
Polynomial Flow-Cut Gaps and Hardness of Directed Cut
Problems

[Extended Abstract]

Julia Chuzhoy
∗

School of Mathematics
Institute for Advanced Study

Princeton, NJ 08540
cjulia@math.ias.edu

Sanjeev Khanna
†

Dept. of Computer & Information Science
University of Pennsylvania

Philadelphia, PA 19104
sanjeev@cis.upenn.edu

ABSTRACT
We study the multicut and the sparsest cut problems in
directed graphs. In the multicut problem, we are a given
an n-vertex graph G along with k source-sink pairs, and
the goal is to find the minimum cardinality subset of edges
whose removal separates all source-sink pairs. The sparsest
cut problem has the same input, but the goal is to find a sub-
set of edges to delete so as to minimize the ratio of deleted
edges to the number of source-sink pairs that are separated
by this deletion. The natural linear programming relaxation
for multicut corresponds, by LP-duality, to the well-studied
maximum (fractional) multicommodity flow problem, while
the natural LP-relaxation for sparsest cut corresponds to
maximum concurrent flow. Therefore, the integrality gap
of the linear programming relaxation for multicut/sparsest
cut is also the flow-cut gap: the maximum ratio, achievable
for any graph, between the maximum flow value and the
minimum cost solution for the corresponding cut problem.
Starting with the celebrated max flow-min cut theorem of
Ford and Fulkerson, flow-cut gaps have played a central role
in combinatorial optimization. For many NP-hard network
optimization problems, the best known approximation guar-
antee corresponds to our understanding of the appropriate
flow-cut gap.
Our first result is that the flow-cut gap between maximum
multicommodity flow and minimum multicut is Ω̃(n1/7) in
directed graphs. We show a similar result for the gap be-
tween maximum concurrent flow and sparsest cut in directed
graphs. These results improve upon a long-standing lower
bound of Ω(log n) for both types of flow-cut gaps. We notice

∗Supported by a grant of the state of New Jersey to the
Institute for Advanced Study.
†Supported in part by an NSF Career Award CCR-0093117
and by NSF Award CCF-0635084.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07,June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

that these polynomially large flow-cut gaps are in a sharp
contrast to the undirected setting where both these flow-
cut gaps are known to be Θ(log n). Our second result is
that both directed multicut and sparsest cut are hard to ap-

proximate to within a factor of 2Ω(log1−ε n) for any constant
ε > 0, unless NP ⊆ ZPP. This improves upon the recent
Ω(logn/ log logn)-hardness result for these problems. We
also show that existence of PCP’s for NP with perfect com-
pleteness, polynomially small soundness, and constant num-
ber of queries would imply a polynomial factor hardness of
approximation for both these problems. All our results hold
for directed acyclic graphs.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory.

Keywords
Concurrent Flow, Directed Multicut, Directed Sparsest cut,
Flow-Cut Gaps, Hardness of Approximation, Multicommod-
ity Flow.

1. INTRODUCTION
Cuts are fundamental combinatorial objects that play an
important role in the study of embeddings, graph theory,
Markov chains, parallel computation and optimization. Some
representative applications of cuts include the use of bisec-
tion width and flux in establishing bounds for parallel al-
gorithms, use of conductance in establishing rapid-mixing
property of Markov chains, balanced separators for divide-
and-conquer algorithms, and sparsest cuts in network design
and routing. Essentially all cut problems that arise in above
application scenarios are NP-hard. One of the most suc-
cessful approaches to designing approximation algorithms
for cut problems relies on the rounding of natural linear-
programming relaxations for these problems. The dual lin-
ear programs of these relaxations formulate flow problems
in networks. By strong duality, the largest gap between
the maximum flow and the minimum cut achievable for any

problem instance (also called the flow-cut gap) is exactly
the integrality gap of these cut relaxations. If one views a
cut computation as revealing some inherent bottleneck to
communication in a network, then the flow-cut gap may be
viewed as revealing how closely this bottleneck can be ap-
proached. Starting from the celebrated max flow-min cut
theorem of Ford and Fulkerson, flow-cut gaps have played a
central role in combinatorial optimization. For many opti-
mization problems, the best known approximation guaran-
tees correspond to upper bounds on flow-cut gaps. Some ex-
amples include approximation guarantees for undirected and
directed multicut problems, sparsest cut in planar graphs,
well-linked decompositions, and the performance ratio for
oblivious routing.
In this paper, we make progress on some long-standing ques-
tions concerning flow-cut gaps in directed graphs and ap-
proximability of directed cut problems. We start by de-
scribing the cut problems that we study and with a brief
review of prior work for them.

Directed Multicut: An instance of the directed multicut
problem consists of a directed n-vertex graph G(V,E) and a
collection of k source-sink pairs {(s1, t1), . . . , (sk, tk)}. The
goal is to remove the smallest possible number of edges so
as to separate all source-sink pairs; a pair (si, ti) is consid-
ered separated iff in the resulting graph there is no path
connecting si to ti. The parameter k is also referred to as
the number of commodities in the instance. Vertices in the
set T = {s1, t1, s2, t2, ..., sk, tk} are called terminals, and all
the other vertices are non-terminals.
For the single-commodity case, the celebrated max-flow min-
cut theorem [20] shows that the size of minimum (s1, t1) cut
equals the maximum flow from s1 to t1. The tight dual-
ity between cuts and flows breaks down even in undirected
graphs for k ≥ 3. However, the (worst-case) gap between
maximum multicommodity flow and the minimum multicut
is well-understood for undirected graphs and is known to
be Θ(log k) [28, 22]. In a sharp contrast, Saks et al. [30]
have shown that the flow-cut gap in directed graphs can be
as large as k − ε for any ε > 0 [30]. Since it is easy to
see that the flow-cut gap cannot exceed k, it may seem that
the flow-cut gaps are well-understood in the directed case as
well. However, the size of the Saks et al. construction grows
super-exponentially in k, and the gap realized by these in-
stances is only O(log n/ log logn), where n is the number of
vertices in G. As a function of n, the strongest gap known is
Ω(logn), and it is achieved by an expander-based construc-
tion [28]. This lack of understanding of the directed flow-cut
gaps is reflected as well in a large separation between the up-
per and the lower bounds on the approximability threshold
of directed multicut. Cheriyan, Karloff and Rabani [11] gave
an O(

√
n logn)-approximation algorithm for directed multi-

cut, and Gupta [24] subsequently improved it to an O(
√
n)-

approximation. In a very recent work, Agarwal, Alon, and
Charikar [1], have further improved the approximation ra-

tio to Õ(n11/23). Since all these algorithms are based on
rounding of the natural LP relaxation for multicut, they
also give matching upper bounds on the gap between max-
imum multicommodity flow and the minimum multicut in
directed graphs. On the hardness front, recently, Chuzhoy
and Khanna [12] established an Ω(log n/ log logn)-hardness
for directed multicut, assuming that NP is not contained in

DTIME
(
npolylog(n)

)
. While these algorithmic and hardness

results represent important steps in closing the gaps in our
understanding of the directed multicut problem, they leave
open the possibility that the approximability threshold may
range anywhere from logarithmic to polynomial function of
the input size. We note that the approximability threshold
remains unresolved for undirected multicut problem as well,
and it currently lies somewhere between APX-hardness [15]
and Θ(log k) [28, 22]. However, if one assumes the Unique
Games Conjecture of Khot [26], undirected multicut prob-
lem can be shown to be hard to approximate to within any
constant factor [10, 27].

Directed Sparsest Cut: The input to the directed spars-
est cut problem is the same as for multicut, but the objective
now is to find a subset E′ of edges so as to minimize the ratio
|E′|/|SE′ | where SE′ is the set of source-sink pairs, which
are disconnected in the graph G(V,E \ E′). In general, the
notion of a sparsest cut in a graph can be defined in two dis-
tinct ways. In one version of the problem, which we refer to
as the bipartite sparsest cut, the sparsest cut in a graph is a
bipartition of vertices into two sets S and S̄ that minimizes
the ratio of |δ(S, S̄)|1 to |{(si, ti) | si ∈ S, ti ∈ S̄}|. In the
second version, which we refer to as the non-bipartite spars-
est cut or simply as the sparsest cut, we seek to minimize
the ratio of the number of edges deleted to the resulting
number of pairs separated. We note here that the dual of
concurrent flow problem corresponds to a relaxation for the
non-bipartite sparsest cut problem. In undirected graphs,
it is easy to see that the two notions are equivalent. How-
ever, in directed graphs, as highlighted in the very recent
work of Charikar et al. [9], these versions seem to behave
quite differently. In particular, using a result of Feige and
Kogan [19], it is shown in [9] that bipartite sparsest cut is

hard to approximate to within 2Ω((log n)δ) for some δ > 0
unless 3SAT has subexponential-time algorithms. Further-
more, this hardness can be strengthened to an nδ-hardness
for some δ > 0 assuming a hypothesis concerning hard-
ness of random 3SAT, as described by Feige [18]. In con-
trast, for the directed non-bipartite sparsest cut, so far only
an Ω(logn/ log logn)-hardness is known, due to Chuzhoy
and Khanna [12]. On the positive side, Hajiaghayi and
Räcke [25] gave an O(

√
n)-approximation for directed non-

bipartite sparsest cut. The recent work of Agarwal et al. [1]

improves this to an Õ(n11/23)-approximation, and as be-
fore, this is also the best known upper bound on the gap
between concurrent flow and sparsest cut. Thus, at present,
the known upper bounds on the approximability as well as
flow-cut gaps of both directed multicut and directed non-
bipartite sparsest cut are similar.

Our Results and Techniques: Our first main result es-
tablishes a polynomial lower bound on directed flow-cut
gaps.

Theorem 1.1. The flow-cut gap between maximum mul-
ticommodity flow and directed multicut is Ω̃(n1/7). The flow-
cut gap between maximum concurrent flow and directed (non-

bipartite) sparsest cut is also Ω̃(n1/7). Both results hold even
on directed acyclic graphs.

1δ(S, S̄) refers to all edges (x, y) in G where x ∈ S and
y ∈ S̄.

We now give an overview of our techniques for the flow-
cut gap results above. We will focus on the gap between
maximum multicommodity flow and directed multicut. For
clarity of exposition, we work with the vertex version of
the problem, where the goal is to remove the minimum-
cardinality subset of non-terminal vertices that disconnects
all the source-sink pairs. A standard transformation allows
us to translate a flow-cut gap result for the vertex version
to the edge version.
Our starting point is an instance H of the multicut prob-
lem that is formed by a union of k graphs H1, ..., Hk defined
over the same set of vertices. Instance Hi corresponds to the
source-sink pair si-ti and it is a layered graph with L layers
for some parameter L. We say that path P connecting a
source si to its sink ti is canonical if it is entirely contained
in Hi. The main property of instance H is that if we are
required to eliminate only the canonical paths, then frac-
tional solution that assigns 1/L to each vertex is a feasible
solution of cost n/L, while the cost of any integral solu-
tion must be at least Ω(n). The fractional solution above
is feasible for the restricted problem because the canonical
paths in instance H are long (length at least L). In order
to convert this to a true integrality gap result, we need to
rule out “short” non-canonical paths. Towards this end, we
define another instance L of directed multicut, which can
also be viewed as a union of k graphs L1, . . . ,Lk. Each Li
is a graph with O(L) layers that contains many source-sink
pairs. A path connecting a source-sink pair in instance L
is called canonical if it uses only edges from Li. The main
property of graph L is that while the canonical paths share
many vertices, no non-canonical paths exist in the graph.
We will refer to graph L as the labeling scheme. The basic
idea of using a labeling scheme to ensure that only canonical
paths exist between source-sink pairs was first used by An-
drews and Zhang [3] to show hardness of directed congestion
minimization. The dependence of the size of the labeling
scheme on the parameters k and L is crucial to determining
the final gap or hardness result. The scheme in [3] gives

a graph L of size LO(log k), which is insufficient to obtain
polynomial gaps. We present a simple new labeling scheme
that results in a graph of size poly(k, L). We note that we
use a similar labeling scheme in our parallel result on the
hardness of directed routing with congestion [13]. The same
labeling scheme has also been used independently by [21] for
establishing the hardness of directed routing problems with
congestion. A merged version of the results from [13] and
[21] appears in [14].
It is worth highlighting an important point of departure from
the usage of labeling schemes in context of disjoint path
problems. A gap result of Ω(f(n)) for directed multicut
necessarily requires that the total number of paths connect-
ing source-sink pairs be exponential in f(n). Otherwise, it
is easy to see that the flow-cut gap cannot exceed o(f(n)).
This issue does not arise in the setting of routing problems.
Consequently, we modify our basic labeling scheme to en-
sure that it does not permit any small integral solution. This
transformation preserves the property that no non-canonical
source-sink paths exist but introduces short canonical paths.
The final step is to appropriately compose together graphs
H and L to create a new instance where all canonical paths
are long, no non-canonical paths exist and integral solutions
have high cost. The resulting instance gives us the desired
flow-cut gap.

Our second result shows that the flow-cut gap results above
can be extended to almost-polynomial hardness of approxi-
mation results for directed multicut and sparsest cut.

Theorem 1.2. The directed multicut problem and the di-

rected (non-bipartite) sparsest cut problem are 2Ω(log1−ε n)-
hard to approximate for any constant ε > 0, even on directed
acyclic graphs, unless NP ⊆ ZPP.

One way to show the hardness result above is by replac-
ing the graph H in the flow-cut gap construction with an
appropriate graph encoding the constraints from a Raz ver-
ifier. There is a natural way of doing such an encoding by
strongly using the projection property of the solutions to
the Raz verifier constraints. However, this approach cannot
give a polynomial hardness since the size of the constraint
satisfaction system associated with Raz verifier grows fast as
the soundness decreases, and thus soundness which is poly-
nomially small in the system size cannot be achieved.
In order to go to polynomial-hardness, we need to allow en-
coding of general constraint systems which might not have
any analog of the projection property. Using several addi-
tional ideas we show that we can create desired encodings
even when the underlying constraints lack the projection
property. An important consequence of our construction is
the following theorem.

Theorem 1.3. If NP has probabilistically checkable proof
systems with constant number of queries, proof table entries
defined over a field F of polynomial size, logarithmic number
of random bits, perfect completeness and polynomially small
soundness, then directed multicut and directed sparsest cut
are nΩ(1)-hard to approximate.

Existence of PCP’s for NP with above properties was first
conjectured by Bellare et al. [8]. While the conjecture re-
mains unproven yet, a sequence of papers have made progress
towards proving this conjecture. In particular, Dinur et
al. [16] have shown that for any ε > 0, NP has a polynomial-
size PCP that queries O(1) variables ranging over a field

F with |F | = 2Θ(log1−ε n), has perfect completeness, and
achieves soundness O(1/|F |). Proving the Bellare et. al.

conjecture requires pushing this result to |F | = 2Θ(logn),
maintaining perfect completeness, and achieving soundness
O(1/|F |β) for some β > 0.

Organization: Due to space limitations, we will primarily
focus on proving Theorem 1.1 in the main body of the paper.
We start with some preliminaries in Section 2, and present
our flow-cut gap construction in Section 3. Finally, we de-
scribe in Section 4 the main difficulty as well the key addi-
tional ideas needed in translating the flow-cut gap results to
hardness results. We give an overview of the construction
used in establishing Theorems 1.2 and 1.3. A full version
with complete technical details appears on the webpages of
the authors.

2. PRELIMINARIES
Linear programming formulations: We start by defin-
ing a natural LP relaxation for directed multicut. For each
edge e ∈ E, there is an indicator variable xe that represents
whether or not e is in the solution. For each source-sink pair
(si, ti), let Pi be the set of all the paths connecting si to ti.
The multicut LP-relaxation and its dual are as follows:

(LP1-P)
min

∑
e∈E xe

s.t. ∑
e∈p xe ≥ 1 ∀i : 1 ≤ i ≤ k, ∀p ∈ Pi
xe ≥ 0 ∀e ∈ E

(LP1-D)

max
∑k
i=1

∑
p∈Pi

fp
s.t. ∑

p:e∈p fp ≤ 1 ∀e ∈ E

fp ≥ 0 ∀i : 1 ≤ i ≤ k, ∀p ∈ Pi
Notice that (LP1-D) is equivalent to the maximum multi-
commodity flow problem, where the goal is to maximize the
total flow routed between the source-sink pairs, while the
flow routed via any edge cannot exceed 1. From LP-duality,
the optimal costs of both linear programs are equal, and
thus the integrality gap of (LP1-P) is also the flow-cut gap
between multicommodity flow and minimum multicut.
We can similarly define an LP-relaxation for sparsest cut.
We use the same notation as for the directed multicut LP-
formulation. Consider any solution to the sparsest cut prob-
lem. For each edge e ∈ E, let xe denote whether edge e is
in the solution, and for each i : 1 ≤ i ≤ k, let hi denote
whether the source-sink pair (si, ti) is disconnected. Let
D =

∑
i=1k hi be the total number of source-sink pairs dis-

connected by the solution. We now define, for each edge e,
x′e = xe/D, and for each source-sink pair (si, ti), h

′
i = hi/D.

It is then easy to see that we have defined a feasible solution
to the linear program (LP2-P) that appears below, along
with its dual (LP2-D). Moreover, the sparsity of the cut
equals to the value of the objective function of (LP2-P) on
the above solution. Thus, (LP2-P) is a relaxation of the
directed sparsest cut problem.

(LP2-P)
min

∑
e∈E x

′
e

s.t. ∑
e∈p x

′
e ≥ h′

i ∀i : 1 ≤ i ≤ k, ∀p ∈ Pi∑k
i=1 hi ≥ 1
xe, h

′
i ≥ 0 ∀e ∈ E, ∀i : 1 ≤ i ≤ k

(LP2-D)
max λ

s.t. ∑
p∈Pi

f(p) ≥ λ ∀i : 1 ≤ i ≤ k∑
p:e∈p f(p) ≤ 1 ∀e
f(p) ≥ 0 ∀i : 1 ≤ i ≤ k, ∀p ∈ Pi

Notice that (LP2-D) is equivalent to the maximum concur-
rent flow problem, in which we need to maximize a value λ,
such that λ units of flow can be routed simultaneously for
each source-sink pair, while the flow on any edge does not
exceed 1. From LP-duality, the maximum concurrent flow in
any graph is equal to the minimum fractional sparsest cut.
Therefore, the integrality gap of (LP2-P) is also the flow-
cut gap between maximum concurrent flow and minimum
sparsest cut.
Vertex version of multicut For the sake of convenience,
we consider the vertex version of the directed multicut prob-
lem. The input for this problem is denoted byG = (V,M, E),
where V is the set of non-terminal vertices, M is the set of
the source-sink pairs and E is the set of edges. Let T (M) de-
note the set of all the terminals, T (M) = {s, t | (s, t) ∈ M}.

The goal is to remove the minimum cardinality subset of
non-terminal vertices so as to disconnect all the source-sink
pairs. We prove the lower bounds for flow-cut gap and hard-
ness of approximation for the vertex version of the directed
multicut. In order to obtain the same result for the multicut
problem itself, we use a standard procedure to convert a ver-
tex version instance G to the instance of directed multicut,
as follows. Each non-terminal vertex v ∈ V is replaced by a
special directed edge (v+ → v−). Each edge e = (u→ v) in
the original graph is replaced by an edge (u− → v+). Let G′

denote the new instance. We can assume w.l.o.g., that any
integral solution of G′ only contains special edges, and thus
the integral solution cost for both instances are the same.
Moreover, if there is a subset of non-terminal vertices in G
whose removal disconnects an α-fraction of source-sink pairs,
then there is also a subset of edges in G′ of the same size
whose removal disconnects the same fraction of source-sink
pairs, and vice versa. The linear programming formulation
for the vertex version is as follows:

(LP3)
min

∑
v∈V xv

s.t. ∑
v∈p∩V xv ≥ 1 ∀i : 1 ≤ i ≤ k, ∀p ∈ Pi
xv ≥ 0 ∀v ∈ V

Given a fractional solution to (LP3) on graph G, there is a
fractional solution of the same value to (LP1-P) on G′: each
special edge e = (v+ → v−) is assigned xe = xv. It follows
that the integrality gap and hardness results for the vertex
version carry over to our original problems. This is also true
for the bi-criteria setting, where only a constant fraction of
source-sink pairs needs to be disconnected.

3. INTEGRALITY GAP
Let n be some parameter. We construct a multicut in-
stance G where all the parameters are defined in terms of
n, and the instance size (the number of vertices) is N =
O(n7/(logn)3). We show that the integrality gap of G is

Ω
(

n
logn

)
= Ω

(
N1/7

log4/7 N

)
.

Let L = n/(4 logn). Our goal is to construct a multicut
instance G that has the following properties:
(C1): Any path connecting any source-sink pair contains at

least L non-terminal vertices.

(C2): There exists a constant ε > 0 such that any inte-
gral solution that disconnects a (1 − ε)-fraction of the pairs
contains at least Ω(N) vertices.

It is easy to see that if G has the above properties, then

the integrality gap is at least Ω(L) = Ω
(

N1/7

log4/7 N

)
, since

a feasible fractional solution to (LP3) of cost O(N/L) can
be obtained by assigning 1/L-fraction to each non-terminal
vertex.
Graph G is constructed in three steps. In the first step,
we construct an initial multicut instance H, and we de-
fine, for each source-sink pair, a collection of canonical paths.
Graph H has property (C2), while property (C1) holds for
canonical paths, i.e., each canonical path contains at least L
non-terminal vertices. However, there are also non-canonical
paths connecting source-sink pairs in H, which might con-
tain few non-terminal vertices. Thus, property (C1) does not

hold in general. The goal of the next two steps is to eliminate
the non-canonical paths, while preserving the other proper-
ties of H. To achieve this, in the second step we construct
a graph L, called the labeling scheme. Graph L also has a
collection of source-sink pairs, and for each source-sink pair
a collection of canonical paths connecting the source to the
sink is defined. The main property of graph L is that while
the canonical paths share many vertices, no non-canonical
paths exist in L. In the third step, we compose the graphs
H and L together to obtain the final graph G, for which
both properties (C1) and (C2) are true.

3.1 Step 1: Constructing GraphH
In this section we construct our initial graphH = (V,M, E).
Let V = {1, . . . , n} be the set of non-terminal vertices of H,
and let k = n. For each i : 1 ≤ i ≤ k, we have a source-
sink pair si-ti. Thus, M = {(si, ti) | 1 ≤ i ≤ k}. In order
to define set E of edges, we construct, for each source-sink
pair si-ti, an auxiliary graph Hi, which is defined over the
same set of vertices as H. Graph H can then be viewed as
the union of graphs Hi, 1 ≤ i ≤ k. Thus, if we denote by
Ei the set of edges of graph Hi, then E = ∪ki=1Ei. We call
the edges belonging to set Ei edges of type i.
The Graph Hi: Fix some i : 1 ≤ i ≤ k. Graph Hi con-
tains a single source-sink pair (si, ti). The non-terminal ver-
tices of Hi are a subset of V and they are arranged into
L = n/(4 logn) layers containing δ = log n vertices each.
The layers are denoted S1(i), S2(i), . . . , SL(i) ⊆ V and they
are constructed one after another, starting from the first
layer. In order to construct the jth layer, for 1 ≤ j ≤ L,
we select uniformly at random δ distinct vertices from set
V \ (S1(i) ∪ · · · ∪ Sj−1(i)). Notice that since δ = log n,
L = n/(4 logn) and |V | = n, it is possible to construct

these layers, and in total |⋃Lj=1 Sj(i)| = n/4. Edges Ei
of graph Hi are defined as follows. There is an edge from
si to every vertex in the first layer, S1(i). For every pair
of consecutive layers Sj(i), Sj+1(i), where j : 1 ≤ j < L,
there is an edge from every vertex in Sj(i) to every vertex
in Sj+1(i). Finally, for every vertex in the last layer SL(i),
there is an edge connecting this vertex to ti. This concludes
the definition of graph Hi. Recall that the final set of edges
of graph H is E = ∪ki=1Ei, where the edges in set Ei are
called edges of type i.
Properties of graph H: A path connecting a source si to
sink ti (for 1 ≤ i ≤ k) is called a canonical path if it only
contains edges of type i.

Observation 1. The number of non-terminal vertices on
any canonical source-sink path in graph H is at least L.

The observation follows from the fact that any canonical
path connecting si to ti in H also exists in graph Hi, and
after leaving source si it has to traverse all the layers of
graph Hi before reaching sink ti. Therefore, property (C1)
holds for canonical paths. However, there might also be
non-canonical paths connecting si to ti whose length can be
short and for which (C1) is not true.
Next we establish property (C2) for graph H. We actually
establish a stronger version of this property that we need for
future analysis. Let S ⊆ V be any subset of non-terminal
vertices, |S| ≤ n/16. For each i : 1 ≤ i ≤ k, we say that i is
covered by S, iff the removal of vertices of S from graph Hi
disconnects si from ti in this graph. Equivalently, S covers
i iff there exists a layer j : 1 ≤ j ≤ L with Sj(i) ⊆ S. Let

B be the following bad event: there is a set S ⊆ V of non-
terminal vertices, |S| ≤ n/16, such that S covers more than
half the indices i : 1 ≤ i ≤ k. The next lemma bounds the
probability of event B.

Lemma 3.1. The probability of event B is at most 2−n

Proof. Let S ⊆ V be any subset of non-terminal ver-
tices, |S| ≤ n/16. Fix some i : 1 ≤ i ≤ k and consider the
random choices made when layers S1(i), . . . , SL(i) of graph
Hi are constructed. Even though the choices are not inde-
pendent, when vertices of subset Sj(i) are chosen, the size of

the set V \⋃j−1
`=1 S`(i) is at least 3n

4
+ δ. Therefore, no mat-

ter what vertices have been chosen by S1(i), . . . , Sj−1(i), the

probability that Sj(i) ⊆ S is at most
(
n/16
3n/4

)δ
≤ (1

8

)logn ≤
1
n3 (we use conditional probabilities). Therefore, using the
union bound, the probability that i is covered by S is at
most L

n3 ≤ 1
4n2 logn

. Since the random choices made for dif-

ferent graphs Hi, 1 ≤ i ≤ k are completely independent, the
probability that half of these indices are covered is at most:

(
n

n/2

)(
1

4n2 logn

)n/2
≤ 2−n logn/4

The number of possible choices of subset S is at most 2n,
and applying the union bound for all such subsets finishes
the proof.

Let S ⊆ V be any subset of non-terminal vertices. Observe
that if S disconnects a source-sink pair si-ti in graphH, then
S also covers i. Therefore, from Lemma 3.1, any solution
of size up to n/16 disconnects at most half the source-sink
pairs in H, with high probability. From now on we assume
that B does not happen.
As we have shown, property (C2) holds in graph H. As
for property (C1), we are only guaranteed that it holds for
the canonical paths. It is therefore possible that for many
source-sink pairs short non-canonical paths exist. The goal
of the next steps is to resolve this problem while preserving
the other properties of graph H.

3.2 Step 2: Handling Non-Canonical Paths
In this section we build a graph L that represents a label-
ing scheme. In the final step we combine graphs H and L
together to obtain the final graph G. We notice that we use
the labeling scheme and its associated graph in the hard-
ness of approximation construction as well. We start with
the definition of a labeling scheme.
A labeling scheme with parameters τ and Z, is denoted by
L = Lτ,Z = (U,M′, E′), and it is defined as follows. There is
a set Y = {1, . . . , |Y |} of labels associated with the labeling
scheme. The non-terminal vertices are partitioned into Z
layers, where each layer contains one vertex representing
each label y ∈ Y . Thus, the set of the non-terminal vertices
is: U = {u(y, h) | y ∈ Y, 1 ≤ h ≤ Z}. There are τ different
types of source-sink pairs. For each i : 1 ≤ i ≤ τ , there are
|Y | sources of type i: {si(y)}y∈Y , and |Y | sinks of type i:

{ti(y)}y∈Y . We describe below how these sources and sinks
are paired with each other. We now proceed to describe the
edges of L. Each edge either connects a source to a vertex
in the first layer, or connects a vertex in the last layer to
a sink, or connects a non-terminal vertex in layer j to a
non-terminal vertex in layer j + 1, for 1 ≤ j < Z.

For each i : 1 ≤ i ≤ τ , there is a set E′
i of edges of type

i, which are defined as follows. We define a permutation
πi : Y → Y . For each type-i source si(y), we add an edge
from si(y) to the first-layer vertex u(πi(y), 1). For each non-
terminal vertex u(y, h) where 1 ≤ h < Z, we add an edge
from u(y, h) to u(πi(y), h+1). Finally, for each layer-Z non-
terminal vertex u(y, Z), we add an edge from u(y, Z) to sink
ti(πi(y)). Therefore, edges of type i form a perfect matching
between each pair of consecutive layers, between the type-
i sources and the vertices of the first layer, and between
the vertices of the last layer and the type-i sinks. Thus, if
we start at some type-i source si(y) and follow type-i edges,
then we will construct a path, denoted by Pi(y), that ends at
some type-i sink ti(y

′). Moreover, the paths {Pi(y)}y∈Y are
vertex disjoint. The pairs of endpoints of these paths define
the source-sink pairs for the labeling scheme. Thus, we have
|Y | source-sink pairs of type i, and each type-i source and
sink is involved in exactly one such pair. The paths Pi(y)
are called the canonical paths for the corresponding source-
sink pairs. Notice that for each source-sink pair there is a
unique canonical path connecting it.
A labeling scheme L is called valid iff for every source-sink
pair, the canonical path is the only path connecting the
source to the sink. In other words, no non-canonical paths
connecting source-sink pairs exist. We note that the con-
struction of [3] can be viewed as a labeling scheme, where

|Y | = ZO(log τ). This construction is insufficient to get a
polynomial integrality gap. Below we define a more efficient
labeling scheme, where |Y | = poly(τ, Z).
In order to define the labeling scheme, we now only need
to specify the value of parameter |Y | and to define the per-
mutations πi, for 1 ≤ i ≤ k. For each i : 1 ≤ i ≤ τ ,
we define an increment vector µi ∈ Z

2, µi = (i, i2). We
view the set of labels Y in the following fashion: each label
y ∈ Y is viewed as a 2-dimensional vector, whose first entry
ranges in [2τZ] and the second entry ranges over [2τ2Z].
Thus, Y = [2τZ] × [2τ2Z], and |Y | = O(τ3Z2). For each
label y ∈ Y , we denote by y1 and y2 its first and second co-
ordinate respectively. We define an addition operation be-
tween pairs of labels (since all increment vectors µi ∈ Y , this
also defines addition of increment vectors and labels). For
y, y′ ∈ Y , we say that y⊕y′ = y′′, iff y′′1 = y1+y′1 mod (2τZ)
and y′′2 = y2 + y′2 mod (2τ2Z). Finally, we define the per-
mutation πi : Y → Y for each i : 1 ≤ i ≤ k, as fol-
lows: for each y ∈ Y , πi(y) = y ⊕ µi. This completes the
definition of the labeling scheme. It now only remains to
show that the above labeling scheme is valid, i.e., no non-
canonical source-sink paths exist. Notice that for each type
i : 1 ≤ i ≤ τ , si(y)-ti(y

′) are a source-sink pair iff y′ =
y⊕ ((Z + 1)µi). Thus, the set of source-sink pairs is: M′ =
{(si(y), ti(y′)) | 1 ≤ i ≤ τ, y ∈ Y, y′ = y ⊕ ((Z + 1)µi)}.

Lemma 3.2. Let (si(y), ti(y
′)) ∈ M′ be any source-sink

pair of L. Then the only path connecting si(y) to ti(y) in
the graph is the canonical path Pi(y).

Proof. Assume otherwise, and let P be a non-canonical
path connecting si(y) to ti(y

′). Recall that y′ = y ⊕ ((Z +
1) · µi). Let j1, . . . , jZ+1 be the types of edges used along
path P . Since path P is non-canonical, at least one of the
types jq 6= i, where 1 ≤ q ≤ Z + 1. As path P must
reach the sink ti(y

′), it must be the case that y′ = y ⊕
µj1 ⊕ · · · ⊕ µjZ+1 . Recall that the first coordinate in each
increment vector lies between 1 and τ , while the second

coordinate lies between 1 and τ2. Since the addition of the
first coordinate is performed modulo 2τZ and the addition
of the second coordinate is performed modulo 2τ2Z, we have
that (Z+1)µi =

∑Z+1
q=1 µjq (here we use standard addition).

Therefore, µi is convex combination of µj1 , . . . , µjZ+1 , while
for some q : 1 ≤ q ≤ Z + 1, µjq 6= µi. However, the curve

(x, x2) is strictly convex. Therefore, it is impossible that
one point on this curve is a convex combination of other
points.

We have completed the construction of the labeling scheme
L. The main features of the labeling scheme is that while
the canonical paths connecting the source-sink pairs are long
and they share many vertices, no non-canonical source-sink
paths exist in L. There remains however one major obstacle
in combining the labeling scheme with graph H to obtain
the final graph G. When viewed as a directed multicut in-
stance, L has a cheap solution: the removal of all the vertices
in one of the layers disconnects all the source-sink pairs. We
perform one final transformation to obtain the final labeling
scheme L′ = (U,M′, E′′). The set of non-terminal vertices
and the source-sink pairs in L′ are the same as in L. As
for the set E′′ of edges, it is defined as follows. For every
i : 1 ≤ i ≤ k, we define a set E′′

i of edges of type i. Consider
any pair of vertices x, x′ ∈ U ∪ T (M′) (they can be either
terminal or non-terminal vertices). If there is a path con-
sisting of type-i edges from x to x′ in L, and if (x, x′) 6∈ M′

(i.e., they are not a source-sink pair), then we add a type-i
edge (x → x′) to E′′

i . The final set of edges E′′ = ∪ki=1E
′′
i .

We refer to L′ as the modified labeling scheme. Next we
describe its properties.
Let (si(y), ti(y

′)) ∈ M′ be any source-sink pair of type i,
and let P be any path connecting si(y) to ti(y

′) in L′. Path
P is called canonical if it contains type-i edges only. Notice
that now for each source-sink pair there are many canonical
paths.

Claim 3.1. There are no non-canonical source-sink paths
in L′.

Proof. Let P be any non-canonical path connecting some
source-sink pair si(y)-ti(y

′). Let e = (x, x′) be any edge on
path P , and suppose its type is i′. Then there is a path
connecting x to x′ in graph L containing type-i′ edges only.
Therefore, path P corresponds to some non-canonical path
connecting si(y) to ti(y

′) in graph L, which is impossible
from Lemma 3.2.

3.3 Step 3: The Final Graph
We are now ready to describe the construction of the final
graph G = (V ∗,M∗, E∗); it is done by combining graph
H = (V,M, E) with the modified labeling scheme L′ =
(U,M′, E′′). We use the modified labeling scheme with pa-
rameters τ = k and Z = 32L. Thus, |Y | = O(k3Z2) =
O(n3Z2). The final graph is defined as follows. The set of
non-terminal vertices V ∗ = U × V , that is,

V ∗ = {v(y, h, p) | y ∈ Y, 1 ≤ h ≤ 32L, 1 ≤ p ≤ n}
For each non-terminal vertex v(y, h, p), we define its pre-
images in graphs H and L′ to be gH(v(y, h, p)) = p and
gL′(v(y, h, p)) = u(y, h), respectively. The set of source-sink
pairs is M∗ = M′, that is, it is given by
{(si(y), ti(y′)) | 1 ≤ i ≤ k, y ∈ Y, y′ = y ⊕ ((32L+ 1)µi)}.
The pre-images of the sources in graphsH and L′ are defined
to be gH(si(y)) = si and gL′(si(y)) = si(y), respectively.

The pre-images of the sinks are defined in a similar way.
Finally, the edges are defined as follows. For each i : 1 ≤
i ≤ k, we define a subset E∗

i of edges of type i, and we set
E∗ =

⋃n
i=1 E

∗
i . We add a type-i edge (x → x′) to set E∗

i

iff a type-i edge exists both in graph H and in graph L′

between the corresponding pre-images, that is,
E∗
i = {(x→ x′) | x, x′ ∈ V ∗ ∪ T (M∗),

(gH(x) → gH(x′)) ∈ Ei and (gL′(x) → gL′(x′)) ∈ E′′
i }

This completes the definition of graph G. The number
of non-terminal vertices in graph G is bounded by N ≤
|Y |Zn ≤ O(n3L3n) = O(n7/(logn)3). Since L = n/(4 logn),

we have that L = Ω
(

N1/7

(logN)4/7

)
.

Fractional solution:.
For any source-sink pair (si(y), ti(y

′)) ∈ M∗, we say that
path P connecting the source to the sink is canonical iff it
uses edges of type i only. The next lemma establishes the
property (C1) for graph G.

Lemma 3.3. For any source-sink pair si(y)-ti(y
′) in G,

any path connecting si(y) to ti(y
′) contains at least L non-

terminal vertices.

The proof relies on the following lemma.

Lemma 3.4. No non-canonical source-sink paths exist in
graph G.

Proof. Assume otherwise. Let P be a non-canonical
path connecting some source si(y) to its sink ti(y

′). Let
P ′ be the sequence of pre-images of vertices of P in graph
L′, appearing in the same order as in P . Then P ′ forms a
non-canonical path that connects the source-sink pair si(y)-
ti(y

′) in graph L′, which is impossible due to Claim 3.1

We can now prove Lemma 3.3.

Proof. Consider any source-sink pair (si(y), ti(y
′)) ∈

M∗, and let P be any path connecting si(y) to ti(y
′) in

G. From Lemma 3.4, P is a canonical path. Let P ′ be
a sequence of vertices containing the pre-images of vertices
on path P in H, in the same order as they appear in P .
Clearly, P ′ is a canonical path connecting si to ti in graph
H and thus, from Observation 1, it contains at least L non-
terminal vertices. It follows that P also contains at least L
non-terminal vertices.

Lemma 3.3 implies that there is a feasible fractional solution
of cost N/L, achieved by assigning 1/L-fraction to each non-
terminal vertex of G.

Integral solution:.
A key property of our final construction is summarized by
the lemma below.

Lemma 3.5. Assume that event B does not happen for
H. Then for any subset S ⊆ V ∗ of non-terminal vertices,
|S| ≤ N/32, the fraction of source-sink pairs which are dis-
connected when S is removed from G is at most 99/100.

Before presenting a proof of the above lemma, we consider
an immediate consequence of the lemma.
Since there is a fractional solution of cost N/L for graph

G, we have that the integrality gap is Ω(L) = Ω
(

N1/7

log4/7 N

)
.

Moreover, this gap holds even when the integral solution
needs to disconnect only a (1−ε)-fraction of the pairs where
ε ≥ 1/100.
We have thus established the following theorem.

Theorem 3.1. The flow-cut gap between the maximum
multicommodity flow and minimum multicut in directed graphs
is Ω̃(N1/7). Moreover, this gap holds on directed acyclic
graphs and even when the integral solution is required to sep-
arate only a (1 − ε)-fraction of the pairs for some ε > 0.

We now prove Lemma 3.5.

Proof. Let S ⊆ V ∗ be any subset of non-terminal ver-
tices, |S| ≤ N/32. For each label y ∈ Y and for each layer
h : 1 ≤ h ≤ 32L, let Sy,h = {p : v(y, h, p) ∈ S}. We say that
label-layer pair (y, h) is good iff |Sy,h| ≤ n/16. Clearly, at
least half the label-layer pairs are good: otherwise, we have
32L|Y |/2 non-good label-layer pairs, each of them contribut-
ing more than n/16 vertices to S, contradicting the fact that
|S| ≤ N/32 = 32L|Y |n/32.
Fix a good label-layer pair (y, h). We say that index i : 1 ≤
i ≤ n is covered at (y, h) iff there is some j : 1 ≤ j ≤ L, such
that Sj(i) ⊆ Sy,h (recall that Sj(i) is the jth layer in graph
Hi). Since we assume that B does not happen, at least half
the indices i : 1 ≤ i ≤ n are not covered at (y, h).
Let J ⊆ [1, . . . , k] be the set of all indices i : 1 ≤ i ≤ k, such
that the number of label-layer pairs (y, h) for which i is not
covered at (y, h) is at least 4|Y |L.

Claim 3.2. |J | ≥ k/7.

Proof. For each i ∈ J , there are at most 32|Y |L pairs
(y, h) that do not cover i. For each i 6∈ J , there are at most
4|Y |L pairs (y, h) that do not cover i. Therefore, in total,
the number of triples (y, h, i), where y ∈ Y, 1 ≤ h ≤ 32L
and 1 ≤ i ≤ k and (y, h) does not cover i is at most:

|J | · 32|Y |L+ (k − |J |) · 4|Y |L
On the other hand, there are at least 16|Y |L good label-
layer pairs (y, h), and for each of them at least k/2 indices
i : 1 ≤ i ≤ k are not covered at (y, h). Therefore, we have
that:

|J | · 32|Y |L+ (k − |J |) · 4|Y |L ≥ 8|Y |Lk
Hence |J | ≥ k/7.

For each i : 1 ≤ i ≤ k, we call the source-sink pairs in set
{(si(y), ti(y′)) | y ∈ Y, y′ = y ⊕ ((32L+ 1)µi)} source-sink pairs
of type i. The next claim will finish the proof.

Claim 3.3. For each i ∈ J , the fraction of source-sink
pairs of type i that are not disconnected by S is at least
3/31. Therefore, in total, the fraction of source-sink pairs
which are not disconnected by S is at least 3

31
· 1

7
≥ 1

100
.

Proof. Fix an i ∈ J . We partition the set Y×{1, . . . , 32L}
of label-layer pairs into |Y | subsets. For each y ∈ Y , we de-
fine a subset Ty, which contains, for each layer h : 1 ≤ h ≤
32L, the pair (yh, h), where yh = y ⊕ (hµi). Observe that
{Ty}y∈Y is indeed a partition of all the label-layer pairs,
where each pair appears in exactly one set Ty. Moreover,
in graph L′, there is an edge from si(y) to every vertex

u(y, h) with (y, h) ∈ Ty, and every such vertex connects to
ti(y

′), which is the sink corresponding to source si(y), i.e.,
(si(y), ti(y

′)) ∈ M∗. Additionally, for each pair of vertices
u(y′, h′), u(y′′, h′′) with (y′, h′), (y′′, h′′) ∈ Ty and h′ < h′′,
there is an edge from u(y′, h′) to u(y′′, h′′) in L′.
Let Y ′ ⊆ Y denote the subset of labels y, for which the
number of label-layer pairs (y, h) ∈ Ty such that i is not
covered at (y, h) is at least L. Since the total number of
label-layer pairs (y, h) for which i is not covered at (y, h) is
at least 4|Y |L, we have

|Y ′|(32L) + (|Y | − |Y ′|)L ≥ 4|Y |L.
It follows that |Y ′| ≥ (3/31)|Y |. Now fix any label y ∈ Y ′.
We will show that the source-sink pair sr(y)-tr(y

′), where
y′ = y⊕((32L+1)µi) is not disconnected when S is removed
from the graph. Since there are |Y | source-sink pairs of type
i, it follows that set S does not disconnect at least 3/31-
fraction of these pairs, which will complete the proof.
For a fixed y ∈ Y ′, let 1 ≤ h1 < h2 < · · · < hL < 32L
be indices of layers, such that for each j : 1 ≤ j ≤ L, i
is not covered at the label-layer pair (yhj , hj) ∈ Ty, where
yhj = y ⊕ (hjµi). For each such j : 1 ≤ j ≤ L, we know
that Sj(r) 6⊆ Syhj

,hj . In particular, there is some pj ∈ Sj ,

such that vertex v(yhj , hj , pj) does not belong to S. We
construct a path P connecting source si(y) to its sink ti(y),
that contains type-i edges only, as follows:

P =
(
si(y) → v(yh1 , h1, p1) → · · · → v(yhL , hL, pL) → ti(y

′)
)

From the discussion above, the non-terminal vertices ap-
pearing on this path do not belong to S. We only need to
check that indeed for every pair of consecutive vertices on
the path there is a type-i edge connecting them in graph
G. This is immediate from the definition of type-i edges in
graphs H and L′.

Concurrent Flow vs. Sparsest Cut: We now build on
the preceding result to show that a similar gap result holds
for concurrent flow and sparsest cut even in directed acyclic
graphs. We apply the transformation outlined in Section 2
to graph G constructed in the previous section to obtain an
instance G′ of the (edge version of) the directed multicut.
Let E0 denote the set of special edges in G′ and letK = n|Y |
denote the number of source-sink pairs in G′. Consider the
following fractional solution to (LP2-P). For each source-
sink pair (si, ti), we set h′

i = 1/K. For each special edge
e ∈ E0, we set x′e = 1/KL. This is a feasible solution to
(LP2-P) of cost N/KL.
Assume that the integrality gap of (LP2-P) is less than g(N)
for some function g. Using an argument similar to the one
given in [10] for converting bicriteria hardness of undirected
multicut to hardness of sparsest cut, we show that there is a
subset E1 of edges in graph G′, |E1| = O(N/L)g(N), whose
removal disconnects 0.99-fraction of source-sink pairs. We
perform several iterations, while in each iteration we remove
some edges from G′ and disconnect some source-sink pairs.
The iterations are performed while the number of source-
sink pairs disconnected is less than 0.99K. It is easy to see
that at the beginning of each iteration there is a fractional
solution to (LP2-P) of cost 100N/KL: each special edge
e ∈ E0 that belongs to the graph at the beginning of the
current iteration is assigned x′e = 100/KL, and each source-
sink pair which is still not disconnected (there are at least

K/100 of them) is assigned h′
i = 100/K. This is a feasible

solution to (LP2-P) of cost ϕ = 100N/KL. Therefore, in
each iteration, there is an (integral) cut S of containing at
most ϕg(N)k′ edges that separates k′ pairs for some inte-
ger k′ ≥ 1. We delete all edges in S from G′ as well as
remove the pairs separated by S. We repeat this until the
number of remaining source-sink pairs falls below K/100.
Summing up over all iterations, we obtain a set of at most
ϕg(N)K = (100N/L)g(N) = O((N/L)g(N)) that separates
at least 0.99K pairs. The following theorem now easily fol-
lows from the above discussion and Theorem 3.1.

Theorem 3.2. The gap between concurrent multicommod-
ity flow and (non-bipartite) sparsest cut is Ω̃(N1/7).

4. HARDNESS OF APPROXIMATION
We give a reduction from a general class of constraint satis-
faction problem (CSP). In a constraint satisfaction problem
we are given a set X of variables defined over some field
F , and a set of constraints Ψ. Each constraint ψ ∈ Ψ in-
volves D variables, and a list Rψ of assignment to variables
of ψ that satisfy this constraint is given as problem input.
The goal is to find assignments to variables so as to satisfy
maximum possible number of constraints.
There is a natural way to reduce the constraint satisfaction
problem to directed multicut using the techniques developed
for the integrality gap construction. The main difference is
in the way graph H is constructed. The non-terminal ver-
tices of H will represent the variables and their assignments,
i.e., for every variable x ∈ X and for every assignment a ∈ F
to x, there is a non-terminal vertex v(x, a) in graph H. The
source-sink pairs will represent the constraints, namely, for
each ψ ∈ Ψ, there is a source-sink pair sψ-tψ. For each
ψ ∈ Ψ, we construct a set Eψ of edges, by defining subsets
Sj(ψ) of vertices (layers), which are connected to each other
and to the source-sink pairs as before. The subsets Sj(ψ)
will correspond to the satisfying assignments in Rψ. Thus,
if Aj is the jth satisfying assignment in Rψ, then Sj(ψ) will
contain, for each variable x participating in ψ, the vertex
v(x, a), where a is the projection of Aj onto x. The rest of
the construction, including the labeling scheme L, its trans-
formed version L′ and the composition of L′ with H remain
the same.
Unfortunately, this approach does not work with general
constraint satisfaction problems. The main difficulty is that
the same vertex v(x, a) might belong to several sets Sj(ψ)
(for some fixed ψ), and because of this we cannot ensure
that in the case of Yes-Instancethe “standard” solution
will disconnect all the source-sink pairs. Alternatively, if
we view the constructed graph as an integrality gap exam-
ple, we will have some short canonical paths, and hence we
will not obtain large gap. As noted in the introduction,
this problem does not arise in the CSPs obtained from the
Raz verifier (where D = 2), due to the projection property.
However, the strongest possible hardness achievable via this

approach is 2Ω(log1−ε n). To break this barrier, we need to
allow reductions from more general type of CSPs that do
not necessarily have an analog of the projection property.
We give here an overview of our approach to handle general
CSPs. Due to space limitations, we have deferred a formal
description of the construction and its analysis to the full
version that appears on the authors’ webpages.
To overcome the difficulty that the same vertex v(x, a) might

belong to several sets Sj(ψ) for some fixed ψ, we create
many copies of each vertex v(x, a) representing assignment
a to variable x. Now layers Sj(ψ) will use different copies
for different indices j, thus avoiding the creation of these
bad paths. However, we need to enforce consistency among
multiple copies of an assignment to a variable. Specifically,
we would like to ensure the following. Fix any solution S,
and say that a variable-assignment pair (x, a) is chosen by
S iff at least 1/4 of the copies of corresponding vertices be-
long to S. Let ψ be any constraint for which no satisfying
assignment is chosen by S. We want to ensure that in this
case there is an s-t pair corresponding to ψ, which is not
disconnected by S.
To achieve this goal, instead of choosing the layers S1(ψ), . . . ,
SL(ψ) just once, we perform |Y |Γ such independent choices,
each one of them defining a different subset Ey,γ of edges
in graph H, for y ∈ Y , 1 ≤ γ ≤ Γ (here Γ ≤ poly(n) and
Y is the set of labels). For a fixed y ∈ Y , γ : 1 ≤ γ ≤ Γ,
in order to choose a subset Sj(ψ) of vertices, we randomly
choose δ = O(log n) copies of every vertex representing the
variable-assignment pair (x, a) where x is a variable of ψ
and the projection of the jth assignment in Rψ onto x is
a. The random choices are performed with no repetitions
across various layers, so each copy may appear in at most
one layer for a fixed pair y, γ and a fixed constraint ψ. Let
g denote the hardness gap of the constraint satisfaction sys-
tem. The resulting instance has the property that with high
probability, the cost of any No-instance solution is at least
Ω(g) times the cost of an optimal Yes-instance solution even
when the No-instance solution is only required to separate
a (1 − ε∗)-fraction of source-sink pairs for some constant
ε∗ > 0. Using standard arguments, we can then translate
the hardness for this bicriteria version to a matching hard-
ness for sparsest cut in directed graphs.

Acknowledgements
We would like to thank Irit Dinur, Piotr Indyk, and Ran
Raz for helpful discussions.

5. REFERENCES
[1] A. Agarwal, N. Alon, and M. Charikar. Improved

approximation for directed cut problems. In Proc. of
STOC, 2007.

[2] P. Alimonti and V. Kann. Hardness of approximating
problems on cubic graphs. Theoretical Computer
Science, 237: 123-134, 2000.

[3] M. Andrews and L. Zhang. Logarithmic hardness of
the directed congestion minimization problem. In
Proc. of STOC ’06.

[4] S. Arora, J. R. Lee, A. Naor. Euclidean distortion and
the sparsest cut. In Proc. of STOC, 2005, pp. 553–562.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[6] S. Arora, S. Rao, and U. V. Vazirani. Expander flows,
geometric embeddings and graph partitioning. In
Proc. of STOC, 2004, pp. 222–231.

[7] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. JACM, 45(1):70–122,
1998.

[8] M. Bellare, S. Goldwasser, C. Lund, A. Russeli:
Efficient probabilistically checkable proofs and
applications to approximations. In Proc. of STOC,
1993, pp. 294–304.

[9] M. Charikar, K. Makarychev, Y. Makarychev.
Directed Metrics and Directed Graph Partitioning
Problems. In Proc. of SODA, 2006, pp. 51–60.

[10] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, D.
Sivakumar. On the Hardness of Approximating
Multicut and Sparsest-Cut. In Proc. IEEE Conference
on Computational Complexity, 2005, pp. 144–153.

[11] J. Cheriyan, H. J. Karloff, Y. Rabani. Approximating
Directed Multicuts. In Proc. of FOCS, 2001, 320–328.

[12] J. Chuzhoy and S. Khanna. Hardness of Cut Problems
in Directed Graphs. In Proc. of STOC, 2006.

[13] J. Chuzhoy and S. Khanna. Hardness of Directed
Routing with Congestion. ECCC Technical Report
TR06-109, August 2006. http://eccc.hpi-web.de/eccc-
reports/2006/TR06-109/index.html.

[14] J. Chuzhoy, V. Guruswami, S. Khanna, and K.
Talwar. Hardness of Routing with Congestion in
Directed Graphs. In Proc. of STOC, 2007.

[15] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P.
D. Seymour, M. Yannakakis. The Complexity of
Multiterminal Cuts. In SIAM J. Comput., 23(4):
864-894, 1994.

[16] I. Dinur, E. Fischer, G. Kndler, R. Raz and S. Safra.
PCP characterizations of NP: towards a
polynomially-small error-probability. In Proceedings of
the Thirty-First Annual ACM Symposium on Theory
of Computing (STOC), pp. 29–40, 1999.

[17] I. Dinur and S. Safra. On the hardness of
approximating label-cover. Information Processing
Letters, 89(5), pp. 247–254, 2004.

[18] U. Feige. Relations between average case complexity
and approximation complexity. In Proc. of STOC,
2002, pp. 534–543.

[19] U. Feige and S. Kogan. Hardness of Approximation of
the Balanced Complete Bipartite Subgraph Problem.
Technical Report MCS04-04, Department of
Computer Science and Applied Math., The Weizmann
Institute of Science, 2004.

[20] L. R. Ford, D. R. Fulkerson, 1962. Flows in Networks.
Princeton University Press, Princeton, NJ.

[21] V. Guruswami and K. Talwar. Hardness of Low
Congestion Routing in Directed Graphs. ECCC
Technical Report TR06-141, November 2006,
http://eccc.hpi-web.de/eccc-reports/2006/TR06-
141/index.html.

[22] N. Garg, V. Vazirani, M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their
applications. In Proc. of STOC, 1993, pp. 698–707.

[23] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual
Approximation Algorithms for Integral Flow and
Multicut in Trees. Algorithmica, 18(1):3–20, 1997.
Preliminary version in Proc. of ICALP, 1993.

[24] A. Gupta. Improved results for directed multicut. In
Proc. of SODA, 2003, pp. 454-455.

[25] M.T. Hajiaghayi, H. Räcke. An O(
√
n)-Approximation

Algorithm For Directed Sparsest Cut, Information
Processing Letters, 97(4): 156-160, 2006.

[26] S. Khot. On the power of unique 2-prover 1-round
games. In Proc. of STOC, 2002, pp. 767–775.

[27] S. Khot, N. K. Vishnoi. The Unique Games
Conjecture, Integrality Gap for Cut Problems and the
Embeddability of Negative Type Metrics into `1. In
Proc. of FOCS, 2005, pp. 53–62.

[28] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing

approximation algorithms. JACM, 46(6):787–832,
1999. Preliminary version in Proc. of FOCS, 1988.

[29] R. Raz. A parallel repetition theorem. SIAM J. of
Computing, 27(3):763–803, 1998.

[30] M. E. Saks, A. Samorodnitsky, L. Zosin. A Lower
Bound On The Integrality Gap For Minimum
Multicut In Directed Networks. Combinatorica 24(3):
525–530 (2004).

