which is a (1 ± ε)
cut-sparsifier of H, while still preserving the total weight exactly. For any edge e in H, we will
denote by wH(e) the fractional weight assigned to the edge e, that is, wH(e) ∈ [0, 1]. Towards this
goal, we establish the following lemma.

Lemma 3.6. Let H be a fractional graph whose minimum cut is at least λ ⩾ 200 log(n)/ε2, and
whose total edge weight sums to an integer. Then, there is a polynomial time randomized rounding
scheme which with high probability recovers a simple graph H̃ which is a total weight preserving
(1± ε) cut sparsifier of H.

To prove this lemma, we require the following classic result due to [Kar93].

Proposition 3.7 (Karger’s Cut-counting Bound [Kar93]). Let G be any (potentially weighted)
graph on n vertices with minimum cut size λ(G). Then, the number of cuts in G of size ⩽ α · λ is
at most n2α.

We are now ready to prove Lemma 3.6.

Proof of Lemma 3.6. The rounding scheme itself is elementary: we create a simple, unweighted
graph H̃, where for every edge e ∈ H, we keep e independently with probability wH(e). First, we
will show that this procedure recovers a (1± ε) sparsifier with probability ⩾ 1− 1/n5 (although it
may not be total weight preserving).

Let t := 200 log (n)/ε2. Because the minimum cut in H is of size ⩾ t, by Karger’s cut-counting
bound (Proposition 3.7), we know that for any α ∈ Z+, the number of cuts of size at most α · t is
bounded by n2α. Now, fix a cut S of size ∈ [α · t, 2α · t). It follows from Chernoff bound that

Pr
(
cut

H̃
(S) /∈ (1± ε) · cutH(S)

)
⩽ exp

(
−ε2 · α · t/12

)
⩽ exp

(
−ε2 · α · 200 log (n)

12ε2

)
< n−10α;
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(to apply Chernoff bound, we can simply view the weight contributed by each edge as a Bernoulli
random variable. The expected weight of a cut under the sampling procedure is exactly equal to
its current weight, and the Chernoff bound then follows simply).

Taking a union bound over all n4α possible cuts, this then yields that every cut of size ∈
[α · t, 2α · t) is preserved to within a (1 ± ε) factor with probability at least 1 − 1/n6α. Finally,
integrating over all choices of α ⩾ 1, we get that every cut is preserved to a factor of (1± ε) with
probability at least 1− 1/n5.

The next step is to show that we can also sample exactly
∑

ewH(e) edges in H̃ in our randomized
rounding approach. For this, we need the following auxiliary claim.

Claim 3.8. Let p1, . . . pm each be in [0, 1], and let K =
∑m

i=1 pi be an integer. Now, let Xi =
Bern(pi) and let the Xi’s be independently distributed. Then,

Pr[
m∑
i=1

Xi = K] ⩾
1

m+ 1
.

Proof. This follows from the fact that the mode of a Poisson binomial distribution is either its
mean, or differs from its mean by at most 1. In particular, in our case when the mean is an integer
(K), it must be the case that the mode ℓ = K also (see [TT23], page 2, Darroch’s rule for instance).
Now, because the support of the distribution has size at most m+ 1 (i.e., 0, . . .m), it follows that
the mode must occur with probability ⩾ 1/(m+ 1), yielding our claim above. Claim 3.8

To conclude the proof of Lemma 3.6, we can apply Claim 3.8 to our randomized rounding
procedure. We see that with probability ⩾ 1

n2 , we will sample exactly
∑

e∈H wH(e) edges in H̃.
This is because our edge sampling procedure is exactly a Poisson binomial distribution fitting the
form of Claim 3.8.

So, we employ the following simple procedure: for n3 rounds, we randomly sample edges in
accordance with the above scheme. With probability 1 − (1 − 1/n2)n

3
= 1 − 2−Ω(n), we know

that in at least one round, we will recover a graph H̃ which exactly preserves the total edge mass
compared to H. Further, by a union bound over all n3 graphs generated in these rounds, we know
that with probability 1− 1/n2 every single graph we generate will be a (1± ε) cut sparsifier of H.
Thus, the graph H̃ that we return is the first graph which preserves the total weight, and it will
be a (1± ε) total weight preserving cut sparsifier of H with high probability. Lemma 3.6

3.5 Concluding the Proof of Theorem 2

Finally, in this section we synthesize our claims to conclude the proof of Theorem 2.

Proof of Theorem 2. First, we initialize the linear sketch of Lemma 3.4, using λ = 200 log(n)/ε2.
The space complexity of our sketch then follows from Lemma 3.4.

Using our sketch, we can recover all edges of strength at most λ (we denote this set by T ), as
well as a (1 ± ε) spectral sparsifier of the graph G − T , and the total number of edges in G − T .
Next, using Lemma 3.5, we find a fractional (1± 3ε) total weight preserving spectral sparsifier H
of G− T in polynomial time. Finally, we use Lemma 3.6 to, with high probability, round this into
a simple (1± ε) total weight preserving cut sparsifier H̃ of H in polynomial time. By composition
of the sparsifier approximations, we also get that H̃ is a (1± 5ε) simple total weight-preserving cut
sparsifier of G− T . Finally, we add back the edges from T , and conclude that H̃ ∪ T is a (1± 5ε)
simple total weight-preserving cut sparsifier of G.
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We remark on a minor subtlety here. It seems possible that an edge in T is also included in
our rounded solution H̃, and thus appears twice in H̃ ∪ T . However, recall that when we remove
edges in T , this partitions G into connected components V1, . . . Vk each with minimum cut greater
than λ. The set of edges T is exactly the set of all edges in G that go across these components. We
observe that our spectral sparsifier for the graph G − T will thus not contain any edges crossing
V1, . . . Vk. This in turn implies that the fractional graph H generated by our convex program will
not have any edges crossing between V1, . . . Vk also, as otherwise, for some Vi, cutH(Vi) would be
non-zero, whereas cutG−T (Vi) = 0, violating the spectral approximation constraint in our convex
program. So, for every edge e in T , e is not present in the rounded graph H̃.

Finally, we can re-parameterize ε to some Θ(ε) to obtain a (1 ± ε) cut sparsifier with high
probability, concluding the proof.

Before moving on from this section, we note that by combining Lemma 3.5 and Lemma 3.6, we
get the following general de-sparsification corollary that formalizes part 1 of Result 3.

Corollary 3.9 (Part 1 of Result 3). Given a (potentially weighted) graph H which is promised to be
a (1±ε) spectral sparsifier of some unweighted simple graph G with minimum cut λ ⩾ 200 log(n)/ε2,
along with the number of edges in G, we can recover in polynomial time a simple graph G̃ which is
a (1±O(ε)) total weight preserving cut sparsifier of G, with high probability.

4 De-sparsifying Spectral Sparsifiers: Proofs of Result 2 and 3

In the previous section, we focused on recovering an unweighted, simple total weight preserving cut
sparsifiers of our original graph. This was motivated by applications to correlation clustering but
also leads to a simpler analysis, as the rounding procedure yields correct outputs so long as the
minimum cut value is sufficiently large. We now show that we can also recover a spectral sparsifier
of the original graph via de-sparsification.

Theorem 3. There is a randomized linear sketch of size Õ(n/ε2) bits which, on any graph G,
can be used to recover, with high probability, an unweighted, simple (1± ε) total weight preserving
spectral sparsifier of G in polynomial time.

To prove Theorem 3, we follow the strategy of [SS11] in constructing spectral sparsifiers by
sampling edges proportional to their effective resistance (Definition 2.5). Formally,

Proposition 4.1 ([SS11]). Let G be an arbitrary graph on n vertices, let ε ∈ (0, 1), and let C be
a sufficiently large constant. Then, independently sampling each edge with probability

pe ⩾ we ·
C log(n) ·Reff,G(e)

ε2

(and assigning weight we/pe if sampled) yields a (1±ε) spectral sparsifier of G with high probability.

4.1 De-sparsifying With Small Effective Resistances

In this subsection, we prove part 2 of Result 3, as its intuition will be very valuable in the proof of
Result 2. We first restate the result before providing our proof:

Theorem 4 (Part 2 of Result 3). For any ε ∈ (0, 1) and n-vertex unweighted graph G, there is a
randomized polynomial-time algorithm that given any (1 ± ε)-spectral sparsifier H of G, recovers
with high probability an n-vertex, simple unweighted graph G̃ such that G̃ is a (1 ± 5ε)-spectral

sparsifier of G, provided the effective resistance of every pair (u, v) in G is ⩽ ε2

2C log(n) , where C is
the constant from Proposition 4.1.
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Proof. First, recall that by Lemma 3.5 we can recover a fractional, total weight preserving graph
H̃ which is a (1 ± ε) spectral sparsifier of H and thus a (1 ± 3ε) spectral sparsifier of G. All that
remains is to perform a randomized rounding of H̃ which yields a spectral sparsifier and preserves
the total weight. We use the same rounding procedure as in Lemma 3.6, and thus, just as in the
proof of the lemma, by repeating the procedure a polynomial number of times, we can guarantee
that the number of edges in our rounding matches the number of edges in the original graph. All
that remains to be shown is that the rounded graph is a spectral sparsifier with high probability.

For this, by Proposition 4.1, we know that sampling every edge e with probability

pe ⩾
C log(n)

ε2
· we ·Reff(e),

and assigning weight we/pe to the sampled edges yields a (1 ± ε) spectral sparsifier with high
probability. By the hypothesis of our theorem, it follows that every edge e ∈ H̃ will have effective
resistance at most

(1 + 2ε) · ε2

2C log(n)
.

This is because H̃ is a (1± ε) spectral sparsifier of G, and so for every pair of vertices (u, v) ∈
(
V
2

)
,

it is the case that R
eff,H̃

(u, v) ∈ (1± 2ε)Reff,G(u, v) (see Definition 2.5).

So, by Proposition 4.1 we must only sample each edge e ∈ H̃ with probability

pe ⩾ (1 + 2ε) · C log(n)

ε2
· we ·

ε2

2C log(n)
=

1 + 2ε

2
· we.

Since we ⩾ pe, we can keep each edge e independently with probability we, while still yielding a
(1 ± ε) spectral sparsifier of H with high probability. Indeed, because H̃ was already a (1 ± 3ε)
spectral sparsifier to G, the resulting graph is a (1± 5ε) spectral sparsifier of G while also being a
simple graph.

4.2 Proof of Theorem 3

We now provide a formal proof of Theorem 3. The main challenge here is to handle the pairs of
vertices whose effective resistances will be higher than the bounds in Theorem 4 which requires a
non-black-box modification of our approach in establishing Theorem 2.

To prove Theorem 3, we need to use the following more detailed analysis from [KLM+14b].

Proposition 4.2 ( [KLM+14b]). Given any parameter ϕ ⩾ 0, there is a (randomized) linear sketch
S such that for a graph G on n vertices, S(G) can be used to recover each edge e independently
with probability at least ϕ · reff,G(u, v), and likewise assigns appropriate weights to create a (1± ε)

spectral sparsifier with probability 1 − 1/poly(n). Further, S requires only Õ(nϕ) bits of space to
store.

We are now ready to start the proof.

Linear sketch. The linear sketch in Theorem 3 is very simple: we simply store the sketch

of Proposition 4.2 with parameter ϕ = C log3(n)
ε2

, for C a sufficiently large constant. It follows
then by Proposition 4.2 that this allows us to recover a (1 ± ε) spectral sparsifier of the graph
G with high probability. Further, since the linear sketch of Proposition 4.2 implicitly performs
effective-resistance sampling, it follows that every edge e with effective resistance ⩾ 1

ϕ = ε2

C log3(n)

is necessarily recovered, as each such edge is sampled with probability ⩾ ϕ
ϕ = 1.
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Recovery from the sketch. Now, let H̃ denote the weighted spectral sparsifier recovered by
the above sketch, and let H̃U denote the corresponding unweighted version of H̃ (where every edge
in H̃ is given weight 1). Observe that it must be the case that H̃U ⊆ G, as it is the result of
sub-sampling G. Observe also that because H̃ is a (1± ε) spectral sparsifier of G, for every pair of
vertices (u, v) ∈

(
V
2

)
, it is the case that R

eff,H̃
(u, v) ∈ (1± 2ε)Reff,G(u, v) (see Definition 2.5).

Now, we define the set Ê ⊆
(
V
2

)
:

Ê =

{
(u, v) ∈

(
V

2

)
: (u, v) /∈ H̃U , Reff,H̃

(u, v) ⩽
ε2

100 log2(n)

}
.

In words, this is simply the set of pairs of vertices which have small effective resistance with respect
to the recovered spectral sparsifier H̃. Using this we create our convex program, for which we wish
to find a feasible point:

Ye ∈ [0, 1] ∀e ∈ Ê,

zTL
H̃U

z +
∑

e∈(V2)

Ye · zTLez ⩾ (1− ε)zTL
H̃
z ∀z ∈ Rn : ∥z∥2 = 1,

zTL
H̃U

z +
∑

e∈(V2)

Ye · zTLez ⩽ (1 + ε)zTL
H̃
z ∀z ∈ Rn : ∥z∥2 = 1,

|H̃U |+
∑

e∈(V2)

Ye = m.

As before, we must show that this program is feasible:

Claim 4.3. The stated convex program is feasible.

Proof. This follows because the original graph G will be a (1 ± ε) spectral sparsifier of H̃ which
preserves the total weight. Because we are already including the contribution of H̃U in each of the
constraints, there is a feasible solution corresponding to G−H̃U , which will contain only edges that
are in Ê. This is because any edge in G with effective resistance larger than ε2

100 log2(n)
is already in

H̃U , so the entire support of G− H̃U is thus in Ê.

Likewise, the separation oracle is efficiently implementable:

Claim 4.4. There is a polynomial time separation oracle for the above convex program.

Proof. This follows from all of the same reasons as in Lemma 3.5. Indeed certifying the constraints
that Ye ∈ [0, 1] and that

∑
e∈L

H̃U

1 +
∑

e∈(V2)
Ye = m are both trivial. Thus, it remains only to

check whether

zTL
H̃U

z +
∑

e∈(V2)

Ye · zTLez ∈ (1 + ε)zTL
H̃
z ∀z ∈ Rn : ∥z∥2 = 1.

Letting Ĝ denote the graph whose edge weights are given by Ye (and is 0 otherwise), this constraint
is equivalent to

zTL
H̃U

z + zTLĜz ∈ (1± ε)zTL
H̃
z ∀z ∈ Rn : ∥z∥2 = 1.
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By linearity of the Laplacians, this can be re-written as

zT (L
H̃U

+ LĜ)z ∈ (1± ε)zTL
H̃
z ∀z ∈ Rn : ∥z∥2 = 1,

which is now exactly in the same form as the constraints of Lemma 3.5, and so can be checked by

calculating the eigenvalues of L
†/2
H̃

(L
H̃U

+ LĜ)L
†/2
H̃

.

Now, because of Claim 4.3 and Claim 4.4, we can use the ellipsoid method to find a feasible
solution in polynomial time [GLS88]. So, let Ĝ then denote this feasible solution recovered by the
above program, where the edge set is Ê, and the corresponding weight on each edge e ∈ Ê is Ye.
Observe that Ĝ ∪ H̃U is a fractional (1 ± ε) spectral sparsifier of H̃, and thus a fractional total
weight preserving (1± 3ε) spectral sparsifier of G.

All that remains is to show that efficiently rounding this solution is possible. For this, by
Proposition 4.1, we know that sampling each edge e with probability pe ⩾

C log(n)
ε2

·we ·Reff(e), and

giving weight we
pe

yields a (1± ε) spectral sparsifier with high probability. Now, because Ĝ ∪ H̃U is

a (1± ε) spectral sparsifier of H̃, it follows that for every pair of vertices (u, v),

R
eff,Ĝ∪H̃U

(u, v) ⩽ (1 + 2ε)R
eff,H̃

(u, v).

In particular, for every edge (u, v) ∈ Ê, we have

R
eff,Ĝ∪H̃U

(u, v) ⩽ (1 + 2ε)
ε2

100 log2(n)
.

Thus, in the graph Ĝ ∪ H̃U , for every edge e ∈ Ê, we calculate the minimal sampling rate as

pe =
C log(n)

ε2
· we ·Reff,Ĝ∪H̃U

(e) ⩽
C log(n)

ε2
· we ·

ε2

C log(n)
⩽ we.

So, we can independently keep each edge e ∈ Ĝ with probability we while still creating a (1 ± ε)
spectral sparsifier of Ĝ ∪ H̃U . By composing sparsifiers (as before) this yields a (1 ± 5ε) spectral
sparsifier of the original graph G, while also yielding a simple, unweighted graph (the edges in H̃U

are already unweighted).

By starting with an error parameter of ε/5, we then obtain the stated accuracy of our spectral
sparsifier. Likewise, because we are performing the simple, independent Bernoulli rounding, we
can repeat this procedure n3 times and be guaranteed by Claim 3.8 that in some round, the total
weight is exactly preserved.

This concludes the proof of Theorem 3.

5 Sublinear Algorithms

In this section, we provide the proofs of Corollaries 1.1 to 1.4. We start with a brief review of
the sublinear algorithms models we consider as well as formalizing the role of linear sketching for
solving problems in these models. We then provide the proofs of the corollaries.

5.1 Sublinear Algorithms Models

In this paper, we will be working with the following sublinear algorithms models.
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Distributed communication. In this model, the input graph G = (V,E) is edge partitioned
across k machines. The machines can communicate with each other in a message-passing model
(i.e., the communication is point to point), and the goal is to minimize the total communication
between the machines. At the end, one designated machine should output the answer.

Massively Parallel Computation (MPC). In this model, the input graph G = (V,E) is
edge partitioned across multiple machines initially. Computation happens in synchronous rounds
wherein each machine can send and receive Õ(n)-size messages. The goal is to have a small number
of rounds (ideally a small constant) and compute the final outcome on a designated machine.

We note that this model is often referred to as near-linear-memory MPC as opposed to the fully
scalable MPC wherein the memory of each machine can be any nδ for constant δ > 0.

Dynamic Streams. In this model, the input graph G = (V,E) is specified as a sequence of
insertion and deletion to its edges in a stream. Specifically, each entry of the stream is of the form
(u, v,+) or (u, v,−) which either inserts a new edge (u, v) to G or remove an already existing edge
(u, v) from G, respectively. The algorithm can make one or a few passes over the stream and needs
to output the final outcome on the resulting graph at the end of the last pass.

5.2 Distributed Communication Model

We start with proving Corollary 1.1 restated below.

Corollary (Restatement of Corollary 1.1). There is a polynomial-time randomized algorithm for
correlation clustering in the distributed communication model with k machines that uses Õ(nk)
communication in total, and with high probability, achieves an (αbest + o(1))-approximation.

Proof. One of the simplest ways of using linear sketching is to design distributed communication
protocols. The coordinator samples the sketching matrix S(·) and shares it with all the other
machines. Then, each machine i ∈ [k], computes S(Gi) on its own subgraph Gi and sends it to
the coordinator. Finally, the coordinator forms S(G) = S(G1 + . . . + Gk) using the linearity of
the sketches. We can thus use our Theorem 1 and achieve a polynomial time protocol with Õ(n)
communication per machine and so Õ(nk) communication in total.

The only subtlety here is due to the randomness of the linear sketch and how the sketching
matrix S can be communicated efficiently between the machines. Because the linear sketches we
are using in Lemma 3.4 are just the spectral sparsification sketch of Proposition 3.3 [KLM+14b]
and the spanning forest sketch of Proposition 3.2 [AGM12a,KPS24], and both these works have
already shown how to use only Õ(n) many random bits to create the sketch, sharing the sketching
matrix is also possible in Õ(n) communication.

5.3 MPC Algorithms

We next prove Corollary 1.2 restated below.

Corollary (Restatement of Corollary 1.2). There is a polynomial-time randomized algorithm for
correlation clustering in the MPC model that uses O(1) rounds and Õ(n)-size messages per machine,
and with high probability, achieves an (αbest + o(1))-approximation.

To prove this theorem, we need to use the specific form of graph sketching used by our algo-
rithms, referred to as vertex-incidence sketches.
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Definition 5.1. We say a linear sketch S(G) is a vertex-incidence sketch iff

S(G) =
[
S1(N(v1)),S1(N(v2)), . . . ,Sn(N(vn))

]
,

where each Si is also a linear sketch. Namely, the entire sketch is obtained as a linear sketch of
neighborhood of each vertex separately.

The following is a well-known fact about MPC protocols for combining vertex-incidence sketches.

Proposition 5.2 ( [AGM12b,AKLP22]). Let S(G) denote a vertex-incidence linear sketch which
requires ⩽ s bits of space for each vertex-neighborhood sketch. Then, there is a 2 round, Õ(n · s)
communication MPC protocol which results in a single machine containing the entire sketch S(G).

This will be useful for us as the linear sketches of Proposition 3.2 and Proposition 3.3 used in
our Lemma 3.4 are vertex-incidence sketches.

Proof of Corollary 1.2. Because Proposition 3.2 and Proposition 3.3 are both vertex-incidence
sketches that require O(polylog(n)/ε2) bits for each vertex-neighborhood, this implies a sim-
ple Õ(n/ε2)-size message MPC protocol which terminates with a single machine M1 containing
S1(G), S2(G), and S3(G) as in Lemma 3.4.

From here, we must only set ε = 1/ log(n) and have M1 run the recovery algorithm from
Theorem 1 to conclude our corollary.

5.4 Dynamic Streaming

Next, we provide the proof of Corollary 1.3.

Corollary (Restatement of Corollary 1.3). There is a polynomial-time randomized streaming algo-
rithm for correlation clustering that uses Õ(n) memory when making a single pass over a dynamic
stream, and for any constant ε > 0, with high probability, achieves an (αbest+o(1))- approximation.

Proof. Another very simple application of linear sketching is to dynamic streaming algorithms. At
the beginning of the stream, the algorithm can sample the sketching matrix S and compute S(∅)
as the sketch. Then, whenever a new edge e is inserted or deleted, the algorithm can update the
sketch by S(+e) or S(−e) using the linearity of the sketch. This way, at the end of the stream, the
algorithm is left with a sketch of the final graph.

In our context, we simply run this approach using our sketching algorithm in Theorem 1 and at
the end, in polynomial time, return the solution. We note that similar to Corollary 1.1, here also,
we additionally exploit the fact that the description of the sketching matrix can be stored in Õ(n)
bits.

5.5 Deterministic Algorithms for Insertion-Only Streams

Finally, we show that by leveraging known results on deterministic algorithms for spectral sparsi-
fication in insertion-only streams, we can achieve the following result.

Corollary (Restatement of Corollary 1.4). There is a polynomial-time streaming algorithm for
correlation clustering that uses Õ(n) memory to deterministically build a data structure D using
a single pass over an insertion-only stream, and only at the end, uses randomization to, with high
probability, recover from D an (αbest + o(1))-approximation for correlation clustering.
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Remark 5.3. Note that the high probability in Corollary 1.4 is with respect to the post-processing,
not the data structure D created during the stream itself, which is deterministic. Moreover because
the algorithm is deterministic during the stream, it works even against an adversary that sees the
internal state of the algorithm, namely, is adversarially robust in the strongest possible sense.

The key to the proof of Corollary 1.4 is the following lemma.

Lemma 5.4. There is a polynomial time streaming algorithm that uses Õ(n/ε2) bits of memory
to deterministically build a data structure D using a single pass over an insertion-only stream of
edges of G, and, only at the end, uses randomization to recover a simple graph H from D which is
a (1± ε) total weight preserving spectral sparsifier of G with high probability.

Before proving this lemma, we show how it implies Corollary 1.4.

Proof of Corollary 1.4. We just run Lemma 5.4. The space required is only Õ(n/ε2) bits.

By the statement of Lemma 5.4, this yields a simple graph H which is a (1 ± ε) total weight
preserving spectral sparsifier of G, and in particular, also a (1± ε) cut sparsifier of G.

Now, on H, by Lemma 3.1, we see that for any clustering V1, . . . Vk,

CCH(V1, . . . Vk) ∈ (1± 2ε)CCG(V1, . . . Vk).

So, if we let OPT denote the minimum correlation clustering value, we know that

OPT(H) ⩽ (1 + 2ε) ·OPT(G).

Now, let us run the αbest-approximation, polynomial time algorithm for correlation clustering
on H (here, we are using the fact that H is simple). We are guaranteed that this recovers a partition
P̂ such that

CCH(P̂ ) ⩽ αbest ·OPT(H).

Finally, we note that the solution we recover satisfies

CCG(P̂ ) ⩽ (1 + 2ε)CCH(P̂ ) ⩽ (1 + 2ε) · αbest ·OPT(H) ⩽ αbest · (1 + 2ε)2 ·OPT(G).

By setting ε = 1/ log(n), the total space required is only Õ(n) bits, yet still recovers an (αbest+
o(1))-approximate solution to correlation clustering.

In the rest of this section, we focus on a proof of Lemma 5.4. The key building block here will
be the existence of deterministic spectral sparsifiers of [BSS09]. It is also known that these can be
leveraged into deterministic insertion-only spectral sparsification algorithms as follows.

Proposition 5.5 (cf. [McG14]). There is a deterministic single-pass streaming algorithm on insertion-
only streams that computes a (1± ε) spectral sparsifier using Õ(n/ε2) space.

Note that it is tempting to try to invoke the same reasoning that was used in the proof of
Theorem 3 to argue that the deterministic spectral sparsification algorithm recovers edges with
large effective resistance. Unfortunately however, this is not necessarily true with the algorithm of
Proposition 5.5. Instead, our algorithm needs to explicitly recover these edges. To do this we first
introduce a few definitions:
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Definition 5.6. For a graph G, we say that a subgraph T ⊆ G is a log(n)-spanner of G, if for
every u, v:

distT (u, v) ⩽ log(n) · distG(u, v),

where distG(u, v) refers to the length of the shortest path between (u, v) in G.

Definition 5.7. We say that T1, . . . Tℓ are ℓ form a sequence of disjoint log(n)-spanners of
G if ∀i ∈ [ℓ], Ti is a log(n)-spanner of the graph G− T1 − T2 − · · · − Ti−1.

We also rely on the following two propositions, one detailing a standard process for creating
log(n)-spanners, and another connecting log(n)-spanners to effective resistance.

Proposition 5.8 (cf. [ABS+20]). Let G be a graph, and let T be the result of iteratively removing
an arbitrary single edge from any cycle of length at least log(n) that remains in G. Then, T is an
log(n)-spanner of G, and T has only O(n) edges.

The work of [ADK+16] provided the following characterization of effective resistance:

Proposition 5.9 ( [ADK+16]). Let G be a simple graph, and let T1, . . . Tℓ be ℓ be a sequence of
disjoint log(n) spanners. Then, for any edge e = (u, v) ∈ G− T1 − · · · − Tℓ, the effective resistance

between u and v is at most log(n)
ℓ in the graph T1 ∪ T2 ∪ · · · ∪ Tℓ.

Using this, we can proceed to the proof of Lemma 5.4:

Proof of Lemma 5.4. Our data structure D will consist of a sequence of disjoint log(n)-spanners as
well as a deterministic spectral sparsifier of the remaining edges. Specifically, we create a sequence
of disjoint log(n)-spanners by processing edges as they arrive in the stream. This procedure is
straightforward: whenever a new edge e arrives, we attempt to insert e into the first spanner T1.
If this creates a cycle of length ⩽ log(n) in T1, then we remove e from T1 and instead try inserting
it into T2, and so on. If e does not get included into T1, . . . Tℓ, then we insert it into the algorithm
of Proposition 5.5.

Since this process is exactly implementing Proposition 5.8, each Ti is a log(n)-spanner of G −
T1 − . . . Ti−1 (again, see [ABS+20] for a discussion). In particular, this means that every edge

e ∈ G−
⋃ℓ

i=1 Ti has effective resistance ⩽ log(n)
ℓ in G by Proposition 5.9.

At this point, the algorithm has recovered the sequence of ℓ spanners T1, . . . Tℓ, as well as a

(1 ± ε) spectral sparsifier of G −
⋃ℓ

i=1 Ti, which we denote by G̃− T . However, observe that we
still cannot use the convex program of Lemma 3.5. Although we are guaranteed that every edge in
G−

⋃ℓ
i=1 Ti has small effective resistance, if we just run the original convex program, it is possible

that it assigns fractional mass to edges which are not in the original graph G, and therefore have
large effective resistances (and hence the randomized rounding scheme would not work). Instead,
given the spanners T1, . . . Tℓ, we define a new set Ê ⊆

(
V
2

)
as

Ê =

{
e ∈

(
V

2

)
: e /∈

ℓ⋃
i=1

Ti ∧Reff,(
⋃ℓ

i=1 Ti)
(e) ⩽

log(n)

ℓ

}
.

Here, we use Reff,(
⋃ℓ

i=1 Ti)
(e) to denote the effective resistance of an edge e in the graph formed

only by the edges contained in the sequence of spanners T1, . . . Tℓ. We can now introduce a modified
convex program whose solution support is guaranteed to be in Ê while remaining feasible:
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Ye ∈ [0, 1] ∀e ∈ Ê,∑
e∈(V2)

Ye · zTLez ⩾ (1− ε)zTL
G̃−T

z ∀z ∈ Rn : ∥z∥2 = 1,

∑
e∈(V2)

Ye · zTLez ⩽ (1 + ε)zTL
G̃−T

z ∀z ∈ Rn : ∥z∥2 = 1,

∑
e∈(V2)

Ye = m−
ℓ∑

i=1

|Ti|.

Claim 5.10. The convex program above is feasible.

Proof. This follows because all edges G−
⋃ℓ

i=1 Ti are in Ê (Proposition 5.9), and hence constitute

a (1 ± ε) spectral sparsifier of G̃− T . Moreover, this solution also preserves the total weight, and
only uses {0, 1} valued edge weights.

We next observe that the separation oracle for the above convex program is efficiently imple-
mentable:

Claim 5.11. There is a polynomial-time separation oracle for the above convex program.

Proof. This follows from essentially same reasoning as done in Lemma 3.5. Indeed certifying the
constraints that Ye ∈ [0, 1] and that

∑
e∈(V2)

Ye = m−
∑ℓ

i=1 |Ti| are both trivial. Thus, it remains

only to check the spectral approximation conditions.

This can be done by checking the eigenvalues of L
†/2
G̃−T

LĜL
†/2
G̃−T

using the same logic as Lemma 3.5

and Claim 4.4.

Now, because of Claim 5.10 and Claim 5.11, we can use the ellipsoid method to find a feasible
solution in polynomial-time [GLS88]. So, let Ĝ then denote this feasible solution recovered by the
above program, where the edge set is Ê, and the corresponding weight on each edge e ∈ Ê is Ye.

Observe that Ĝ ∪
⋃ℓ

i=1 Ti is a fractional (1 ± ε) spectral sparsifier of G̃− T ∪
⋃ℓ

i=1 Ti, and thus a
fractional total weight preserving (1± 3ε) spectral sparsifier of G.

All that remains is to show that efficiently rounding our fractional (1 ± ε) spectral sparsifier
Ĝ ∪

⋃ℓ
i=1 Ti is possible. By Proposition 4.1, sampling every edge e in Ĝ ∪

⋃ℓ
i=1 Ti with probability

pe ⩾ C log(n)
ε2

· we · Reff,Ĝ∪
⋃ℓ

i=1 Ti
(e), and giving weight we

pe
yields a (1 ± ε) spectral-sparsifier with

high probability.

By setting ℓ = C log2(n)
ε2

(using the constant C in Proposition 4.1), it follows that every edge

e ∈ Ê will have effective resistance ⩽ log(n)ε2

C log2(n)
= ε2

C log(n) in
⋃ℓ

i=1 Ti. Because effective resistance

only decreases as one adds more edges, it also follows that every edge e ∈ Ê will have effective
resistance ⩽ ε2

C log(n) in Ĝ ∪
⋃ℓ

i=1 Ti. Thus, in the graph Ĝ ∪
⋃ℓ

i=1 Ti, if we keep every edge
⋃ℓ

i=1 Ti

with probability 1, and then sample every edge e ∈ Ĝ with probability C log(n)
ε2

·we · ε2

C log(n) = we, we

will get with high probability a (1± ε) spectral sparsifier of Ĝ ∪
⋃ℓ

i=1 Ti. We denote this resulting

simple graph by H. Now since Ĝ ∪
⋃ℓ

i=1 Ti is a (1± 3ε) spectral sparsifier to G, it follows that H
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is a (1 ± 5ε) spectral sparsifier of G. Thus running the above procedure with an error parameter
of ε/5 yields a spectral sparsifier with desired accuracy.

Finally, because we are performing the simple, independent Bernoulli rounding, we can repeat
this procedure n3 times and be guaranteed by Claim 3.8 that in some round, the total weight is
exactly preserved. The memory required by the algorithm follows from the Õ(n/ε2) edges stored
in the spanners (by our choice of ℓ and Proposition 5.8), and the complexity of the deterministic
spectral sparsifier (Proposition 5.5). This yields the lemma.
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Appendix

A Omitted Proofs

A.1 Proof of Lemma 3.1

We now provide a proof of Lemma 3.1, restated below.

Lemma (Lemma 3.1). Let G and H be graphs on the same vertex set such that H is a (1±ε) total
weight preserving cut sparsifier of G. Then, for any partition V1, . . . Vk of vertices,

CCH(V1, . . . Vk) ∈ (1± 2ε) · CCG(V1, . . . Vk).

Proof. Recall that by Definition 2.1,

CCG(V1, . . . Vk) =
∑
i∈[k]

|E−(Vi)|+ |E+(V1, . . . Vk)|,

Observe that we can re-write |E+(V1, . . . Vk)| as

|E+(V1, . . . Vk)| =
1

2
·
∑
i∈[k]

cutG(Vi),

as each crossing edge will be present in exactly two of the Vi cuts. Similarly,

|E−(Vi)| =
(
|Vi|
2

)
− 1

2

∑
v∈Vi

deg(v)− cutG(Vi)

 ,

as the second term above counts the number of edges inside each Vi. Together, these mean

CCG(V1, . . . Vk) =
∑
i∈[k]

cutG(Vi) +
∑
i∈[k]

(
|Vi|
2

)
− 1

2

∑
v∈V

deg(v).

Moreover, since G and H have the same total weight, we have∑
i∈[k]

(
|Vi|
2

)
− 1

2

∑
v∈V

degH(v) =
∑
i∈[k]

(
|Vi|
2

)
− 1

2

∑
v∈V

degG(v).

Thus, the only difference between CCG and CCH is in the terms
∑

i∈[k] cutG(Vi) vs.
∑

i∈[k] cutH(Vi).
Because H is a (1± ε) cut sparsifier of G, it follows that

|CCH(V1, . . . Vk)− CCG(V1, . . . Vk)| =

∣∣∣∣∣∣
∑
i∈[k]

cutH(Vi)−
∑
i∈[k]

cutG(Vi)

∣∣∣∣∣∣ ⩽ ε ·
∑
i∈[k]

cutG(Vi).

Finally, we also have

CCG(V1, . . . Vk) ⩾
∑
i∈[k]

|E+(V1, . . . Vk)| =
1

2
·
∑
i∈[k]

cutG(Vi),

and combining the previous two equations gives us,

|CCH(V1, . . . Vk)− CCG(V1, . . . Vk)| ⩽ 2ε · CCG(V1, . . . Vk),

concluding the proof.
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A.2 NP-Hardness of Certifying Cut Sparsification

As stated in Section 1, it was important for us to work with spectral sparsifiers in our de-
sparsification paradigm even though for our application, cut sparsifiers would have sufficed also.
Intuitively, the reason for this is that it is simple to certify that two graphs G1, G2 are spectral
sparsifiers of one another. Naturally then, one may wonder if the same is true about certifying
whether two graphs G1, G2 are cut sparsifiers of one another. We now show that this is not true.
Indeed, we show that being able to certify that arbitrary graphs are (1± ε) cut sparsifiers of each
other is NP-hard in general.

As a starting point, we recall the following about the sparsest cut problem:

Definition A.1. For an arbitrary graph G = (V,E), and a subset S ⊆ V , we say that the sparsity
of the cut S is

Φ(S) =
|E[S, S̄]|
|S||S̄|

.

The sparsity of the graph is defined as

Φ(G) = min
S ̸=∅,V

Φ(S).

We will rely on the following result:

Proposition A.2 ([BBPP12]). It is NP-hard to calculate Φ(G) on unweighted simple graphs G.

Using this we prove the following result (as stated in Section 1, we believe this result is folklore
but we know no reference for it and as such are proving it here for completeness).

Proposition A.3. It is NP-hard to check if two graphs are (1± ε) cut sparsifiers of one another.

Proof. Let G be an arbitrary simple graph for which we wish to approximate Φ(G).

Next, let us consider the complete graph Kn. In order for our graph G to be a (1 ± ε) cut
sparsifier of Kn it must be the case that for every S ⊆ V

(1− ε)cutKn(S) ⩽ cutG(S) ⩽ (1 + ε)cutKn(S).

In particular however, we know that cutKn(S) = |S||S̄|, and further, cutG(S) ⩽ (1 + ε)cutKn(S)
by definition, as Kn contains all edges (and more) of G. Thus, our graph G is a cut sparsifier of
Kn if and only if for every S ⊆ V :

cutG(S) ⩾ (1− ε)|S||S̄|,

equivalently, if and only if

Φ(S) =
|E[S, S̄]|
|S||S̄|

⩾ (1− ε).

Now, suppose we have an algorithm which efficiently certifies whether G is a (1±ε) cut sparsifier
of Kn for any value of ε, and let us denote this algorithm by A(G,Kn, ε). To start, we can query
with ε = 1− 1

n2 . This will always return 1, as we are simply certifying that

cutG(S) ⩾
1

n2
|S||S̄|,
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which is equivalent to checking that G is connected. Now, our goal is to calculate Φ(G), or

equivalently, to find minS ̸=∅,V
|E[S,S̄]|
|S||S̄| . Observe that this expression can only take on ⩽ n3 values,

as the number of edges in E[S, S̄] is ⩽ n2, and the denominator can only take on n/2 values (one
for each value of |S| = 1, . . . n/2). So, there exists a set of ⩽ n3 possible values for Φ(S), which we
denote by Q. Our goal will be to find the smallest value q ∈ Q for which there exists an S such
that Φ(S) = q.

So, let us sort the set of possible values Q, and denote the possible values by q1, . . . q⩽n3 . To
start, we set ε = (1− q2), and query A(G,Kn, ε). Then, we are certifying whether ∀S ⊆ V ,

Φ(S) ⩾ q2.

If this fails, then there must be a cut with smaller sparsity, and hence Φ(G) = q1. Otherwise, we
instead query with ε = 1− q3, then ε = 1− q4, ε = 1− q5, etc. until we find a value ε = 1− qi such
that G is not a (1± ε) cut sparsifier of Kn. For this value, we know that ∀S,

Φ(S) ⩾ qi−1,

but that there exists an S such that
Φ(S) < qi.

Thus, Φ(G) will be exactly qi−1. This requires only poly(n) oracle calls to the cut-certification
algorithm A. Thus, calculating the sparsest cut efficiently reduces to cut certification, meaning the
latter must be NP-hard.
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