
Code Sparsification and its Applications

Sanjeev Khanna∗ Aaron (Louie) Putterman† Madhu Sudan‡

November 3, 2023

Abstract

We introduce a notion of code sparsification that generalizes the notion of cut sparsification in graphs. For
a (linear) code C ⊆ Fn

q of dimension k a (1 ± ϵ)-sparsification of size s is given by a weighted set S ⊆ [n]
with |S| ≤ s such that for every codeword c ∈ C the projection c|S of c to the set S has (weighted) hamming
weight which is a (1 ± ϵ) approximation of the hamming weight of c. We show that for every code there

exists a (1± ϵ)-sparsification of size s = Õ(k log(q)/ϵ2). This immediately implies known results on graph and
hypergraph cut sparsification up to polylogarithmic factors (with a simple unified proof) — the former follows
from the well-known fact that cuts in a graph form a linear code over F2, while the latter is obtained by a simple
encoding of hypergraph cuts. Further, by connections between the eigenvalues of the Laplacians of Cayley
graphs over Fk

2 to the weights of codewords, we also give the first proof of the existence of spectral Cayley
graph sparsifiers over Fk

2 by Cayley graphs, i.e., where we sparsify the set of generators to nearly-optimal
size. Additionally, this work can be viewed as a continuation of a line of works on building sparsifiers for
constraint satisfaction problems (CSPs); this result shows that there exist near-linear size sparsifiers for CSPs
over Fp-valued variables whose unsatisfying assignments can be expressed as the zeros of a linear equation
modulo a prime p. As an application we give a full characterization of ternary Boolean CSPs (CSPs where
the underlying predicate acts on three Boolean variables) that allow for near-linear size sparsification. This
makes progress on a question posed by Kogan and Krauthgamer (ITCS 2015) asking which CSPs allow for
near-linear size sparsifiers (in the number of variables).

At the heart of our result is a codeword counting bound that we believe is of independent interest. Indeed,
extending Karger’s cut-counting bound (SODA 1993), we show a novel decomposition theorem of linear codes:
we show that every linear code has a (relatively) small subset of coordinates such that after deleting those
coordinates, the code on the remaining coordinates has a smooth upper bound on the number of codewords
of small weight. Using the deleted coordinates in addition to a (weighted) random sample of the remaining
coordinates now allows us to sparsify the whole code. The proof of this decomposition theorem extends Karger’s
proof (and the contraction method) in a clean way, while enabling the extensions listed above without any
additional complexity in the proofs.

∗School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA. Email: sanjeev@cis.upenn.edu.
Supported in part by NSF awards CCF-1934876 and CCF-2008305.

†School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in party by
the Simons Investigator Fellowship of Boaz Barak, NSF grant DMS-2134157, DARPA grant W911NF2010021, and DOE grant
DE-SC0022199. Supported in part by the Simons Investigator Award of Madhu Sudan and NSF Award CCF 2152413. Email:

aputterman@g.harvard.edu.
‡School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in part by a Simons

Investigator Award and NSF Award CCF 2152413. Email: madhu@cs.harvard.edu.

1

ar
X

iv
:2

31
1.

00
78

8v
1

 [
cs

.D
S]

 1
 N

ov
 2

02
3

Contents

1 Introduction 1

1.1 Code Sparsification . 1
1.2 Motivation . 1

1.3 Main Results . 2

1.4 Applications . 3
1.5 Proof Techniques . 5

1.6 Organization . 5

2 A Counting Bound for Codewords 6

2.1 Preliminaries . 6
2.2 Overview . 6

2.3 A Karger-Style Bound for Codewords . 7

3 Preliminaries 9
3.1 Codes . 9

3.2 A Probabilistic Bound . 9

3.3 Graphs and Graph Sparsification . 10
3.4 CSPs and CSP Sparsification . 10

4 Near-linear Size Sparsifiers for Polynomially-bounded Codes 11

4.1 Code Decomposition . 11

4.2 Code Sparsification Algorithm . 12

5 Nearly Linear Size Sparsifiers for Codes of Arbitrary Length 15
5.1 Simple Quadratic Size Sparsifiers . 16

5.1.1 Correctness . 16

5.1.2 Size Analysis . 16
5.2 Removing the O(log n) factors . 17

5.3 Final Algorithm . 20

6 Application to Cayley Graph Sparsifiers 23

7 Applications to Sparsifying CSPs 24

7.1 Affine CSPs . 24
7.2 Ternary Boolean Predicates . 24

8 Application to Hypergraph Cut Sparsifiers 28

9 Conclusions 30

A A Simpler Construction of Cut Sparsifiers for Graphs 31

2

1 Introduction

In this work we introduce a notion of sparsification for linear codes, prove that “nearly linear-size” sparsifications
exist for every linear code, and give some applications beyond coding theory. We start by recalling the notion of
sparsification and give some background.

Sparsification of data with respect to a certain class of queries alludes to a compression of the data that
allows all queries in the class to be answered (or estimated) correctly. It has emerged as a fundamental
concept in theoretical computer science, with graph sparsification for cut-queries being a central example.
In seminal works, Karger [Kar94] and Benczúr and Karger [BK96] showed how graphs may be sparsified
by carefully sampling a subset of its edges and assigning weights to them, so that for every cut, the cut-
size in the sampled weighted graph gives a good estimate of the cut size in the input graph. Crucially the
number of sampled edges was nearly linear-sized in the number of vertices of the graph. This work led to
many strengthenings (in particular to allowing the sample to be linear sized [BSS09]), extensions (in particular
to more general spectral notions of sparsification [ST11, BSS09], to hypergraphs [KK15, CKN20, KKTY21]),
more recently to sparsifying sums of norms [JLLS23], and applications to a host of problems including solvers
for max-flow and min-cut [She13, KLOS14, Pen16], as well as to better solvers for structured linear systems
[ST11,CKM+14,KLP+16,LS18, JS20] and applications to clustering [CSWZ16]. In the streaming and sketching
settings, small representations of graphs are equally important and work on graph sparsifiers has played a key
role.

A natural question that arises is which other classes of structures and queries allow for such sparsification.
In this work we explore this question in a new terrain, namely linear codes, where the queries specify a message
and the goal is to estimate the Hamming weight of its encoding under the linear code. We describe our setting
formally first before motivating the problem.

1.1 Code Sparsification Throughout this paper q will be a prime power and Fq will denote the finite field
on q elements. A linear code C is a Fq-linear subspace of Fn

q , and we will assume it is the image of a linear map

E : Fk
q → Fn

q . The Hamming weight of a vector v ∈ Fn
q , denoted wt(v) is the number of non-zero coordinates

of v. Given a sequence of non-negative (integer) weights w = (w1, . . . , wn), the weighted Hamming weight of
v = (v1, . . . , vn), denoted wtw(v), equals

∑
i|vi ̸=0 wi. For a vector v ∈ Fn

q and set S ⊆ [n] the puncturing of v to

the set S, denoted v|S is the vector (vi)i∈S . The puncturing of a code C ⊆ Fn
q to the coordinates S ⊆ [n] is the

code C|S ⊆ F|S|
q given by C|S = {v|S : v ∈ C}. We are now ready to define code sparsifiers.

Definition 1.1. (Code Sparsifier) For integer s, real ϵ > 0 and a linear code C ⊆ Fn
q , a (1 ± ϵ)-sparsifier of

size s for the code C is a subset S ⊆ [n] with |S| ≤ s along with weights wS = (wi)i∈S such that for every codeword
v ∈ C, we have

(1− ϵ)wt(v) ≤ wtw(v|S) ≤ (1 + ϵ)wt(v).

(In other words the weighted Hamming weight of every codeword in the punctured code roughly equals its weight
in the unpunctured code.)

The vanilla representation of a linear code would involve kn elements of Fq. The sparsification reduces the
representation size to sk field elements which may be significantly smaller if s ≪ n. In several applications we
consider later, the code C itself is obtained by puncturing a known fixed mother code M ⊆ FN

q . In such cases the
vanilla representation of C (to someone who knows M) would require n logN bits while the sparsification would
require only s logN bits to describe. Thus in both cases the sparsification definitely compresses the representation
of C. And if we fix any linear encoding scheme E : Fk

q → Fn
q such that C = {E(m)|m ∈ Fk

q}, then the sparsification

allows us to estimate the hamming weight of the encoding E(m) of every message m ∈ Fk
q . Thus, the definition

of code sparsifiers fits the general notion of sparsification, and so we turn to the motivation for studying this
concept.

1.2 Motivation Our initial motivation for studying code sparsification is that it abstracts and generalizes cut
sparsification in graphs. Specifically for every graph there is a linear code over F2 such that codewords of this code
are indicator vectors of the edges crossing cuts in the graph. (This code is obtained by viewing the edge-vertex
incidence matrix as the generator of the code.) Thus, a sparsifier for this code corresponds to a cut sparsifier for
the associated graph. Existence of graph sparsifiers is typically proved by combinatorial or spectral analysis —

1

tools that are less amenable to application over codes. Thus the exploration of code sparsification forces us to
revisit methods for constructing graph sparsifiers and extract the essential elements in this toolkit,

One broad class of sparsifiers that overlap significantly with code sparsifiers are CSP sparsifiers, introduced
by Kogan and Krauthgamer [KK15] and studied further by Filtser and Krauthgamer [FK17] and Butti and
Zivný [BZ20]. Constraint Satisfaction Problems (CSPs) have as instances n constraints on k variables where
each constraint operates on a constant number of variables (called the arity of the constraint). A CSP sparsifier
aims to compress an instance of the CSP into a smaller (weighted) one on the same set of variables such that
for every assignment to the variables, the sparsified CSP satisfies roughly the same number of constraints as the
original one. When the variables take on values in a finite set Fq and the constraints are linear constraints over
Fq, then the sparsification task is a code sparsification task. (Note that code sparsification allows q as well as
the arity of the constraints to be non-constant and so code sparsification is not a subclass of CSP sparsification.)
In particular, cut sparsification is also a special case of CSP sparsification. Prior work had shown how to get
nearly linear size sparsifiers for CSPs beyond cut sparsifiers. Specifically, in [KK15], it was shown that r-SAT

instances on a universe of k Boolean variables admit sparsifiers of size Õ(kr/ε2). This was improved to Õ(k/ε2)
by Chen, Khanna and Nagda [CKN20], but the family of CSPs for which this result holds was not broadened.
The works [FK17, BZ20] completely classify all binary CSPs (i.e., with arity two), that allow for nearly linear
size sparsification, but a classification beyond r = 2 remains wide open. Indeed [FK17], pose this as an open
question, and [BZ20] highlight the challenge of sparsifying r-XOR CSPs (for r ≥ 3) as a central problem that
remains unaddressed by graph and hypergraph sparsification techniques. Thus, code sparsification seems like the
natural next frontier in CSP sparsification and worthy of further attention.

Finally we also give some new applications of code sparsification in this paper itself. In particular, we give a
simple reduction from hypergraph cut sparsification to code sparsification that makes the former a special case
of the latter (although there may be some polylogarithmic losses in the size of the sparsification). We also show
how code sparsification can be used to derive structured sparsification of Cayley graphs over Fk

2 , by other Cayley
graphs! We elaborate on these new connections and their implications after describing our main results.

1.3 Main Results Our main theorem in this paper shows that every (possibly weighted) linear code C ⊆ Fn
q

of dimension k has a nearly-linear sized sparsifier, i.e., one of size Õ(k
ϵ2 log q).

1

Theorem 1.1. For every ϵ > 0, prime power q, positive integers k and n, every (possibly weighted) linear code

C ⊆ Fn
q of dimension k has a (1± ϵ)-code sparsifier of size Õ

(
k
ϵ2 log q

)
.

Note that the theorem is essentially optimal up to polylogarithmic factors in k (for constant ϵ and q) in that
codes require Ω(k)-sized sparsifiers. Note also that our result qualitatively reproduces the existential part of the
sparsification result in [BK96] while extending it vastly. Of particular interest is the fact that our result does not
require the generator matrix of the code to be sparse, something that was evidently true of all previous works on
sparsification, and potentially used as a core ingredient in many proofs. In fact, the theorem as stated above is
completely independent of the choice of the generator matrix of the code, whereas previous analyses even for the
graph-theoretic codes seem to rely on the use of a specific generator matrix.

A central tool in the cut sparsifiers of [Kar94,Kar99,BK96,FHHP11] is “Karger’s cut counting bound” [Kar93,
Kar99] which asserts that every graph on k vertices whose minimum cut is c has at most k2α cuts of size at most
αc, for every integer α. This bound can be interpreted in coding terms — the minimum cut size is the minimum
distance of the corresponding code, and distance is of course a central concept in coding theory. However the
lemma is patently false for general codes. Specifically for codes of minimum distance Ω(n) the bound would
suggest that there are at most nO(1) codewords in the code and every asymptotically good code (those which
k = Ω(n)) are counterexamples to this potential extension. In view of the centrality of this bound though, it is
natural to ask what weaker bound one can get for general codes. Our next theorem gives a simple weakening that
essentially suggests that the only counterexamples come from “good” codes embedded in C.

Theorem 1.2. For every prime power q, parameters d, k and n and every linear code C ⊆ Fn
q , the following

holds: there exists a subset T ⊆ [n] with |T | ≤ k · d such that for S = [n] \ T the code C|S satisfies the condition
that for every integer α ≥ 1 the code C|S has at most qα ·

(
k
α

)
codewords of weight at most αd.

1In this paper we use the notation Õ(·) to hide poly logarithmic factors in the argument.

2

Note that in the above theorem, d does not refer to the distance, but rather is a parameter of our choosing.
In other words while C may have many relatively small weight codewords, they come from a sub-code C|T

contained on a small set of coordinates while the rest of the code C|S has a smooth growth in the number of
codewords of small weight. We note that this basic theorem about linear spaces does not seem to have been
noticed before and could be of independent interest.

While it is immediate that Theorem 1.2 can be used to get some sparsification for some codes, it is not clear
how to use it to go all the way to Theorem 1.1. Indeed in the case of graph sparsification for preserving cuts,
known proofs utilize additional notions from graph theory to identify importance of a coordinate (edge). For
instance, [BK96] utilizes the notion of edge strengths while [FHHP11] relies on edge connectivity to determine
sampling probabilities, and in both cases, the analysis uses graph-theoretic structure to establish correctness of
the resulting sparsifiers. We show nevertheless that a simple recursive scheme can be applied to sparsify every
code. Indeed even the specialization of this proof to the graph-theoretic case of cut sparsifiers seems new and we
describe this simpler proof in § A.

We remark that one weakness of our results (or a major open question) is that our results are existential and
we do not have efficient algorithms to produce the sparsifiers that we show exist. The difficulty roughly emerges
from the difficulty of finding and counting low weight codewords in a code which are known hard problems in
coding theory.

1.4 Applications
Hypergraph Cut Sparsification. A cut sparsifier for a hypergraph is a simple extension of the notion of

a cut sparsifier for graphs. Specifically it is a weighted subgraph of the input hypergraph such that for every
2-coloring of the vertices, the number of bichromatic edges in the original hypergraph is approximately the same
as the weight of the bichromatic edges in the subgraph. Previous works by Kogan and Krauthgamer [KK15] (in
the constant arity hyperedge case) and ultimately Chen, Khanna and Nagda [CKN20] (in the unbounded arity
case) have given cut-sparsifiers of size O(k log(k)/ϵ2) for every hypergraph on k vertices. We are able to recover
their result qualitatively (up to polylogarithmic factors in k and 1/ϵ) with a very simple reduction. (Specifically
we note that if we choose q to be a large enough prime and associate an r-vertex hyperedge with the vector
(q − r+ 1, 1, . . . , 1, 0, . . . , 0) ∈ Fk

q then the only coordinates in encodings of messages in {0, 1}k that are 0 are the
monochromatic edges.) See Remark 8.1 for more details. Indeed by applying this reduction to Theorem 1.2 we
also obtain a structural decomposition theorem for hypergraphs that does not seem to have been noticed before.

Theorem 1.3. For every integer d ≥ 1, every hypergraph H on k vertices has a set of at most kd hyperedges
such that upon their removal, the resulting hypergraph satisfies the condition that for every integer α ≥ 1 it has
at most (2k)2α cuts of size ≤ αd.

Indeed, as in the setting of codes, an analog of “Karger’s cut-counting bound” does not hold in the realm
of hypergraphs [KK15]. Thus, our analysis of code sparsifiers provides a more universal counting bound which
decomposes codes and hypergraphs alike.

Cayley Graph Sparsifiers. A well-studied notion extending that of a cut-sparsifier for graphs is a spectral
sparsifier. Formally a spectral sparsifier of a graph is a weighted subgraph whose Laplacian has eigenvalues close
to that of Laplacian of the original graph. (The Laplacian of a graph G = (V,E), denoted LG, is a |V | × |V |
matrix, whose diagonal entries LGi,i are the degrees of the ith vertex, and whose off diagonal entries LGi,j are
−wi,j where wij is the weight of the edge (i, j) in G.) Informally, a spectral sparsifier allows us to estimate
the quadratic form xTLGx for every real vector x, whereas a cut-sparsifier allows us to estimate this form only
for x ∈ {0, 1}|V |. Most of the results in this paper only extend the notion of cut-sparsifiers, but not spectral
sparsifiers. The only exception is for spectral sparsifiers of “Cayley graphs” on Fk

2 . In this special setting the
vertex set of the Cayley graph is Fk

2 , and the edges are specified by a “generating” set Γ ⊆ Fk
2 . Two vertices

x, y ∈ Fk
2 are adjacent if x− y ∈ Γ.

While the general theory of spectral sparsification of course holds for Cayley graphs, this may not lead to a
compressed representation of the graph, since the generating set Γ can be much smaller than |V | (and Γ specifies
the Cayley graph completely). A natural question in this context would be whether there can be a compression of
Cayley graphs that is also a Cayley graph (so leads to a compressed representation of the original graph). While
this question remains open for general groups, in the setting of Fk

2 , our main theorem, Theorem 1.1 effectively
resolves this positively.

3

A folklore connection between the eigenvectors of the Cayley graphs and the code generated by Γ (where Γ
is viewed an n × k matrix over F2 whose columns generate a code contained in Fn

2) allows us to show that the
weight distribution of a code-sparsifier of Γ closely matches that of Γ, and so leads to a new generating set for
the Cayley graph with nearly matching eigenvalue profile. This leads to the following theorem, whose proof may
be found in § 6.

Theorem 1.4. (Cayley Graph Spectral Sparsifier) For every (possibly weighted) Cayley graph G on Fk
2

with generating set Γ ⊆ Fk
2 , there exists a weighted sparsifier Γ̂ ⊆ Γ, such that for the Cayley graph Ĝ generated

by Γ̂,

(1− ε)LG ⪯ LĜ ⪯ (1 + ε)LG.

Further, |Γ̂| ≤ Õ(k/ε2).

We stress that this is the first existential result of its kind. For comparison, the work of [BSS09] showed the
existence of spectral sparsifiers for any graph on n vertices to size O(n/ε2). In the setting of Cayley graphs, this
implies the existence of spectral sparsifiers of Cayley graphs over Fk

2 with O(2k/ε2) edges, leading to an average
degree which is approximately O(1/ε2). However, the key distinction is that the sparsifier returned by [BSS09] is
not guaranteed to still be a Cayley graph and indeed it can not be. In fact, even just to maintain connectivity,
a Cayley graph on Fk

2 requires Ω(k) generators. Our sparsifiers have degree Õ(k) (for constant ϵ), but now our
resulting sparsified graph is a Cayley graph.

CSP Sparsification. As described earlier, cut sparsification can be viewed as a special case of CSP
sparsification (corresponding to a CSP where constraints apply to two binary variables and require that their
XOR be 1). Furthermore when restricted to fields of constant size and generator matrices with exactly r non-zero
elements per row (where the columns of the generator matrix generate the code), the code sparsification problem
is also a special case of CSP sparsification. Thus this interpretation already leads to a new broad class of CSPs
that admit nearly linear sparsifiers.

We say that a predicate P : Fr
q → {0, 1} is an affine predicate if there exist elements a0, a1, . . . , ar ∈ Fq

such that P (b1, . . . , br) = 0 if and only if a0 +
∑

i aibi = 0 (over Fq). Equivalently, the predicate P (b1, . . . br) is
evaluating

∑
i aibi ̸= −a0.

Now, let P be a collection of predicates of any arity, and define CSP(P) to be the family of CSPs where each
constraint is a predicate from P applied to any appropriately sized tuple of variables.

The following theorem asserts that CSPs over affine predicates are sparsifiable.

Theorem 1.5. Let P = {P : P is an affine predicate over Fq}. Then, any CSP in CSP(P) admits a nearly

linear size (1± ε) sparsification, namely of size Õq(k/ϵ
2), where k denotes the number of variables in the instance

(and Oq(·) hides factors of q).

Note that the above theorem has no dependence on the value r, and in fact, we can sparsify affine predicates
even when r = k, and simultaneously sparsify affine predicates of different arities as long as they are affine with
respect to the same field Fq.

One immediate application of the above theorem is to any r-XOR constraint. Indeed, the unsatisfying
instances of an XOR constraint form a linear subspace over F2, and so we give the first proof of the sparsifiability
of XOR constraints to nearly linear size. This addresses one of the open questions of [BZ20], who showed the
fundamental inexpressability of XOR constraints in terms of hypergraphs.

To illustrate the power of the theorem above, we also extend a result of [FK17] to predicates on 3 Boolean
variables, giving an exact classification of which Boolean predicates on up to three variables are sparsifiable to
near-linear size. We say that a predicate P : {0, 1}r → {0, 1} has an affine projection to AND if there exists a
function π : [r] → {0, 1, x,¬x, y,¬y} such that AND(x, y) = P (π(1), . . . , π(r)).

Theorem 1.6. For a predicate P : {0, 1}3 → {0, 1}, all possible CSPs of P on subsets of k variables are (1± ε)

sparsifiable to size Õ(k/ε2) if and only if P has no affine projection to AND.

We remark that this classification does not yet extend to arbitrary ternary predicates (specifically over non-
Boolean variables), and thus does not extend the result in [BZ20].

4

1.5 Proof Techniques In our view, one of the strengths of this paper is that the proofs are conceptually simple
and short even as they generalize known results and provide some new applications. Indeed once we determine
the right form of the weight counting bound, namely Theorem 1.2 (later as Theorem 2.2), its proof is not very
hard.

Roughly, we build a contraction procedure in linear spaces analogous to Karger’s contraction method in
[Kar93,Kar99] in graphs. It is not immediately clear what should be the appropriate analog to Karger’s contraction
in our setting. Karger’s method is inherently very reliant on the underlying graph structure, as each contraction
“merges” two vertices with an edge between them. In a general linear code, while one can think of each row of
the generating matrix as corresponding to an edge, and each column of the generating matrix as corresponding
to a vertex, the analogy quickly breaks down as each row can be “involved” with many columns. As such, the
perspective we end up taking for “contracting” the generating matrix (and one that extends to the graphical case
for edges) is a contraction on a single coordinate j of the generating matrix which is not always 0. We decompose
the entire column space of the generating matrix into the entire linear subspace of codewords (⊆ Fn

q) which is
zero on this coordinate (i.e. such that the generating matrix for this subspace is entirely 0 in the jth row), and a
single vector which is non-zero in the jth coordinate. The original linear space is the span of these two separate
components, and for us, contracting on a coordinate corresponds to keeping only the linear subspace which is
zero on this coordinate.

Using this perspective, we show that this contraction procedure when applied to a random, not constantly 0
coordinate of the code (which corresponds to an edge in the underlying graph in Karger’s result) is likely to keep
low-weight codewords intact. Thus if we focus on a particular low-weight codeword, repeated application of the

contraction procedure should output this codeword with probability at least q−α
(
k
α

)−1
as long as the support of

our code never gets too small. We use support here to refer to the total number of remaining not all zero rows of
the generating matrix, or equivalently the number of coordinates in the code which are not always 0.

While Karger’s analysis is able to explicitly lower bound the support size (in his case the number of remaining
edges) at every iteration in the algorithm by considering the minimum cut size, we can do no such thing as there
can exist codes with large dimension and small support contained in our code. Instead, we build a parameterized
trade-off saying that whenever our algorithm is unable to make progress in the contraction process, it is because
there is a non-trivially high-dimensional code contained in our code that is supported on relatively few coordinates.
(See Theorem 2.1 for a precise formulation.) Removing this code and the coordinates it is supported on, and
continuing leads to a proof of Theorem 1.2.

The proof of Theorem 1.1 given Theorem 1.2 is also not hard, and we believe this is a simpler proof than
previous sparsification results for special cases of graphs and hypergraphs. To prove the existence of near-linear
size code sparsifiers, suppose we start with a code C of dimension k, and length k2. We first invoke the above
theorem with d =

√
k. Intuitively, this breaks the code into two parts: In one part, we have no guarantee on

the distribution of weights of the codewords, but the support size is bounded by k · d = k3/2. In the other part,
we have a strong bound on the distribution of weights of codewords, but the support can still be as large as k2.
However, the fact that this code has roughly at most kα codewords of weight α

√
k suggests that if we sample

k3/2 coordinates of this code and give each a weight of
√
k then we get a pretty good sparsification of this part

of the code. Gluing the two parts together gives an O(k3/2) size sparsifier of the whole code. To get better
sparsifications we can continue to apply this procedure recursively. For instance, if we repeat the process one
more level (separately on each of the sparsified codes above), we can now use d = k1/4 instead of d =

√
k and this

leads to 4 codes, each of size roughly k5/4. Likewise, we can glue these 4 codes together, yielding an O(k5/4) size
sparsifier. Repeating enough times, and optimizing the parameters carefully leads to the final result. There are
additional caveats when moving to codes whose length is super-polynomial in their dimension, and for these we
utilize a few additional ideas to get our final sparsification result.

1.6 Organization In § 2, we introduce an analog of Karger’s contraction algorithm using Gaussian elimination
to prove our decomposition theorem (Theorem 1.2) for linear codes. Then, in § 3 we introduce some basic facts
and definitions about codes, graphs, and CSPs, which we will utilize in our construction of code sparsifiers and
their applications. In § 4 we formalize the argument we gave above regarding sparsifying any code whose length
is polynomial in its dimension. Finally, in § 5, we use the algorithm from § 4 as a sub-routine along with several
code decomposition tricks to remove any dependence on the length of the code, and present the existence of
near-linear size sparsifiers for all linear codes, proving Theorem 1.1. In § 6, we prove Theorem 1.4 by a simple

5

reduction to codes. In § 7 we prove Theorem 1.5 and Theorem 1.6, extending the classification of near-linearly
sparsifiable CSPs again by reducing to the coding case. Finally, in § 8, we interpret hypergraphs in the setting of
codes, proving our decomposition result, namely Theorem 1.3.

Finally, as a stand-alone application of our sparsification approach, we provide in § A of the appendix, a
self-contained simpler proof of the near-linear size cut sparsifier result of [BK96].

2 A Counting Bound for Codewords

2.1 Preliminaries First, we introduce a few basic definitions. These definitions will be used throughout the
paper and are all that is required for this section.

Definition 2.1. A linear code C of dimension k and length n is a k-dimensional linear subspace of Fn
q . We often

associate with C a generator matrix G ∈ Fn×k
q , which maps vectors x ∈ Fk

q to codeword ∈ Fn
q .

Definition 2.2. For a codeword c ∈ Fn
q , the weight of a codeword is the number of non-zero entries in c. This

is will be denoted as wt(c).

Definition 2.3. For a linear code C ⊆ Fn
q , we say the support size is

Supp(C) = |{i ∈ [n] : ∃c ∈ C such that ci ̸= 0}| .

In words, it is the number of coordinates of the code which are not always zero. Likewise, we say that for a code
C ⊆ Fn

q along with a generating matrix G ∈ Fn×k
q , a coordinate j ∈ [n] is non-zero if there exists a codeword

c ∈ C such that cj ̸= 0.

Definition 2.4. For a linear code C ⊆ Fn
q , a subcode of C is a linear subspace of C.

Definition 2.5. For a linear code C ⊆ Fn
q , we say that the density of a code is

Density(C) = Dim(C)
Supp(C)

.

We say that the density of the empty code is 0.

2.2 Overview In his seminal work, Karger ([Kar93,Kar99]) showed that for a graph on k vertices with minimum
cut-value c, there are at most k2α cuts with size ≤ αc, for any integer α. As discussed in the introduction, while
an analogous statement does not hold for codes in general, we are able to prove a generalization that establishes
a bound on the distribution of codewords. Roughly speaking, we show that for a code C ⊆ Fn

q of dimension k and
a parameter d ∈ Z+ of our choosing, either there exists a dense subcode of C contained on a small support (i.e. a
subcode whose density is ≥ 1

d), or the code satisfies a Karger-style bound on the distribution of codeword weights
with parameter d (i.e. there are at most (qk)α codewords of weight≤ αd). An exact statement of this result is given
in Theorem 2.1. We will then show that Theorem 2.1 in fact implies Theorem 1.2 described in the introduction;
that is, there exists a set of at most kd coordinates, such that upon removing these coordinates (equivalently
removing the corresponding rows from the generating matrix), the resulting code satisfies the Karger-style bound
with parameter d. An exact statement is provided in Theorem 2.2.

We will prove this bound by describing a “contraction” algorithm akin to that of Karger. Intuitively, the
algorithm takes in a generating matrix of a code of dimension k and length n. At random, the algorithm chooses
one of the non-zero coordinates of this generating matrix and performs Gaussian elimination to “zero” out all
but one of the columns in this coordinate. Then, the algorithm removes the remaining column of the generating
matrix that is non-zero in this coordinate, reducing the dimension of the generating matrix by 1. This process is
repeated until the dimension of the generating matrix is sufficiently small.

We call this Gaussian elimination step on a random non-zero coordinate of the generating matrix a
“contraction”. We will show that as long as the support of the generating matrix is sufficiently large in every
iteration, then any low-weight codeword will “survive” (i.e. remain in the span of the generating matrix) after
many contractions with high probability. We can then conserve probability mass to argue that in fact, under the
condition that the support is never too small, the number of lightweight codewords cannot be too large. This

6

naturally leads to the statement of Theorem 2.1 as either there exists a subcode of sufficiently high dimension
with small support or during our contraction algorithm, the support is always large enough to get a strong bound
on the number of codewords.

Remark 2.1. When the mother code is the cut-code of a graph, the procedure of choosing a random row and
eliminating all but 1 of the non-zero entries is in fact equivalent to Karger’s contraction based algorithm ([Kar93,
Kar99]).

First, we will prove some facts about the following algorithm, which takes as input a generating matrix
G ∈ Fn×k

q for a code of dimension k:

Algorithm 1: Contract(G,α)

1 Let Gi be the ith column of G, and let k be the number of columns of G, and n the number of rows.
2 while dim(G) ≥ α+ 1 do
3 Choose a random non-zero coordinate j ∈ [n] of G.
4 Let Ga be the first column of G where the jth coordinate is non-zero, and let Gb1 , . . . Gbp be the

remaining columns where the jth coordinate is non-zero.
5 Remove column Ga from G, and add −G−1

j,aGbi,aGa to each Gbi , i ∈ [p].

6 end

Claim 2.1. Given a matrix G of dimension k, after i contractions, the dimension of the column span of G is
k − i.

Proof. For the base case, note that after 0 contractions, the dimension is indeed k, as the columns of G are indeed
a basis. Now, suppose the claim holds inductively. We will assume that after i contractions, the rank is k − i,
and show that this holds after the i+ 1st contraction. This is clear however, as there are k − i− 1 columns after
the i + 1st contraction, and if we added the column that we removed back into the matrix, the rank would still
be k − i (as every column operation was invertible). If adding one vector can bring the dimension to k − i, the
dimension before adding the vector must be at least k − i− 1.

Claim 2.2. For any non-zero coordinate j ∈ [n] of G that we contract to get G′, the span of G′ is exactly all
codewords in the column span of G that are zero in coordinate j.

Proof. First, note that if a code of dimension k′ is non-zero in some coordinate j, then it is non-zero in this
coordinate in exactly (q− 1) · qk′−1 codewords (and zero in this coordinate in exactly qk

′−1 codewords). After we
contract on this jth coordinate, we get a new generating matrix G′ of dimension k′ − 1, where the jth row is all
0. Finally, because G′ is made by adding columns of G together, the span of G′ is contained in the span of G.
This means that the span of G′ is a k′ − 1 dimensional subspace of G where the jth row is 0, which is exactly all
codewords generated by G that are 0 in their jth coordinate, as the span of G′ will have qk

′−1 codewords.

Claim 2.3. Consider a code C of dimension k, and a codeword c ∈ C. If we never contract on any coordinate j
where c is non-zero, then c is still in the span of the resulting contracted code.

Proof. Let G′ be the result of performing all the aforementioned contractions. Let the sequence of coordinates
we contract on be j1, . . . jk. We know that after each contraction on ji, the span of the new generator matrix is
exactly all remaining codewords of G that are zero in coordinate ji. Since c is zero on all of j1, . . . jk (because
we only ever contract on coordinates where c is 0 by assumption), then c always remains in the span of G after
each contraction as the columns we removed are non-zero on these coordinates. So, after all the contractions are
performed, c is still in the span of G.

2.3 A Karger-Style Bound for Codewords Here, we will prove the following theorem:

Theorem 2.1. For a linear code C ⊆ Fn
q of dimension k, and any integer d ≥ 1, at least one of the following is

true:

7

1. There exists a linear sub-code C′ ⊂ C such that Density(C′) > 1
d .

2. For all integers α, there are at most qα ·
(
k
α

)
codewords of weight ≤ αd.

Remark 2.2. Note that Theorem 2.1 implies Karger’s original cut-counting bound as a special case with q = 2.
For any c ≥ 1, in any graph with minimum cut size c, the number of edges is necessarily at least (nc)/2. So
Condition 1 above never arises once we set d = c/2, allowing us to recover Karger’s original cut-counting bound.

We first prove some sub-claims that will make this easier.

Lemma 2.1. Suppose we run Algorithm 1, and for some d ∈ Z+, after every contraction Density(Span(G)) ≤ 1
d .

Then, the probability some codeword c ∈ C of weight ≤ αd (for α ∈ Z+) is still in the span of the final contracted

G is at least
(
k
α

)−1
.

Proof. By Claim 2.3, it follows that if c is in the span of the generating matrix G after i iterations, and we
contract on a coordinate where c is non-zero, then c will still be in the span of the contracted generating matrix.
So, it follows that the probability c survives is:

Pr[survives first contraction] · · · · · Pr[survives (k − α)th contraction].

Using the fact that before the ith contraction, the dimension is k − i+ 1, we know that the support must be at
least (k− i+1) · d by the assumed density. Because the codeword c survives if we contract on a coordinate where
c is 0, the probability of survival in the ith contraction is at least 1− α·d

(k−i+1)·d . Thus,

Pr[survives all contractions] ≥ (1− α/k)(1− α/(k − 1)) . . . (1− α/(α+ 1))(2.1)

=
k − α

k
· k − 1− α

k − 1
· · · · · α+ 1− α

α+ 1
=

(
k

α

)−1

.(2.2)

We are now ready to prove our main claim.

Proof. [Proof of Theorem 2.1] Suppose that condition 1 does not hold. Then, every linear sub-code C′ ⊆ C satisfies
Density(C′) ≤ 1

d . We can then invoke Lemma 2.1 to conclude that any codeword with weight ≤ α ·d is in the span

of the contracted matrix with probability ≥
(
k
α

)−1
. Further, note that because the dimension of the contracted

matrix is α, there are at most qα codewords in this span. Because there are qα codewords in the span of each
contracted matrix, the sum of all the probabilities of low weight codewords surviving must be ≤ qα. This means
there can be at most qα ·

(
k
α

)
codewords of weight ≤ α · d.

Theorem 2.2. For a linear code C of dimension k and length n over Fq, for any integer d ≥ 1, there exists a set
of at most k · d coordinates, such that upon their removal, in the resulting code, for any integer α ≥ 1 there are
at most qα ·

(
k
α

)
codewords of weight ≤ αd.

Proof. As long as Condition 1 of Theorem 2.1 continues to hold, we can write the matrix in the form

[
A B
0 C

]
,

where the coordinates corresponding to A,B are the subcode of density > 1
d . We can then remove all these

coordinates corresponding to this subspace, and continue repeating this process until Condition 1 no longer holds.
Once condition 2 holds, the dimension of the new code will be some value ≤ k, so the number of codewords of
weight ≤ αd will be at most qα ·

(
k
α

)
. To see why the number of coordinates we remove is at most kd, whenever

the subspace we remove has dimension k′, we remove at most k′d coordinates, so after this removal, the resulting
code is of dimension k − k′. It follows that we can remove at most kd coordinates before the dimension of the
code is 0.

Note that after removing coordinates, the resulting code will have dimension ≤ k, so in particular, the
generating matrix will have a non-trivial nullspace. This means that there will be several messages that map to
the same codeword. However, if the encoding of two messages is the same, i.e. yielding the same codeword, we
do not count these as separate instances. Instead, this bound treats this as a single codeword.

8

3 Preliminaries

3.1 Codes

Definition 3.1. For a code C ⊆ Fn
q , its distance is

min
c∈C:c̸=0

wt(c).

Definition 3.2. For a code C ⊆ Fn
q , the coordinates of the code are [n]. When we refer to the number of

coordinates, this is interchangeable with the length of the code, which is exactly n.

In this work, we will be concerned with code sparsifiers as defined below.

Definition 3.3. For a code C ⊆ Fn
q with associated generating matrix G, a (1 ± ε)-sparsifier for C is a subset

S ⊆ n, along with a set of weights wS : S → R+ such that for any x ∈ Fk
q

(1− ε)wt(Gx) ≤ wtS(G|Sx) ≤ (1 + ε)wt(Gx).

Here, wtS is meant to imply that if the codeword is non-zero in its coordinate corresponding to an element
i ∈ S, then it contributes wS(i) to the weight. We will often denote G|S with the corresponding weights as G̃.

We next present a few simple results for code sparsification that we will use frequently.

Claim 3.1. For a vertical decomposition of a generating matrix,

G =

G1

G2

...
Gk

 ,

if we have a (1± ε) sparsifier to codeword weights in each Gi, then their union is a (1± ε) sparsifier for G.

Proof. Consider any codeword c ∈ Span(G). Let ci denote the restriction to each Gi in the vertical decomposition.
It follows that if in the sparsifier wt(ĉi) ∈ (1±ε)wt(ci), then wt(ĉ) =

∑
i wt(ĉi) ∈ (1±ε)

∑
i wt(ci) = (1±ε)wt(c).

Claim 3.2. Suppose C′ is (1 ± δ) sparsifier of C, and C′′ is a (1 ± ε) sparsifier of C′, then C′′ is a (1 − ε)(1 −
δ), (1 + ε)(1 + δ) approximation to C (i.e. preserves the weight of any codeword to a factor (1 − ε)(1 − δ) below
and (1 + ε)(1 + δ) above).

Proof. Consider any codeword Cx. We know that (1 − ε)wt(Cx) ≤ wt(C′x) ≤ (1 + ε)wt(Cx). Additionally,
(1− δ)wt(C′x) ≤ wt(C′′x) ≤ (1 + δ)wt(C′x). Composing these two facts, we get our claim.

Finally, we will use the following claim many times implicitly in our arguments, as we will freely change the
generating matrix of the code we are looking at.

Claim 3.3. Suppose generating matrices G and G′ both generate the same dimension k code C of length n. Then,
if some weighted subset of the rows of G yields a (1± ε) sparsifier G|S = Ĝ, the same weighted subset of the rows
of G′ yields a (1± ε) sparsifier G′|S = Ĝ′.

Proof. Consider any codeword c ∈ C. By construction, there is an x, x′ such that Gx = c,G′x′ = c. Now,
G|Sx = c|S and G′|Sx′ = c|S . Hence, if Ĝ is a (1± ε) sparsifier of codewords in C, then so too is Ĝ′.

3.2 A Probabilistic Bound We will frequently utilize the following probabilistic bound.

Claim 3.4. ([FHHP11]) Let X1, . . . Xℓ be random variables such that Xi takes on value 1/pi with probability pi,

and is 0 otherwise. Also, suppose that mini pi ≥ p. Then, with probability at least 1− 2e−0.38ε2ℓp,∑
i

Xi ∈ (1± ε)ℓ.

9

3.3 Graphs and Graph Sparsification We recall here a few basic concepts about graphs and graph
sparsification.

Definition 3.4. A cut in a graph G = (V,E) is a subset S ⊆ V . We will specify the size of a cut |δG(S)| to be
the number of edges that cross from S to V − S (i.e. the number of edges that go from a set S to the rest of the
vertices). When a graph G = (V,E) also has an associated weight function w : E → R+, we take |δG(S)| to be
the sum over all the edges that cross from S to V − S of the weights of these crossing edges.

Definition 3.5. A (1 ± ε) cut-sparsifier for a weighted graph G = (V,E) is a new, weighted graph Ĝ = (V, Ê),
with associated weight function w, such that

1. Ê ⊆ E.

2. For every cut S ⊆ V ,

(1− ε)|δG(S)| ≤ |δĜ(S)| ≤ (1 + ε)|δG(S)|.

The famous result of Karger relates the size of the minimum cut to the number of cuts of other sizes.

Definition 3.6. The minimum cut of a graph G = (V,E) is

min
S⊆V :S ̸=V,S ̸=∅

|δG(S)|.

Theorem 3.1. (Karger’s Cut-Counting Bound) [Kar93,Kar99] Suppose a graph G = (V,E) has n vertices,
and minimum cut value c. Then, for any integer α, the number of cuts of size at most αc is at most n2α.

Definition 3.7. (Cut Code) For intuition, we will several times refer to the “cut code” of a corresponding
graph G = (V,E). Intuitively, this is the code over F2 with a generating matrix on |V | columns, where for every
edge e = (u, v) ∈ E, we add a row in the generating matrix which has a 1 in the columns corresponding to u and
v. If we denote this generating matrix by G′, it can be verified that for any cut (S, V − S),

|δG(S)| = wt(G′1S).

That is, the weight of the codeword corresponding to the encoding of the indicator vector of S is exactly the number
of edges crossing the cut (S, V − S).

3.4 CSPs and CSP Sparsification We formally define here CSPs and CSP sparsification. We start by
introducing the notion of a predicate.

Definition 3.8. A predicate P of arity r is a function going from {0, 1}r → {0, 1}.

We will look at CSPs which are defined using a single predicate.

Definition 3.9. A CSP over k variables with predicate P , is a collection of constraints of the form

P (x
(i)
1 , x

(i)
2 , . . . x

(i)
r) where r is the arity of P , and i ranges from 1 to m.

Definition 3.10. The value obtained by the CSP on an assignment x is correspondingly

m∑
i=1

P (x
(i)
1 , x

(i)
2 , . . . x(i)

r)

In some cases, the CSP has a corresponding weight wi ∈ R+ for each constraint. In this case, the value of the
CSP on assignment x is

m∑
i=1

wi · P (x
(i)
1 , x

(i)
2 , . . . x(i)

r).

10

Definition 3.11. A (1 ± ε)-sparsifier for a CSP C on m constraints, is a new CSP Ĉ specified by a subset
T ⊆ [m], along with weights (wi)i∈T , such that for any assignment x ∈ {0, 1}k,

(1− ε)

m∑
i=1

P (x
(i)
1 , x

(i)
2 , . . . x(i)

r) ≤
∑
i∈T

wiP (x
(i)
1 , x

(i)
2 , . . . x(i)

r) ≤ (1 + ε)

m∑
i=1

P (x
(i)
1 , x

(i)
2 , . . . x(i)

r).

In words, we choose a weighted subset of the constraints of C, such that for any assignment x, the value of the
CSP is preserved to a (1± ε) factor.

Note that in some works, sparsifying a CSP is meant to only preserve satisfiability while reducing the number
of constraints. In our setting, the goal is to approximately preserve the value of the satisfied constraints.

Definition 3.12. For a universe of variables x ∈ {0, 1}k, an affine projection is a restriction of the variables of
the form xi = 0, xi = 1, xi = xj or xi = ¬xj.

Remark 3.1. We say that an affine projection of a predicate P of arity r yields an AND of arity 2 if there exists
a function π : [r] → {0, 1, x,¬x, y,¬y} such that AND(x, y) = P (π(1), . . . , π(r)).

For instance, the predicate P : {0, 1}3 → {0, 1}, with the only satisfying assignments 000, 001 is equal to an
AND of arity 2 under affine projections. If we consider the restriction R which sets the third variable equal to 0,
we get a new predicate P |R whose only satisfying assignment is 00. Thus, this predicate P |R(y1, y2) = ¬y1 ∧¬y2.

4 Near-linear Size Sparsifiers for Polynomially-bounded Codes

In this section, we will prove the existence of near-linear size sparsifiers for codes of length kO(1), where k is the
dimension of the code. That is, when C is a linear code of dimension k and length kO(1). We will also assume that
C is unweighted (or that every coordinate has the same weight). The main theorem to be proved in this section
is Theorem 4.1 showing the result for polynomially length (which is a specific case of the more general Theorem
4.2 which applies to codes of any length, but loses extra factors, also proved here). In particular, this is a special
case of Theorem 1.1 proved in the introduction.

Intuitively, the proof will use Theorem 2.2 to repeatedly decompose the code C. In each application, we invoke
Theorem 2.2 with a specific choice of parameter d to decompose the generator matrix for the code C into the form[

A B
0 C

]
,

where A is exactly the low-dimensional subcode with bounded support. We will argue that we can keep all of
the coordinates of A because the support of A is sufficiently bounded. In turn, this means that B is effectively
preserved as well, so as long as we can get a (1± ε) approximation to C of sufficiently small size, we will be okay.
To deal with C, we argue that the distribution of the weights of codewords in C is sufficiently smooth, such that
we may subsample the coordinates at rate roughly 1/d.

This now yields two separate codes, each with size that is strictly smaller than the starting size. We operate
inductively, and recursively break down these two smaller codes. Ultimately, in each recursive step, we take a code
of size k · kγ , and return two codes of size roughly k · kγ/2. For an initial code of length kO(1) (i.e. whose length
is polynomial in the dimension), after log log k levels of recursion, we have log k codes, each of length roughly k.
In turn, we can glue these codes back together, and return a sparsifier for our original code.

4.1 Code Decomposition First, we consider Algorithm 2:

Algorithm 2: CodeDecomposition(C, d)
1 Let k be the dimension of C.
2 Let S be the set of coordinates to be removed as specified by Theorem 2.2.
3 Let C′ be the code C after removing the set of coordinates S.
4 return S, C′

11

Claim 4.1. 1. After the termination of the Algorithm 2, |S| ≤ k · d.

2. The final resulting C′ of Algorithm 2 satisfies condition 2 of Theorem 2.1.

Proof. For item 1: This follows exactly from Theorem 2.2.
For item 2: Because we exited the while loop, Condition 1 no longer holds for C′. Thus, by Theorem 2.1,

Condition 2 must hold.

Claim 4.2. To get a (1± ε) code sparsifier for C, it suffices to get S, C′ from Algorithm 2, and then sample all of
the indices in S with probability 1, and get a (1± ε)-sparsifier for C′.

Proof. This follows because we are creating a “vertical” decomposition of the code. The coordinates of the code
correpsonding to S contain a dimension k′ subspace, and the remaining coordinates of the code define C′. Thus,
we conclude by using Claim 3.1.

4.2 Code Sparsification Algorithm In this section we will present the code sparsification algorithm, and
argue its correctness and its sparsity.

Algorithm 3: CodeSparsify(C ⊆ Fn
q , k, ε, η)

1 Let n be the length of C.
2 if n ≤ 100 · k · η log(k) log(q)/ε2 then
3 return C
4 end

5 Let d = nε2

η·k log(k) log(q) .

6 Let S, C′ = CodeDecomposition(C,
√
d · η · log(k) log(q)/ε2). Let C1 = C|S . Let C2 be the result of

sampling every coordinate of C′ at rate 1/
√
d.

7 return CodeSparsify(C1, k, ε, η) ∪
√
d · CodeSparsify(C2, k, ε, η)

We will use the following fact, which is a simple extension of a result from Karger [Kar94]. In Karger’s work,
it was noted that for a graph with minimum cut value c, one can roughly sample the edges at rate log(n)/(cε2)
and scale the weights of the sampled edges up by cε2/ log(n) while still maintaining a (1 ± ε) approximation to
the cuts in the graph. In the following claim, we adapt this fact to codes which satisfy a smooth bound on the
number of codewords of a given weight.

Claim 4.3. Suppose C is a code of dimension k over Fq, and let b ≥ 1 be an integer such that for any integer
α ≥ 1, the number of codewords of weight ≤ αb is at most (qk)α. Suppose further that the minimum distance of

the code C is b. Then, sampling the coordinates of C at rate log(k) log(q)η
bε2 with weights bε2

log(k) log(q)η yields a (1± ε)

sparsifier with probability 1− 2−(0.19η−110) log k · k−101.

Proof. Consider any codeword c of weight [αb/2, αb] in C. We know that there are at most (qk)α codewords that
have weight in this range. The probability that our sampling procedure fails to preserve the weight of c up to a
(1± ε) fraction can be bounded by Claim 3.4. Indeed,

Pr[fail to preserve weight of c] ≤ 2e−0.38·ε2·αb
2 · η log(k) log(q)

ε2b = 2e−0.19αη log(k) log(q).

Now, let us take a union bound over the at most (qk)α codewords of weight between [αd/2, α]. Indeed,

Pr[fail to preserve any c of weight [αb/2, αb]] ≤ 2α log(qk) · 2e−0.19αη log(k) log(q)

≤ 2α·(−0.19η+1) log(k) log(q)

≤ 2α·(−0.19η+1) log(k)

≤ 2−(0.19η−110)α log k · 2−109α log k

≤ 2−(0.19η−110) log k · k−109α,

12

where we have chosen η to be sufficiently large. Now, by integrating over α ≥ 1, we can bound the failure
probability for any integer choice of α by 2−(0.19η−110) log k · k−101.

Lemma 4.1. In Algorithm 3, starting with a code C of size dk log(k) log(q)/ε2, after i levels of recursion, with
probability 1− 2i · 2−ηk, the code being sparsified at level i, C(i) has at most

(1 + 1/2 log log(k))i · d1/2
i

· η · k log(k) log(q)/ε2

surviving coordinates.

Proof. Let us prove the claim inductively. For the base case, note that in the 0th level of recursion the number
of surviving coordinates in C(0) = C is d · k log(k) log(q)/ε2, so the claim is satisfied trivially.

Now, suppose the claim holds inductively. Let C(i) denote a code that we encounter in the ith level of
recursion, and suppose that it has at most

(1 + 1/2 log log(k))i · d1/2
i

· η · k log(k) log(q)/ε2

coordinates. Denote this number of coordinates by ℓ. Now, if this number is smaller than 100kη log(k) log(q)/ε2,
we will simply return this code, and there will be no more levels of recursion, so our claim holds vacuously. Instead,

suppose that this number is larger than 100kη log(k) log(q)/ε2. Let d′ = ℓε2

ηk log(k) log(q) ≤ (1+1/2 log log(k))i ·d1/2i .
Then, we decompose C(i) into two codes, C1 and C2. C1 contains coordinates of C(i) that contain some k′

dimensional code on a support of size ≤ k′ ·
√
d′ · η · log(k) log(q)/ε2. Because k′ ≤ k, it follows that the number

of coordinates in C1, the first code we recurse on, is at most (1 + 1/2 log log(k))i · d1/2i+1 · η · k log(k) log(q)/ε2 as
we desire.

For C2, we define random variables X1 . . . Xℓ for each coordinate in the support of C2. Xi will take value 1 if
we sample coordinate i, and it will take 0 otherwise. Let X =

∑ℓ
i=1 Xi, and let µ = E[X]. Note that

µ2

ℓ
=

(
ℓ√
d′

)2

/ℓ =
ℓ

d′
≥ η · k · log(k) log(q)/ε2.

Now, using Chernoff,

Pr[X ≥ (1 + 1/2 log log(k))µ] ≤ e
−2

4 log2 log(k)
·η·k·log(k) log(q)/ε2 ≤ 2−ηk,

as we desire. Since µ = ℓ/
√
d′ ≤ (1 + 1/2 log log(k))i · d1/2i+1 · η · k log(k) log(q)/ε2, we conclude our result.

Now, to get our probability bound, we also operate inductively. Suppose that up to recursive level i− 1, all
sub-codes have been successfully sparsified to their desired size. At the ith level of recursion, there are at most
2i−1 codes which are being probabilistically sparsified. Each of these does not exceed its expected size by more
than the prescribed amount with probability at most 2−ηk. Hence, the probability all codes will be successfully
sparsified up to and including the ith level of recursion is at least 1− 2i−12−ηk − 2i−12−ηk = 1− 2i2−ηk.

Lemma 4.2. For any iteration of Algorithm 3 called on a code C, C1 ∪
√
d · C2 is a (1 ± ε) approximation to C

with probability at least 1− 2−(0.19η−110) log k · k−101.

Proof. First, we note that C′, C|S (as returned from Algorithm 2) form a vertical decomposition of C. Hence, it
suffices to show that C1 is a (1± ε)-sparsifier to C|S , and C2 is a (1± ε)-sparsifier to C′.

Seeing that C1 is a (1 ± ε)-sparsifier to C|S is trivial, as C1 = C|S , since we preserve every coordinate with
probability 1.

To see that C2 is a (1 ± ε)-sparsifier to C′, first note that every codeword in C′ is of weight at least√
d · η · log(k) log(q)/ε2. This is because if there were a codeword of weight smaller than this, there would

exist a subcode of C′ with dimension 1, and support bounded by
√
d · η · log(k) log(q)/ε2. But, because we used

Algorithm 2, we know that there can be no such sub-code remaining in C′. Thus, every codeword in C′ is of weight
at least

√
d · η · log(k) log(q)/ε2.

Now, we can invoke Claim 4.3 with b =
√
dη log(k) log(q)/ε2. Note that the hypothesis of Claim 4.3 is satisfied

by virtue of our code decomposition. Indeed, we removed coordinates of the code such that in the resulting C2,

13

for any α ≥ 1, there are at most (qk)α codewords of weight ≤ α
√
dη log(k) log(q)/ε2. Using the concentration

bound of Claim 4.3 yields that with probability at least 1 − 2−(0.19η−110) log k · k−101, the resulting sparsifier for
C2 is a (1± ε) sparsifier, as we desire.

Corollary 4.1. If Algorithm 3 achieves maximum recursion depth ℓ when called on a matrix C, and η > 600,
then the result of the algorithm is a (1± ε)ℓ sparsifier to C with probability ≥ 1− (2ℓ− 1) · 2−(0.19η−110) log k ·k−101

Proof. We prove the claim inductively. Clearly, if the maximum recursion depth reached by the algorithm is 0,
then we have simply returned the code itself. This is by definition a (1± ε)0 sparsifier to itself.

Now, suppose the claim holds for maximum recursion depth i − 1. We will show it holds for maximum
recursion depth i. Let the code we are sparsifying be C. We break this into C1, C2, and sparsify these. By our
inductive claim, with probability 1 − (2i−1 − 1) · 2−(0.19η−110) log k · k−101 each of the sparsifiers for C1, C2 are
(1± ε)i−1 sparsifiers. Now, by Lemma 4.2 and our value of η, C1, C2 themselves together form a (1± ε) sparsifier
for C with probability 1− 2−(0.19η−110) log k · k−101. So, by using Claim 3.2, we can conclude that with probability
1 − (2i − 1) · 2−(0.19η−110) log k · k−101, the result of sparsifying C1, C2 forms a (1 ± ε)i approximation to C, as we
desire.

We can then state the main theorem from this section:

Theorem 4.1. For a code C on alphabet Fq of dimension k, and length kO(1), Algorithm 3 creates a (1 ± ε)
sparsifier for C of size O(kη log2(k) log(q)(log log(k))2/ε2) with probability 1− 2−(0.19η−110) log k · k−100.

Proof. For a code of dimension k, and length kO(1), this means that our value of d as specified in the first call to

Algorithm 3 is at most kO(1) as well. As a result, after only log log k iterations, d = kO(1)/2log log k

= kO(1)/ log k =
O(1). So, by Corollary 4.1, because the maximum recursion depth is only log log k, it follows that with probability
at least 1− (2log log k − 1) · 2−(0.19η−110) log k ·k−101 ≥ 1− (log k) · 2−(0.19η−110) log k ·k−101, the returned result from
Algorithm 3 is a (1± ε)log log k sparsifier for C.

Now, by Lemma 4.1, with probability ≥ 1− 2log log k · 2−ηk ≥ 1− log(k)2−ηk ≥ 1− 2−(0.19η−110) log k · k−101,
every code at recursive depth log log k has at most

(1 + 1/2 log log(k))log log k · d1/ log k · η · k log(k) log(q)/ε2 = O(kη log(k) log(q)/ε2)

coordinates. Because the ultimate result from calling our sparsification procedure is the union of all of the leaves
of the recursive tree, the returned result has size at most

2log log k ·O(kη log(k) log(q)/ε2) = O(kη log2(k) log(q)/ε2),

with probability at least 1− 2−(0.19η−110) log k · k−100.
Finally, note that we can replace ε with a value ε′ = ε/2 log log k. Thus, the resulting sparsifier will be a

(1± ε′)log log k ≤ (1± ε) sparsifier, with the same high probability.
Taking the union bound of our errors, we can conclude that with probability 1 − 2−(0.19η−110) log k · k−100,

Algorithm 3 returns a (1 ± ε) sparsifier for C that has at most O(kη log2(k) log(q)(log log(k))2/ε2) coordinates.

Theorem 4.2. For a code C of dimension k, and length n over Fq, Algorithm 3 creates a (1± ε) sparsifier for C
with probability 1− log(n) · 2−(0.19η−110) log k · k−100 with at most

O(kη log(k) log(q) log2(n)(log log(n))2/ε2)

coordinates.

Proof. For a code of dimension k, and length n, this means that our value of d as specified in the first call to

Algorithm 3 is at most n as well. As a result, after only log log n iterations, d = n1/2log log n

= n1/ logn = O(1). So,
by Corollary 4.1, because the maximum recursion depth is only log log n, it follows that with probability at least

14

1− (2log logn − 1) · 2−(0.19η−110) log k · k−101, the returned result from Algorithm 3 is a (1± ε)log logn sparsifier for
C.

Now, by Lemma 4.1, with probability ≥ 1 − 2log logn · 2−ηk ≥ 1 − log(n) · 2−(0.19η−110) log k · 2−k, every code
at recursive depth log log n has at most

(1 + 1/2 log log(k))log logn · n1/ logn · η · k log(k) log(q)/ε2 = O(kη log(k) log(q) · e
log log n
log log k /ε2)

coordinates. Because the ultimate result from calling our sparsification procedure is the union of all of the leaves
of the recursive tree, the returned result has size at most

log(n) · e
log log n
log log k ·O(kη log(k) log(q)/ε2) = O(kη log(k) log(q) log2(n)/ε2),

with probability at least 1− log(n) · 2−(0.19η−110) log k · k−101.
Finally, note that we can replace ε with a value ε′ = ε/2 log log n. Thus, the resulting sparsifier will be a

(1± ε′)log logn ≤ (1± ε) sparsifier, with the same high probability.
Taking the union bound of our errors, we can conclude that with probability 1−log(n)·2−(0.19η−110) log k ·k−100,

Algorithm 3 returns a (1± ε) sparsifier for C that has at most

O(kη log(k) log(q) log2(n)(log log(n))2/ε2)

coordinates.

However, as we will address in the next section, this result is not perfect:

1. For large enough n, there is no guarantee that this probability is ≥ 0 unless η depends on n.

2. For large enough n, log2(n) may even be larger than k.

5 Nearly Linear Size Sparsifiers for Codes of Arbitrary Length

In this section, our goal is to prove Theorem 1.1 (the exact version proved will be Theorem 5.1). We will do this
by using Theorem 4.2 as a sub-routine in another algorithm.

In the previous section, we saw an algorithm which produces a near-linear size sparsifier for codes of length
polynomial in the dimension. However, if we start with a code of arbitrary length n, simply applying the algorithm
from the previous section led to spurious log(n) factors, which unfortunately can dwarf k. In this section, we will
show how we can be a little more careful with our sparsifier to avoid these extra log(n) factors. To do this, in
§ 5.1, we will showcase a simple one-shot algorithm that returns a size O(k2 log(q)/ε2) weighted (1± ε) sparsifier
of any code of dimension k and length n. Ideally, we could simply use this sparsification and compose on top of it
Algorithm 3. However, as written, Algorithm 3 only works for unweighted codes (or codes where every coordinate
has the same weight).

Further, the ratio of the weights that are returned by this sparsifier is unbounded in k (and in many cases
will be as large as Ω(n)). Naive notions of turning the weighted code into an unweighted code unfortunately do
not work, as if we try to replace coordinates of weight w with w unweighted coordinates, we will no longer be
guaranteed that length of the code is polynomial, and we will not have gained anything.

Instead, we will show that once we have a weighted sparsifier of size polynomial in the dimension, we can
group coordinates together by their weights. That is, we set a parameter α = poly(k/ε) sufficiently large, and set
the ith group to contain coordinates with weights between [αi−1, αi]. Our key observation is that if a codeword is
non-zero in any coordinate in the ith group, then for an appropriately chosen α, the total weighted contribution
from any coordinates in groups i − 2, i − 3, . . . is much less than an ε/100 fraction of the weight coming from
group i. Thus if we let i be the largest integer such that a codeword is non-zero in the ith weight group, we can
effectively ignore all the coordinates corresponding to weight groups i − 2, . . . when sparsifying this codeword.
Now, starting with the largest i, we decompose the code into codewords which are non-zero in group i and those
which are zero in group i. For those which are non-zero, we can effectively ignore all the coordinates from groups
i − 2, i − 3, This means that all the coordinates we are concerned with have weights in the range [αi−2, αi].
To turn this into an unweighted code, we simply pull out a factor of αi−2, and now for a coordinate of weight w,
we can repeat it roughly w times. Because the weights are polynomial in the dimension, the resulting unweighted
code is also polynomial in dimension, and we can invoke the results from the previous section.

15

5.1 Simple Quadratic Size Sparsifiers In this section, we will introduce a one-shot method for sparsifying
a code of dimension k and length n on alphabet Fq that maintains O(k2 log(q)/ε2) indices of the original code.
We state the algorithm here, and then analyze the space complexity and correctness of this algorithm.

Algorithm 4: QuadraticSparsify(C ⊆ Fn
q , k, ε)

1 Let n be the length of C. for i = 1, . . . n do
2 Let wi be minc∈C:ci ̸=0 wt(c).
3 end
4 Let C′ be the result of sampling every coordinate of C with probability min(1, a · k log(q)/(ε2wi)), and

weight 1/min(1, a · k/(ε2wi)).
5 return C′

5.1.1 Correctness First, we prove the correctness of this algorithm.

Lemma 5.1. For a code C of dimension k, and a fixed codeword c ∈ C, Algorithm 4 returns a sparsifier C′ for C,
such that the new weight of c is a (1± ε) approximation to the old weight with probability at least 1− 2−2k.

Proof. Consider any codeword c ∈ C of weight ℓ. Then, by Claim 3.4,

Pr[C′does not make a (1± ε) approximation to c] ≤ 2e−0.38ε2ℓ
a·k log(q)

ε2ℓ = 2e−0.38ak log(q).

Here, we have used that because wi is the minimum weight codeword for which a specific coordinate is 1, in a
codeword of weight ℓ, every index in the support has wi ≤ ℓ. Now, by choosing a = 10, and taking a union bound
over all qk codewords, we get that with probability ≥ 1−2−k, Algorithm 4 returns a (1±ε) sparsifier for C.

5.1.2 Size Analysis Next, we bound the space taken by this algorithm. To do this, we will first need to take
advantage of some structural results about codes.

Fact 5.1. For any linear code, there exists a basis such that codewords of weight ℓ can be written as the sum of
codewords of weight ≤ ℓ from the basis.

Proof. Fix a basis b1, . . . bk, which maximizes the number of codewords which can be written as the sum of
codewords of weight less than itself. Suppose that this basis cannot write some codeword c as a sum of codewords
of weight ≤ wt(c). We know that c = b1 + . . . bk for some basis elements. Without loss of generality, assume that
the weights of b1, . . . bk are all ordered. Further, assume that all basis elements starting at index 1 ≤ j ≤ k are of
weight ≥ wt(c). It follows then that we can swap c with bk. For any old codeword which required basis element
bk in its decomposition, we can substitute bk = b1 + · · · + bk−1 + c. All of these basis elements are of weight
≤ wt(bk), so if previously the codeword could be written as the sum of basis elements of weight less than itself,
this will still hold true. Further, the new code can express c in its basis with codewords of weight ≤ wt(c) (just
by taking itself). Hence, the new basis is better than the original, which is a contradiction. So, the original basis
must be able to write every codeword as the sum of codewords of smaller weight.

Remark 5.1. Fix such a basis b1, . . . bk as specified by the previous fact. Now, consider any coordinate of this
code. If we look at the weights of all codewords that are non-zero in this coordinate, the minimum weight codeword
must be with one of the basis vectors. This follows easily: any codeword non-zero in its ith coordinate must be the
sum of at least 1 basis vector which is non-zero in its ith coordinate. This means that the weight of the codeword
must be greater than the weight of the corresponding basis vectors in its sum.

By the previous remark, when we try to bound the possible values attained by maxx
⟨ri,x⟩
wt(Dx) , it will suffice to

analyze the possible value attained just by looking at the basis codewords for this special basis. This simplifies
things, as we do not have to look at what can happen with possible linear combinations of the codewords. Instead
of looking at a basis, we may simply consider a matrix of dimension n× k.

16

Claim 5.1. Fix an n× k matrix A. Let ci denote the ith coordinate of c, and let Aj denote the jth column of A.
Then,

n∑
i=1

max
j∈[k]:(Aj)i=1

1

wt(cj)
≤ k.

Proof. This follows because each column cj can only be the “minimizing” column wt(cj) times. Each such time,
it contributes 1

wt(cj)
. There are k columns, so the total contribution is thus bounded by k. This is in fact tight,

as the identity matrix will achieve k.

Claim 5.2. For any linear code C of dimension k and length n, with a generator matrix G consisting of rows ri,

n∑
i=1

max
c∈C:ci=1

1

wt(c)
≤ k.

Proof. This follows by taking the specified codeword basis from Remark 5.1 and invoking Claim 5.1.

Finally, we can prove a bound on the size of the sketch.

Lemma 5.2. With probability 1− 2−k, Algorithm 4 does not sample more than O(k2 log(q)/ε2) coordinates.

The expected number of coordinates that are sampled by Algorithm 4 is

n∑
i=1

min(1, a · k log(q)/(ε2wi)) ≤
n∑

i=1

a · k log(q)/(ε2wi) ≤
ak log(q)

ε2
·

n∑
i=1

1/wi ≤
ak2 log(q)

ε2
.

Note that here we have used Claim 5.2. Finally, by using a Chernoff bound, we can argue that the size of
the sketch is not more than double its expected size with probability 1− 2−k. Hence, the size of the sketch is at
most O(k2 log(q)/ε2) with probability 1− 2−k.

5.2 Removing the O(log n) factors Similar to [CKN20], we want to remove the extra factors of log n. To
this end, we suggest the following procedure upon being given a code of length n and dimension k in Algorithm
5.

Algorithm 5: WeightClassDecomposition(C, ε, k)
1 Let C′ =QuadraticSparsify(C, k, ε/4).
2 Let α = k3 log(q)

ε3 .
3 Let Ei be all coordinates of C′ that have weight between [αi−1, αi].
4 Let Dodd = E1 ∪ E3 ∪ E5 ∪ . . . , and let Deven = E2 ∪ E4 ∪ E6 ∪
5 return Dodd,Deven.

Next, we prove some facts about this algorithm.

Lemma 5.3. Consider a code C of dimension k and length n. Let

Dodd,Deven = WeightClassDecomposition(C, ε, k).

To get a (1± ε)-sparsifier for C, it suffices to get a (1± ε/4) sparsifier to each of Dodd,Deven.

Proof. First, note that in Algorithm 5, we let C′ =QuadraticSparsify(C, t, ε/4). From before, we know that this
will return a (1± ε/4) sparsifier C′ to C, of size O(k2 log(q)/ε2) with probability ≥ 1− 2−k−1. Now, the creation
of Dodd,Deven forms a vertical decomposition of the code C′. Thus, by Claim 3.1, if we have a (1± ε/4) sparsifier
for each of Dodd,Deven, we have a (1± ε/4) sparsifier to C′, so by Claim 3.2 we have a (1± ε) approximation to
C (with probability 1− 2k−1).

17

Because of the previous claim, it is now our goal to create sparsifiers for Dodd,Deven. Without loss of generality,
we will focus our attention only on Deven, as the procedure for Dodd is exactly the same (and the proofs will be
the same as well). At a high level, we will take advantage of the fact that

Deven = E2 ∪ E4 ∪ . . . ,

where each Ei contains edges of weights [α
i−1, αi], for α = k3 log(q)

ε3 . Because the returned result from Quadratic
sparsify has at most O(k2 log(q)/ε2) edges with high probability, whenever a codeword c ∈ C′ has a 1 in a
coordinate corresponding to Ei, we can effectively ignore all coordinates of lighter weights Ei−2, Ei−4, This

is because any coordinate in E≤i−2 has weight at most a ε3

k3 log(q) fraction of any single coordinate in Ei. Because

there are at most O(k2 log(q)/ε2) coordinates in C′, it follows that the total possible weight of all coordinates in
E≤i−2 is still at most a O(ε/k) fraction of the weight of a single coordinate in Ei. Thus, we will argue that when
we are creating a sparsifier for codewords that have a 1 in a coordinate corresponding to some Ei, we will be
able to effectively ignore all coordinates corresponding to E≤i−2. To argue this, we will first have to show how to
decompose the code into blocks that are non-zero in coordinates in Ei. So, consider the following algorithm:

Algorithm 6: SingleSpanDecomposition(Deven, α, i)

1 Let Ei be all coordinates of Deven with weights between αi−1 and αi.
2 Let G be a generating matrix for Deven.
3 Let k′ be the rank of G|Ei

.
4 Let b1, . . . bk′ be k′ linearly independent columns in G|Ei .
5 Permute the columns of Deven so b1, . . . bk′ become the first k′ columns of G|Ei .
6 Perform column operations on G to cancel out all remaining columns in G|Ei

.
7 return G|Ei

, G|Ēi
, k′

Claim 5.3. Line 6 in Algorithm 6 is always possible.

Proof. Because the rank of G|Ei is k
′, and the first k′ columns are said to be linearly independent, it follows that

there exists a sequence of column operations we can do to zero-out all the remaining k − k′ columns of G|Ei
.

Claim 5.4. Line 6 in Algorithm 6 does not change the span of the overall generating matrix G.

Proof. Because the first k′ columns remain untouched, and then are added to the remaining k − k′ columns, it
follows that all these operations can be undone. Since the starting generator matrix G was rank k, it follows that
the new generating matrix is also rank k, so the span has not changed.

We now describe some structural properties of this decomposition:

Claim 5.5. After a single iteration of Algorithm 6, suppose the result of running the algorithm looks like

G =

[
A 0
B C

]
,

where A corresponds to the first k′ columns of GEi , and B,C are the remaining coordinates of the decomposition.
Then, if a codeword c ∈ Deven is 0 on all of the coordinates corresponding to Ei in the above matrix, then c lives
entirely in the span of the final k − k′ columns.

Proof. Suppose to the contrary that c is 0 on all of the coordinates corresponding to Ei, but requires a non-zero
linear combination including the first k′ coordinates. Then c would be non-zero in the coordinates corresponding
to Ei because A is a set of linearly independent columns for Ei. Thus, any non-zero linear combination including
the columns of A will be non-zero in Ei, so c can not include any of the first k′ columns.

Now, we can continue to decompose the code by repeating Algorithm 6 multiple times.

18

Algorithm 7: SpanDecomposition(Deven, α)

1 Let D′
even = Deven.

2 Let S = {}.
3 while D′

even is not empty do
4 Let k be the dimension of D′

even. Let i be the largest integer such that Ei is non-empty in D′
even.

5 Let G|Ei , G|Ēi
, k′ =SingleSpanDecomposition(D′

even, α, i).
6 Let Hi be the first k′ columns of G|Ei .
7 Let D′

even be the span of the final k − k′ columns of G|Ēi
.

8 Add i to S.

9 end
10 return S, Hi for every i ∈ S

Claim 5.6. Let S,Hi be as returned by Algorithm 7. Then,
∑

i∈S rank(Hi) = rank(Deven).

Proof. This follows because in line 6 of Algorithm 7 we set Hi to be the first k′ columns of G|Ei
, and recurse on

D′
even being the span of the remaining k − k′ columns. Hence, the total rank is conserved in every inner loop.

Lemma 5.4. Suppose we have a code of the form Deven created by Algorithm 5. Then, if we run Algorithm 7
on Deven, to get S,Hi∀i ∈ S, it suffices to get a (1 ± ε/2) sparsifier for each of the Hi in order to get a (1 ± ε)
sparsifier for Deven.

Proof. Consider any codeword c in the span of Deven. Let j be the largest integer such that c is non-zero in the
coordinates of Deven corresponding to Ej .

First, we will show that it suffices to approximate the weight of c to (1 ± ε/2) on the coordinates in Ej

to approximate its weight to (1 ± ε/2) overall. Indeed, this follows because any single coordinate in Ej has
more weight than all the combined coordinates of Ej−2, Ej−4, This is because there are only O(k2 log(q)/ε2)
coordinates in the code total, and by our choice of α in Algorithm 5, any coordinate in Ej is at least k3 log(q)/ε3

of the fraction of the weight of a coordinate in Ej−2, Ej−4, So, any single coordinate in Ej contributes
Ω(k/ε) more weight than all coordinates in Ej−2, . . . combined. If we approximate the weight of c in Ej to a
(1 ± ε/2) fraction then, we are never overestimating the weight of c in the code by more than (1 + ε/2), and
we never underestimate by more than (1 − ε/2)(1 − O(ε/k)) ≥ (1 − ε). Hence, this does indeed yield a (1 ± ε)
approximation to the weight of a codeword c.

Next, we must argue that by creating sparsifiers for each of the Hi, we are indeed approximating the weight
of any codeword c to a (1 ± ε/2) fraction on the coordinates of Deven corresponding to Ej . To see why this is
true, let us look at a single iteration of Algorithm 6. If WLOG we assume the coordinates of Deven are sorted by
weight, the result of running the algorithm looks like

Deven =

[
A 0
B C

]
.

In this case, A is a dimension k′ code corresponding to the coordinates of Ej in Deven. We then disregard
the matrix B, and iteratively decompose C in the same manner. The key fact is from Claim 5.5. Any codeword
which is zero on Ej will in fact live entirely in the span of the final k − k′ columns. Thus, it suffices to estimate
the weight of c on these final k− k′ columns, but because the coordinates of Ej are 0 in these columns, it in fact
suffices to simply build a sparsifier for the matrix C in the above decomposition. Thus, inductively, it suffices to
continue decomposing C in the above manner. To conclude, if for some c, j is the largest integer for which c is
non-zero on Ej , then in each iteration when we decompose the generator into

G(i) =

[
A 0
B C

]
,

c will continue living in the span of the bottom right matrix C, until we finally call Algorithm 6 with parameter
j. Then, we are indeed approximating c on the coordinates of Deven corresponding to Ej , so our argument is
complete.

19

Dealing with Bounded Weights Let us consider any Hi that is returned by Algorithm 7, when called
with α = k3 log(q)/ε3. By construction, Hi will contain weights only in the range [αi−1, αi] and will have at
most O(k2 log(q)/ε2) coordinates. In this subsection, we will show how we can turn Hi into an unweighted code
with at most O(k5 log2(q)/ε6) coordinates. First, note however, that we can simply pull out a factor of αi−1, and
treat the remaining graph as having weights in the range of [1, α]. Because multiplicative approximation does not
change under multiplication by a constant, this is valid. Formally, consider the following algorithm:

Algorithm 8: MakeUnweighted(C, α, i, ε)
1 Divide all edge weights in C by αi−1.
2 Make a new unweighted code C′ by duplicating every coordinate of C ⌊10w(r)/ε⌋ times.
3 return C, αi−1 · ε/10

Lemma 5.5. Consider a code C with weights bounded in the range [1, α]. To get a (1±ε) sparsifier for C it suffices
to return a (1± ε/10) sparsifier for C′ weighted by ε/10, where C′ is the result of calling Algorithm 8 on C, α, 1, ε.

Proof. It suffices to show that C′ is (1 ± ε/10) sparsifier for C, as our current claim will then follow by Claim
3.2. Now, to show that C′ is (1 ± ε/10) sparsifier for C, we will use Claim 3.1. Indeed, for every coordinate r
in C, consider the corresponding ⌊10w(r)/ε⌋ coordinates in C′. We will show that the contribution from these
coordinates in C′, when weighted by ε/10, is a (1± ε/10) approximation to the contribution from r.

So, consider an arbitrary coordinate r, and let its weight be w. Then,

10w

ε
− 1 ≤ ⌊10w/ε⌋ ≤ 10w

ε
.

When we normalize by ε
10 , we get that the combined weight of the new coordinates w′ satisfies

w − ε/10 ≤ w′ ≤ w.

Because w ≥ 1, it follows that this yields a (1± ε/10) sparsifier, and we can conclude our statement.

Claim 5.7. Suppose a code C of length n has weight ratio bounded by α, and minimum weight αi−1. Then, calling
Algorithm 8 with error parameter ε yields a new unweighted code of length O(nα/ε).

Proof. Each coordinate is repeated at most O(α/ε) times.

5.3 Final Algorithm Finally, we state our final algorithm in Algorithm 9, which will create a (1±ε) sparsifier

for any code C ⊆ Fn
q of dimension k preserving only Õ(k log(q)/ε2) coordinates.

First, we analyze the space complexity. WLOG we will prove statements only with respect to Deven, as the
proofs will be identical for Dodd.

Claim 5.8. Suppose we are calling Algorithm 9 on a code C of dimension k. Let keven,i = rank(Ĥeven,i) from
each call to the for loop in line 5.

For each call H̃even,i =CodeSparsify(Ĥeven,i, rank(Ĥeven,i), ε/10, 100(log(k/ε) log log(q))
2) in Algorithm 9, the

resulting sparsifier has

O
(
keven,i log(keven,i) log

2(k/ε) · log2(k/ε) log(q)(log log(k/ε) log log(q))2/ε2
)

coordinates with probability at least 1− log(k log(q)/ε) · 2−Ω(log2(k/ε)(log log(q))2).

Proof. We use several facts. First, we use Theorem 4.2. Note that we have replaced the n in the statement
of Theorem 4.2 with k5 log2(q)/ε6 by using Claim 5.7. Indeed, because α = k3 log(q)/ε3, and we started
with a weighted code of length O(k2 log(q)/ε2), it follows that after using Algorithm 8, the support size is
bounded by O(k5 log2(q)/ε6). We’ve also added the fact that η is no longer a constant, and instead carries
O((log(k/ε) log log(q))2), and carried this through to the probability bound.

20

Algorithm 9: FinalCodeSparsify(C, ε)
1 Let k be the dimension of C.
2 Let α = k3 log(q)/(ε/2)3, and Dodd,Deven =WeightClassDecomposition(C, ε, k).
3 Let Seven, {Heven,i} =SpanDecomposition(Deven, α).
4 Let Sodd, {Hodd,i} =SpanDecomposition(Dodd, α).
5 for i ∈ Seven do

6 Let Ĥeven,i, weven,i = MakeUnweighted(Heven,i, α, i, ε/8).

7 Let H̃even,i =CodeSparsify(Ĥeven,i, rank(Ĥeven,i), ε/80, 100(log(k/ε) log log(q))
2).

8 end
9 for i ∈ Sodd do

10 Let Ĥodd,i, wodd,i = MakeUnweighted(Hodd,i, α, i, ε/8).

11 Let H̃odd,i =CodeSparsify(Ĥodd,i, rank(Ĥodd,i), ε/80, 100(log(k/ε) log log(q))
2).

12 end

13 return
⋃

i∈Seven

(
weven,i · H̃even,i

)
∪
⋃

i∈Sodd

(
wodd,i · H̃odd,i

)

Lemma 5.6. In total, the combined number of coordinates over i ∈ Seven of all of the H̃even,i is at most

Õ(k log(q)/ε2) with probability at least 1− log(k log(q)/ε) · 2−Ω(log2(k/ε)(log log(q))2).

Proof. First, we use Claim 5.6 to see that ∑
i∈Seven

keven,i ≤ k,

where keven,i = rank(Ĥeven,i). Thus, in total, the combined length (total number of coordinates preserved) of all

the H̃even,i is ∑
i∈Seven

number of coordinates in Ĥeven,i

≤
∑

i∈Seven

O
(
keven,i log(keven,i) log

2(k/ε) · log2(k/ε) log(q)(log log(k/ε) log log(q))2/ε2
)

≤
∑

i∈Seven

(keven,i) · Õ
(
log4(k) log(q)/ε2

)
= k · Õ

(
log4(k) log(q)/ε2

)
= Õ(k log(q)/ε2).

To see the probability bound, we simply take the union bound over all at most k distinct H̃even,i, and invoke
Claim 5.8.

Now, we will prove that we also get a (1± ε) sparsifier for Deven when we run Algorithm 9.

Lemma 5.7. After combining the Ĥeven,i from Lines 5-8 in Algorithm 9, the result is a (1 ± ε/4)-sparsifier for

Deven with probability at least 1− log(k log(q)/ε) · 2−Ω(log2(k/ε)(log log(q))2).

Proof. We use Lemma 5.4, which states that to sparsify Deven to a factor (1± ε/4), it suffices to sparsify each of
the Heven,i to a factor (1± ε/8), and then combine the results.

Then, we use Lemma 5.5, which states that to sparsify any Heven,i to a factor (1± ε/8), it suffices to sparsify

Ĥeven,i to a factor (1 ± ε/80), where again, Ĥeven,i is the result of calling Algorithm 8. Then, we must multiply

Ĥeven,i by a factor αi−1 · ε/10.
Finally, the resulting code Ĥeven,i is now an unweighted code, whose length is bounded by O(k5 log2(q)/ε6),

with rank keven,i. The accuracy of the sparsifier then follows from Theorem 4.2 called with parameter ε/80.

21

The failure probability follows from noting that we take the union bound over at most k Heven,i. By Theorem
4.2, our choice of η, and the bound on the length of the support being O(k5 log2(q)/ε5), the probability bound
follows.

The reason for our choice of η is a little subtle. For Theorem 4.2, the failure probability is characterized in
terms of the dimension of the code that is being sparsified. However, when we call Algorithm 3 as a sub-routine in
Algorithm 9, we have no guarantee that the rank is ω(1). Indeed, it is certainly possible that the decomposition
in Hi creates k different matrices all of rank 1. Then, choosing η to only be a constant, as stated in Theorem 4.2,
the failure probability could be constant, and taking the union bound over k choices, we might not get anything
meaningful. To amend this, instead of treating η as a constant in Algorithm 3, we set η = 100(log(k/ε) log log(q))2,
where now k is the overall rank of the code C, not the rank of the current code that is being sparsified Hi. With
this modification, we can then attain our desired probability bounds.

Theorem 5.1. For any code C of dimension k and length n, Algorithm 9 returns a (1 ± ε) sparsifier to C with

Õ(k log(q)/ε2) coordinates with probability ≥ 1− 2−Ω((log(k/ε) log log(q))2) − 2−k.

Proof. First, we use Lemma 5.3. This Lemma states that in order to get a (1± ε) sparsifier to a code C, it suffices
to get a (1± ε/4) sparsifier to each of Deven,Dodd, and then combine the results.

Then, we invoke Lemma 5.7 to conclude that with probability ≥ 1− 2−Ω((log(k/ε) log log(q))2), Algorithm 9 will
produce (1± ε/4) sparsifiers for Deven,Dodd.

Further, to argue the sparsity of the algorithm, we use Lemma 5.6. This states that with probability
≥ 1− 2−Ω((log(k/ε) log log(q))2), Algorithm 9 will produce code sparsifiers of size Õ(k log(q)/ε2) for Deven,Dodd.

Finally, we can bound the error probability of the subcall to WeightClassDecomposition in Algorithm 9 by
2−k.

Thus, in total, the failure probability is at most 2−k + 2−Ω((log(k/ε) log log(q))2), the total size of the returned
code sparsifier is at most Õ(k log(q)/ε2), and the returned code is indeed a (1± ε) sparsifier for C, as we desire.

Note that the returned sparsifier may have some duplicate coordinates because of Algorithm 8. Even when
counting duplicates of the same coordinate separately, the size of the sparsifier will be at most Õ(k log(q)/ε2).
We can remove duplicates of coordinates by adding their weights to a single copy of the coordinate.

Extension to the weighted case. Finally, note that as stated, this section proves the existence of near-
linear size code sparsifiers for unweighted codes of any length. However, this extends simply to weighted codes of
any length, as we can simply repeat coordinates in accordance with their weights, and then sparsify the resulting
unweighted code.

We make this more rigorous below:

Claim 5.9. Suppose we are given a weighted code C of dimension k, where the weight of coordinate i is wi ∈ R+,
and the smallest weight of any coordinate is w. Then, if we create a new unweighted code C′ by repeating coordinate
i ⌊ 100wi

εw ⌋ times, then for any c ∈ C, the corresponding c′ ∈ C′ satisfies

wε

100
· wt(c′) ∈ (1± ε/10)wt(c).

Further, a (1 ± ε/10)-sparsifier to C′ when weighted by wε
100 yields a (1 ± ε)-sparsifier for C. Hence, there exist

sparsifiers of size Õ(k log(q)/ε2) for any weighted code C.

Proof. We will consider an arbitrary coordinate i from C and compare its weight contribution to c in C versus
c′ ∈ C′. In C, the contribution is wi. In C′ (after weighting the entire code by wε

100), the contribution from the

duplicates of coordinate i is wε
100 · ⌊ 100wi

εw ⌋. Now, it follows that

wε

100
·
(
100wi

εw

)
≤ wε

100
· ⌊100wi

εw
⌋ ≤ wε

100
·
(
100wi

εw
+ 1

)
,

and hence

wi ≤
wε

100
· ⌊100wi

εw
⌋ ≤ wi · (1 +

wε

wi100
) ≤ wi(1 + ε/100).

22

Hence, (after weighting the entire code by wε
100), the contribution from the duplicates of coordinate i is within

(1± ε/100) of the desired weight, and hence overall, the corresponding weight of c′ is preserved to a (1± ε/100).
Now, suppose we get a (1± ε/10)-sparsifier for C′. Then, this sparsifier preserves the weight of any codeword

c′ ∈ C′ to a (1 ± ε/10) factor. Hence, for a codeword c ∈ C, the sparsifier for C′ (when weighted by wε/100)
preserves the weight of c to a factor (1± ε) by Claim 3.2 (composing approximations).

The size of our resulting sparsifier is Õ(k log(q)/ε2). This follows because duplicating coordinates does not
change the dimension or our field size, only the length. Because after duplicating the coordinates, the code is
unweighted, we can invoke Theorem 4.2 to create a (1 ± ε/10)-sparsifier of size Õ(k log(q)/ε2). Note that this
sparsifier may still have duplicate coordinates, which we can remedy by combining them together (adding their
weights).

6 Application to Cayley Graph Sparsifiers

In this section, we will explore the connection between the weights of codewords for an error correcting code C
of dimension k and the eigenvalues of the Laplacian of a Cayley graph on Fk

2 . At a high level, it is well known
that there exist Cayley graph expanders on Fk

2 with constant expansion when the degree of the graph is Ω(k).
Any such expander H can be viewed as a sparsifier to the complete Cayley graph G on Fk

2 (where we take the
set of generators S to be exactly Fk

2), under the constraint that the resulting sparsifier still has a Cayley graph
structure, and LG ≈ε LH . At a high level, our result says that for any Cayley graph G over Fk

2 , there exists a

sparsifier H with at most Õ(k/ε2) edges, such that H is still a Cayley graph, and LH ≈ε LG.
Note that by prior work [BSS09], we know that there exist sparsifiers H for any Cayley graph G such that

LH ≈ε LG, however this is the first work which proves the existence of such graphs under the restriction that H
is also a Cayley graph and of nearly-linear size.

Preliminaries First, we introduce some definitions related to Cayley graphs. In this section, we will fix a
binary linear code C, as well as a generating matrix for C, denoted by GC . Let ri denote the ith row of GC .

Definition 6.1. A Cayley graph G is a graph with algebraic structure; its vertex set is defined to be a group,
and the edges correspond to a set of generators S, along with weight (wi)i∈S. For every element in s ∈ S, and for
every vertex v, there is an edge from v to v + s of weight ws.

Definition 6.2. Let χx(r) = (−1)⟨x,r⟩, where the inner product is taken modulo 2, and x, r ∈ Fk
2 .

Fact 6.1. For a Cayley graph G defined over Fk
2 with generating set S, there is exactly one eigenvalue of G for

every vertex x in its vertex set (which is Fk
2). The corresponding eigenvalue (of the adjacency matrix) is

λx(G) =
∑
r∈S

wrχx(r).

The corresponding eigenvector is χx. Note that this means that any Cayley graph defined on the same vertex set
has the same eigenvectors.

Going forward, we will let G be a Cayley graph over Fk
2 , where its set of generators S is exactly {r1, . . . rn},

where these are the rows of the generating matrix GC .

Fact 6.2. For a message x ∈ Fk
2 , we have that

Bias(GCx) = Er∈Sχx(ri).

The above statement is very intuitive. χx(ri) is 1 if the ith bit in the codeword corresponding to x is 0, and
is −1 if the ith bit is 1. As a result, this expectation is exactly measuring how many more 0’s there are than 1’s.

Fact 6.3. We can generalize the previous fact to the eigenvalues of the Laplacian. In this way we get that

λx(LG) = n−
∑
r∈S

χx(r) = n(1− Bias(GCx)) = 2 · wt(GCx).

Claim 6.1. By preserving the weight of every codeword of C to a (1 ± ε) factor, we preserve the eigenvalues of
LG to a (1± ε) factor.

23

Proof. This follows exactly from Fact 6.3. If we have a code sparsifier Ĉ for C, then for any x ∈ Fk
2 ,

wt(GĈ) ∈ (1 ± ε)wt(GCx). Because the codeword weights of the generating set and the eigenvalues of the
Cayley graph are exactly equal, this (1± ε) approximation to the codeword weights implies that a Cayley graph
with the same weighted generating set as used by the code sparsifier would be a (1± ε) spectral sparsifier by Fact
6.3.

7 Applications to Sparsifying CSPs

In this section, we show how to use our result on the sparsifiability of codes in the setting of CSPs. Specifically
we first show that all affine predicates are sparsifiable, thus proving Theorem 1.5. Then we use this theorem to
classify all Boolean ternary CSPs, CSPs on variables that take values in {0, 1} where the predicate applies on
three variables. This leads to a proof of Theorem 1.6.

7.1 Affine CSPs Recall that a predicate P : Fr
q → {0, 1} is an affine predicate if there exist elements

a0, a1, . . . , ar ∈ Fq such that P (b1, . . . , br) = 0 if and only if a0 +
∑

i aibi = 0 (over Fq). We say further
that P is linear if a0 = 0.

The proof of Theorem 1.5 is completely straightforward if P is linear, given the definition of a linear code.
The extension to the affine case uses a simple reduction from the affine case to the linear case (with one extra
variable).

Proof. [Proof of Theorem 1.5] Given an instance Φ of CSP(P) with variables x1, . . . , xk and constraints C1, . . . , Cn

where Cj = P (j)(x(j),1, . . . , x(j),rj), we will create a code C ⊆ Fn
q of dimension k generated by the matrix

G ∈ Fn×k
q , where each row of the generating matrix corresponds to a single constraint. Let P (j) ∈ P denote the

predicate showing up in the jth constraint of our CSP instance. We start with the case that P (j) is linear with
elements a(j),1, . . . , a(j),rj ∈ Fq being such that P (j)(b1, . . . , brj) = 0 if and only if

∑
i a(j),ibi = 0. Then, in the

corresponding jth row of the generating matrix, for each i ∈ [rj], we place a(j),i in the column corresponding to
variable x(j),i, and leave all other entries in the row to be 0. It is straightforward to verify that for an assignment

x ∈ Fk
q , (Gx)j = 0 if and only if Cj is unsatisfied. Thus wt(Gx) counts the number of satisfied constraints for

assignment x and thus a code sparisifier for C is a sparsifier for the instance Φ of CSP(P).
Now considering the case of a general affine P (j) given by P (j)(b1, . . . , br) = 0 if and only if a(j),0+

∑
i a(j),ibi =

0. Now let P̂ (j)(b0, . . . , br) =
∑r

i=0 a(j),ibi. Note that P̂ (j) is linear. Given an instance Φ of CSP(P) on variables

x1, . . . , xk with constraints C1, . . . , Cn where Cj = P (j)(x(j),1, . . . , x(j),rj), let Φ̂ be the instance of CSP(P)

on variables x0, . . . , xk with constraints Ĉ1, . . . , Ĉn given by Ĉj = P̂ (j)(x0, x(j),1, . . . , x(j),r). We note that an

assignment x ∈ Fk
q for Φ corresponds to the assignment (1, x) ∈ Fk+1

q to Φ̂ and so a sparsifier for Φ̂ (available
from the previous paragraph) also sparsifies Φ. This concludes the proof.

A major open question from the work of [BZ20] was the sparsifiability of XOR predicates. Even on 3 variables,
it was not known if the predicate P (x1, x2, x3) = x1⊕x2⊕x3 was sparsifiable to near-linear size. As a consequence
of Theorem 1.5, we get the following result that resolves this question.

Corollary 7.1. On a universe of k variables, any CSP with r-XOR predicates for 1 ≤ r ≤ k is (1±ε) sparsifiable

to size Õ(k/ε2).

7.2 Ternary Boolean Predicates We now turn to the classification of ternary Boolean predicates. Recall
that a predicate P : {0, 1}r → {0, 1} has an affine projection to AND if there exists a function π : [r] →
{0, 1, x,¬x, y,¬y} such that AND(x, y) = P (π(1), . . . , π(r)). We wish to prove that P : {0, 1}3 → {0, 1} is
sparsifiable nearly linear size if and only if it has no affine projection to AND (Theorem 1.6).

The hardness result follows from a well-known result showing that the dicut problem is not sparsifiable to
subquadratic size [FK17], which in our language is equivalent to saying that the binary AND predicate is not
sparsifiable. (We include a precise statement and proof below for completeness — see Lemma 7.1.) Extending
this to all predicates that have an affine projection to AND is simple (and holds for general r). This is stated
and proved as Lemma 7.2 below. The bulk of the section then does a case analysis and shows that all ternary
Boolean predicates that do not have an affine projection to AND can be sparsified by appealing to Theorem 1.5.

24

Non-sparsifiability of predicates with affine projection to AND.

Lemma 7.1. ([FK17]) For every ϵ ∈ [0, 1), every (1±ϵ)-sparsifier of size s for CSP(AND) on k variables requires
s = Ω(k2).

The proof is actually more general and shows that any “sketch” of an instance Φ of CSP(AND) requires Ω(k2)
bits.

Proof. Let S and wS be a (1±ϵ) sparsifier of size s of a CSP instance Φ on variables x1, . . . , xk. Given a sparsifier,
i.e., a subset of the constraints S and a pair (i, j) ∈

(
k
2

)
, consider the weight of the constraints satisfied by the

assignment xij given by xij
k = 1 if k ∈ {i, j} and 0 otherwise. This weight is positive in Φ if and only if the

constraint xi ∧ xj appears in Φ. Thus this weight is positive in the weighted sparsified instance using constraints
from S if and only if the constraint xi ∧ xj appears in Φ (since ϵ < 1); and furthermore the weight is positive
in the unweighted sparsfied instance on S if and only if the constraint xi ∧ xj appears in Φ. (The presence of
the weights only affect the weight of the constraints that are satisfied, but not whether the number is positive or
not.) Since this is true to every (i, j) ∈

(
k
2

)
, it follows that S allows us to reconstruct Ω(k2) independent bits of

information about Φ and thus by the pigeonhole principle |S| ≥
(
k
2

)
= Ω(k2) (for some instance Φ).

Lemma 7.2. For every r, if a predicate P : {0, 1}r → {0, 1} has an affine projection to AND, then for every
ϵ ∈ [0, 1), every (1± ϵ)-sparsifier of size s for CSP(P) requires s = Ωr(k

2).

Proof. Let π : [r] → {0, 1, x,¬x, y,¬y} be such that AND(x, y) = P (π(1), . . . , π(r)). Given an instance Φ of
CSP(AND) on k variables x1, . . . , xk we create an instance Ψ of CSP(P) on 2rk+2 variables denoted G0, G1, Yi,t,b

for i ∈ [k], t ∈ [r], b ∈ {0, 1} as follows: For every constraint AND(xi, xj) in Φ, we introduce the constraint
P (v1, . . . , vr) where for t ∈ [r],

vt =

G0 if π(t) = 0

G1 if π(t) = 1

Yi,t,0 if π(t) = x

Yi,t,1 if π(t) = ¬x
Yj,t,0 if π(t) = y

Yj,t,1 if π(t) = ¬y

.

Given an assignment to x1, . . . , xk, it can be verified that the resulting predicate simulates AND(xi, xj) if G0 = 0,
G1 = 1, and Yℓ,t,0 = xℓ and Yℓ,t,1 = ¬xℓ for all ℓ ∈ [k] and t ∈ [r]. Thus a sparsification (S,wS) of Ψ yields a
sparsification of Φ. From the lower bound in Lemma 7.1, we get that s = Ω(k2). Relative to k′ the number of
variables of Ψ we get that s = Ω((k′/r)2) = Ωr(k

′2) as desired.

Sparsifying 3-CSPs with no affine projections to AND. Finally we show that if a predicate P :
{0, 1}3 → {0, 1} has no affine projection to AND, then there exists linear-size sparsifiers for P . We will make use
of the following corollary of Theorem 1.5:

Corollary 7.2. Suppose there exists a linear equation E(x1, x2, x3) = ax1+bx2+cx3+d mod p (for p a prime)
such that the unsatisfying assignmments to a predicate P (x1, x2, x3) : {0, 1}3 → {0, 1} are exactly the assigments
to x1, x2, x3 such that E evaluates to 0, then a valued CSP containing this predicate can be sparsified to size
Õ(k log(p)/ε2).

We note that the corollary is immediate from Theorem 1.5, which even allows the variables to take values in all
of Zp while we only need them to take values in {0, 1}. Restricting the set of assignments preserves sparsification
and so the sparsifier from Theorem 1.5 certainly suffices to get Corollary 7.2.

With this in hand, we will now use a case by case analysis to show how to write any predicate P : {0, 1}3 →
{0, 1} with no affine projection to AND as a linear equation modulo some prime. We state four claims that cover
the different cases, and prove them in turn. Given the four claims, and Lemma 7.2, the proof of Theorem 1.6 is
immediate.

25

Claim 7.1. If P : {0, 1}3 → {0, 1} has zero, six, seven or eight satisfying assignments then P is sparsifiable to
nearly linear size.

Claim 7.2. If P : {0, 1}3 → {0, 1} has five satisfying assignments and P has no affine projections to AND then
P is sparsfiable to nearly linear size.

Claim 7.3. If P : {0, 1}3 → {0, 1} has four satisfying assignments and P has no affine projections to AND then
P is sparsfiable to nearly linear size.

Claim 7.4. If P : {0, 1}3 → {0, 1} has one, two or three satisfying assignments then P has an affine projection
to AND.

Proof. [Proof of Theorem 1.5] If P has an affine projection to AND, then by Lemma 7.2, P has no subquadratic
sized sparsifiers. So assume P has no affine projections to AND. Then by Claim 7.4 (in contrapositive form) P has
at least four satisfying assignments. And Claim 7.1-Claim 7.3 show that in all remaining cases P is sparsifiable
to nearly linear size.

Thus all that remains is to prove Claim 7.1-Claim 7.4. Before turning to the proofs of these claims we mention
some basic symmetries that allows us to simplify all the cases.

Lemma 7.3. For every predicate P : {0, 1}r → {0, 1}, permutation π : [r] → [r] and index b ∈ {0, 1}r, let
P ′(z1, . . . , zr) = P (zπ(1) ⊕ b1, . . . , zπ(r) ⊕ br). Then P has a nearly linear sparsifier if and only if P ′ does.

Proof. The proof when P ′ is just a permutation of the variables of P (i.e., when b = 0r) is straightforward - we
map any constraint of an instance of CSP(P) to the constraint obtained by permuting the sequence of variables
according to π. It thus suffices to prove the lemma for the case where b ̸= 0r and π is the identity. (By composing
the two steps we get the full lemma). For this case we use an idea similar to the idea in the proof of Lemma 7.2.

We first note that we can assume w.l.o.g that variables of the instances to be sparsified come in r blocks
and each constraint application applies constraints in which the tth variable comes from the tth block. To see
this suppose we have an instance Φ with variables x1, . . . , xk and suppose some constraint is P (xi1 , . . . , xir). We
create a new instance Φ′ on variables xi,t for i ∈ [k] and t ∈ [r] and replace the constraint above by the constraint
P (xi1,1, . . . , xir,r). We claim a sparsification of Φ′ yields a sparsification of Φ. (In Φ we are only interested in
assignments in which the r copies of a variable all take on the same value. The sparsification of Φ′ yields an
estimate of the number of satisfied constraints for all assignments including these).

Once the instances apply constraints to variables from distinct blocks, we can now negate any subset of
variables of P . Fix b ∈ {0, 1}r and let P ′(z) = P (z ⊕ b). Given a canonical instance Φ′ of CSP(P) as above, we
can simply let Φ̂ be the CSP(P ′) instance where every constraint application applies P ′ instead of P to the same
sequence of variables. To compute the sparsification of Φ′ we simply use a sparsification of Φ̂ and use the fact that
the weight of constraints satisfied by an assignment {ai,t}i,t in Φ̂ is the same as the weight of constraints satisfied
by the assignment {ai,t ⊕ bt}i,t in Φ′. This allows us to use a sparsification of CSP(P ′) to get a sparsification of
CSP(P) (and the other direction follows similarly).

We now proceed by cases. By Corollary 7.2, in order to show near-linear size sparsifiability, it suffices to show
that the unsatisfying assignments to these predicates can be written as solutions to a linear equation mod p for
some prime p.

Proof. [Proof of Claim 7.1]

1. P has 0 or 8 Satisfying assignments: in both cases, the predicate is a constant function. So, we can in fact
sparsify to a single constraint (just a single constraint with weight equal to the number of total constraints).

2. P has 7 Satisfying assignments: if there are 7 satisfying assignments to P , then this is simply an OR
on 3 variables. By the reduction provided in [KK15], along with known hypergraph sparsification results

[CKN20], this can be sparsified to size Õ(k/ε2). This can also be shown using Corollary 7.2: W.l.o.g. P
is unsatisfied by the all zeros assignment. So P (x, y, z) = 0 if and only if x + y + z = 0 mod 5 which fits
within the framework of Corollary 7.2.

26

3. 6 Satisfying assignments to P : if there are 6 satisfying assignments to P , then by replacing xi with ¬xi,
we can assume WLOG that one of the unsatisfying assignments is 000, as argued earlier. There are then 3
cases:

(a) The other unsatisfying assigmnent is at distance 3 from 000, i.e. 111 is the other unsatisfying
assignment. Then, these are exactly the unsatisfying assignments to x1 + x2 + x3 mod 3.

(b) The other unsatisfying assignment is at distance 2 from 000. Then, by our argument before, we
can permute the bits of this other unsatisfying assignment, i.e. up to re-ordering 011 is the other
unsatisfying assignment. Then, these are exactly the unsatisfying assignments to x1 + 2x2 + 3x3

mod 5.

(c) The other unsatisfying assignment is at distance 1 from 000. Then, up to re-ordering / negation, the
other unsatisfying assignment is 001. Then, our expression is exactly x1 ∨ x2, which is known to be
sparsifiable by [FK17], or similarly, by viewing it as the equation x1 + x2 mod 3.

This concludes the proof of Claim 7.1.

Proof. [Proof of Claim 7.2] We consider P that has five satisfying assignments. Again, we break into several
cases. By replacing variables with their negations, and possibly reordering the variables, we can always assume
one unsatisfying assignment is 000. We consider some cases on the distance to the nearest other satisfying
assignment.

1. Suppose one other unsatisfying assignment is at distance 1 from 000. WLOG, let this other unsatisfying
assignment be 001. Note that this means the final unsatisfying assignment must start with 11, as otherwise
it will contain an AND of arity 2 (to see this, if we assume WLOG for the sake of contradiction that the
first bit is a 0, consider the affine projection where x1 = 0, there are 3 unsatisfying assignments remaining
under this projection, and hence an AND). Further, by negating the third variable, we can get either 110,
or 111 without changing the other two unsatisfying assignments. Thus, we assume the final unsatisfying
assignment is 111. Indeed, the only case we have to deal with here is when the predicate P has unsatisfying
assignments which are 000, 001, 111. However, note that under the affine restriction where x1 = x2, this is
exactly an AND, as the unsatisfying assignments will be 00, 01, 11. Hence, sparsifying this expression can
require Ω(k2) constraints.

2. Suppose one other unsatisfying assignment is at distance 2 from 000. WLOG let this other unsatisfying
assignment be 011. Note that if we included an unsatisfying assignment that was at distance 1 from 011,
then by variable negation and re-ordering, we would be back in the previous case. Hence, the only other
case which has not yet been considered is when the other unsatisfying assignment is also at distance 2 from
011 and 000. WLOG let this other unsatisfying assignment be 110. Then, note that we can express this as
the zeros to x1 + x2 + 2x3 mod 3.

Proof. [Proof of Claim 7.3] Let P have 4 satisfying assignments. Note then on the 3-dimensional hypercube, every
face must have either 0, 2, or 4 satisfying assignments (as otherwise P has an affine projection to AND). If any of
the faces has all 4 satisfying assignments, then P is exactly just xi or ¬xi (which is easy to sparsify). So, suppose
every face has 2 satisfying assignments. Without loss of generality, suppose one of the satisfying assignments is
111. Then, there are two cases:

1. There is a satisfying assignment at distance 1 from 111, WLOG let this be 110. Then the other two satisfying
assignments must be 000 and 001, as otherwise, there exists a face with more than 2 satisfying assignments.
If this is the case, then constraint can be expressed as x1 + x2 + 1 mod 2.

2. There is no satisfying assignment at distance 1 from 111. This means there are only satisfying assignments
at distance 2 from 111, WLOG let this be 100. Note that if 000 is also a satisfying assignment in this case,
then by negating all the variables, we are back in the previous case. Hence, the only other case is when 000
is not a satisfying assignment, which means that all the satisfying assignments are 100, 001, 010, 111, which
is exactly x1 + x2 + x3 mod 2.

27

Proof. [Proof of Claim 7.4] We now consider the case where P has one, two or three satisfying assignments and
prove that in each case it has an affine projection to AND.

1. 3 Satisfying assignments: Suppose the satisfying assignments are a1a2a3, b1b2b3 and c1c2c3. Choose a
coordinate such that not all the strings are equal on this coordinate. This means that by restricting this
coordinate, there are either 1 or 2 satisfying assignments on the face. So, fix the coordinate to make 1
satisfying assignment, which yields an AND.

2. 2 Satisfying assignments: Suppose the satisfying assignments are a1a2a3 and b1b2b3. Choose a coordinate
such that not all the strings are equal on this coordinate. By restricting this coordinate, we create a predicate
with one satisfying assignment, and hence an AND.

3. 1 Satisfying assignment: Let the satisfying assignment be a1a2a3. Restrict x1 = a1. This yields a predicate
with 1 satisfying assignment, and hence an AND.

This concludes the proof of Claim 7.1-Claim 7.4 and thus the proof of Theorem 1.6.

8 Application to Hypergraph Cut Sparsifiers

In this section, we will show how our result implies the existence of near-linear size hypergraph cut sparsifiers.
First, we introduce the definition of a hypergraph.

Definition 8.1. A hypergraph G = (V,E) is a set of n vertices V , along with a set of hyperedges E. Each
hyperedge e is a subset of V , of any size.

Next, we introduce the definition of a cut in a hypergraph.

Definition 8.2. For a hypergraph G = (V,E), a cut in the hypergraph is a non-empty subset S ⊂ V . The size
of the cut S is the number of hyperedges in E that are not completely contained in S or V − S. Intuitively, this
is the number of edges that cross between S, V − S. We use δS(G) to denote the crossing edges corresponding to
S in G.

With this, we can then state a consequence of our main result in the setting of hypergraphs.

Corollary 8.1. For a hypergraph G = (V,E) on k vertices, there exists a weighted sub-hypergraph Ĝ of G with

Õ(k/ε2) hyperedges, such that for any subset S ⊆ V ,

(1− ε)wt(δG(S)) ≤ wt(δĜ(S)) ≤ (1 + ε)wt(δG(S)).

At a high level, our proof takes advantage of the fact that we showed the existence of code sparsifiers over any
arbitrary field Fq. In particular, for a hypergraph on k vertices, we will choose a prime q between k and 2k. Then,
we will create a generating matrix for a code over Fq where each row of the generating matrix corresponds to a
hyperedge in the hypergraph. To start, we create a generating matrix with k columns. Now, for any hyperedge
by e, we denote its size by |e|. If we analyze the row of the generating matrix corresponding to edge e, we then
place a 1 in the columns corresponding to vertices e1, . . . e|e|−1. For e|e| (i.e. the final vertex contained in the
hyperedge), we place the value q − |e|+ 1. In doing so, the row-sum of any row of the generating matrix will be
exactly 0. Indeed, for any {0, 1} weighted linear combination of the columns of this generating matrix, a row is
identically 0 if either all of the vertices corresponding to the hyperedge are included in the linear combination,
or none of them are. This is exactly the definition of a hypergraph cut.

First, we use a basic number theoretic result:

Fact 8.1. (Bertrand’s Postulate) For any positive integer n, there exists a prime between n and 2n.

Thus, for any hypergraph on k vertices, we can find a prime number between k, 2k. Next, we define more
specifically the generating matrix corresponding to a hypergraph:

28

Definition 8.3. For a hypergraph H = (V,E) on k vertices, let q be a prime between k, 2k as guaranteed by

Fact 8.1. Let G be a generating matrix of a code defined over F|E|
q , and let G have k columns. Now, for any

hyperedge e = v1, . . . v|e|, let Ge,vi be 1 if i ≤ |e| − 1, and q − |e| + 1 if i = |e|. All other entries in the row are
zero. Call this generating matrix G the generating matrix associated with H.

Remark 8.1. Let G be the generating matrix associated with a hypergraph H. Let S ⊆ [k], and let x be the
indicator vector for S. Then,

wt(δH(S)) = wt(Gx).

Proof. Consider any such S ⊆ [k]. wt(δH(S)) is exactly the number of hyperedges that are not completely
contained in S or V − S. Now, wt(Gx) is the number of non-zero entries in Gx. By our construction of G,
the only way for a {0, 1} row-sum of G to be zero is when a {0, 1} vector assigns either all 0’s, or all 1’s to the
corresponding vertices of the hyperedge. This is exactly the same as the hyperedge being completely contained
in S or V − S.

Claim 8.1. Let G be the generating matrix associated with a hypergraph H. If, there exists a sparsifier Ĝ such
that for every message x ∈ Fk

q , wt(Ĝx) ∈ (1± ε)wt(Gx), then if we select the corresponding edges of H with the

same weights as in Ĝ, we will recover a (1± ε) hypergraph cut sparsifier for H.

Proof. By the previous Remark, for any set S ⊆ [k], and x being the indicator vector for S,

wt(δH(S)) = wt(Gx).

Further, given Ĝ, we can create the corresponding hypergraph Ĥ. It is still true that

wt(δĤ(S)) = wt(Gx).

Thus, we conclude that for any S, x = 1[S],

(1− ε)wt(δH(S)) = (1− ε)wt(Gx) ≤ wt(Ĝx) = wt(δĤ(S)) ≤ (1 + ε)wt(Gx) = (1 + ε)wt(δH(S)).

It follows that the hypergraph associated with Ĝ is indeed a hypergraph cut-sparsifier for H.

Corollary 8.2. For any hypergraph H on k vertices, there exists a hypergraph cut sparsifier of H with Õ(k/ε2)
weighted hyperedges.

Proof. Let G be the generating matrix associated with H. Let Ĝ be the (1 ± ε) code-sparsifier for the code
generated by G. Note that because q ≤ 2k, the number of rows in Ĝ is

Õ(k log q/ε2) = Õ(k/ε2).

By the previous claim, we can then let Ĥ be the hypergraph associated with Ĝ.

Finally, by using Corollary 2.2, we can state a novel fact about the decomposition of hypergraphs.

Corollary 8.3. For any hypergraph H on n vertices, for any integer d ≥ 1, there exists a set of at most nd
hyperedges, such that upon their removal, the resulting hypergraph has at most (2n)2α cuts of size ≤ αd.

Proof. Let G be the generating matrix associated with H. By the previous corollary, it follows that there exists a
prime q ≤ 2n, and a set of at most nd rows we can remove from G such that the number of codewords of weight
≤ αd is at most qα ·

(
k
α

)
. However, each such codeword corresponds with a possible cut in the graph of size at

most αd. Hence, the number of possible cuts in the graph of size ≤ αd is at most (2n)2α.
Note that again, if two separate vertex cuts S1, V − S1 and S2, V − S2 lead to exactly the same hyperedges

being cut, we do not consider these to be separate cuts. Indeed, when we bound the number of cuts, we are
bounding the number of distinct sets of hyperedges being cut of a given size.

29

9 Conclusions

In this work, we showed that for any linear code C ⊆ Fn
q of dimension k, there exists a weighted set S of

Õ(k log(q)/ε2) coordinates, such that for any codeword c ∈ C, the quantity wt(c|S) is a (1± ε) approximation to
wt(c). This result provides a unified approach to recover known results about existence of near-linear size graph
and hypergraph cut-sparsifiers, as well as some new results that include near-linear size Cayley-graph sparsifiers
of Cayley graphs over Fk

2 , and near-linear size sparsifiers for a broader class of CSPs than were previously known.
The existential nature of our sparsification result raises the following natural question. Is there a poly-time

algorithm to find the decomposition of Theorem 2.1? Alternately, is there a poly-time algorithm to compute code
sparsifiers of near-linear size? The NP-hardness of the Minimum Distance Problem (MDP) for linear codes makes
it particularly hard to implement Algorithm 4 (which explicitly calculates the minimum distance) and likewise
finding the decomposition of Theorem 2.1 for arbitrary d can in some cases solve the MDP as well.

Another interesting direction for future work is to extend our classification theorem for sparsifiability of CSPs
to predicates of arity greater than 3.

Acknowledgments

We thank Salil Vadhan for pointing out the connection between codes and the eigenvalues of the Laplacians of
Cayley graphs over Fk

2 .

References

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In Gary L. Miller,
editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 47–55. ACM, 1996.

[BSS09] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 255–262. ACM, 2009.

[BZ20] Silvia Butti and Stanislav Zivný. Sparsification of binary csps. SIAM J. Discret. Math., 34(1):825–842, 2020.
[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B. Rao, and

Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time. In David B. Shmoys, editor, Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 343–352. ACM, 2014.

[CKN20] Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers. In Sandy Irani, editor,
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 61–72. IEEE, 2020.

[CSWZ16] Jiecao Chen, He Sun, David P. Woodruff, and Qin Zhang. Communication-optimal distributed clustering.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 3720–3728, 2016.

[FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi. A general framework for
graph sparsification. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC
’11, page 71–80, New York, NY, USA, 2011. Association for Computing Machinery.

[FK17] Arnold Filtser and Robert Krauthgamer. Sparsification of two-variable valued constraint satisfaction problems.
SIAM J. Discret. Math., 31(2):1263–1276, 2017.

[JLLS23] Arun Jambulapati, James R. Lee, Yang P. Liu, and Aaron Sidford. Sparsifying sums of norms. CoRR,
abs/2305.09049, 2023.

[JS20] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system solvers. CoRR,
abs/2011.08806, 2020.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In Vijaya
Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA, pages 21–30. ACM/SIAM, 1993.

[Kar94] David R. Karger. Using randomized sparsification to approximate minimum cuts. In Daniel Dominic Sleator,
editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994,
Arlington, Virginia, USA, pages 424–432. ACM/SIAM, 1994.

[Kar99] David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper. Res., 24(2):383–413,
1999.

30

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Tim Roughgarden, editor,
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015, pages 367–376. ACM, 2015.

[KKTY21] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight bounds for spectral
sparsification of hypergraphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 598–611. ACM,
2021.

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm for
approximate max flow in undirected graphs, and its multicommodity generalizations. In Chandra Chekuri, editor,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 217–226. SIAM, 2014.

[KLP+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman. Sparsified cholesky and
multigrid solvers for connection laplacians. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 842–850. ACM, 2016.

[LS18] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear time. SIAM J. Comput.,
47(6):2315–2336, 2018.

[Pen16] Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1862–1867. SIAM, 2016.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 263–269. IEEE Computer Society,
2013.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981–1025,
2011.

A A Simpler Construction of Cut Sparsifiers for Graphs

Let G = (V,E) be a graph on n vertices, and ε ∈ (0, 1) be some given accuracy parameter. Our goal in this section
is to output a (1 ± ε) cut-sparsifier for G. The first proof showing the existence of cut-sparsifiers of near-linear
size was given by [BK96], using the notion of a strength decomposition of a graph. Subsequently, a different proof
based on edge connectivities was given in [FHHP11]. While the starting point for these proofs is Karger’s cut
counting bound [Kar93,Kar99], they both require additional ideas and are somewhat involved. We present here
a simpler proof that directly utilizes Karger’s cut counting bound to recursively sparsify G while preserving its
cuts.

At a high level, the algorithm is very simple: starting with a graph G that has d · n log(n)/ε2 edges, we first
remove all edges involved in cuts in this graph that have size ≤

√
d log(n)/ε2, and place these edges in a graph

G1. By a simple argument, we can show that G1 will have at most n
√
d log(n)/ε2 edges. Now, the resulting

graph from removing all the small cuts from G is a graph we call G′. G′ has the special property that all non-zero
cuts in G′ have size at least

√
d log(n)/ε2. So, we can decompose G′ into its connected components, and using

Karger’s cut-counting bound for each of these connected components, we can argue that sampling each edge with
probability 1/

√
d and weight

√
d will preserve cut-sizes with high probability. As a result, with high probability

G′ has
√
dn log(n)/ε2 edges, and cut-sizes are preserved. Thus, starting with a graph on d · n log(n)/ε2, we get

two graphs on
√
d · n log(n)/ε2 edges. By repeating this procedure recursively, we can then get near-linear size

cut-sparsifiers.
Note that, as stated, the algorithm only works for unweighted graphs, and indeed our proof here is intended

only for unweighted graphs in the name of simplicity. However, this proof can be extended to weighted graphs
by using the more advanced decomposition techniques from § 5.

In this section, the algorithm we propose will create cut sparsifiers with

O

(
n(log(n) log log(n))2

ε2

)
edges. The only non-trivial fact we will use is Theorem 3.1. Our algorithm is presented in Algorithm 10.

Note that in the algorithm, we are using γ(n) = C · log n, where C is a constant (depending on ε). We will
need some claims in order to prove this result.

Claim A.1. For any n-vertex graph G(V,E) and a positive integer c ∈ [1..(n− 1)], to remove all non-empty cuts

31

Algorithm 10: GraphSparsify(G, ε, n, i)

1 if i = log log n or G has ≤ n log(n)/ε2 edges then
2 return G
3 end
4 Initialize empty graphs G1, G2 on n vertices.

5 while ∃ a non-empty cut (S, V − S) in G of size ≤ γ(n) · n1/2i do
6 Remove the edges in δG(S) from G, and place them in G1.
7 end
8 for the remaining edges e ∈ G do
9 Sample each e with probability 1

n1/2i
, and if sampled, add it to G2.

10 end

11 return GraphSparsify(G1, ε, n, i+ 1) ∪ n1/2i ·GraphSparsify(G2, ε, n, i+ 1).

of size ≤ c in the graph, we require removing only (n− 1)c edges.

Proof. Fix a c ∈ [1..(n− 1)]. Let T (n) denote the maximum number of edges that are involved in cuts of size at
most c in an n-vertex graph.

We prove this claim by induction on number of vertices. For our base case, consider any graph on p ≤ (c+1)

vertices. There are at most
(
p
2

)
≤ (c+1)(p−1)

2 ≤ (p− 1) · c edges in this graph, and all of them are in cuts of size at
most c, so T (p) ≤ (p− 1)c. Now, consider an arbitrary n-vertex graph. We will repeatedly remove from G edges
in cuts of size at most c. Upon finding a cut (S, V −S) of size at most c, we remove all edges involved in the cut,
and recursively continue on G[S] and G[V − S]. So assuming |S| = s, we get that

T (n) ≤ c+ T (s) + T (n− s),

where 1 ≤ s ≤ n − 1. Invoking the inductive hypothesis, we get T (n) ≤ c + (s − 1)c + (n − s − 1)c = (n − 1)c,
completing the proof.

Claim A.2. At the ith level of recursion, with high probability, each non-empty Gi has at most (1 + 1
log logn)

i ·
n1+1/2i · γ(n) edges, where γ(n) = C log n.

Proof. We prove the claim by induction. Consider the first level of recursion of the algorithm. Let n1/2 · γ(n) be
the minimum cut value on which we set our threshold. Then, the number of edges that we keep corresponding to
the minimum cuts is at most n3/2 · γ(n). So, the first of the graphs in the subcall is of size at most γ(n) · n3/2.

Now, we sample the remaining edges with probability 1
n1/2 . Because the support size is ≥ n log(n)/ε2, we

can use a Chernoff bound to argue that with high probability, at most (1 + 1/ log log n) the expected number of
edges will be included by the sampling procedure. This means that at most

n2 · (1 + 1/ log log n)

n1/2
= (1 + 1/ log log n)n3/2 ≤ (1 + 1/ log log n) · γ(n) · n3/2

edges will be included with high probability. So, the number of edges in the second graph on which we recurse is
at most (1 + 1/ log log n)γ(n) · n3/2.

Now, we suppose the claim holds by induction. Let us analyze the jth level of recursion. So, let the graph
at this level be G, and have at most (1 + 1/ log log n)j · n1+1/2j · γ(n) edges. At this level of recursion, the first

subgraph we make has all cuts of size at most γ(n)n1/2j+1

. By our previous claim, there are at most n ·γ(n)n1/2j+1

many edges involved in those cuts, so our first graph we recurse on will satisfy the desired bound. To construct
the second graph we recurse on, we sample all remaining edges with probability 1

n1/2j+1 . By Chernoff again, we

know the number of edges sampled is with very high probability at most (1 + 1/ log log n) the expected number,
because the graph has at least n log(n)/ε2 edges. Hence, with high probability, the size of the second graph we
recurse on has at most

(1 + 1/ log log n)

n1/2j+1 · (1 + 1/ log log n)j · n1+1/2j · γ(n) = γ(n) · (1 + 1/ log log n)j+1n1+1/2j+1

32

edges.

Claim A.3. Suppose a graph G is decomposed into two graphs G = G1 ∪ G2, and we are given a (1 ± ε) cut-
sparsifier H1 for G1, H2 for G2. Then, H1 ∪H2 provides a (1± ε) approximation to every cut in G.

Proof. Consider any cut S, V − S in G. The claim follows because

(1− ε)wt(δG(S)) = (1− ε)wt(δG1(S)) + (1− ε)wt(δG2(S)) ≤ wt(δH1(S)) + wt(δH2(S))

≤ (1 + ε)wt(δG1(S)) + (1 + ε)wt(δG2(S)) = (1 + ε)wt(δG(S)).

Claim A.4. If a cut-sparsifier G′′ is a (1± ε) cut-approximation to G′, and G′ is a (1± δ) cut-approximation to
G, then G′′ is a (1− δ)(1− ε), (1 + δ)(1 + ε) approximation to G.

Proof. Consider any cut (S, V − S). We know that (1 − ε)wt(δG′′(S)) ≤ wt(δG′(S)) ≤ (1 + ε)wt(δG′′(S)).
Additionally, (1− δ)wt(δG′(S)) ≤ wt(δG(S)) ≤ (1 + δ)wt(δG′′(S)). Composing these two facts, we get our claim.

Lemma A.1. For any j ∈ [1, . . . log log n], the output of our algorithm when called with i = log log n − j on a
graph G is a (1± ε)j cut-sparsifier for G with probability at least 1− 4j/n8.

Proof. In the base case, we consider when j = 0. Clearly then, we return G, which is indeed a 1-approximation.
Now, suppose the claim holds by induction. Now, let i = log log(n) − j. The algorithm, after receiving

G, breaks G in G1, G2, where G1 contains all edges that are in cuts of size ≤ γ(n) · n1/2i , and G2 contains all
remaining edges. Note that from our previous claims, it suffices to argue that we get (1 ± ε) approximations to
G1, G2, as the returned sparsifier for G1, G2 will be (1± ε)j−1 approximations by induction.

Our algorithm completely preserves G1, so this is not an issue. Instead, we focus on G2. The algorithm
samples every edge from G2 with probability 1

n1/2i+1 . Because the minimum cut size in each component of G2

is ≥ γ(n)n1/2i , we know that the number of cuts in the graph of size ≤ α · γ(n) · n1/2i is at most n2α. This is
because if we denote the sizes of the components as x1, . . . xr,

∑r
i=1 x

2α
i ≤ n2α. Now, if we preserve every cut in

each component of size ≤ αc, it follows that we preserve every cut in G2 of size ≤ αc (since the empty cuts are

preserved trivially). For a cut of size [α/2γ(n) · n1/2i , αγ(n) · n1/2i], if we sample with probability 1

n1/2i+1 , then

the probability that we do not get a (1± ε) approximation to the cut is at most

2 · 2−0.38ε2 α
2 γ(n)·n1/2i ·n−1/2i+1

= 2 · 2−0.19ε2αγ(n)·n1/2i+1

.

Taking the union bound over the at most n2α cuts of this size, the probability that we fail for cuts of size between
[α/2, α] · C · n1/2i is at most

2 · 2−0.19αγ(n)ε2·n1/2i+1

· 22α logn ≤ 2α(−0.19ε2C·n1/2i+1
logn+3 logn).

Setting C = 100
ε2 , we get that with probability at most 1/n10 the sparsifier for cuts of size [α/2, α] ·γ(n) ·n1/2i

will fail. Now, we can take a union bound over α = 1, 2, . . . n2 to conclude that all cuts in G2 will be preserved
to a (1± ε) fraction with probability 1− 1/n8.

Now, by induction, each of the recursive calls will return cut sparsifiers with probability 1− 4j−1/n8. So, the
total failure probability at level j is bounded by 4j−1/n8 + 4j−1/n8 + 1/n8 ≤ 4j/n8, as we desire.

Continuing to j = log log n, we get our desired result.

Lemma A.2. After recursing to depth log log n, the final returned graph has at most

O(n log2(n)(log log(n))2/ε2)

edges with high probability.

33

Proof. We set ε′ = ε
2 log logn . Then, the error in approximation for our starting graph is (1− ε

2 log logn)
log logn, (1+

ε
2 log logn)

log logn, which yields a (1± ε) cut-sparsifier with high probability.
At the log log nth level of recursion, each graph is of size at most

(1 + 1/ log log n)log logn · n · n1/2log log n

· γ(n) = O(n · log(n)(log log(n))2/ε2),

where we use that γ(n) = O(logn
ε2). Now, we take the union bound over all 2log logn graphs at level log log n in

the recursion to conclude that there are at most O(n · log2(n)(log log(n))2/ε2) edges in the sparsified graph with
high probability.

34

