
Query Complexity of the Metric Steiner Tree Problem

Yu Chen∗ Sanjeev Khanna† Zihan Tan‡

November 9, 2022

Abstract

In the metric Steiner Tree problem, we are given an n×n metric w on a set V of vertices along
with a set T ⊆ V of k terminals, and the goal is to find a tree of minimum cost that contains all
terminals in T . This is a well-known NP-hard problem and much of the previous work has focused
on understanding its polynomial-time approximability. In this work, we initiate a study of the
query complexity of the metric Steiner Tree problem. Specifically, if we desire an α-approximate
estimate of the metric Steiner Tree cost, how many entries need to be queried in the metric w? For
the related minimum spanning tree (MST) problem, this question is well-understood: for any fixed
ε > 0, one can estimate the MST cost to within a (1 + ε)-factor using only Õ(n) queries, and this
is known to be essentially tight. Can one obtain a similar result for Steiner Tree cost? Note that
a (2 + ε)-approximate estimate of Steiner Tree cost can be obtained with Õ(k) queries by simply
applying the MST cost estimation algorithm on the metric induced by the terminals.

Our first result shows that the Steiner Tree problem behaves in a fundamentally different manner
from MST: any (randomized) algorithm that estimates the Steiner Tree cost to within a (5/3− ε)-
factor requires Ω(n2) queries, even if k is a constant. This lower bound is in sharp contrast to an
upper bound of O(nk) queries for computing a (5/3)-approximate Steiner Tree, which follows from
previous work by Du and Zelikovsky.

Our second main result, and the main technical contribution of this work, is a sublinear query
algorithm for estimating the Steiner Tree cost to within a strictly better-than-2 factor. We give an
algorithm that achieves this goal, with a query complexity of Õ(n12/7 + n6/7 · k); since k ≤ n, the
algorithm performs at most Õ(n13/7) = o(n2) queries in the worst-case. Our estimation algorithm
reduces this task to that of designing a sublinear query algorithm for a suitable set cover problem.
We complement this result by showing an Ω̃(n + k6/5) query lower bound for any algorithm that
estimates Steiner Tree cost to a strictly better than 2 factor. Thus Ω̃(n6/5) queries are needed
to just beat 2-approximation when k = Ω(n); a sharp contrast to MST cost estimation where a
(1 + o(1))-approximate estimate of cost is achievable with only Õ(n) queries.

∗EPFL, Lausanne, Switzerland. Email: yu.chen@epfl.ch. Supported by ERC Starting Grant 759471. Work done
while the author was a graduate student at University of Pennsylvania.

†University of Pennsylvania, Philadelphia, PA, USA. Email: sanjeev@cis.upenn.edu. Supported in part by NSF
awards CCF-1763514, CCF-1934876, and CCF-2008305.

‡Rutgers University, NJ, USA. Email: zihantan1993@gmail.com. Supported by a grant to DIMACS from the Simons
Foundation (820931). Work done while the author was a graduate student at University of Chicago.

ar
X

iv
:2

21
1.

03
89

3v
1

 [
cs

.D
S]

 7
 N

ov
 2

02
2

1 Introduction

In the Steiner Tree problem, we are given a weighted (undirected) graph G and a subset T of vertices in
G called terminals, and the goal is to compute a minimum weight connected subgraph of G (a Steiner
Tree) that spans all terminals in T . This is one of the most fundamental NP-hard problems [GJ79],
and has been studied extensively over the past several decades from the perspective of approximation
algorithms [GP68,Zel93,Zel96,KZ97,RZ05,BGRS10,GORZ12] (see also [HK13] for a compendium of
its variants). The current best known approximation ratio is ln 4 + ε < 1.39 achieved by [BGRS10]
(see also [GORZ12,TZ22]), and it has been shown [CC08] that approximating to within a factor better
than 96/95 is NP-hard.

In this paper, we study the query complexity of the Steiner Tree problem. In particular, we consider
an equivalent variant called the metric Steiner Tree problem, where the input consists of a metric w
on a set V of n points (equivalently, a weighted complete graph on V) and a subset T ⊆ V of k points
called terminals. We are allowed to perform weight queries between vertices in V 1, and the goal is to
design an algorithm for either computing a Steiner Tree with minimum cost or estimating the cost of
an optimal Steiner Tree, using as few queries as possible.

It is well-known that a minimum weight spanning tree of the metric induced by the terminals gives a
2-approximate Steiner Tree [GP68]. Moreover, the metric Minimum Spanning Tree (MST) cost can
be estimated to within factor (1 + ε) be performing Õ(n/εO(1)) queries [CRT05,CS09]. Therefore, the
minimum metric Steiner Tree cost can be estimated within factor (2+ε) with only Õ(k/εO(1)) queries.
However, the query complexity of obtaining a better-than-2 estimation of the minimum metric Steiner
Tree cost remains wide open, and so is the query complexity of computing such a Steiner Tree. We note
that this is the interesting regime of the metric Steiner Tree problem: approximating or estimating
the cost to a factor better than 2 crucially requires some knowledge of the metric incident on Steiner
nodes.

1.1 Our Results

In this paper, we provide a comprehensive understanding on the trade-off between approximation ratio
and query complexity of the metric Steiner Tree problem.

Our first result establishes a separation between the behavior the Steiner Tree problem and the MST
problem. Specifically, we show that for any ε > 0, any randomized algorithm to estimate Steiner Tree
cost to within a (5/3−ε)-factor requires Ω(n2) queries even if k is a constant. Together with an upper
bound of O(nk) queries for computing a (5/3)-approximate Steiner Tree (which follows from [Du95]
and [Zel93]2), this result shows a phase transition in the query complexity at (5/3)-approximation.
This is in contrast to the MST cost estimation problem where for any ε > 0, Õ(n) queries suffice to
estimate MST cost to within a factor of (1 + ε).

Theorem 1. For any constant 0 < ε < 2/3, any randomized algorithm that with high probability
estimates the metric Steiner Tree cost to within a factor of (5/3− ε) performs Ω(n2/4(1/ε)) queries in
the worst case, even when k is a constant.

Our proof of this result is based on constructing a pair of distributions on Steiner Tree instances whose
costs differ by a (5/3 − ε) factor, and yet whose metrics differ in Oε(1) entries, leading to an Ω(n2)
lower bound for any fixed ε > 0.

1This is also known as the Dense Graph Model [GGR98]. In the other model, the Bounded-Degree Graph Model [GR97]
(where the max-degree of the input graph is bounded by d), it is easy to show that estimating the minimum Steiner Tree
cost, or even the minimum spanning tree cost, in an n-vertex graph within any non-trivial factor requires Ω(nd) queries.

2See Appendix A for an explanation.

1

We complement the above result by showing that even if we weaken the goal to simply computing a
slightly better-than-2 approximate Steiner Tree, the query complexity remains Ω(nk).

Theorem 2. For any constant 0 < ε < 1/3, any randomized algorithm that outputs a (2 − ε)-
approximate Steiner Tree performs at least Ω(nk) queries in the worst case.

Our second set of results is concerned with understanding the query complexity of obtaining a strictly
better-than-2 estimate of the Steiner Tree cost. The main technical contribution of this paper is a
sublinear-query algorithm that obtains a strictly better-than-2 estimate of the cost, by performing
Õ(n12/7 + n6/7 · k) queries (as k ≤ n, the query complexity is Õ(n13/7) = o(n2)).

Theorem 3. There is an efficient randomized algorithm that with high probability estimates the metric
Steiner Tree cost to within a factor of (2 − ε0) for some universal constant ε0 > 0, by performing
Õ(n12/7 + n6/7 · k) queries.

At a high-level, the proof of the above theorem starts with a minimum spanning tree T of the graph
induced by terminals. Even on simple metrics such as a metric where all weights are 1 or 2, the cost
of such a tree can be up to a factor 2 away from the optimal Steiner Tree cost. But in this case,
the optimal tree necessarily improves upon T by using Steiner nodes to efficiently connect together
many terminals. The first challenge then becomes if such opportunities can be identified only by
local exploration of the metric. Our main insight is that this task can be cast as a suitable set cover
problem where the objective is to estimate the universe size minus the optimal set cover size. We then
design a sublinear query algorithm for estimating the value of this set cover objective, and use it to
determine whether or not the optimal Steiner tree cost is close to the cost of T , or bounded away from
it. The second challenge in obtaining this result is that explicit computation of the MST T in the
graph induced by the terminals requires O(k2) queries which rules out a sublinear query complexity
when k = Ω(n). To get around this, we design an outer algorithm that efficiently simulates access
to T without ever explicitly computing it. The composed algorithm, achieves a strictly better-than-2
estimate of the Steiner Tree cost in Õ(n12/7 + n6/7 · k) queries.

The result above raises a natural question: can the task of obtaining a strictly better-than-2 estimate
of the Steiner Tree cost be achieved with only Õ(n) queries? Our next result rules out this possibility
at least when k is sufficiently large. We show that any algorithm that estimates the Steiner Tree cost
to a factor strictly better than 2, necessarily requires Ω̃(n+ k6/5) queries.

Theorem 4. For any constant 0 < ε < 1/3, any randomized algorithm that with high probability
estimates the metric Steiner Tree cost to within a factor of (2 − ε) performs at least Ω̃(n + k6/5)
queries in the worst case.

Our third and final set of results is concerned with understanding the query complexity of computing
an α-approximate Steiner Tree for any α ≥ 2. We show that Θ̃(k2/α) queries are both sufficient and
necessary for this task.

Theorem 5. Let α ≥ 2 be any constant. Then

• there exists an efficient randomized algorithm that with high probability computes an α-approximate
Steiner Tree, by performing Õ(k2/α) queries; and

• any randomized algorithm that outputs an α-approximate Steiner Tree performs at least Ω(k2/α)
queries in the worst case.

Our results on the tradeoff between query complexity and approximation quality are summarized in
Figure 1. Together, they illustrate several interesting phase transitions in the query complexity of

2

approximating metric Steiner Tree. The query complexity remains Θ(n2) up to an approximation
factor of 5/3 even if k is a constant and the goal is to only estimate the Steiner Tree cost. Then at
(5/3)-approximation, it drops to Θ(nk), and it is possible to also find a (5/3)-approximate Steiner Tree
with Θ(nk) queries. Next if the goal is to find an α-approximate Steiner Tree, the query complexity
remains Θ(nk) even as α approaches 2. At this point, another phase transition occurs: for any α ≥ 2,
the query complexity of finding an α-approximate Steiner Tree becomes Θ̃(k2/α). For α-approximate
estimation of the cost for any α < 2, we show that Ω̃(n6/5) queries are necessary when k = Ω(n). On
the other hand, we give a (2− ε0)-estimation algorithm that uses only Õ(n12/7 + n6/7 · k) queries, for
some universal ε0 > 0.

Figure 1: An illustration of the trade-off between query complexity and approximation ratio for the
metric Steiner Tree problem. The red curve shows the complexity of computing a Steiner Tree, while
the green curve shows the complexity of estimating the minimum metric Steiner Tree cost. The upper
bound at (5/3)-approximation follows from [Du95] and [Zel93]; the bottom green curve (showing Θ(k)
query complexity for α-estimating the cost where α > 2) is due to [CS09], and all other curves are
results of this paper. All terms are inside a Õ(·) symbol.

Organization. We start with some preliminaries in Section 2. We then provide the proof of (5/3−ε)-
approximation lower bound (Theorem 1) in Section 3. We present the (2−ε0)-approximation algorithm
for Theorem 3 in Section 4. The proofs of the lower bounds in Theorem 2, Theorem 4 and Theorem 5
are provided in Section 5, Section 7 and Section 6, respectively.

2 Preliminaries

Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G induced
by S. For two (not necessarily disjoint) subsets A,B of vertices of G, we denote by EG(A,B) the set
of all edges with one endpoint in A and the other endpoint in B, and we denote by EG(A) the set of
all edges with both endpoints in A. For a vertex v ∈ V (G), we denote by degG(v) the degree of v in
G. We sometimes omit the subscript G in the above notations if it is clear from the context.

Let G = (V,E,w) be a weighted graph where w : E(G)→ R+ is a weight function on edges in G. For
a subgraph H ⊆ G, we define w(H) =

∑
e∈E(H)w(e). For a pair u, u′ of vertices in G, we denote by

distG(u, u′) the shortest-path distance in G between u and u′. In this paper, we will often consider the

3

case where G is a complete graph and w satisfies the triangle inequality. That is, for all u, u′, u′′ ∈ V ,
w(u, u′) ≤ w(u, u′′) + w(u′, u′′). In this case, w can be also viewed as a metric on the set V of points.
For a vertex v and a set U ⊆ V , we denote w(v, U) = min {w(v, u) | u ∈ U}. For a pair U,U ′ ⊆ V of
sets, we denote w(U,U ′) = min {w(u, u′) | u ∈ U, u′ ∈ U ′}.
Let T be a tree rooted at a vertex r ∈ V (T). Let u be a vertex in T . The height of u in T is defined
to be the minimum hop-distance between u and any leaf in the subtree of T rooted at u. For example,
the height of a leaf is 0, and the height of a parent of a leaf is 1, etc.

For a weighted graph G = (V,E,w) and a subset T of vertices in G, we denote by (G,T) the instance
of the Steiner Tree problem where G is the graph and T is the set of vertices to be connected. We
denote the optimal cost of a solution to this instance by ST(G,T). When G is a complete graph and w
is a metric on V , an instance of the Steiner Tree problem is also denoted by (V, T,w), and the optimal
cost of a solution is also denoted by ST(V, T,w). Vertices in T are called terminals, and vertices in
V \ T are called Steiner vertices.

Throughout the paper, we will refer to the algorithms that compute an α-approximate Steiner Tree of
cost bounded by α-approximations, and will refer to the algorithms that estimate the metric Steiner
Tree cost to within factor α by α-estimations.

We use the following standard version of Chernoff Bound (see. e.g., [DP09]).

Lemma 2.1 (Chernoff Bound). Let X1, . . . , Xn be independent randon variables taking values in
{0, 1}. Let X =

∑
1≤i≤nXi, and let µ = E[X]. Then for any t > 2eµ,

Pr
[
X > t

]
≤ 2−t.

Additionally, for any 0 ≤ δ ≤ 1,

Pr
[
X < (1− δ) · µ

]
≤ e−

δ2·µ
2 .

3 An Ω(n2) Lower Bound for (5/3− ε)-Estimation

In this section we provide the proof of Theorem 1. Specifically, for any constant 0 < ε < 2/3, we
will construct a pair IY = (V, T,wY), IN = (V, T,wN) of instances of the metric Steiner Tree problem
where |T | = O(2(1/ε)), such that the metric Steiner Tree costs of instance IY and instance IN differ by
factor (5/3− ε), while the metrics wY and wN differ at only Oε(1) places. We will then construct two
distributions DY,DN of instances by randomly naming the vertices in the instances IY, IN respectively;
and show that any algorithm that with probability at least 0.51 distinguishes between instances DY

and DN (and in particular between the distributions on metrics wY and wN) has to perform at least
Ω(n2/4(1/ε)) queries. We remark that it is easy to construct (by adding dummy terminals to instances

IY and IN), for every k ≥ Ω(21/ε), such a pair of instances I
(k)
Y and I

(k)
N with k terminals each. Our

constructions are similar to the examples used in [BD97] to determine the worst-case k-Steiner ratios.

We start by giving a high-level overview of the construction of instances (V, T,wY) and (V, T,wN).
We would like to ensure that (i) metrics wY and wN differ only in Oε(1) places; and (ii) ST(V, T,wY)
and ST(V, T,wN) differ by a factor of (5/3) roughly. In order to achieve property (i), for every pair
(u, u′) of vertices in V such that at least one of u, u′ is a terminal, wY(u, u′) = wN(u, u′) must hold,
since otherwise simply querying all terminal-involved distances will distinguish between metrics wY

and wN by performing O(nk) queries. However, once we are given that wY and wN are identical on all
terminal-involved pairs, the previous results in [Zel93] and [Du95] imply that the values ST(V, T,wY)
and ST(V, T, wN) differ by a factor of at most (5/3). Therefore, we have to design metrics wY and wN

4

such that the analysis from [Zel93] and [Du95] is nearly tight. It turns out that the tree TY has to be
quite balanced and symmetric.

We now describe the construction of instances (V, T,wY) and (V, T,wN) in detail. Let d = d1/εe. We
first define an auxiliary weighted tree ρ as follows. The tree ρ is a complete binary tree of depth d, so
|V (ρ)| = 2d+1 − 1. Let r be the root of ρ. For each node v ∈ V (ρ), we say that v is at level i (or the
level of v is i), iff the unique path in ρ that connects v to r contains i edges. Clearly, all leaves of ρ are
at level d. For an edge (u, u′) ∈ E(ρ) where u′ is the parent of u, we say that (u, u′) is a level-i edge
iff u is at level i. We now define the weights on edges in E(ρ): all level-d edges have weight 1, and for
each 1 ≤ i ≤ d− 1, all level-i edges have weight 2(d−1)−i. We denote by L(ρ) the set of all leaves of ρ.

In order to avoid ambiguity, we refer to vertices of ρ as nodes and points in V as vertices. The vertex
set V is partitioned into (2d+1 − 1) subsets: V =

⋃
x∈V (ρ) Vx, where each subset is indexed by a node

in ρ. For each leaf node x in L(ρ), the set Vx contains a single vertex, that we denote by ux. For each

non-leaf node x in ρ, the set Vx contains either
⌊
n−2d
2d−1

⌋
or
⌈
n−2d
2d−1

⌉
vertices (so that the total number

of vertices in V is n), with one of them designated as the special vertex in Vx, denoted by ux, and
all other vertices are called regular vertices. For consistency, for each leaf node x ∈ L(ρ), we also call
the only vertex ux in Vx a special vertex. The terminal set is defined to be T = {ux | x ∈ L(ρ)}, so
|T | = 2d. We denote by S the set of all special vertices, so T ⊆ S and |S| = 2d+1 − 1.

We now define metrics wY and wN as follows. We first define wN. For every pair v, v′ of vertices in V ,
assume v ∈ Vx and v′ ∈ Vx′ ; denote by ˆ̀ the level of the lowest common ancestor of nodes x and x′

in ρ; and assume without loss of generality that the level of x is at least the level of x′. Now let x̃ be
any leaf of ρ that lies in the subtree of ρ rooted at x; then wN(v, v′) = distρ(x̃, x) + distρ(x̃, x

′) (note
that this is well-defined since any such leaf x̃ will give the same value of distρ(x̃, x) + distρ(x̃, x

′)). We
now define wY. For every pair v, v′ ∈ V such that at least one of v, v′ does not lie in S, wY(v, v′) is
defined identically as wN(v, v′). For every pair v, v′ of vertices in S with v ∈ Vx and v′ ∈ Vx′ , the value
wY(v, v′) is defined slightly different as wY(v, v′) = distρ(x, x

′).

We prove the following claim which says on wY and wN defined above are indeed metrics (that is, they
satisfy the triangle inequality). The proof is based on a straightforward case analysis, and is deferred
to Appendix B.

Claim 3.1. wY, wN are metrics on V .

We next prove the following two claims showing that the minimum Steiner Tree cost of instances
(V, T,wY) and (V, T,wN) differ by a factor of roughly (5/3).

Claim 3.2. The minimum Steiner Tree cost of instance (V, T,wY) is at most (d+ 1) · 2d−1.

Proof. Consider the following Steiner Tree T whose vertex set is S. Recall that S = {ux | x ∈ V (ρ)}.
The edge set of T contains, for each edge (x, x′) ∈ E(ρ), an edge (ux, ux′). From the definition of wY,
it is easy to verify that the tree T is identical to the tree ρ (together with its edge weights). Therefore,

wY(T) = w(ρ) = 2d +
∑

1≤i≤d−1
2(d−1)−i · 2i = (d+ 1) · 2d−1.

Claim 3.3. The minimum Steiner Tree cost of instance (V, T,wN) is at least (5/3) · d · 2d−1.

Proof. We start by proving the following observation on an optimal Steiner Tree of instance (V, T, wN).

Observation 3.1. There exists an optimal Steiner Tree T of instance (V, T,wN), such that for each
node x ∈ V (ρ), |V (T) ∩ Vx| is either 0 or 1.

5

Proof. Let T ∗ be an optimal Steiner Tree of instance (V, T,wN), and assume that there exists a node
x ∈ V (ρ), such that T ∗ contains at least two distinct vertices of Vx, that we denote by v, v′. Clearly,
x is a non-leaf node in ρ and so both v and v′ are Steiner vertices in T ∗. From the definition of wN,
for any vertex u ∈ V, u 6= v, v′, wN(u, v) = wN(u, v′). Let T be the tree obtained from T ∗ by replacing
every v′-incident edge (u, v′) ∈ E(T ∗) with edge (u, v) and then removing any parallel edges. It is
easy to verify that T is also a Steiner Tree of instance (V, T,wN), and that w(T) ≤ w(T ∗). Since
T ∗ is an optimal Steiner Tree, T has to be an optimal Steiner Tree as well. We can keep modifying
T in the same way until every group Vx contains at most one vertex in T , while ensuring that the
resulting tree T stays an optimal Steiner Tree of instance (V, T,wN). This completes the proof of the
observation.

From Observation 3.1, and since all vertices in the same group behave identically with respect to wN,
we conclude that there is an optimal Steiner Tree T with V (T) ⊆ S. Therefore, we from now on focus
on showing that the optimal Steiner Tree of instance (S, T, wN) is at least (5/3) · d · 2d−1. Recall that
S = {ux | x ∈ V (ρ)}. We use the following observation, whose proof is deferred to Appendix C.

Observation 3.2. Let T be an optimal Steiner Tree of the instance (S, T, wN), then every edge of T
is incident to a vertex in T .

For each non-leaf node x ∈ V (ρ), we denote by R(x) the subtree of ρ rooted at x and denote by R1(x),
R2(x) the subtrees of ρ rooted at two children of x, respectively. Recall that S = {ux′ | x′ ∈ V (ρ)}.
We define sets S1(x) = {ux′ | x′ ∈ R1(x)}, S2(x) = {ux′ | x′ ∈ R2(x)} and S0(x) = {ux′ | x′ /∈ R(x)}.
We then define Ti(x) = T ∩ Si(x) for i ∈ {0, 1, 2}, and T (x) = T1(x) ∪ T2(x). For convenience, for
every node x ∈ V (ρ) at level i of ρ, we also say that ux is a level-i vertex in S. Similarly, if node x is
the parent of node x′ in ρ, we also say that vertex ux is the parent of vertex ux′ in S.

We use the following observation, whose proof is deferred to Appendix D.

Observation 3.3. There is an optimal Steiner Tree T of the instance (S, T, wN), such that for every
Steiner vertex ux in T : (i) ux has either one or two neighbors in T0(x), exactly one neighbor in T1(x),
and exactly one neighbor in T2(x); (ii) if we denote by W1 and W2 the connected components in the
graph T ′ \ {ux} that contains the T1(x)-neighbor of ux and the T2(x)-neighbor of ux, respectively, then
T1(x) ⊆ V (W1) ⊆ S1(x), and T2(x) ⊆ V (W2) ⊆ S2(x); and (iii) for every vertex ux at level at most
d− 2 in S, exactly one vertex from the set containing ux and its two children belongs to V (T).

We are now ready to complete the proof of Claim 3.3. Let r be the root of tree ρ. Note that metric
wN and tree ρ are both determined by a single nonnegative integer d. In order to avoid ambiguity, we
denote by (S, T, wN)d the instance determined by d. For each d ≥ 0, we define

• A(d) as the minimum cost of a Steiner tree of instance (S, T, wN)d that does not contain ur; and

• B(d) as the minimum cost of a Steiner tree of instance (S, T, wN)d that contains ur.

It is easy to verify that A(1) = 2 and B(1) = 2. We now show that, for each d ≥ 1,

A(d+ 1) = A(d) +B(d) + 2d−1 + 2d; and B(d+ 1) = 2 ·A(d) + 2d+1. (1)

On the one hand, let T be an optimal Steiner tree of instance (S, T, wN)d+1 that does not contain
ur. Let u1, u2 be the children of ur. From Observation 3.3, exactly one of u1, u2 is contained in T .
Assume w.l.o.g. that u1 ∈ V (T). From Observation 3.3, T is the union of

• a Steiner tree of instance (S1(ur), T1(ur), wN)d+1 that contains u1 (denote by T1);

• a Steiner tree of instance (S2(ur), T2(ur), wN)d+1 that does not contain u2 (denote by T2); and

6

• an edge connecting T1 to T2.

Note that instances (S1(ur), T1(ur), wN)d+1 and (S2(ur), T2(ur), wN)d+1 are identical to the instance
(S, T, wN)d, so w(T1) = B(d) and w(T2) = A(d). Note that the minimum weight of an edge connecting
T1 to T2 is the edge connecting u1 to any leaf in T2(ur), which has cost 2d−1+2d. Therefore, A(d+1) =
A(d) +B(d) + 2d−1 + 2d.

On the one hand, let T be an optimal Steiner tree of instance (S, T, wN)d+1 that contains ur. From
Observation 3.3, both u1, u2 are contained in T . Indeed, T is the union of

• a Steiner tree of instance (S1(ur), T1(ur), wN)d+1 that does not contain u1 (denote by T1);

• a Steiner tree of instance (S2(ur), T2(ur), wN)d+1 that does not contain u2 (denote by T2); and

• an edge connecting T1 to ur and an edge connecting T2 to ur.

Via similar arguments, we can show that w(T1) = w(T2) = A(d). Note that the minimum weight of an
edge connecting T1 to ur is the edge connecting any leaf in T1(ur) to ur, which has cost 2d. Therefore,
B(d+ 1) = 2 ·A(d) + 2d+1.

We now use the inequality 1 to complete the proof of Claim 3.3. From 1, we get that, for each d ≥ 1,
A(d + 1) = A(d) + 2 · A(d − 1) + 5 · 2d−1. Using standard techniques and the initial values A(0) = 0
and A(1) = 2, we get that

A(d) =

(
5

6

)
· d · 2d +

(
−1

9

)
· (−1)d +

(
1

9

)
· 2d.

Therefore, from 1, we get that

B(d) = 2 ·A(d− 1) + 2d = 2 ·
((

5

6

)
· (d− 1) · 2d−1 +

(
−1

9

)
· (−1)d−1 +

(
1

9

)
· 2d−1

)
+ 2d

=

(
5

6

)
· d · 2d +

(
2

9

)
· (−1)d +

(
5

18

)
· 2d.

Therefore, A(d), B(d) ≥ (5/6) · d · 2d. This completes the proof of Claim 3.3.

From Claim 3.2 and Claim 3.3, we get that

ST(IN)

ST(IY)
≥ (5/3) · d · 2d−1

(d+ 1) · 2d−1
≥ 5

3
− 1

d
≥ 5

3
− ε.

We now complete the proof of Theorem 1 using the metrics wY, wN defined above.

We construct a pair DY,DN of distributions on metric Steiner Tree instances (V ′, T ′, w′) as follows.
Set V ′ is fixed and contains n vertices. Let F be the set of all one-to-one mappings from V ′ to V . For
each mapping f ∈ F , we define a pair of instances IfY and IfN as follows:

• IfY = (V ′, f−1(S), wfY), where wfY is defined as: ∀v, v′ ∈ V ′, wfY(v, v′) = wY(f(v), f(v′));

• IfN = (V ′, f−1(S), wfN), where wfN is defined as: ∀v, v′ ∈ V ′, wfN(v, v′) = wN(f(v), f(v′));

where f−1(S) = {v ∈ V ′ | f(v) ∈ S}. We then let DY be the uniform distribution on all instances in{
IfY | f ∈ F

}
, and let DN be the uniform distribution on all instances in

{
IfN | f ∈ F

}
. Let D be the

distribution that sample an instance from DY with probability 1/2, and sample an instance from DN

with probability 1/2.

7

It is easy to verify that for each mapping f ∈ F , ST(IfY) = ST(IY) and ST(IfY) = ST(IY) hold, so any
algorithm that with probability 0.51 estimates the cost to within factor (5/3− ε) can correctly report
a random instance from D comes from DY or DN with probability 0.51.

Recall that the metrics wY and wN are identical on all pairs of vertices that are not both terminals.
For each instance IfY, we say a pair (v′1, v

′
2) of vertices in V ′ is crucial iff v′1, v

′
2 ∈ f−1(S), and we

say that the pair (v′1, v
′
2) is discovered iff the pair (v′1, v

′
2) is queried by the algorithm. From Yao’s

minimax principle [Yao77] and the above discussion, in order to distinguish between DY and DN with
probability 0.51, it is necessary that the algorithm discovers a crucial pair on at least 0.01-fraction of
the instances in IY. Therefore, the proof of Theorem 1 is concluded by the following lemma.

Lemma 3.1. Any deterministic algorithm that discovers a crucial pair on at least 0.01-fraction of the
instances in IY performs at least Ω(n2/22d) queries in expectation.

Proof. Since f is a random one-to-one mapping from V ′ to V , the set f−1(S) is a random size-|S|
subset of V ′. Therefore, the probability that a single query discoveres a crucial pair is

(|S|
2

)
/
(
n
2

)
, and it

follows that the expected number of queries that is required to discovers a crucial pair with probability
at least Ω(1) is Ω

((
n
2

)
/
(|S|

2

))
= Ω(n2/22d).

4 Algorithm for a (2− ε0)-Estimation of Steiner Tree Cost

In this section we provide the proof of Theorem 3. Specifically, we will construct an algorithm, that,
takes as input a set V of n points, a set T ⊆ V of k terminals, and access to a metric w on V , estimates
the metric Steiner Tree cost to within a factor of (2 − ε0), for some universal constant ε0 that does
not depend on n and k, by performing Õ(n12/7 +n6/7 · k) queries. This section is organized as follows.
First, in Section 4.1, we give an algorithm that, assumes that the induced metric of w on T is known to
us upfront, estimates the metric Steiner Tree cost to within a factor of (2− ε0) with Õ(n3/2 +n3/4 · k)
queries. The detail of some critical subroutine of the algorithm is provided in Section 4.2. Then in
Section 4.3, we show how to remove the assumption that the induced metric of w on T is given, while
still attaining a slighly worse (while still sublinear) query complexity Õ(n12/7 + n6/7 · k).

4.1 An Algorithm with the Terminal-Induced Metric Given Upfront

In this subsection, we assume that the metric on terminals induced by w is given to us upfront, and
give an algorithm that estimates the metric Steiner Tree cost to within a factor of (2 − ε0). We first
give a high-level overview, and then describe the algorithm in detail and provide its analysis.

Overview of the algorithm

We start by constructing a minimum spanning tree over the terminals, say T ∗. Let MST denote the
weight of T ∗, so ST(V, T,w) ≥ MST/2. The rest of the algorithm focuses on gathering “local evidence”
to ascertain that ST(V, T,w) is bounded away from MST. If the algorithm fails to find the evidence to
support this assertion, then we will be able to claim that ST(V, T,w) is bounded away from MST/2.

We now describe what constitutes this local evidence. At a high-level, it is some property of the
metric w that allows us to locally “restructure” the minimum terminal spanning tree maintaining
connectivity among the terminals while reducing its total cost. To get some intuition for this process,
let us consider a metric where all distances are 1 or 2. Suppose that the distances between all terminals
are 2, the distances between all Steiner vertices are 2, and the distances between a terminal and a
Steiner vertex is either 1 or 2. Clearly, MST = 2k − 2. Assume that a Steiner vertex v is at distance

8

1 to three terminals u1, u2, u3. Now if we remove two edges from T ∗ such that terminals u1, u2, u3
lie in different connected subtrees, and then add the edges (v, u1), (v, u2), and (v, u3), then we get
another Steiner Tree that now contains v. Note that, in this process we have deleted two edges of cost
2 each and added three edges of cost 1 each, so essentially the total cost decreases by 1. We view this
“Steiner vertex v connects to terminals u1, u2, u3 via length-1 edges” structure as a “local evidence
that separates ST(V, T,w) from MST”.

It is not hard to observe that, this type of evidence is both local and aggregatable, e.g., if a Steiner
vertex v is at distance 1 to terminals u1-u3 and another Steiner vertex v′ is at distance 1 to terminals u4-
u7, then we can “save a total of (4−3)+(6−4) = 3 units of cost” from MST. The process of identifying
the best way to aggregate these local cost-saving improvements is reminiscent of solving an instance of
Set Cover. Specifically, if we define, for each Steiner vertex v, a set Wv containing all terminals u ∈ T
with w(u, v) = 1, then a good aggregation of the local evidence is a collection of a small number of sets
Wv that cover many terminals. In particular, if we denoteW = {Wv | v /∈ T}, then using similar “local
MST restructure”-type arguments, we can show that ST(V, T,w) ≤ MST − Ω(k − SC(T,W)), where
SC(T,W) is the minimum solution size of the Set Cover instance (T,W). Therefore, our goal now is
to estimate the value of k − SC(T,W) to within an additive εk factor (and some small multiplicative
factor). We provide an Õ(n3/2 + n3/4 · k)-query algorithm for this task in Section 4.2, and then show
how to implement this algorithm when the terminal-induced metric is not given upfront, with a slightly
worse query complexity Õ(n12/7 + n6/7 · k).

We next describe how the ideas outlined above for the special case of (1, 2)-metric, can be extended
to the general case. Let us consider the construction of the minimum spanning tree T ∗ on T using
Kruskal’s algorithm. Assume that the weight of every terminal-terminal edge is (1 + ε)i for some
non-negative integer i. Then in the first round we add all weight-1 edges and obtain some connected
components (called clusters), and in the second round we add all weight-(1+ε) edges, and some clusters
in the first round are merged into bigger clusters, etc. The main observation is that, in every round,
we can use the Steiner vertices to locally restructure this cluster-merging step just as the special case.
In particular, if there exists a Steiner vertex v and three first-round clusters U1, U2, U3, such that
U1, U2, U3 are merged in the second round, and w(v, U1), w(v, U2), w(v, U3) are close to (1 + ε)/2, then
we can replace two weight-(1+ε) edges with three weight-roughly-(1+ε)/2 edges, thereby saving the
total cost by roughly (1+ε)/2 without destroying the connectivity between the terminals in U1, U2, U3.
Therefore, the main framework of our algorithm is to compute the hierarchical structure of the terminal
minimum spanning tree T ∗ and use this set-cover-type algorithm at every “level” of T ∗ to search for
local evidence that there is a Steiner tree of cost significantly better than T ∗.
There is one subtlety in the above algorithmic framework, which is that the cardinality-2 sets do not
provide cost-saving. In particular, if we replace one terminal-terminal edge with two terminal-Steiner
edge (of weight about half of that of a terminal-terminal edge), then the total cost will not decrease.
More concretely, if we consider the metric wY defined in Section 3, which is the shortest-path metric
induced by a complete binary tree with edge cost geometrically decreasing along with the levels, then
when we construct Set Cover instances on different levels, we will only get cardinality-2 sets and ended
up finding no local evidence at all, but in fact ST(V, T,wY) = MST/2 holds. To overcome this issue,
we introduce another evidence-searching subroutine that goes beyond a single level of the hierarchical
structure of T ∗ while involving only O(1) vertices. This is based on the observation that, in this very
special case, although local evidence cannot be found at a single level, it can be found by looking at
two consecutive levels and only focusing on sets of O(1) vertices. It turns out that incorporating this
subroutine into the above framework gives us the desired algorithm.

We now describe the algorithm in detail. Recall that we are given an instance (V, T,w) of the metric
Steiner Tree problem and are allowed to perform queries to metric w. Also recall that the induced

9

metric of w on T is also given to us upfront. We use the following parameters: ε0 = 2−40; ε = 2−20.

Step 1. Computing an MST on T and its hierarchical structure

We pre-process the instance (V, T,w) as follows. Let D = max {w(u, u′) | u, u′ ∈ T}. While there
exists a pair u, u′ ∈ T with w(u, u′) ≤ D/k2, we delete an arbitrary one of them from T and V . We
repeat this until all pairwise distances between vertices of T are at least D/k2. Let T ′ be the resulting
terminal set we get, and define V ′ = (V \ T) ∪ T ′. We then scale the metric w by defining another
metric w′ on V ′ such that for every pair v, v′ ∈ V , w′(v, v′) = w(v, v′)/min {w(u, u′) | u, u′ ∈ T ′}, so
now the distance (under w′) between every pair of terminals in T ′ is at least 1 and at most k2. It
is easy to verify that: (i) the metric Steiner Tree cost ST(V ′, T ′, w′) of instance (V ′, T ′, w′) is within
factor (1 +O(1/k)) of ST(V, T,w)/min {w(u, u′) | u, u′ ∈ T ′}; and (ii) every distance query to w′ can
be simulated by a distance query to w. Therefore, from now on we work with instance (V ′, T ′, w′),
and we will construct an algorithm that with high probability estimates the value of ST(V ′, T ′, w′) to
within a factor of (2− 2ε0). Eventually, when the algorithm returns an estimate X of ST(V ′, T ′, w′),
we return X ·min {w(u, u′) | u, u′ ∈ T ′} as the output estimate of ST(V, T,w). It is easy to verify that
the final output of the algorithm is with high probability a (2− ε0)-approximation of ST(V, T,w). For
convenience, in the remainder of this section, we rename the vertex set V ′, the terminal set T ′ and
the metric w′ by V, T,w, respectively.

Let L =
⌈
log1+ε k

2
⌉
. For every pair u, u′ ∈ T , we say that the edge (u, u′) is at level i (or (u, u′) is an

level-i edge), iff (1 + ε)i−1 ≤ w(u, u′) < (1 + ε)i. Clearly, every edge connecting a pair of terminals is
at level at most L. For each 1 ≤ i ≤ L, we define Hi to be the graph on T that contain all edges up
to level i, and we define H0 to be the empty graph on T . For each index 1 ≤ i ≤ L, we define Si as
the collection of vertex sets of connected components of graph Hi−1. That is, each set in Si contains
all vertices of some connected component of Hi−1. Clearly, each Si is a partition of T .

Let S =
⋃

1≤i≤L Si. It is easy to verify that S is a laminar family. That is, every pair S, S′ of sets in
S, either S ⊆ S′, or S′ ⊆ S, or S ∩ S = ∅. We associate with S a partition tree T as follows. The
vertex set of T contains, for each set S ∈ S, a node xS representing the set S. The edge set of T
contains, for each pair S, S′ ∈ S such that S ⊆ S′ and S, S′ lie on consecutive levels, an edge (xS , xS′).
In this case, we say that xS′ is the parent node of xS (and xS is a child node of xS′); similarly, we say
that S′ is a parent set of S (and xS is a child set of S′). Note that SL contains a single set, and its
corresponding node in T is designated as the root of T . It is easy to verify that T is a tree.

Lastly, we compute a minimum spanning tree T ∗ on T , and denote MST = w(T ∗). As the induced
metric of w on T is given to us upfront, in this step we did not perform any additional queries.

Step 2. Finding local evidence using a set-cover-type subroutine

We start by introducing a set-cover-type subroutine that we will use in this step.

Algorithm AlgSetCover. Let (U,W) be an instance of the Set Cover problem, where U is a collection
of elements and W is a collection of subsets of U . For convenience, throughout the paper, when we
consider an instance (U,W) of Set Cover, we always assume that W contains, for each element u ∈ U ,
a singleton set {u}, so |W| ≥ |U |, and if we denote by SC(U,W) the size of the smallest set cover
for the instance (U,W), then SC(U,W) ≤ |U |. The elements of U and the number of sets in W are
known to us, but we do not know which elements each set of W contains. We are allowed to perform
queries to a membership oracle of instance (U,W), which is an oracle that, takes as input an element
u ∈ U and a set W ∈ W, returns whether or not u belongs to W . A query to the membership oracle
of instance (U,W) is also called a membership query to instance (U,W).

10

For a collection W of subsets of U , we denote by W6=2 the collection that contains all sets in W with
size not equal to 2. For positive real numbers X,Y, a, b with a > 1, we say that X is an (a, b)-estimation
of Y iff Y ≤ X ≤ aY + b.

We use the following theorem, whose proof is deferred to Section 4.2.

Theorem 6. There is a polynomial-time randomized algorithm called AlgSetCover, that, given any
instance (U,W) of Set Cover and any constant 0 < ε < 1, with high probability, returns a (4, ε|U |)-
estimation of

(
|U | − SC(U,W6=2)

)
, by performing O((|W|3/2 + |W|3/4|U |)(log |W|)2/ε3) membership

queries to the instance (U,W).

We remark that improving the query complexity of the result above will immediately improve the
query complexity for the (2− ε0)-estimation algorithm. Also, note that the number of queries needed
by a naive algorithm to solve the estimation problem above would be O(|U ||W|), the size of the input
description. So the theorem above provides an estimation algorithm that is sublinear in the size of
the input description whenever |W|3/2 = o(|U ||W|).
For each index 1 ≤ i ≤ L and each pair u, u′ ∈ T , we let wi(u, u

′) = w(u, u′) if (u, u′) is a level-i edge;
otherwise we let wi(u, u

′) = 0. Consider the minimum spanning tree T ∗ computed in Step 1. For each
1 ≤ i ≤ L, we say that level i is light iff wi(T ∗) < MST/(L log n) (that is, the total weight of all level-i
edges in T ∗ is less than MST/(L log n)); otherwise we say that level i is heavy. For a set E of edges in
E(T ∗), we define wi(E) =

∑
(u,u′)∈E wi(u, u

′) and call wi(E) the level-i weight of set E. The following
observation is immediate.

Observation 4.1.
∑

i: level i is light wi(T ∗) ≤ MST/ log n.

Before we describe the set-cover-type subroutine in detail, we give some intuition. We intend to find
local evidence on different levels separately. For each 0 ≤ i ≤ L and for each set S ∈ Si, we think of
vertices in S as already connected via edges up to level i. So we will search for better ways to connect
different sets in Si via Steiner vertices. However, for Steiner vertex v and set S ∈ S, naively it takes
O(|S|) queries to compute w(v, S), which we cannot afford as |S| can be as large as k. Therefore, for
each S ∈ Si, we will first compute a subset S̃ ⊆ S as its “representative”, such that |S̃| is small, and
the values w(v, S) and w(v, S̃) are close for all Steiner vertices v.

We now describe the set-cover-type subroutine in detail. For each level i that is heavy, we construct
an instance Ii = (Ui,Wi) of Set Cover as follows. Recall that Si is the collection of all level-i sets.
We first compute, for each index 0 ≤ i ≤ L and for each set S ∈ Si, a maximal subset S̃ of S, such
that the distance between every pair of terminals in S̃ is at least ε · (1 + ε)i. We define S̃i to be the
collection that contains all such sets S̃ with |S̃| ≤ (L log2 n)/ε. The ground set Ui in instance Ii is

defined as Ui =
{
xS | S̃ ∈ S̃i

}
. The collectionWi contains, for each vertex v ∈ V \T , a set Wi(v) that

is defined as Wi(v) =
{
xS | w(v, S̃) ≤ (3/5) · (1 + ε)i

}
. We use the following simple observations.

Observation 4.2. |Ui| ≤ k, |Wi| ≤ n− k, and every membership query in the instance (Ui,Wi) can
be simulated by at most (L log2 n)/ε distance queries to the metric w.

Observation 4.3. For each level i that is heavy, |Ui| ≥ (1−O(1/ log n)) · |Si|.

Proof. Recall that Ui =
{
xS | S̃ ∈ S̃i

}
. It suffices to show that, if level i is heavy, then there are at

most O(1/ log n) fraction of sets S in Si with |S̃| > (L log2 n)/ε. Define X =
⋃
S∈Si S̃. Note that every

pair of vertices in X are at distance at least ε · (1 + ε)i in w. Therefore, |X| ≤ 1 +MST/(ε · (1 + ε)i) ≤
2 · MST/(ε · (1 + ε)i). On the other hand, since level i is heavy, wi(T ∗) ≥ MST/(L log n), and so

11

|Si| ≥ MST/(L · log n · (1 + ε)i−1). Altogether,

L log2 n

ε
·
∣∣∣∣ {S ∈ Si | |S̃| > L log2 n

ε

} ∣∣∣∣ ≤ |X| ≤ 2 ·MST

ε · (1 + ε)i
≤ |Si| ·

2L · log n

ε · (1 + ε)
,

and it follows that there are at most O(1/ log n) fraction of sets S in Si with |S̃| > (L log2 n)/ε.

Then for each 0 ≤ i ≤ L, we apply the algorithm AlgSetCover to instance Ii = (Ui,Wi) constructed
above, and obtain an estimate Xi of

(
|Ui| − SC(Ui, (Wi) 6=2)

)
. If

∑
0≤i≤L(1 + ε)i ·Xi > 230 · ε0 ·MST,

then we return (1− ε0) ·MST as an estimate of ST(V, T,w). Otherwise, we go to the next step. Since
the algorithm in Theorem 6 performs (|Ui||Wi|3/4 + |Wi|3/2) · (log(|Ui|+ |Wi|))O(1) ≤ Õ(n3/2 + n3/4k)
queries, using Observation 4.2, we get that the algorithm performs Õ(n3/2 + n3/4k) · O(L log2 n) =
Õ(n3/2 + n3/4k) queries on the metric w in this step.

Analysis of Step 2 when the algorithm returns (1− ε0) ·MST as the estimate of ST(V, T,w)

Before we proceed to describe the next steps of the algorithm, we first show in this subsection that, if
we collected enough local evidence in this step, then indeed ST(V, T,w) is bounded away from MST.
Specifically, we will show that, if

∑
0≤i≤L(1+ε)i ·Xi > 230 ·ε0 ·MST, then ST(V, T, w) ≤ (1−ε0) ·MST.

Since ST(V, T,w) ≥ MST/2, our estimate in this case is indeed a (2−2ε0)-approximation of ST(V, T,w).
For each 0 ≤ i ≤ L, we define Yi = |Ui| − SC(Ui, (Wi)6=2). Define L′ =

⌈
log1+ε 2

⌉
, so L′ is a constant

between 219 and 220 from the definition of ε. We start by proving the following claim.

Claim 4.1. For each 0 ≤ i ≤ L− 1, there exists a set Ei of edges, each connecting a terminal in T to
a Steiner vertex in V \T , such that (i) the vertex sets of the connected components in graph Hi−1∪Ei
are exactly the sets in Si+L′−1; and (ii) w(Ei) ≤

(∑
i≤s<i+L′ ws(T ∗)

)
− (1/20) · (1 + ε)i · |Yi|.

Proof. Fix an index 0 ≤ i ≤ L− 1 and consider the instance Ii = (Ui, (Wi) 6=2). Let W∗i be an optimal

set cover of instance (Ui, (Wi) 6=2). We compute a sub-collection W̃i of W∗i as follows. We process the

sets of W∗i in an arbitrary order. Upon processing each set in W∗i , we add it into to W̃i iff the set
contains at least two elements that are not contained in all previously processed sets in W∗i . Denote

the resulting set by W̃i = {Wi(v1), . . . ,Wi(vr)}, where the sets are indexed according to the order in

which they are added to W̃i. For each 1 ≤ j ≤ r − 1, define Ui(vj) = Wi(vj) \
(⋃

1≤t≤j−1Wi(vt)
)
.

From the above discussion, sets Ui(v1), . . . , Ui(vr) are mutually disjoint and each containing at least
two elements.

On the one hand, we show that
∑

1≤j≤r |Ui(vj)| ≥ 2·|Yi|. In fact, in the process of iteratively processing

the sets of W∗i to obtain a subcollection W̃i, every set that is not added into W̃i contains exactly one
element that does not lie in previously processed sets. Therefore, at least Yi sets are eventually added
to W̃i. Note that |Ui(vj)| ≥ 2 for each 1 ≤ j ≤ r, we get that

∑
1≤j≤r |Ui(vj)| ≥ 2 · |Yi|.

On the other hand, we construct the set Ei of edges via the following iterative process. Throughout,
we maintain a set Ê of edges, that is initialized to be the set of all edges in T ∗ from level i to level i+L′

(so the initial total weight of Ê is
∑

i≤s<i+L′ ws(T ∗)). We will ensure that set Ê always satisfies the

property (i) in the claim. That is, the vertex sets of the connected components in graph Hi−1 ∪ Ê are
exactly the sets in Si+L′−1. We iteratively process Steiner vertices v1, . . . , vr while modifying set Êi as
follows. Consider now the iteration of processing vj for some 1 ≤ j ≤ r. Denote Ui(vj) = {S1, . . . , Sp},
where S1, . . . , Sp ∈ Si−1. Clearly, sets S1, . . . , Sp are subsets of the same set in Si+L′−1, as each pair
of them is at distance at most (6/5) · (1 + ε)i < (1 + ε)i+L

′−1 in w. Moreover, from the definition of
Wi(vj), for each 1 ≤ q ≤ p, there exists a terminal uq ∈ Sq such that w(vj , uq) ≤ (3/5) · (1 + ε)i. We
distinguish between the following two cases.

12

Case 1. |Ui(vj)| ≥ 3. We simply add edges (vj , u1), . . . , (vj , up) into the set Ê. Since initially set Ê
contains all edges of E(T ∗) at level i, and since elements in Ui(vj) do not belong to any other set in
{Ui(v1), . . . , Ui(vr)}, it is easy to see that, we can delete (p− 1) edges from the current set Ê that are
level-i edges of E(T ∗), such that the resulting set Ê still satisfies property (i) in the claim.

Case 2. |Ui(vj)| = 2. Since |Wi(vj)| ≥ 3, there must exist another set S0 ∈ Si such that element xS0

is contained in Wi(vj) and some previous set Wi(vj′) (for some j′ < j), and so there exists a terminal

u0 ∈ S0 with w(vj , u0) ≤ (3/5) · (1 + ε)i. We simply add edges (vj , u0), (vj , u1), (vj , u2) into the set Ê.
For similar reasons, it is easy to see that we can delete 2 edges from the current set Ê that are level-i
edges of E(T ∗), such that the resulting set Ê still satisfies property (i) in the claim.

In either case, we add tj edges into set Ê and delete (tj − 1) from set Ê, for some tj ≥ 3 (and in fact
tj ≥ |Ui(vj)|). Since the edges that are added to set Ê have weight at most (3/5) · (1 + ε)i, and the
edges that are deleted from set Ê have weight at least (1 + ε)i−1. In the iteration of processing vj , the
total weight of Ê decreases by at least (tj − 1) · (1 + ε)i−1− tj ·

(
(3/5) · (1 + ε)i

)
≥ (1/40) · tj · (1 + ε)i,

as tj ≥ 3. Therefore, the accumulative decrease of the total weight of Ê has weight is at least

∑
1≤j≤r

tj · (1 + ε)i

40
≥
∑

1≤j≤r

|Ui(vj)| · (1 + ε)i

40
≥ |Yi| · (1 + ε)i

20
.

Denote the resulting set Ê by Ei, and the claim now follows.

We now use Claim 4.1 to complete the analysis of Step 2. For each index 0 ≤ j ≤ L′ − 1, we define
αj =

∑
0≤i≤L: i≡j(mod L′) Yi · (1 + ε)i. Clearly,

∑
0≤j<L′ αj =

∑
0≤i≤L(1 + ε)i · Yi, and so there exists

some 0 ≤ j∗ ≤ L′ − 1 such that αj∗ ≥ (1/L′) ·
∑

0≤i≤L(1 + ε)i · Yi. We now define E′ as the set that
contains (i) all edges of T ∗ that are at level 0, 1, . . . , j∗−1; and (ii) all edges of Ej∗ , Ej∗+L′ , Ej∗+2L′ , . . . ,
that are given by Claim 4.1. From Claim 4.1, it is easy to verify that the graph induced by edges of
E′ is a Steiner tree of instance (V, T,w), and moreover,

w(E′) ≤ w(T ∗)− 1

20
· αj∗

≤ w(T ∗)− 1

20L′
·
∑

0≤i≤L
(1 + ε)i · Yi

≤ w(T ∗)− 1

20L′
·
∑

0≤i≤L
(1 + ε)i · Xi − ε|Ui|

4

= w(T ∗)− 1

20L′
·
(∑

0≤i≤L

(1 + ε)i ·Xi

4
−
∑

0≤i≤L

(1 + ε)i · ε|Ui|
4

)

≤ w(T ∗)− 1

20L′
·
(

230 · ε0 ·MST

4
− ε ·MST

)
≤ (1− ε0) · w(T ∗),

according to the definition of ε, ε0 and the fact that 219 ≤ L′ ≤ 220. This shows that our estimate in
this case is indeed a (2− 2ε0)-approximation of ST(V, T,w).

Step 3. Finding local evidence using a 4-vertex subroutine

In the third and last step, we focus on finding one specific type of local evidence, by querying distances
related to groups of 4 vertices.

Recall that we have computed a laminar family S of subsets of terminals in T and its partition tree
T . We say that a node xS in T is good iff xS has exactly two children in T , and each child node of

13

xS also has exactly two children in T . In this case, we also say that the corresponding set S in S is
good. Consider a good set S ∈ S. Let S1, S2 be its child sets, let S11, S12 be the child sets of S1, and
let S21, S22 be the child sets of S2. We define the advantage of set S, denoted by adv(S), as follows.
We define w∗(S) = w(S11, S12) + w(S21, S22) + w(S1, S2), that is, the total edge weight in T ∗ that is
used to connect the four sets S11, S12, S21, S22 into a single set S. We say that a set Y represents S, iff
Y contains exactly four terminals u11, u12, u21, u22 ∈ T , such that u11 ∈ S11, u12 ∈ S12, u21 ∈ S21, and
u22 ∈ S22. For a set Y that represents S, we define adv(S, Y) = w∗(S)−minv∈V \T {ST(Y ∪ {v} , Y, w)},
so adv(S, Y) is the maximum cost reduction (local evidence) that can be achieved with the help of any
single Steiner vertex. We define adv(S) = maxY {adv(S, Y)}. Intuitively, in this step we are searching
for the benefit of utilizing one Steiner vertex to restructure a specific type of 2-level local structure in
T ∗.
We now describe the algorithm in this step. We denote by Sg the collection of all good sets in S. For
each 0 ≤ i ≤ L, let Sig be the set of all level-i good sets. For each good set S ∈ Sig, similar to Step 2,

we compute a maximal subset S̃ of S, such that the distance between every pair of terminals in S̃ is
at least ε · (1 + ε)i. We then define

Ai =
∑

S∈Sig :|S̃|≤(L log2 n/ε)

adv(S) · 1
[
adv(S) ≥ ε3/4(1 + ε)i

]
.

However, we are unable to computeAi using few queries, as the number of sets S with |S̃| ≤ (L log2 n/ε)
can be large, and for each such set, computing adv(S) takes Ω(n) queries since we need to try all Steiner
vertuces. To get around this obstacle, we will compute, for each i, an estimate Bi of Ai as follows. Let
Ŝig be the collection of all level-i good sets S with |S̃| ≤ (L log2 n)/ε. We sample (log n)/ε10 sets in Ŝig.
For each sampled set S ∈ Ŝig, we first query all distances between any terminal in S̃ and any vertex in

V \ T . We then try all four-terminal sets Y , such that Y ⊆ S̃ and Y represents S (note that there are
at most O((L log2 n/ε)4) such sets), and compute adv(S, Y) using the acquired distance information.
We then let adv(S) be the maximum over all values adv(S, Y) that we computed. We then let Bi be
the sum of adv(S) for all sampled sets S such that adv(S) > (ε3/4/2) · (1 + ε)i, namely

Bi =
∑

S sampled

(
(ε3/4/2) · (1 + ε)i

)
· 1
[
adv(S) ≥ (ε3/4/2) · (1 + ε)i

]
.

Finally, we compute
∑

0≤i≤LBi · |Ŝig|/(log n/ε10). If it is greater than 5ε3/4 · MST, then we return
(1− ε0) ·MST as an estimate of ST(V, T,w). Otherwise, we return MST as an estimate of ST(V, T,w).
This completes the description of Step 3, and also completes the description of the whole algorithm.
In Step 3, we performed in total

(
(log n)/ε10

)
· O((L log2 n/ε)4) · O(n) = Õ(n) queries. Overall, the

algorithm performs Õ(n3/2 + n3/4k) + Õ(n) = Õ(n3/2 + n3/4k) queries.

Analysis of Step 3 when the algorithm returns (1− ε0) ·MST as the estimate of ST(V, T,w)

We now show that, if we collected enough local evidence in this step, then indeed ST(V, T,w) is bounded
away from MST. Specifically, we will show that, with high probability, if

∑
0≤i≤LBi ·|Ŝig|/(log n/ε10) >

5ε3/4 · MST, then ST(V, T,w) ≤ (1 − ε0) · MST. Since ST(V, T,w) ≥ MST/2, this implies that our
estimate in this case is indeed a (2− 2ε0)-approximation of ST(V, T, w).

We first show that, if
∑

0≤i≤LAi > (2ε0) ·MST holds, then ST(V, T,w) ≤ (1 − ε0) ·MST. Note that
we have

∑
0≤i≤LAi =

∑
i evenAi +

∑
i oddAi. We assume that

∑
i evenAi > ε0 ·MST (the case where∑

i oddAi > ε0 ·MST is symmetric). Consider now the minimum spanning tree T ∗ computed in Step
1. We will iteratively modify T ∗ by processing good sets in Sg and eventually obtain a Steiner Tree
of instance (V, T,w), such that the total cost decreases by at least

∑
i evenAi.

14

We now formally describe the iterative modification process. Throughout the process, we will maintain
a Steiner Tree T of instance (V, T,w), that is initialized to be T ∗. Let Seg be the set of all good sets

S at an even-index level, such that |S̃| ≤ (L log2 n)/ε. In each iteration, we pick a set S ∈ Seg that
is at the lowest level, and after processing S we discard it from Seg . We now describe the iteration of
processing set S. Let sets S1, S2, S11, S12, S21, S22 be defined as before. Before this iteration, each of
these six sets induce a connected subgraph of the current tree T , and they are connected in T by an
edge e1 connecting S11 to S12, an edge e2 connecting S21 to S22, and an edge e connecting S1 to S2.
Clearly, the total cost of these three edges is at most w∗(S), by the definition of w∗(S). Consider now
the set Y that represents S such that adv(S) = adv(S, Y). Let E′Y be the set of edges in the Steiner
Tree that achieves adv(S, Y). In this iteration we simply replace edges e, e1, e2 with edges in E′Y . It
is easy to see that the resulting tree T is still a Steiner Tree of instance (V, T,w), and the decrease of
total weight is w∗(S)−w(E′Y) = adv(S, Y) = adv(S). Therefore, after processing all sets in Seg in this
way, we obtain a Steiner Tree of instance (V, T,w) with total cost at most w(T ∗) −

∑
S∈Seg adv(S) =

w(T ∗)−
∑

i evenAi ≤ (1− ε0) ·MST. This shows that ST(V, T,w) ≤ (1− ε0) ·MST.

We now show that, if
∑

0≤i≤LBi · |Ŝig|/(log n/ε10) > 5ε3/4 ·MST, then
∑

0≤i≤LAi > (2ε0) ·MST holds,
completing the analysis of Step 3 when the output is (1−ε0) ·MST. We start with the following simple
observation.

Observation 4.4. For each good set S ∈ Sig and each set Y that represents S, there exists a set Ỹ ⊆ S̃
that represents S, such that adv(S, Y) ≤ adv(S, Ỹ) + 8ε · (1 + ε)i.

Proof. Let Y = {u11, u12, u21, u22}. Recall that S̃ is a maximal subset of S, such that the distance
between every pair of terminals in S̃ is at least ε · (1 + ε)i. So there exist vertices ũ11 ∈ S11, such that
w(u11, ũ11) ≤ ε · (1 + ε)i. Similarly, there exist vertices ũ12 ∈ S12, ũ21 ∈ S21, ũ22 ∈ S22 that are close
to u12, u21, u22, respectively. We simply let Ỹ = {ũ11, ũ12, ũ21, ũ22}. Assume that the set Y achieves
the cost adv(S, Y) via Steiner vertex v and tree T . It is easy to observe that by replacing vertex uij
with ũij , we obtain another Steiner tree T̃ that achieves advantage at least adv(S, Y) − 8ε · (1 + ε)i.
Observation 4.4 now follows.

Consider now the collection Ŝig. Let S ′ ⊆ Ŝig contain all sets S ∈ Ŝig with adv(S) ≥ ε3/4(1 + ε)i, and

let S ′′ contain other sets. Since we have sampled log n/ε10 sets in Ŝig, from Chernoff Bound,

• if |S ′| ≥ ε · |Ŝig|, then with probability (1 − n−10) the number of sampled sets in S ′ is within

factor (1 + ε) from (log n/ε10)|S ′|/|Ŝig|, so

|Ŝig|
(log n/ε10)

·
∑

S sampled,S∈S′
(ε3/4/2) · (1 + ε)i ≤ (1 + ε) ·

∑
S∈S′

adv(S);

• if |S ′| < ε · |Ŝig|, then then with probability (1 − n−10), the number of sampled sets in S ′ is at
most 10 log n/ε9,

|Ŝig|
(log n/ε10)

·
∑

S sampled,S∈S′
(ε3/4/2) · (1 + ε)i ≤ (10ε) · (ε3/4/2) · (1 + ε)i · |Ŝig| ≤ ε · wi(T ∗).

On the other hand, it is clear that

|Ŝig|
(log n/ε10)

·
∑

S sampled, S∈S′′
(ε3/4/2) · (1 + ε)i ≤ ε3/4 · wi(T ∗).

15

Altogether, we get that, with probability 1−O(n−10), Ai ≥ (Bi − ε3/4 · wi(T ∗))/2. Taking the union
bound over all 0 ≤ i ≤ L, we get that, with probability 1−O(n−9),

∑
0≤i≤LAi ≥

∑
0≤i≤L(Bi − ε3/4 ·

wi(T ∗))/2. Therefore, if
∑

0≤i≤LBi ≥ 5ε3/4 ·MST, then
∑

0≤i≤LAi ≥ 2ε3/4 ·MST ≥ 2ε0 ·MST. This
completes the analysis of Step 3 when the output is (1− ε0) ·MST.

Note that, if the algorithm did not return (1−ε0)·MST, then according to the algorithm,
∑

0≤i≤LBi <

5ε3/4 ·MST. From the definition of Ai and Bi and similar arguments in the above analysis, we get that
with high probability,

∑
0≤i≤LAi < 5ε1/2 ·MST. Then from similar arguments in Observation 4.3, we

can then show that
∑

S∈Sg w
∗(S) ≤ O(MST/ log n), and

∑
S∈Sg adv(S) ≤ 6ε1/2 ·MST.

Analysis when the algorithm returns MST as the estimate of ST(V, T, w)

Lastly, we show that, if the algorithm did not collect enough local evidence in Step 2 and Step 3, then
ST(V, T,w) is indeed bounded away from MST/2. Specifically, we show that, if the algorithm returns
MST as the estimate, then ST(V, T,w) ≥ MST/(2− 2ε0), and so in this case the estimate is indeed a
(2− 2ε0)-approximation of ST(V, T,w).

Before diving into the details, we give some intuition. Consider the optimal Steiner Tree T , and we
will iteratively remove Steiner vertices from it such that eventually it becomes a spanning tree over
terminals. In each iteration, we will try to replace some set E of edges in the current tree with another
set E′ of terminal-terminal edges, such that w(E′) ≤ (2−Ω(ε0)) ·w(E) holds and the resulting graph is
still a Steiner Tree. Intuitively, if we cannot find sufficient local evidence in Step 2, then most Steiner
vertices in T can be eliminated such that the resulting tree T satisfies that w(T) · (2−Ω(ε0)) ≤ MST.
However, it is also possible that T behaves in a similar way as wY defined in Section 3 and we cannot
find Steiner vertices to eliminate in T . In this case, we will replace some set E of edges in the current
tree with a set E′ of terminal-terminal edges, such that w(E′) ≤ 2 · w(E) holds and simultaneously
construct a set of four vertices that represents some set in S as defined in Step 3, and achieves cost
reduction comparable to w(E′). Eventually, we will collect sufficient four-vertex sets, indicating that
the local evidence that should have been found by the 4-vertex subroutine is large, contradicting the
outcome of Step 3.

We now provide the complete proof. Let TOPT be an optimal solution of instance (V, T,w). We will
iteratively modify tree TOPT, such that eventually we obtain a spanning tree on T whose total weight
is at most (2− 2ε0) times the weight of TOPT. Since such a tree has total weight at least MST, we get
that w(TOPT) ≥ MST/(2− 2ε0).

We now describe the tree-modification process. Throughout, we maintain a Steiner Tree T of instance
(V, T, w), that is initialized to be TOPT. Note that we can assume without loss of generality that TOPT

does not contain degree-2 Steiner vertices (since such vertices can be suppressed without increasing
the total weight of the tree), and whenever degree-2 Steiner vertices emerge in tree T , we immediately
suppress them. We will also maintain two collections X ,Y of sets of terminals in T , such that both X
and Y initially contain no sets, and (i) every set added into X has size at least 3, and will be denoted
by Xi(v) for some integer 0 ≤ i ≤ L − 1 and some Steiner vertex v; and (ii) every set added into Y
has size exactly 4. In each iteration, we distinguish between the following cases.

Case 1. T contains a Steiner vertex that is adjacent to at least three terminals. Let v be such a vertex.
Let u1, . . . , ut be the terminals that are adjacent to v, such that distances w(v, u1) ≤ w(v, u2) ≤ · · · ≤
w(v, ut). Intuitively, if the distances differ significantly, then we can replace the heaviest edge with
a terminal-terminal edge; if the distances are almost the same and close to half of terminal-terminal
distances, then they should contribute a set to the Set Cover instance on this level (defined in Step 2);
if the distances are almost the same and significantly greater than half of terminal-terminal distances,

16

then they can all be replaced by terminal-terminal edges, with the total weight increasing by a factor
at most (2− Ω(ε0)). Specifically, we distinguish between the following two cases.

Case 1.1. There exists a pair i, j of indices such that w(ui, uj) ≤ (2− 4ε0) ·w(v, uj). In this case, we
simply replace the edge (v, uj) in T with edge (ui, uj). See Figure 2(a) for an illustration.

Case 1.2. For every pair i, j of indices, w(ui, uj) > (2− 4ε0) ·w(v, uj). Denote ` = w(u, v1). Observe
that, in this case, w(v, ut) ≤ (1 + 5ε0) · ` must hold, since otherwise w(u1, ut) ≤ w(v, u1) + w(v, ut) ≤
(1 + 1

1+5ε0
) ·w(v, ut) ≤ (2−4ε0) ·w(v, ut), a contradiction to the assumption in this case. Also observe

that, for every pair i, j, w(ui, uj) > (2 − 4ε0) · `. We denote i∗ =
⌊
log1+ε `

⌋
, and then define the set

Xi∗(v) = {u1, . . . , ut} and add it into X (note that t ≥ 3). We then replace, for each 2 ≤ i ≤ t, edge
(v, ui) with edge (u1, ui). See Figure 2(b) for an illustration.

(a) Case 1.1: before (left) and after (right). (b) Case 1.2: deleted edges (red) and new edges (blue).

Figure 2: An illustration of edge replacement in Case 1.

Assume now that Case 1 does not happen, so every Steiner vertex is adjacent to at most two terminals.
We root tree T at an arbitrary Steiner vertex. Since T does not contain degree-2 Steiner vertices,
every height-1 Steiner vertex is incident to exactly two terminals (since otherwise it is either a leaf or
a degree-2 Steiner vertex, a contradiction).

Consider now any Steiner vertex v of height 2 in T . Let u′1, . . . , u
′
p be the terminals that v is adjacent

to, let v1, . . . , vt be the height-1 Steiner vertices adjacent to v, and for each 1 ≤ j ≤ t, let uj1, u
j
2 be the

two terminals adjacent to vj , such that w(vj , u
j
1) ≤ w(vj , u

j
2). See Figure 3 for an illustration. Since

v is not a degree-2 Steiner vertex in T , either t ≥ 2, or t = 1 and p ≥ 1.

Figure 3: A schematic view of vertices and edges in Case 2.

Case 2. The tree-distances in T between v and terminals u′1, . . . , u
′
p, u

1
1, u

1
2, . . . , u

t
1, u

t
2 are not all

within factor (1 +O(ε0)). Intuitively, in this case the subtree of T rooted at v is not balanced enough,
and so we can always find some terminal-Steiner edge to replace with a terminal-terminal edge. In
particular, we distinguish between the following six cases.

Case 2.1. There exists a pair 1 ≤ i, j ≤ p such that w(u′i, u
′
j) ≤ (2− 4ε0) · w(v, u′j). Similar to Case

1.1, we replace edge (v, u′j) in T with edge (u′i, u
′
j) (see Figure 4(a)).

17

Case 2.2. There exists an index 1 ≤ j ≤ t such that w(uj1, u
j
2) ≤ (2− 4ε0) ·w(v, uj2). We replace edge

(v, uj2) in T with edge (uj1, u
j
2) (see Figure 4(b)).

Case 2.3. There exist 1 ≤ i ≤ p, 1 ≤ j ≤ t and z ∈ {1, 2}, such that w(u′i, u
j
z) ≤ (2− 4ε0) · w(v, u′i).

We replace edge (v, u′i) in T with edge (u′i, u
j
z) (see Figure 4(c)).

Case 2.4. There exist indices 1 ≤ i ≤ p, 1 ≤ j ≤ t and z ∈ {1, 2}, such that w(u′i, u
j
z) ≤ (2 − 8ε0) ·(

w(v, vj) + w(vj , u
j
z)
)
. We replace edges (v, vj), (vj , u

j
1), (vj , u

j
2) in T with edges (uj1, u

j
2) and (u′i, u

j
z)

(see Figure 4(d)).

Case 2.5. There exist 1 ≤ j, j′ ≤ t and z, z′ ∈ {1, 2}, such that w(ujz, u
j′

z′) ≤ (2 − 8ε0) ·
(
w(v, vj) +

w(vj , u
j
z)
)
. We replace edges (v, vj), (vj , u

j
1), (vj , u

j
2) in T with edges (uj1, u

j
2) and (u′i, u

j
z), edge (vj , u

j
2)

with edge (uj1, u
j
2) (see Figure 4(e)).

Case 2.6. There exist 1 ≤ j ≤ t and z ∈ {1, 2}, such that w(v, ujz) ≤ (1− 4ε0) ·
(
w(v, vj) +w(vj , u

j
z)
)
.

We replace edges (v, vj), (vj , u
j
1), (vj , u

j
2) in T with edges (uj1, u

j
2) and (v, ujz).

(a) Case 2.1. (b) Case 2.2. (c) Case 2.3. (d) Case 2.4. (e) Case 2.5.

Figure 4: An illustration of edge replacement in Case 2.

Assume that Case 1 and 2 do not happen. We denote U =
{
u′1, . . . , u

′
p, u

1
1, u

1
2, . . . , u

t
1, u

t
2

}
. From the

discussion in Case 2, it is easy to observe that the tree-distances in T between v and terminals U are
within factor (1 + 20ε0) from each other. Denote ` = min {w(v, u) | u ∈ U}. So for every terminal u ∈
U , ` ≤ w(v, u) ≤ (1 + 20ε0) · `. We denote i∗ =

⌊
log1+ε `

⌋
, and let u∗ = arg minu∈U {w(v, u) | u ∈ U}.

Figure 5: An illustration of edge replacement in Case 3.1 (assume that u∗ = u′1).

Case 3. We say Case 3 happens if one of the following subcases happen.

Case 3.1. p+ t ≥ 3. We define the set Xi∗(v) =
{
u′1, . . . , u

′
p, u

1
1, . . . , u

1
t

}
and add it into X . Then for

each 1 ≤ j ≤ t, we replace edge (vj , u
j
2) with (uj1, u

j
2), and for each vertex u ∈ U \

{
u∗, u12, . . . , u

t
2

}
, we

replace edges in the v-u path in T with edge (u∗, u) (see Figure 5).

18

Case 3.2. p = 1 and t = 1. This case can be actually viewed as the special case of the next case by
letting v2 = u21 = u22 = u′1.

Case 3.3. p = 0 and t = 2. We assume without loss of generality that u∗ = u11.

Case 3.3.1. We say that Case 3.3.1 happens if one of the following two cases happen:

• if w(v, v1) ≤ (50ε0) · `, then we define set Xi∗(v) =
{
u11, u

1
2, u

2
1

}
and add it into X ;

• if w(v, v2) ≤ (50ε0) · `, then we define set Xi∗(v) =
{
u11, u

2
1, u

2
2

}
and add it into X .

In addition, in the above cases, we replace edge (v2, u
2
2) with (u21, u

2
2), edges (v2, v), (v2, u

2
1) with edge

(u21, u
1
1), and edge (v1, u

1
2) with edge (u11, u

1
2) (see Figure 6(a)).

Case 3.3.2. Consider now the laminar family S computed in Step 1. We say that a set U ′ of terminals
in T is interfered iff there is a set S in S, such that both S \U ′, U ′ \S 6= ∅, and in this case we say that
any vertex u ∈ S \U ′ is a witness. If the pair u11, u

1
2 of terminals are interfered, then let u be a witness,

and assume without loss of generality that there exists a set S ∈ S that contains u11 and u but not u12
(the case where the pair u21, u

2
2 of terminals are interfered is symmetric). If the set

{
u11, u

1
2, u

2
1, u

2
2

}
is

interfered, then let u be a witness, and assume in particular that there exists a set S ∈ S that contains
u11, u

1
2 and u but not u21, u

2
2. In both cases, we delete vertex v1 and all its incident edges, and add edges

(u11, u
1
2) and (u11, u) (see Figure 6(b)).

If Case 3.3.2 does not happen, then the collection S computed in Step 1 must contain sets
{
u11, u

1
2

}
,{

u21, u
2
2

}
and some set that contains all elements u11, u

1
2, u

2
1, u

2
2. Since S is a laminar family, there exists

a minimum set in S that contains all elements u11, u
1
2, u

2
1, u

2
2, that we denote by S.

Case 3.3.3. S =
{
u11, u

1
2, u

2
1, u

2
2

}
, and either w(v, v1) ≤ (1− 4ε1/4)` or w(v, v2) ≤ (1− 4ε1/4)` holds.

Assume without loss of generality that w(v, v1) ≤ (1−4ε1/4)`. Then we add the set S into Y, and then
we replace edge (v2, u

2
2) with (u21, u

2
2), edges (v2, v), (v2, u

2
1) with edge (u21, u

1
1), and edge (v1, u

1
2) with

edge (u11, u
1
2). The illustration figure in this case is identical to that of Case 3.3.1 (see Figure 6(a)).

Case 3.3.4. w(v, v1), w(v, v2) > (1−4ε1/4) ·`. In this case we simply replace edge (v, u12) with (u11, u
1
2)

and edge (v, u22) with (u21, u
2
2). We call the operation particularly in this case a bad replacement.

(a) Case 3.3.1. (b) Case 3.3.2: old and new edges (left) and part of the tree T (right).

Figure 6: An illustration of edge replacement in Case 3.3.1 and Case 3.3.2.

The only possibility that Cases 2,3 do not happen is when:

• v has two children v1, v2; v1 has two children u11, u
1
2; and v2 has two children u21, u

2
2;

• ` ≤ w(v, u11), w(v, u12), w(v, u21), w(v, u22) ≤ (1 + 20ε0)`; and

• the set
{
u11, u

1
2, u

2
1, u

2
2

}
of vertices are not interfered in S, but S 6=

{
u11, u

1
2, u

2
1, u

2
2

}
.

19

In this case, we say that v is an unlucky vertex. If there exists a height-2 non-unlucky vertex, then we
process it using the operations described in Cases 2 and 3. We now consider the fourth and the last
case, where all height-2 vertices in the current tree T are unlucky.

Case 4. All height-2 vertices in T are unlucky. If tree T does not contain any height-3 vertices,
then T contains a unique height-2 vertex, but then this unique height-2 vertex is a degree-2 Steiner
vertex in T , a contradiction. Therefore, tree T contains height-3 vertices, and every height-3 vertex
has at least two children. Consider now any height-3 vertex v∗ and let v, v̂ be two of its height-2
children. Since v is unlucky, we let the vertices v1, v2, u

1
1, u

1
2, u

2
1, u

2
2 be defined as before, and we define

the vertices v̂1, v̂2, û
1
1, û

1
2, û

2
1, û

2
2 similarly for v̂. We also define set S for v as before.

Recall that S 6=
{
u11, u

1
2, u

2
1, u

2
2

}
. From the construction of laminar family S, there exists a terminal

u in S \
{
u11, u

1
2, u

2
1, u

2
2

}
, such that min

{
w(u, u11), w(u, u12), w(u, u21), w(u, u22)

}
≤ 2` · (1 + ε). Assume

without loss of generality that w(u, u11) ≤ 2` · (1 + ε).

Case 4.1. If w(v, v∗) ≥ 10ε · ` (the case where w(v̂, v∗) ≥ 10ε · ` is symmetric), then we delete from
T vertices v1, v2, v and all its incident edges, and add new edges (u11, u

1
2), (u

2
1, u

2
2), (u

1
1, u

2
1) and (u11, u)

(see Figure 7(a)).

Case 4.2. If w(v, v∗), w(v̂, v∗) ≤ 10ε · `. Denote ` = w(v∗, u11) and ˆ̀= w(v∗, û11), and assume without
loss of generality that ` ≤ ˆ̀. Then we delete all edges in the subtree rooted at T ∗ expect for the v∗-u11
path, and add edges (u11, u

1
2), (u

2
1, u

2
2), (u

1
1, u

2
1), edges (û11, û

1
2), (û

2
1, û

2
2), (û

1
1, û

2
1) and edge (u11, û

1
1) (see

Figure 7(b)). If ˆ̀≤ (1 + 10ε) · `, then we further add set Xi∗(v
∗) =

{
u11, u

2
1, û

1
1, û

2
1

}
into collection X ,

where i∗ =
⌊
log1+ε `

⌋
.

(a) Case 4.1. (b) Case 4.2.

Figure 7: An illustration of edge replacement in Case 4.

This finally completes the description of the tree-modification process. Note that, in each of the cases
described above, we replaced a set E of edges that do not connect a pair of terminals in the current
tree T with a new set E′ of edges that connect a pair of terminals, such that (T \ E) ∪ E′ is still a
valid Steiner Tree, such that either

• w(E′) ≤ (2− 4ε0) · w(E); or

• w(E′) ≤ 2 · w(E), and we have added a set Xi(v) into X , such that w(E) ≤ 10 · (1 + ε)i; or

• w(E′) ≤ 2 · w(E), and we have added a set Y into Y, such that adv(Y) ≥ ε3/4 · w(E); or

• w(E′) ≤ 2 ·w(E), and we have not added sets into X or Y, which may only happen in Case 3.3.4
where we performed a bad replacement.

20

First, it is easy to see that, the total cost of all edges where we perform bad replacements is at most
8 · ε1/4 ·w(TOPT). Second, from the construction of the Set Cover instances {(Wi, Ui)}0≤i≤L−1 in Step
2, and using similar arguments in the proof of Observation 4.4, it is easy to show that when we add a
set Xi(v) into collection X , there is a set W ∈ Wi, such that, for each u ∈ Xi(v), there is a terminal
u′ ∈ W , such that w(u, u′) ≤ ε · (1 + ε)i; and different sets Xi(v) corresponds to different sets in Wi.
Therefore, according to the algorithm and the discussion above, the total weight of all edges in T ∗ in
which we either perform a bad replacement or add a set into X or Y is at most

8 · ε1/4 · w(TOPT) +
6ε1/2 ·MST

ε1/4
+ 220 · ε0 ·MST ≤ MST

3
.

Therefore, if we denote by T ′ the resulting tree we get from the above process, then

MST ≤ w(T ′) ≤ 2 · w(TOPT)

3
+ (2− 4ε0) ·

2 · w(TOPT)

3
≤ (2− 2ε0) · w(TOPT).

It follows that w(TOPT) ≥ MST/(2−2ε0). This completes the proof of the correctness of the algorithm.

4.2 Proof of Theorem 6

In this section, we give a sublinear query algorithm for our Set Cover objective, and prove Theorem 6.
Recall that we are given an instance (U,W) of Set Cover, and the goal is to estimate the value of(
|U | − SC(U,W6=2)

)
where W6=2 is the collection of sets in W with size not equal to 2. We note that

the goal of estimating the number of sets needed to cover a universe has been considered from the
perspective of sublinear query algorithms [HPIMV16, IMR+18, GMRV20]. However, these results do
not apply to our setting as we need to estimate the difference between the universe size and the set
cover size.

We first give an algorithm that outputs an estimate of
(
|U |−SC(U,W)

)
, and then show how to modify

the algorithm to prove Theorem 6.

An Algorithm for Estimating
(
|U | − SC(U,W)

)
The main result of this subsection is the following theorem.

Theorem 7. There is a polynomial-time randomized algorithm, that, given an instance (U,W) of
Set Cover and any constant 0 < ε < 1, with probability 1 − O(n−2), returns a (4, ε|U |)-estimation
of
(
|U | − SC(U,W)

)
, by performing O((|W|3/2 + |W|3/4|U |) · (log n)2/ε3) membership queries to the

instance (U,W).

Before we describe the algorithm in detail, we give a brief intuition. First we observe that, with high
probability, all elements that appear in many (at least Ω(|W| log |W|/ε|U |)) sets in W can be covered
by a random subset of O(ε|U |) sets inW, and so they can be ignored as we allow ε|U | additive error in
the estimation. Assume for simplicity that all elements that appear in fewer than o(|W| log |W|/ε|U |)
sets inW. Consider the optimal set coverW∗ and assume the sets inW∗ are arranged into a sequence.
Now, if a set in W∗ covers t elements that are not covered by the previous sets in the sequence, then
it can be viewed as “contributing” (t − 1) to

(
|U | − SC(U,W)

)
. We will show that, at a high-level,

this “contribution” can be characterized as follows: if we consider the graph on U where there is an
edge (u, u′) iff u, u′ appear in the same set in W, then it can be shown that the size of any maximal
matching in the graph is within a constant factor of

(
|U | − SC(U,W)

)
. We then focus on this graph

and utilize the algorithm from [Beh21] to estimate the size of any maximal matching in it.

21

We now describe the algorithm in detail. For convenience, we denote n = |W| and k = |U |. Throughout
this subsection, we use a parameter β = max

{
k/n3/4, 1

}
. In other words, when k ≥ n3/4, β = k/n3/4,

otherwise β = 1.

We define the frequency of an element u ∈ U in the collection W to be the number of sets in W
that contain u. We first partition the vertices into two subsets according to their frequency in W as
follows. Let W̃ be a random sub-collection of W that contains k/β sets. For every element u ∈ U , we
compute the frequency u in W̃ by performing membership queries on all pairs (u,W) with W ∈ W̃.
We then let Ulow be the set of all elements in U with frequency at most 75βn log n/(εk) in W̃, and let
Uhigh = U \ Ulow. The total number of queries that are needed to compute this partition is at most

k · (k/β)) = O(k2/β) = O

(
k2

max
{
k/n3/4, 1

}) = O

(
k2 ·min

{
n3/4/k, 1

})
= O(n3/2 + kn3/4).

Let N = 50nβ log n/(εk). We use the following observations that follow from the Chernoff Bound in
Lemma 2.1.

Observation 4.5. With probability 1 − n−2, all elements in Ulow have frequency at most 2N in W,
and all elements in Uhigh have frequency at least N in W.

Observation 4.6. Let Ŵ be a random sub-collection of W that contains εk/(10β) sets. Then with
probability 1− n−2, every element in Uhigh is contained in some set in Ŵ.

We now focus on the elements in Ulow. We defineWlow = {W ∩ Ulow |W ∈ W}. From Observation 4.5
with probability 1− n−2, all elements in Ulow have frequency at most 2N in Wlow. We define a graph
H as follows. Its vertex set is Ulow, and its edge set contains, for every pair u, u′ ∈ Ulow, an edge (u, u′)
iff there exists a set W ∈ Wlow that contains both u and u′. We prove the following lemma.

Lemma 4.1. Let M be any maximal matching in H. Then

|Ulow| − SC(Ulow,Wlow)

2
≤ |M | ≤ |Ulow| − SC(Ulow,Wlow).

Proof. On the one hand, we can construct a set cover of size at most |Ulow|− |M | as follows. For every
pair u, u′ ∈ Ulow that is matched in M , we take any set that contains both u, u′; for every u′′ ∈ Ulow

that is not matched in M , we take the set {u′′}. Clearly, we have taken at most |Ulow| − |M | sets
and they form a set cover, so |M | ≤ |Ulow| − SC(Ulow,Wlow). On the other hand, consider an optimal
set cover F with |F| = SC(Ulow,Wlow). Note that each set W ∈ F contains at most one element
that is not matched in M ; otherwise there are u, u′ ∈ Ulow that are both not matched in M while the
edge (u, u′) belongs to H by the definition of H, a contradiction to the maximality of M . Therefore,
the number of vertices in H that are unmatched in M is at most SC(Ulow,Wlow), which implies that
|Ulow|−SC(Ulow,Wlow)

2 ≤ |M |.

We use the following result, which is implicit in Section 3 of [Beh21].

Theorem 8 ([Beh21]). Let G be a graph on Z vertices with average degree d̄. If we are given an oracle
that takes a vertex v of G as input and outputs all neighbors of v in G, then there is an algorithm, that,
given any 0 < ε < 1, with probability at least 1− n−2 estimates the size of some maximal matching in
G to within an additive factor of εZ, by performing O(d̄ logZ/ε2) queries to the oracle.

In order to use Theorem 8 to estimate the size of a maximal matching in H, we need to efficiently
implement an oracle that, given any u ∈ U , finds all neighbors of u in H, which we do next.

22

A subroutine for finding all neighbors of a given vertex in H. From the definition of H, the
neighbors of u are the elements u′ in Ulow that are contained in the same set as u. We find all neighbors
of u in H as follows. We first perform membership queries on all pairs (u,W) with W ∈ Wlow (a total
of O(n) queries), and find all sets in Wlow that contains u. Then for each set W ∈ Wlow that contains
u, we perform membership queries on all pairs (u′,W) with u′ ∈ Ulow (a total of at most 2N ·k queries
as u is contained in at most 2N sets), and figure out which elements are contained in W . The set of
all neighbors of u in H is then obtained by taking the union of all sets W that contain u. In the whole
subroutine, we have performed 2N · k = O(βn log n/ε) queries in total.

From Theorem 8 with the algorithm described above serving as the oracle, we can with high probability
estimate the size of a maximal matching to within an additive factor of εk with O(d̄ · βn log2 n/ε3)
membership queries, where d̄ is the average degree in H. However, d̄ can be as large as k, in which case
we can only get an Õ(k · n/ε3) upper bound. To improve upon this, we will pre-process the instance
(Ulow,Wlow) before using the algorithm in Theorem 8.

We partition the collectionWlow intoW1 andW2 as follows. We use a parameterQ = (k log−2 n/εn1/4).
Let Ũ be a size-Q random subset of Ulow. We let W1 contain all sets W ∈ Wlow with |W ∩ Ũ | ≤ log n,
and letW2 =Wlow\W1. Using Chernoff bound and similar arguments in the proof of Observation 4.5,
we can show that with probability 1−n−2, every set in W1 contains at most (100k log n/Q) elements,
and every set in W2 contains at least (k log n/100Q) elements. The number of queries that are needed
for computing this partition is at most (k log−2 n/εn1/4) · n ≤ Õ(kn3/4/ε).

We now consider the instances (Ulow,W1) and (Ulow,W2) separately. We define graphs H1, H2 for
(Ulow,W1) and (Ulow,W2) respectively, in a similar way that H is defined for instance (Ulow,Wlow).
We use the following observation.

Observation 4.7. Let M1 be any maximal matching in H1, and let M2 be any maximal matching in
H2. Then there exists a maximal matching in H whose size is between (|M1|+|M2|)/2 and |M1|+|M2|.

Proof. Note that H = H1 ∪H2. Assume without loss of generality that |M1| ≥ |M2|. We construct
a matching M in H as follows. We start with M = M1. We add all edges of M2 that do not share
endpoint with any edges in M1. Then we greedily add edges in H2 that do not share endpoint with
any of the current edges in M , until no edge can be added. Since M1 is a maximal matching in H1,
from our algorithm, it is easy to verify that the resulting matching M is a maximal matching in H.
Note that |M | ≥ |M1| ≥ (|M1|+ |M2|)/2.

It remains to show that |M | ≤ |M1|+ |M2|. We denote by M ′2 the subset of edges in M2 that do not
share endpoints with edges in M1. It suffices to show that in the last step we have greedily added at
most |M2 \M ′2| edges into M . Consider an edge e added to M in this step. Since e ∈ E(H2) and M2 is
a maximal matching in H2, e shares an endpoint with some edge e′ ∈M2, and e′ has not been added
to M in the previous step, so e′ ∈ M2 \M ′2. We say that e′ is the blocker of e. In fact, every edge
e′ ∈M2 \M ′2 can be the blocker of at most one edge added in the last step, since if e′ = (u, u′) and u
is an endpoint of some edge in M1, then every edge e blocked by e′ has to contain u′ as an endpoint,
and thus there can be at most one such edge.

We first consider the instance (Ulow,W1). Recall that each set in W1 has size at most (100k log n/Q),
and every element in Ulow is contained in at most 2N sets in W1. Therefore, every element in Ulow, as
a vertex in H1, has at most (100k log n/Q) · 2N = Õ(βn/Q) neighbors. We now apply the algorithm
in Theorem 8 with parameter ε/10 together with the subroutine for finding all neighbors of a given
vertex described above to obtain an estimate X1 of the size of a maximal matching in H1. Since the
average degree in H1 is Õ(βn/Q), the number of queries performed by the algorithm is

O(βn log n/ε) · Õ(βn/Q) · (log n)/ε2 = Õ(β2n2/Q) = Õ

((
max

{
k/n3/4, 1

})2 · n
k/n1/4

)
= Õ(n3/2 + kn3/4).

23

We next consider the instance (Ulow,W2). Recall that every set in W2 has size at least (k log n/100Q)
and every element is contained in at most 2N sets. Therefore,

|W2| ≤
k · 2N

(k log n/100Q)
=

k · 100βn log n/(εk)

(k log n/(100k log−2 n/εn1/4))
= o

(
max

{
k, n3/4

})
.

Therefore, when k > n3/4, we can simply use another Õ(n) queries to estimate |
⋃
W∈W2

W | to obtain

an estimate of SC(U,W2) to within an additive εk factor. When n3/4 ≥ k, we can then perform
k · |W2| = O(kn3/4) queries to obtain the entire instance (Ulow,W2), compute the graph H2, and then
compute the size X2 of a maximal matching in H2.

Lastly, we return X = |Uhigh| − εk/10 + (X1 +X2)/2 as our final output. From the above discussion,
the number of queries we have performed is Õ(n3/2 + kn3/4).

We next analyze the probability that X is a (4, ε|U |)-approximation of |U | − SC(U,W).

Bad Event ξ. We define ξ to be the bad event that either of the following happens: (i) there exists
some element in Ulow with frequency at more than 2N in W or there exists some element in Uhigh

with frequency at most N in W; (ii) there does not exist a subcollection of εk/(10β) sets in W that
cover all elements in Uhigh; (iii) there exists some set in W1 that contains more than (100k log n/Q)
elements, or there exists some set in W2 that contains fewer than (k log n/100Q) elements; and (iv)
in the application of the algorithm from Theorem 8 to H1, the output X1 is not an estimate of the
size of any maximal matching in H1 to within an additive error of εk/10. From Observation 4.5,
Observation 4.6, Theorem 8 and the above discussion, Pr[ξ] = O(n−2).

The proof of Theorem 7 is concluded by the following claim.

Claim 4.2. If event ξ does not happen, then X is a (4, ε|U |)-estimation of |U | − SC(U,W).

Proof. Assume now that event ξ does not happen. Let M1 be a maximal matching in H1, such that
X1 ≤ |M1| ≤ X1 + ε|U |/10. Let M2 be a maximal matching in H2, such that X2 = |M2|. Let M be
any maximal matching in H. From Observation 4.7,

X1 +X2

2
≤ |M1|+ |M2|

2
≤ |M | ≤ |M1|+ |M2| ≤ X1 +X2 +

ε|U |
10

.

Then from Lemma 4.1,

X1 +X2

2
≤ |M | ≤ |Ulow| − SC(Ulow,Wlow) ≤ 2|M | ≤ 2(X1 +X2) +

ε|U |
5
.

Let W̃ be a sub-collection of ε|U |/10 sets in W that cover all elements in Uhigh (such a subcollection
exists since event ξ does not happen). Let W̃low be an optimal set cover of instance (Ulow,Wlow).
Clearly, W̃ ∪ W̃low is a feasible set cover of instance (U,W). Therefore, SC(U,W) ≤ SC(Ulow,Wlow) +
ε|U |/10, and

X = |Uhigh| −
ε|U |
10

+
X1 +X2

2
≤ |Uhigh| −

ε|U |
10

+ |M | ≤ |Uhigh| −
ε|U |
10

+ |Ulow| − SC(Ulow,Wlow)

= |U | − SC(Ulow,Wlow)− ε|U |
10
≤ |U | − SC(U,W).

On the other hand, since SC(Ulow,Wlow) ≤ SC(U,W),

|U | − SC(U,W) ≤ |U | − SC(Ulow,Wlow) = |Uhigh|+ |Ulow| − SC(Ulow,Wlow) ≤ |Uhigh|+ 2|M |

≤ |Uhigh|+ 2(X1 +X2) +
ε|U |

5
≤ 4 ·

(
|Uhigh| −

ε|U |
10

+
X1 +X2

2

)
+ ε|U | = 4X + ε|U |.

24

Handling the cardinality-2 sets

We follow the same algorithm as decribed in Section 4.2. We first partition U into Ulow and Uhigh,
and then focus on instance (Ulow,Wlow). We partition Wlow into W1 and W2 and construct graphs H1

and H2. Note that when constructing these partitions, we do not (and are not able to) ignore the sets
of size 2. Since every set in W2 contains more than 2 elements, computing an estimate of the size of a
maximal matching in H2 can be done in the same way. When processing the instance (Ulow,W1), in
the subroutine of finding all neighbors of an element u ∈ Ulow, we just need to ignore all sets of size 2
in W1 that contains u.

Regarding the proof that the output is a (4, ε|U |)-approximation of |U | − SC(U,W), Observation 4.6
shows that with probability 1− n−2 there exists a subcollection W̃ of at most ε|U |/10 sets in W that
cover all elements in Uhigh. We need to modify it to show that with probability 1− n−2 there exists a
subcollection of ε|U |/5 sets inW6=2 that cover all elements in Uhigh, and this can be simply achieved by
replacing all cardinality-2 sets in W̃ with singleton sets that contain all elements that are covered by
the cardinality-2 sets in W̃. And the proof of Claim 4.2 now still goes through with this modification.

4.3 Implementation without Knowing the Terminal-Induced Metric Upfront

In this subsection, we complete the proof of Theorem 3 by showing that the algorithm described in
Section 4.1 and Section 4.2 can in fact be implemented without knowing the terminal-induced metric
upfront, at the cost of a slightly worse query complexity Õ(n12/7 + n6/7 · k).

Intuitively, since we do not have the terminal-induced metric upfront, we can no longer assume that
we can start the process with a MST on terminals along with its hierarchical structure in our hand.
However, as Step 2 and Step 3 in our algorithm only utilize local MST structure to find evidence, we
do not really need the whole MST in order to implement them, but we can instead locally explore the
MST structure (and its hierarchical structure) whenever needed. Therefore, we start by introducing
two BFS-type subroutines that are crucial for implementing Steps 2 and 3. These subroutines are
similar to the ones used in [CS09].

Auxiliary BFS-type Subroutines

Since we are not able to query the distances between each pair of terminals, we are not able to
precisely recover the graph Hi for each layer i. Thus, we will define a graph Ĥi which lies somewhere
“in-between” Hi and Hi+1 but makes it easier to explore locally.

Let ε1 = ε/10. We first construct a graph H̄i as follows: the vertices are terminals, and there is
an edge between each pair of terminals if their distance is less than ε1(1 + ε)i. We assign a random
rank on each terminal, and let Ri be the lexicographically first maximal independent set based on
this rank. We say the terminals in R are the representative terminals, and for each terminal u, there
is a representative terminal u′ at distance at most ε1(1 + ε)i away from u. We say u is represented
by u′. We define Ĥ as follows: any terminal is connected to its representative terminal, and for any
two representative terminals in R, they are connected in Ĥ if and only if their distance is at most
(1 + 3ε1)(1 + ε)i. The following observation directly follows from these definitions:

Observation 4.8. Any component in Hi is also connected in Ĥi, and any component in Ĥi is also
connected in Hi+1.

We define the size of a component in Ĥ as the number of representative terminals in Ĥ. Next, we
define another directed graph HC

i as follows. The vertices of HC
i are the components in Ĥ, and for

any two components S1 and S2, there is a directed edge from S1 to S2 if there is a representative

25

terminal u1 ∈ S1 and a terminal u2 ∈ S2 such that their distance is at most (1 + 3ε1)(1 + ε)i. We say
that a component S1 can reach a component S2 if there is a directed path from S1 to S2 in HC

i . We
have the following observation:

Observation 4.9. If S1 can reach S2 in HC
i , then S1 and S2 are inside the same component in Hi+1.

We define Ui to be the components S in Ĥi−1 such that the total size of the components that can be
reached by S is at most 100L log2 n/ε1.

Throughout the process, we will always maintain the knowledge of whether a terminal is representative
or not. At first, it is unknown for each terminal whether or not it is a representative. The subroutine
FIND(u, i) takes as input a terminal u and a parameter i and outputs a representative u′ in the following
manner. We query the distance between u and all other terminals, if all terminals that are at most
ε1(1+ε)i away from u have lower rank than u or are known not to be a representative, then we output
u. Otherwise let u1 be the highest rank terminal among them, and we repeat this process on u1, and
continue in this manner, until we find a representative u′. We then mark u′ as a representative, and
all terminals that are at most ε1(1 + ε)i away from u′ as non-representative. Note that u′ might not
represent u, but u and u′ must be in in the same component in Ĥi. The following observation gives
an upper bound on the running time of FIND.

Observation 4.10. With high probability, for any u and i, FIND(u, i) uses Õ(k) queries.

Proof. The exploration sequence is in fact a path in the DFS tree of the running of greedy parallel
maximal independent set problem, and the depth of the DFS tree is O(log n) with high probabil-
ity [FN20]. So with high probability, the length of the exploration sequence is Õ(1) and the total
number of queries we use is Õ(k).

Next, we give a BFS subroutine that takes as input a terminal u and an integer i. Intuitively, the
subroutine explores the neighborhood of u in its level-i connected component up to a poly-logarithmic
depth. Throughout, every terminal is either marked out, or in, or representative, or active. Initially,
terminal u is marked active and all other terminals are marked out. The procedure BFS(u, i) proceeds
in rounds. In each round, we first pick an active terminal u′ with the maximum rank (if there is no such
terminal then the procedure is terminated). We run FIND(u′, i) and let û be the output. We mark û as
representative. We then query the distance between û and all other terminals marked out, for each such
terminal u′′, if w(û, u′′) < ε1(1 + ε)i, then we mark u′′ in. If ε1(1 + ε)i ≤ w(û, u′′) < (1 + 3ε1)(1 + ε)i,
we mark u′′ active. This completes the description of a round. If the procedure did not terminate after
100L log2 n/ε1 rounds, then we artificially terminate the procedure and mark all active terminals in.

It is easy to observe that, after the procedure BFS(u, i) terminates, all terminals marked in or repre-
sentative are certified to lie in the a component that is reachable from the component that contains
u in Ĥi Clearly, if the procedure is not artificially terminated, then we have found all components in
Ĥi that is reachable from the component containing u with all representative terminals inside it. So
we can check if the component that contains u is inside Ui+1 or not. If the procedure is artificially
terminated, then u is contained in a component that is not in Ui+1. As the procedure BFS(u, i) runs
for at most 100L log2 n/ε rounds and each round takes at most Õ(k) queries, its query complexity is
Õ(k/ε1).

We prove the following lemma.

Lemma 4.2. For any integers i and M , either (i) level i is light; or (ii) |Ri−1| ≤ 2ML log n/ε1; or
(iii) |Ui| ≥M holds.

Proof. Assume that (i) and (ii) do not hold. We will show that |Ui| ≥ M must hold. Since |Ri−1| ≤
2ML log n/ε1, the 2ML log n/ε representative terminals are at distance at least ε1(1+ε)i−1 from each

26

other, so MST ≥ (2ML log n/ε) · ε(1 + ε)i−1 = 2ML log n(1 + ε)i−1. On the other hand, since level
i is not light, the total weight of all level-i edges in MST is at least MST/(L log n) ≥ 2M(1 + ε)i−1.
Note that wi(T ∗) ≤ |Si|(1 + ε)i, so |Si| ≥ 2M/(1 + ε). Lastly, from Observation 4.3, and the fact
that any component of Ĥi−1 that is not in |Ui| is inside a large component in Hi by Observation 4.9.

|Ui| ≥ 2(1−O(1/ logn))M
1+ε > M .

We now proceed to describe the simulation of Steps 2 and 3 of our algorithm in the previous subsections.
Note that if k = O(n6/7), then we can simply perform k2 = O(n12/7) queries to obtain the terminal-
induced metric and then perform Steps 2 and 3. The query complexity is O(n12/7)+Õ(n3/2+n3/4 ·k) =
Õ(n12/7 + n6/7 · k). Therefore, we assume from now on that k = Ω(n6/7). 3

Simulation of Step 2

We now describe how to simulate Step 2 of the algorithm described in Section 4.1. Recall that, in Step
2, we have constructed, for each index i, an instance (Ui,Wi) of Set Cover for finding local evidence at
level i, and designed an algorithm called AlgSetCover for estimating the value of |Ui|−SC(Ui, (Wi)6=2).
In particular, the sets in Wi correspond to Steiner nodes and the elements in Ui correspond to level-
i connected components whose representative size is small (at most L log2 n/ε), and a set W ∈ Wi

contains an element in U iff the Steiner node that W corresponds to is at distance at most (3/5)·(1+ε)i

from some representative of the component that the element in U corresponds to.

Fix an index i, and for convenience we denote U = Ui and W = Wi. As we do not have the MST
on terminals, we do not know the level-i connected components, which means we do not know the
element in U but can only make queries to locally explore them. The simulation of Step 2 (and Step 3)
finds the best tradeoff between the query complexity of this additional local exploration task and the
previous algorithmic steps. In the remainder of this section, we use the parameter M = n6/7 log2 n.

We first find the first (2ML log n/ε1) terminal in Ri−1 by greedy MIS algorithm. The query complexity
of this step is Õ(Mk). If |Ri−1| ≤ (2ML log n/ε), then we have already figured out all level-i connected
components together with the representatives in each component, and therefore we can now run the
algorithm AlgSetCover described before to obtain an estimate of the value of |U | −SC(U,W6=2), whose
query complexity is Õ(n3/2 + n3/2 · k). Assume from now on that |Ri−1| > (2ML log n/ε)

From Lemma 4.2, either level i is light, or |U | ≥M . In order to determine which case happens, we will
estimate the size of U . Specifically, we pick a random terminal u and run the procedure BFS(i−1, u). If
the level-i connected component containing u is small, then we set X(u) to be the inverse of the size of
this component, otherwise we set X(u) = 0. It is easy to observe that X is a random variable supported
on [0, 1], and E[X] = |U |/k. Therefore, from Chernoff Bound, if we repeat the process for 100k log n/M
random sampled terminals, then with probability 1−n−10, we can estimate the value of |U | to within
an additive factor of M/5. Therefore, we can either correctly claim that |U | < M or correctly claim
that |U | ≥ M/2. The query complexity is Õ(k) · (100k log n/M) = Õ(k2/M) = Õ(k · n1/7). If the
claim is |U | < M , then from Lemma 4.2, level-i is light, and we will just ignore this layer by giving
up local evidence on it. From now on we assume that |U | > M/2.

We now simulate the algorithm AlgSetCover in Section 4.2 with some modifications. We use another
parameter R = 50n1/7 log n/ε. First we partition the terminals into subsets Thigh and Tlow such that
(i) for every u ∈ Thigh, the number of Steiner nodes v at distance at most (3/5) · (1 + ε)i from u is at

3The main reason that we can run on graph Ĥi instead of Hi is the following: the algorithm we give in the previous
section is in fact also true if we run layer i algorithms on graph Hi+1 since the threshold we use for setting up the set
cover instance, 3/5(1 + ε)i can be an arbitrary number between 1/2(1 + ε)i and (1 + ε)i, which means it also works for
3/5(1 + ε)i+1. And since Ĥi is between Hi and Hi+1 by Observation 4.8 and Observation 4.9, the analysis still works if
we run on Ĥi.

27

least R; and (ii) for every u ∈ Tlow, the number of Steiner nodes v at distance at most (3/5) · (1 + ε)i

from v is at most 2R. Such a partition can be computed with Õ(kn/R) = Õ(k · n6/7) queries. Note
that, for each terminal in Thigh, the element in U that corresponds to the level-i connected component
that the terminal belongs to is contained in at least R sets. Since |U | > M/2, we can show via similar
arguments that ε|U | random sets will cover all these elements (as M · R > n/ε). Therefore, we can
ignore all level-i connected components that contain a terminal in Thigh.

Next, we partition the Steiner vertices into subsets V1 and V2, using another parameter P = n2/7 such
that (i) for every vertex v ∈ V1, the number of terminals in Tlow at distance at most (3/5) ·(1+ε)i from
v is at most 100P ; and (ii) for every vertex v ∈ V1, the number of terminals in Tlow at distance at most
(3/5) · (1 + ε)i from v is at least P . Such a partition can be computed with Õ(nk/P) = Õ(k · n5/7)
queries. A similar argument shows

|V2| ≤
kR

P
=
k · 50n1/7 log n/ε

n2/7
= O(n6/7 log n) = o(M) = o(|U |).

We now define Ulow as the set of small level-i connected components that consist of only terminals in
Tlow. Let W1,W2 be the collections of sets naturally defined by Steiner nodes in V1, V2, respectively.
We consider the set cover instances (W1, Ulow) and (W2, Ulow) separately.

We first estimate the value of |Ulow|−SC(W2, Ulow). Since |W2| = o(|U |), in order to obtain a (2, ε|U |)-
estimate of |U | − SC(W2, Ulow), it is sufficient to estimate |

⋃
W∈W2

W | to within an additive factor of
ε|U |. This can be done in a similar way as estimating |U |. Specifically, we pick a random terminal
u ∈ Ulow and run the procedure BFS(u, i). If the level-i connected component that contains u is small,
then we set X(u) to be the inverse of the size of this component; otherwise we set X(u) = 0. So the
random variable X is supported on [0, 1] and E[X] = |

⋃
W∈W2

W |/|Tlow|. From Chernoff bound, if we
repeat the experiment for 100k log n/(εM) times, then we can obtain an estimate of |

⋃
W∈W2

W | to

within an additive factor of εM . The query complexity of this step is Õ(k · k/M) = Õ(k · n1/7).
We next estimate the value of |U |−SC(W1, Ulow). We proceed similarly as AlgSetCover, by defining an
auxiliary graph H on U and estimate its maximal matching size. Similar to Section 4.2, we only need
to design a subroutine for finding all neighbors of a given element in H. This can be done as follows.
Note that an element in H corresponds to a small level-i connected component. We first find all Steiner
nodes in V1 that is close to (at distance at most (3/5) · (1 + ε)i from) the component, and then find all
terminals that are close to each of these Steiner nodes. Since any small components has at most Õ(1)
representatives, the number of such terminals is at most R · P = Õ((n1/7/ε) · n2/7) = Õ(n3/7/ε). For
each of these terminals, we run the procedure BFS(·, i) on it to figure out if it indeed lies in a small
component or not, and if the answer is yes, the component that contains the terminal is counted as
a neighbor in H. The query complexity for all BFS procedures is Õ(n3/7 · k/ε). Lastly, via similar
arguments, we can show that the query complexity of implementing the maximal matching estimation
algorithm on H is O(RP ·RPk) = Õ(n6/7 · k).

We note that it is immediate to generalize above procedure to handle the cardinality-2 sets, since when
estimating |U | − SC(W1, Ulow), we have figured out all elements in each explored set (and will be able
to discard the set whenever it contains exactly two elements in U).

Simulation of Step 3

We now describe the simulation of Step 3, the four-vertex subroutine. Recall that, with the knowledge
of terminal-induced metric, we constructed a laminar family and its partitioning tree T to represents
its hierarchical structure, and we only aim to find a node xS ∈ V (T), such that xS has exactly two
children in T and each child of xS also has exactly two children in T . Consider such a node xS at
level i. Note that, if a child of xS splits (into two child nodes) at a lower-than-(i− log1+ε(1/ε0)) level,

28

then the advantage obtained within this child node is at most ε0(1 + ε)i, and it is safe to ignore it.
Thus, we can run BFS on all terminals S for all levels between i− log1+ε(1/ε0) and i to figure out the
hierarchical structure of S between these levels and calculate adv(S). The query time is Õ(k).

The additional steps needed in simulating Step 3 are similar to that of Step 2, we first find the first
(2ML log n/ε) terminals in Ri−1. If |Ri−1| ≤ 2ML log n/ε, than we already figured out all level-i
connected components, and we then simply proceed as before: sample O(log n/ε10) small components
and calculate the advantage of them. Otherwise, similar to Step 2, we first estimates |U |. Either we
correctly establish that |U | < M , in which case level i is light and can be safely ignored; or we correctly
establish that |U | > M/2. Now we sample O(k log n/(ε10M)) terminals, and for each sampled terminal
u, we first run BFS(u, i−1) to figure out the component S that contains u. If S is a small component,
we calculate adv(S), and add it to Bi with probability 1/|S|. The process is the same as sampling
log n/ε10 small components in U and sum up the advantage of them. So Bi is a good approximation
of Ai in this case as well. The total query complexity is Õ(nk/M) = Õ(n1/7k).

Altogether, the query complexity is Õ(n12/7 + n6/7 · k).

5 An Ω̃(nk) Lower Bound for (2− ε)-Approximate Steiner Tree

In this section, we provide the proof of Theorem 2 by showing that any randomized algorithm that com-
putes a (2−ε)-approximate Steiner Tree performs at least Ω(nk) queries in the worst case. Throughout
this section, we assume that k ≤ n/100.

We first construct a distribution on metric Steiner Tree instances (V, T,w) as follows. The vertex set
V and the terminal set T are fixed (recall that |V | = n and |T | = k). The terminal set is partitioned

into t =
⌊

k
b1/εc

⌋
sets T =

⋃
1≤i≤t Ti, such that each set Ti contains either b1/εc or d1/εe terminals.

This partitioning is fixed as well. The only randomized part is the weight-metric w. Let X be a set
chosen uniformly at random from all size-t subsets of V \ T . We call vertices in X crucial vertices.
We then choose a random one-to-one mapping from X to [t], and for each i ∈ [t], we call the vertex in
X that is mapped to i the i-crucial vertex. The random metric w is defined according to the random
set X as follows. For every i ∈ [t], the weight between the i-crucial vertex in X and every terminal in
Ti is 1, and the weight between any other pair of vertices in V is 2. It is easy to verify that w always
satisfies the triangle inequality.

We call edges that are incident to crucial vertices crucial edges. Clearly, crucial edges form t disjoint
stars. It is easy to verify that, although w is random, any two realizations of w are isomorphic, and
so the metric Steiner Tree cost is always the same. In particular, the optimal Steiner tree contains
all crucial edges and (t − 1) other edges connecting the star graphs formed by crucial edges, and so
ST(V, T,w) = k · 1 + (t − 1) · 2 = k + 2t − 2. On the other hand, any Steiner tree that contains k′

crucial edges has to contain at least (t− 1) + (k − k′) other edges in order to span all terminals, and
its total cost is at least k′ · 1 +

(
(t− 1) + (k− k′)

)
· 2 = 2k− k′+ 2t− 2. Therefore, in order to compute

a Steiner tree of cost (2 − 4ε) · ST(V, T,w), which is a Steiner tree of cost (2 − 4ε)(k + 2t − 2), an
algorithm has to finds at least (2k + 2t− 2)− (2− 4ε)(k + 2t− 2) = 4εk − 2t ≥ εk edges.

Observe that, from the construction of w, if a terminal u ∈ Ti has a weight-1 edge connecting to a
Steiner vertex, then that Steiner vertex is the i-crucial vertex in X and every other terminal in Ti is
also connected to it by weight-1 edges. For ease of analysis, we consider the following distribution of
instances (V ′, T ′, w′). The terminal set T ′ contains, for each i ∈ [t], a terminal ui ∈ Ti, and it is fixed.
The vertex set V ′ = T ′ ∪ (V \ T) and is also fixed. The metric w′ is random and defined as follows.
Let X be a set chosen uniformly at random from all size-t subsets of V \ T , and we then choose a
random one-to-one mapping from X to [t]. We define i-crucial vertices similarly as before. For every

29

i ∈ [t], the weight between the i-crucial vertex in X and terminal ui is 1, and the weight between any
other pair of vertices in V ′ is 2. It is easy to observe that a size-t set X and a mapping from X to [t]
defines a metric (V, T,w) and a metric (V ′, T ′, w′), and a query in either metric can be simulated by a
query in the other. Additionally, in order to find at least εk crucial edges in w, it is necessary to find
(εk)/ d1/εe ≥ ε2k/2 crucial edges in w′.

We say that an crucial edge (u, x) is discovered by an algorithm at some step iff the set of queries
performed by the algorithm before this step uniquely identify the edge (u, x) to be a crucial edge. We
say that a terminal is discovered iff its (unique) incident crucial edge is discovered, otherwise we say
it is undiscovered. From Yao’s minimax principle [Yao77] and the above discussion, in order to prove
Theorem 2, it suffices to prove the following lemma.

Lemma 5.1. Any deterministic algorithm that discovers in expectation at least ε2k/2 crucial edges in
the distribution on w′ defined above performs at least Ω(ε2nk) queries in expectation.

In the remainder of this section, we provide the proof of Lemma 5.1. From now on, we only consider
algorithms that perform queries to the metric w′ instead of the metric w. We follow the framework
used in the proof of Lemma 5.3 in [ACK19], which shows that any randomized algorithm that outputs
an approximate maximal matching performs at least Ω(n2) queries in the worst case.

Consider a deterministic algorithm and the sequence of queries it performs. We partition the sequence
into phases as follows. The first phase starts at the first query, a phase ends as soon as a crucial edge
is discovered, and the next phase starts right after the previous phase ends. For each integer j, let Zj
be the random variable denoting the number of queries performed in the j-th phase. In order to prove
Lemma 5.1, it suffices to show that E[

∑
1≤j≤ε2k Zi] =

∑
1≤j≤ε2k E[Zi] = Ω(ε2nk).

From the construction of w, the weight between any pair of Steiner vertices and the weight between
any pair of terminals is always 2, so the only potentially useful queries are the ones between a terminal
and a Steiner vertex. We define the uncertainty of a terminal u ∈ T ′ at some step to be (n− k) minus
the number of queries involving u performed by the algorithm so far. We say that a phase is bad, iff at
the start of the phase, there exists an undiscovered terminal whose uncertainty is below 3n/4; and we
say that a phase is good, iff at the start of the phase, the uncertainty of every undiscovered terminal
is at least 3n/4. The proof of Lemma 5.1 is concluded by the following claims.

Claim 5.1. The expected number of queries in a good phase is at least n/200.

Proof. We use the following lemma, which is similar to Lemma 5.4 in [ACK19].

Lemma 5.2. Let H = (A,B,E) be a bipartite graph with |A| = a and |B| = b (where b > 10a), such
that every vertex in A has degree at least 2b/3, then for every edge e ∈ E, the probability that e is
contained in a uniformly at random chosen A-perfect matching in G is at most 2/b (here an A-perfect
matching is a matching that matches all vertices of A).

Proof. It is easy to verify from Hall’s Theorem that H always contains a perfect matching. Consider
an edge (u, v) ∈ E where u ∈ A and v ∈ B. Let M be an A-perfect matching that contains edge (u, v).
We construct b/2 other A-perfect matchings as follows. Let B′ be the set of vertices in B \ {v} that
is adjacent to u in H but is not an endpoint of any edge in M . Since degH(u) ≥ 2b/3 and b > 10a,
we get that |B′| ≥ 2b/3− 1− b/10 ≥ b/2. For each vertex v′ ∈ B′, we define Mv′ to be the matching
obtained from M by replacing edge (u, v) with edge (u, v′). Clearly, Mv′ is an A-perfect matching
for every v ∈ B′, so we obtained a collection of at least b/2 other A-perfect matchings that do not
contain edge (u, v), that we denote by F(M). On the other hand, for every pair M,M ′ of distinct
A-perfect matchings in H that contains the edge (u, v), the collections F(M),F(M ′) are disjoint. This
is because for every matching M̂ ∈ F(M) and for every matching M̂ ′ ∈ F(M ′), M̂ and M̂ ′ must differ

30

on an edge not incident to u, as M and M ′ do. Therefore, the number of perfect A-matchings in H
is at least (b/2) times the number of perfect A-matchings in H that contains the edge (u, v), and the
lemma now follows.

By definition, at the start of a good phase, the uncertainty of every undiscovered terminal is at least
3n/4. Therefore, for the next n/24 queries, it is easy to verify that the graph induced by all unqueried
edges satisfy the conditions of Lemma 5.2, and so the probability that any single query finds an edge
of weight 1 is at most 2/(n− k) ≤ 3/n. Thus, with probability at least (n/24) · (3/n) = 1/8, none of
the first n/24 queries of a good phase finds a weight-1 edge. This implies that the expected number
of queries in a good phase is at least (1/8) · (n/24) ≥ n/200.

Claim 5.2. If the algorithm performs less than ε2nk/20 queries, then the number of bad phases is at
most ε2k/4.

Proof. Since any useful query is between a terminal and a Steiner vertex, a useful query reduces the
uncertainty of exactly one terminal by 1. Therefore, in order to have ε2k/40 bad phases, the reduction
in the total uncertainty is at least (ε2k/4)·(n−k−3n/4) ≥ ε2nk/200, which implies that the algorithm
performs at least ε2nk/200 queries.

From the above two claims, in order to find ε2k/2 crucial edges, either the algorithm performs at least
ε2nk/20 queries, or the number of bad phases encountered by the query sequence is at most ε2k/4.
Thus, in the first ε2k/2 phases, there are at least ε2k/4 good phases, implying that the expected
number queries made by the algorithm is at least (ε2k/4) · (n/200) = Ω(ε2nk). This completes the
proof of Lemma 5.1, and therefore also completes the proof of Theorem 2.

6 Upper and Lower Bounds for α-Approximate Steiner Tree (α ≥ 2)

In this section we provide the proof of Theorem 5.

6.1 Upper Bound

We start by presenting an Õ(k2/α) query algorithm for any α ≥ 2. The query algorithm for any
α ≥ 2 is very similar to the algorithm in the proof of Theorem 1 in [CKT22], which shows a one-pass
Õ(n/β) streaming algorithm for estimating the metric MST cost to within factor β (for any β > 1).
Note that we may assume without lose of generality that α = Ω(log2 n), as otherwise we can simply
query all terminal-terminal weight (which is k2 = Õ(k2/α) queries) and then compute the minimum
spanning tree on T , which is a 2-approximate Steiner Tree (and therefore an α-approximate Steiner
Tree as α ≥ 2).

Algorithm. Let β = α/(100 log n). We first choose a uniformly at random size-dk/βe subset of T ,
and denote it by T ′. We then query all weights between pairs of terminals in T ′, and use the acquired
information to compute the minimum spanning tree T ′ over T ′. Lastly, for every terminal u /∈ T , we
query all weights between u and terminals in T ′, and let f(u) = argu′∈T ′ min {w(u, u′)}. Finally, we
output the tree T defined as T = T ′ ∪ {(u, f(u)) | u ∈ T \ T ′}.
On the one hand, observe that the algorithm only queries weights with one endpoint in T ′ and the other
endpoint in T , so the number of queries performed by the algorithm is at most k ·(k/β) = Õ(k2/α). On
the other hand, it is easy to verify that the algorithm always outputs a spanning tree on T . The proof
that the spanning tree T output by the algorithm above is with high probability an α-approximate
Steiner Tree is similar to the analysis on pages 15-16 in [CKT22], and is deferred to Appendix E.

31

6.2 Lower Bound

We now prove an Ω(k2/α) lower bound for computing an α-approximate Steiner Tree for any α ≥ 2.
In fact, we will show that, if all vertices in the metric space are terminals (so there are k terminals
and no Steiner vertices), then for every α ≥ 2, computing a spanning tree of cost at most α times
the minimum spanning tree cost requires at least Ω(k2/α) queries. Since the metric Steiner Tree
cost is at most twice the minimum terminal spanning tree cost, this lower bound implies the lower
bound in Theorem 5 (as we can construct a metric Steiner Tree instance, where all Steiner vertices are
sufficiently far from all terminals and so any α-approximate Steiner tree may only terminal-terminal
edges, and is therefore a terminal spanning tree).

It is easy to observe that it suffices to consider the case where α ≥ 2 is an integer and k is divisible
by 100α. We generate a metric space w from the following distribution. The vertex set V = T is
fixed. Let P be a partitioning of T , that is chosen uniformly at random from all partitioning of T that
partition T into t = k/100α sets T1, . . . , Tt of size 100α each. For every pair u, u′ of terminals in the
same part of P, w(u, u) = 1, and for all other pairs u, u′, w(u, u) = 2α.

We call the weight-1 edges as crucial edges. It is easy to verify that, although metric w is random,
any two realizations of w are isomorphic, and so the minimum spanning cost is always the same. In
particular, the minimum spanning tree contains (k−t) crucial edges and (t−1) other edges connecting
the trees incide each partition, and so MST(w) = (k − t) · 1 + (t − 1) · 2α = 1.02k − t − 2α. On the
other hand, for any spanning tree that contains k′ crucial edges and (k− k′ − 1) other edges, its total
cost is at least k′ · 1 + (k− k′− 1) · 2α = 2αk− (2α− 1)k′− 2α. Therefore, in order for a spanning tree
T to approximate the minimum spanning tree to within factor α, the tree T has to contain at least

2αk − 2α− α · (1.02k − t− 2α)

2α− 1
=

0.98αk − 2α+ αt+ 2α2

2α
≥ 0.01k

crucial edges, and so there must be at least 0.01k vertices in T , such that T contains a crucial edge
incident to it.

We say that an edge is discovered by an algorithm at some step iff the set of queries performed by the
algorithm before this step uniquely identify the edge to be a weight-1 edge or a weight-2α edge. We
say that a vertex u is settled iff the algorithm has discovered a crucial edge incident to u; otherwise
we say that it is unsettled. Similarly, we say that a part Ti in the partitioning P is settled iff all its
vertices are settled. From Yao’s minimax principle [Yao77] and the above discussion, in order to prove
the lower bound of Theorem 5, it suffices to prove the following lemma.

Lemma 6.1. Any deterministic algorithm that settles at least 0.01k vertices in the distribution on w
defined above performs at least Ω(k2/α) queries in expectation.

In the remainder of this section, we provide a proof of Lemma 6.1. We use a similar approach as in
Section 5. Consider a deterministic algorithm and the sequence of queries it performs. Assume without
loss of generality that the algorithm terminates whenever it settles 0.01k vertices. We partition the
sequence of queries it makes as follows. The first phase starts at the first query, a phase ends as soon
as a previously unsettled vertex is settled, and the next phase starts right after the previous phase
ends. For each j ≥ 1, we let Zj be the random variable denoting the number of queries performed in
the j-th phase. In order to prove Lemma 6.1, it suffices to show that

∑
1≤j≤0.01k E[Zi] = Ω(k2/α).

We classify all phases into good ones and bad ones as follows. We say that an unsettled vertex u is
well-discovered, iff the number of parts Ti in P such that some edge in E(u, Ti) has been discovered is
at least t/10. We say that a phase is type-1 bad, iff at the start of this phase there exists an unsettled
part Ti ∈ P, and such that all discovered edges in E(Ti, T \Ti) touch at least k/10 vertices outside Ti.
We say that a phase is type-2 bad iff at the start of this phase there exists a well-discovered vertex. If

32

a phase is neither type-1 bad nor type-2 bad, then we say it is good. For ease of analysis, whenever
the algorithm starts a type-1 bad phase due to some part Ti, we immediately reveal to the algorithm
the weight of all edges with at least one endpoints in Ti, so the part Ti is settled right away; and
whenever the algorithm starts a type-2 bad phase due to some well-discovered unsettled vertex u, we
immediately reveal a crucial edge incident on u, so u and the other endpoint of the revealed edge are
settled right away. We prove the following claims.

Claim 6.1. The expected number of queries in a good phase is at least k/1600α.

Proof. Recall that the metric w is defined based on a partitioning P of T into t = k/100α subsets of
size 100α each (that we call a valid partitioning). We say that a valid partitioning P joins a pair u, u′

of vertices in T , iff u, u′ lie in the same part of P, otherwise we say that P separates the pair u, u′.
We say that a valid partitioning P of T is consistent with the current queries, iff (i) every discovered
crucial edge has both its endpoints lying in the same part of P and every discovered edge that is not
crucial has its endpoints in different partitions; (ii) every unsettled vertex u is not well-discovered;
and (iii) for every unsettled part Ti in P, all discovered edges in E(Ti, T \ Ti) touch at least k/10
vertices outside Ti. In other words, a partitioning P is consistent iff it provides consistent answers for
all queries made by the algorithm, and the algorithm is not a bad phase given the current queries.
Intuitively, from the algorithm’s viewpoint, the up-to-date distribution (according to the answers to
the queries performed so far) of the underlying partitioning should be the uniform distribution on all
partitionings that are consistent with the current queries. We prove the following observation.

Observation 6.1. At any time during the first k/(10α) queries of a good phase, for every pair u, u′

of vertices in T such that u, u′ are not both settled and the edge (u, u′) has not been queried yet, the
number of consistent partitionings that separate the pair u, u′ is at least k/800α times the number of
consistent partitionings that joins the pair u, u′.

Proof. Consider a pair u, u′ of vertices and a consistent partitioning P that joins the pair u, u′. Assume
without loss of generality that u is unsettled. We construct a collection of other partitionings as follows.
Let Ti be the part in P that contains u and u′. Let T ′(u) be the set of all unsettled terminals û such
that (i) no edge in E({û} , Ti) has been discovered; and (ii) no edge in E({u} , Ti′) has been discovered,
where Ti′ is the part in P that contains û. We prove the following observation.

Observation 6.2. At any time during the first k/(10α) queries of a good phase, for every unsettled
vertex u, |T ′(u)| ≥ k/2.

Proof. Before this good phase, u is also unsettled, so the number of vertices û such that (u, û) has
been discovered is at most (t/10) · (100α) ≤ k/10. Let Ti be the part that u lies in, since Ti is not
settled before this phase, it did not create a bad phase before, and so the number of vertices in T \ Ti
that are touched by discovered edges in E(Ti, T \ Ti) is at most k/10. On the other hand, note that
the algorithm settles at most 0.49 vertices before this phase, and has performed performed at most
k/(10α) queries in this phase. By definition, T ′(u) contains all vertices û that does not satisfy any of
the above conditions, so |T ′(u)| ≥ k − k/10− k/10− 0.01k − k/(10α) ≥ k/2.

For each û ∈ T ′(u), consider the partitioning P(û) obtained by exchanging the positions of vertices
u and û (that is, if originally u ∈ Ti and û ∈ Ti′ , then we move u to Ti′ and move û to Ti). Clearly,
vertices u, u′ are separated in P(û). We prove the following observation.

Observation 6.3. For every û ∈ T ′(u), P(û) is a consistent partitioning.

Proof. Consider a vertex û ∈ T ′(u). Let Ti be the set that contains u and let Ti′ be the set that contains
û. By definition of T ′(u), no edge in E({û} , Ti) has been discovered, and no edge in E({u} , Ti′) has

33

been discovered. On the other hand, since u and û are not settled, no edge in E({û} , Ti′) has been
discovered, and no edge in E({u} , Ti) has been discovered. Therefore, P(û) provides consistent answers
with all queries made by the algorithm so far. On the other hand, it also implies that for every part
Tj in P(û), all discovered edges in E(Tj , T \ Tj) touch the same set of vertices as the corresponding
part in P. Lastly, it is also easy to verify that every unsettled vertex is still not discovered in P(û).
Altogether, P(û) is a consistent partitioning with all current queries.

For every û ∈ T ′(u), we say that P(û) is a host of P, so P has at least k/2 hosts. On the other hand, for
every partitioning P ′ that separates u, u′, there are at most 200α partitioning P, such that P joins u, u′

and P ′ is a host of P (since in P ′, u, u′ belong to different parts, say u ∈ Ti and u′ ∈ Ti′ so it must be
the case that either u and some vertex in Ti′ are exchanged or u′ and some vertex in Ti are exchanged,
a total of at most 200α possibilities). Therefore, the number of consistent partitionings that separate
the pair u, u′ is at least (k/2)/(200α) = k/400α times the number of consistent partitionings that joins
the pair u, u′.

From Observation 6.1, among the first k/800α queries in a good phase, the probability that any single
query finds a crucial edge is at most 400α/n, and so with probability 1/2, none of them finds a crucial
edge. This implies that the expected number of queries in a good phase is at least (k/800α) · (1/2) =
k/1600α.

Claim 6.2. If the algorithm performs less than k2/(107α) queries, then the number of type-1 bad
phases is at most k/(105α), and the number type-2 bad phases is at most k/103.

Proof. Assume for contradiction that the number of type-1 bad phases is more than k/(105α). Then
there are at least k/(105α) indices i, such that the number of edges in |E(Ti, T \ Ti)| discovered by
the algorithm is at least k/10. On the other hand since the algorithm never settles more than 0.01k
vertices, it never discovers more than 0.01k crucial edges. Therefore, the number of queries performed
by the algorithm is at least

1

2
· k

105α
·
(
k

10
− k

105α
· 100α− 0.01k

)
≥ k2

107α
,

a contradiction. Assume for contradiction that the number of type-2 bad phases is more than k/103,
then there are more than k/103 well-discovered vertices. Therefore, the number of queries performed by
the algorithm over all phases is at least (k/103) ·(t/10−k/(105α)) ·(1/2) ≥ k2/(107α), a contradiction.

From the above two claims, we get that, in order to settle 0.01k vertices, either the algorithm performs
at least k2/(107α) queries, or the number of type-1 bad phases of its query sequence is at most k/(105α)
(which settles at most 0.001k vertices in total) and the number of type-2 bad phases of its query
sequence is at most k/103 (which settles at most 0.002k vertices in total), and so among the first 0.01k
phases, there are at least 0.007k good phases, implying that the expected number queries made by
the algorithm is at least 0.007k · (k/1600α) = Ω(k2/α). This completes the proof of Lemma 6.1, and
therefore also completes the proof of the lower bound in Theorem 5.

7 An Ω̃(n+ k6/5) Query Lower Bound for (2− ε)-Estimation

In this section we provide the proof of Theorem 4, by showing that, for any 0 < ε < 1, any randomized
algorithm that with probability 2/3 estimates the Steiner Tree cost to within a factor of 2−ε performs
Ω(n+ k6/5) in the worst case. We will prove a lower bound of Ω(n) in Section 7.1 and a lower bound

34

of Ω(k6/5) in Section 7.2. Combined together, they complete the proof of Theorem 4. Throughout the
section, we assume that 1/(2ε) < k < n/2.

7.1 An Ω(n) Lower Bound

We construct a distribution D of metric Steiner Tree instance (V, T,w) as follows. The set T contains
k terminals and the vertices in V \ T are denoted by v1, . . . , vn−k. We define w0 as the metric on V
where w0(v, v

′) = 2 for all pairs v, v′ ∈ V . For each 1 ≤ j ≤ n− k, we define a metric wj as follows:

• For each terminal u ∈ T , wj(u, vj) = 1.

• For every other pair v, v′ ∈ V , wj(v, v
′) = 2.

In other words, the weight-1 edges in wj form a star graph where vj is its center and all terminals are its
leaves. It is easy to verify that wj is indeed a metric. We then define the instance Ij = (V, T,wj), and
the distribution D is defined as follows: Pr[I0] = 1/2, and for each 1 ≤ j ≤ n−k, Pr[Ij] = 1/(2(n−k)).

Clearly, ST(I0) = 2(k − 1), and for each j, ST(Ij) = k as the star graph formed by all weight-1 edges
is a Steiner Tree of cost k. Since k > 1/(2ε), ST(I0)/ST(Ij) > 2 − ε for all j, and so estimating the
metric Steiner Tree cost of a random instance sampled from D to within factor (2 − ε) is equivalent
to determining whether or not the random instance is I0.

In order to correctly determining if a random instance sampled from D is I0 with probability at
least 2/3, it is necessary that the algorithm discovers a weight-1 edge on at least (1/3)-fraction of the
instances I1, . . . , In−k. From Yao’s minimax principle [Yao77], the following claim implies a Ω(n−k) =
Ω(n) lower bound on the query complexity of any randomized algorithm, as k ≤ n/2.

Claim 7.1. Any deterministic algorithm that discovers a weight-1 edge on at least 1/3-fraction of the
instances I1, . . . , In−k performs at least Ω(n) queries in expectation.

Proof. Observe that, in each of the instances I1, . . . , In−k, all weight-1 edges are incident to one Steiner
vertex, that we call the secret vertex, and the secret vertex is v1, . . . , vn−k with probability 1/(n− k)
each. Since a single query can only check one Steiner vertex (by querying any edge connecting it to a
terminal), in order to find the secret vertex on at least 1/3-fraction of the instances I1, . . . , In−k, any
algorithm needs to perform at least (n− k)/3 = Ω(n− k) queries in expectation.

7.2 An Ω(k6/5) Lower Bound

We will construct a pair DY,DN of distributions on metric Steiner Tree instances, such that DY is only
supported on instances (V, T,w) with ST(V, T,w) close to Z, while DN is only supported on instances
instances (V, T,w) with ST(V, T,w) close to 2Z, where Z is some function of k that will be defined
later. We let D = (DY + DN)/2 be the average distribution of DY and DN. We show that, in order
to report correctly with probability at least 2/3 whether an random instance sampled from D comes
from DY or DN, any randomized algorithm has to perform at least Ω̃(k6/5) queries, thereby proving
Theorem 4.

We now proceed to define the distributions DY and DN. We first define an auxiliary instance (V, T,w)
as follows. For convenience, we let set T contain k + k2/5/ε terminals instead of k terminals. As we
will see, this does not influence our lower bound, as (k + k2/5/ε)6/5 = Θ(k6/5).

• The set T is partitioned into subsets T =
(⋃

1≤j≤d Si
)
∪
(⋃

1≤i≤d′ Ti
)
, where d = k2/5, d′ = k3/5;

for each 1 ≤ j ≤ d, |Sj | = 1/ε, and for each 1 ≤ i ≤ d′, |Ti| = k2/5.

35

– We call sets S1, . . . , Sd, T1, . . . , Td′ groups.

– We denote S =
⋃

1≤j≤d Sj , we call terminals in S special terminals, and we call terminals

in T \S regular terminals. For each 1 ≤ j ≤ d, we denote Sj =
{
sj,1, . . . , sj,1/ε

}
. Note that

|S| = k2/5/ε.

• The set V \ T contains n − (k + k2/5/ε) Steiner vertices and is further partitioned into d′ + 1
subsets V \ T =

⋃
0≤i≤d′ Vi, where for each 1 ≤ i ≤ d′, |Vi| = k2/5/ε.

• The metric w is defined as follows:

– For every pair u, u′ of regular terminals that belong to the same group, w(u, u′) = 0.

– For each 1 ≤ i ≤ d′, we fix an arbitrary perfect matching Mi between terminals in S and
vertices in Vi. For every matched pair u, v′, w(u, v) = 1.

– The weight between every other pair of vertices in V is 2.

Figure 8: An illustration of the metric w. All terminals are shown in dark blue and all Steiner vertices
are shown in black. Matchings M1, . . . ,Mk3/5 are shown in dashed lines and the matched pairs have
weight 1. Pairs of teminals in the same Ti (green box) have weight 0. All other pairs have weight 2.

See Figure 8 for an illustration. It is easy to verify that w is indeed a metric.

We now use the auxiliary instance defined above to construct distributions DY and DN. Every instance
with non-zero probability in either DY or DN has the same vertex set V̂ and the same terminal set T̂ ,
where |V̂ | = |V | and |T̂ | = |T |. The set V̂ \ T̂ of Steiner vertices is further partitioned into subsets
V̂ \ T̂ =

⋃
0≤i≤d′ V̂i, where V0 = V̂0, and for each 1 ≤ i ≤ d′, |V̂i| = |Vi|. We say that a one-to-one

mapping f : V̂ → V is valid, iff f maps terminals in T̂ to terminals in T , f maps every vertex in V̂0
to itself in V0, and for each 1 ≤ i ≤ d′, f maps vertices in V̂i to vertices in Vi. Let F be the set of all
valid mappings.

We first define the distribution DN. For each mapping f ∈ F , we define an instance If = (V̂ , T̂ , ŵf),

where the metric ŵf is defined as follows: for every pair v, v′ ∈ V̂ , ŵf (v, v′) = w(f(v), f(v′)). The
distribution DN is simply defined to be the uniform distribution over all instances in IN = {If | f ∈ F}.
We now define the distribution DY. Consider a mapping g : [d]→ [d′]. We first define another auxiliary
metric wg on V as follows.

36

• For each 1 ≤ j ≤ d, we consider the matching Mg(j) between S and Vg(j). If we denote by v∗g(j)
the Steiner vertex in Vg(j) matched with terminal sj,1, then for each u ∈ Sj , wg(u, v∗g(j)) = 1,
and the weight in wg between u and its matched Steiner vertex in Mg(j) is 2.

• For every other pair v, v′ ∈ V , wg(v, v
′) = w(v, v′).

Figure 9: An illustration of the metric wg (where g(1) = 1 and g(k2/5) = k3/5). The only difference
between metrics w and wg are the weight-1 pairs, which are shown in dashed lines.

See Figure 9 for an illustration. It is easy to verify that wg is a metric. The only difference between
metrics w and wg are the weight-1 pairs. In particular, for each Si, there is a star graph consisting
of weight-1 edges in wg that spans all terminals in Si, while there is no such graph in w. These star
graphs are the reason that the costs ST(V, T,w) and ST(V, T,wg) are roughly separated by factor 2.

For every mapping f ∈ F , we define a metric Steiner Tree instance I(f,g) as I(f,g) = (V̂ , T̂ , ŵ(f,g)) where

the metric ŵ(f,g) is defined as: for every pair v, v′ ∈ V̂ , ŵ(f,g)(v, v
′) = wg(f(v), f(v′)). The distribution

DY is simply defined to be the uniform distribution on all instances in IY =
{
I(f,g) | f ∈ F , g ∈ G

}
,

where G is the collection of all mappings from [d] to [d′].

On the one hand, it is easy to verify that every instance with non-zero probability in DN is isomorphic
to (V, T,w), and so it has the same Steiner Tree cost as (V, T,w). Similarly, it is easy to verify that
every instance with non-zero probability in DY is isomorphic to (V, T,wg) for an arbitrary g ∈ G (and
in fact all instances {(V, T,wg)}g∈G are isomorphic to each other), and so it has the same Steiner Tree
cost as (V, T,wg). We next show that ST(V, T,w) is roughly two times ST(V, T,wg) for every g. Recall
that IN = {If | f ∈ F} and IY =

{
I(f,g) | f ∈ F , g ∈ G

}
.

Claim 7.2. Any instance in IN has Steiner Tree cost at least 2k2/5/ε. Any instance in IY has Steiner
Tree cost at most k2/5(1/ε+ 4). Hence the cost of any instance in IN is more than (2− 8ε) times the
cost of any instance in IY.

Proof. For any instance in IN, any Steiner node has weight 1 to at most 1 terminals, so the Steiner
Tree cost equals the spanning tree of terminals, which is 2(k2/5 + k2/5/ε − 1) > 2k2/5/ε. For any
instance in IY, any group of special terminnal Si have weight 1 to a common Steiner node, thus we
can connect them at a cost of 1/ε. Thus the Steiner Tree cost is at most (1/ε)k2/5+2(k2/5+k2/5−1) <
(1 + 4ε)(k2/5/ε). Moreover, it is easy to verify that the ratio of these costs is more than (2 − 8ε) for
any ε > 0.

37

We then define distribution D = (DY +DN)/2, and consider the following problem: Given an instance
sampled from D, estimate its value (Steiner Tree cost) to within a factor of (2− 8ε). From Claim 7.2,
the problem is equivalent to the problem of determining a random instance (sampled from D) comes
from DY or DN. If a randomized algorithm reports correctly with probability at least 2/3, then we
say that the algorithm distinguishes between DY and DN. Therefore, in order to prove Theorem 4, it
suffices to prove that any algorithm that distinguishes between DY and DN performs Ω̃(k6/5) queries
in the worst case.

The remainder of this section is dedicated to the proof that any algorithm that distinguishes between
DY and DN performs Ω̃(k6/5) queries in the worst case. Before we give the detailed proof, we provide
some intuition. From the construction of DY, DN, distinguishing between DY and DN is essentially
distinguishing between the metric w and the metric wg (for any g), where the identities of vertices
are randomized. The main difference between metrics w and wg is that, in wg, there exist Steiner
vertices that are connected to more than one (actually 1/ε) special terminals with weight-1 edges. We
call such Steiner vertices secret vertices. We now argue from a high level that finding a secret vertex
requires Ω(k6/5) queries. We call edges of weight 0 or 1 crucial edges, since if a terminal u is found
incident to a crucial edge, then we can immediately tell if u is special or regular.

On the one hand, note that in the metric wg, there are k2/5 secret vertices. So if we sample a random
Steiner vertex v from

⋃
1≤i≤d′ Vi (as the vertices in V0 are irrelevant in distinguishing between metrics

w and wg), then the probability that v is a secret vertex is O(k−3/5) as |
⋃

1≤i≤d′ Vi| = Ω(k), and so

it takes Ω(k3/5) random samples to get a secret vertex. However, in order to certify that v is indeed
a secret vertex, we need to find at least 2 crucial edges incident to it, which takes Ω(k) queries as
every Steiner vertex is only incident to O(1) crucial edges both in w and wg. Altogether, it takes
Ω(k3/5) · Ω(k) = Ω(k8/5) queries to discover a secret vertex in this way.

On the other hand, note that there are k2/5 special terminals (in both w and wg). So if we sample a
random terminal u from T , then the probability that u is a special terminal is O(k−3/5) as |T | = Ω(k),
and so it takes Ω(k3/5) random samples to get a special terminal. In order to certify that u is indeed
a special terminal, we need to find a crucial edge incident to it. Since each special terminal is only
incident to k3/5 crucial edges (in both w and wg), this takes Ω(n/k3/5) = Ω(k2/5) queries. Altogether,
it takes Ω(k3/5) · Ω(k2/5) = Ω(k) queries to discover a special terminal. If the algorithm performs
o(k6/5) queries, it is only able to discover o(k1/5) special vertices. As the identities of the terminals
are randomized, from the Birthday Paradox, with high probability all discovered special vertices come
from different groups in S1, . . . , Sd, so even if the algorithm has queried all edges incident to these
discovered terminals, with high probability it will not find any vertex that is incident to more than
one discovered special terminal, and so with high probability it will not find any secret vertex.

In the remainder of the section, we formalize the ideas described above, in a way similar to Section 5
and Section 6. We begin with some definitions. For convenience, we will think of the algorithm as
performing queries on w, but it does not know the identities of the vertices (that is, it does know the
set T and the partition (V0, V1, . . . , Vd′) of V \ T , but it does not know which special terminal in set
Sj is sj,i, for any j, i). Over the course of the algorithm, we say a terminal u is settled at some step, iff
the set of queries performed thus far uniquely identify u to be a special terminal or a regular terminal,
i.e., we have discovered a crucial edge incident to it; otherwise we say it is unsettled. For convenience
of the analysis, whenever a terminal u is settled, if u is a regular terminal, then we immediately reveal
to the algorithm which Ti group it belongs to; if it is a special terminal, we will immediately reveal to
the algorithm all crucial (weight-1) edges incident to it.

For each special terminal u ∈ S, we denote by V (u) be set of Steiner nodes that are connected to u
by some matching in {M1, . . . ,Md′}. Clearly, in w, vertex u is connected to all vertices in V (u) via

38

crucial (weight-1) edges, while in wg, this is not always the case. We say that an edge is discovered if
we can uniquely identify the weight of the edge. For any 0 < α < 1, we say an unsettled terminal u is
α-well-discovered if at least one of the following four conditions is satisfied:

P1. There are at least αk2/5 groups Ti such that we have discovered at least one edge in E(u, Ti).

P2. There are at least αk2/5 special terminals u′ such that we discovered an edge in E(u, V (u′)).

P3. u is a regular terminal in the Ti, and there are at least αk terminals u′ such that some edge in
E(u′, Ti) has been discovered.

P4. u is a special terminal, and there are at least αk terminals u′ such that some edge in E(u′, V (u))
has been discovered.

The following lemma is the main technical tool for the proof of the Ω(k6/5) lower bound. Intuitively, it
shows that, if the algorithm perform o(k6/5) queries, then not only it settles or (ε/200)-well-discovers
very few terminals, but also it has very limited knowledge upon the edges that it has not queried.

Lemma 7.1. Let Alg be any deterministic algorithm that performs at most ε2k6/5/109 queries. Then:

• If the input to Alg is a random instance from DN, then with probability at least 9/10, the number
of terminals that are either settled or (ε/200)-well-discovered is at most εk4/5/104, and at most
εk1/5/104 of them are special terminals; and conditioned on the query sequence and its answers
over the course of the algorithm, for every terminal that is neither settled nor (ε/200)-well-
discovered, the probability that it is a special terminal is at most 2/k3/5.

• If the input to Alg is a random instance from DY, then with probability at least 9/10,

– the number of terminals that are either settled or (ε/200)-well-discovered is at most εk4/5/104;

– at most εk1/5/104 of them are special terminals; and

– all these special terminals belong to different Si groups.

Moreover, conditioned on the query sequence and its answers over the course of the algorithm,
for every unqueried edge between a Steiner vertex and a not-(ε/100)-well-discovered terminal,
the probability that the edge is a crucial (weight-1) edge and the Steiner vertex is a secret vertex
is at most 2/k8/5.

We provide the proof of Lemma 7.1 in Section 7.2.2 and Section 7.2.3, after we complete the proof of
the Ω(k6/5) lower bound using it.

7.2.1 Completing the Proof of the Ω(k6/5) Lower Bound

Recall that D = (DY +DN)/2. In this subsection we use Lemma 7.1 to prove the following lemma.

Lemma 7.2. Any randomized algorithm that, given a random instance sampled from D, reports cor-
rectly with probability at least 2/3 that the instance comes from DY or DN, performs at least ε2k6/5/109

queries in the worst case.

From Yao’s minimax principle [Yao77], it suffices to consider only deterministic algorithms that report
correctly on at least 2/3-fraction (in D) of the instances.

We define a transcript to be the union of a query sequence and all its answers. We can define α-well-
discovered vertices and settled terminals with respect to a transcript similarly.

39

Recall that each instance in IN is determined by a mapping f ∈ F and each instance in IY is determined
by a mapping f ∈ F and a mapping g ∈ G, so |IY| = |IN| · |G|. Let σ be the transcript produced by
the algorithm when given a random instance from D. Since the input is randomized, σ is a random
variable. We say that σ is consistent with an instance I iff all answers to the queries in σ are matched
with the corresponding weight-values in I. In order to prove Lemma 7.2, it suffices to show that, if σ
always contains at most ε2k6/5/109 queries, then with high probability, the ratio between the number
of instances in IY that are consistent with σ (that we call consistent instances in IY) and the number
of instances in IN that are consistent with σ (that we call consistent instances in IN) is still roughly
|G|. We prove this by showing that (i) for each consistent instance If ∈ IN, almost all mappings g ∈ G
give a consistent instance I(f,g); and (ii) for almost all consistent instances I(f,g) ∈ IY, the instance
If ∈ IN is also consistent.

We let T ∗ be the subset of terminals that are either settled or (ε/200)-well-discovered by σ (so T ∗ is
a random variable as well). We will focus on queries incident to vertices in T ∗ and S \ T ∗.
From Lemma 7.1, there are at most 1/10-fraction of the consistent instances in IN such that the desired
properties (the number of settled or (ε/100)-well-discovered terminals is low, etc) do not hold; and
there are at most 1/10-fraction of the consistent instances in IY such that the desired properties do
not hold. We call these instances bad instances, and call all other consistent instances good instances.

Consider now any mapping g ∈ G, we define the following instance I ′(f,g) ∈ IY defined by g and the T ∗

which is slightly different from I(f,g). For each 1 ≤ j ≤ d, we consider the matching Mg(j) between Sj
and Vg(j). If Sj contains more than 1 terminals in T ∗, then I(f,g) is not well defined. If Sj contains one
such terminal and assume it is s∗j , then we first exchange the matching node of s∗j and sj,1 in Mg(j).
If Sj contains no such terminal, then we do not change the matching. After modifying the matching,
for each u ∈ Sj , we make wg(u, s

∗
g(j)) = 1 and the weight in wg between u and its matched Steiner

vertex in Mg(j) is 2. Note that after the change, we guarantee that we do not change the crucial edges
incident on any terminal in T ∗.

From consistent instances in IN to consistent instances in IY. From Lemma 7.1, for every
terminal u ∈ T \T ∗, the probability (conditioned on σ and its answers) that u is special terminal is at
most 2/k3/5. Then from Markov’s Bound, with probability at least 0.98 (i.e., on at least 0.98-fraction
of the good instances in IN), the number of queries performed on edges in E(S \ T ∗, V \ T) is at most
εk3/5/100. We now show that, for such a good instance If ∈ IN, almost all mappings g give consistent
instance I ′(f,g) ∈ IY.

Now for a random mapping g ∈ G. If we view the algorithm as performing queries on wg (without
knowing the identities of the vertices), then from the perspective of the algorithm, the partitioning of
the special terminals into groups S1, . . . , Sk2/5 is random. Since T ∗ contains at most εk1/5/104 special
terminals, with probability at least 1/104, |Sj ∩ T ∗| ≤ 1 for all 1 ≤ j ≤ d′ hold. Moreover, if z queries
are incident to terminals in Sj \T ∗, then with probability at least z/k3/5, no query has been performed
between Sj \ T ∗ and Vg(j). Thus with probability at least 1 − ε/100, for each 1 ≤ j ≤ d′, no query
has been performed on E(Sj \ T ∗, Vg(j)). If this happens, then it is easy to verify that I ′(f,g) is a well
defined and consistent instance in IY, as the difference between w and wg, in particular a subset of
edges in

⋃
1≤j≤d′ E(Sj \ T ∗, Vg(j)), has not been queried at all.

Altogether, there are at least 0.98-fraction of the good instances in IN, such that for each such If , at
least (1− ε/100− 1/104) ≤ (1− 10−2)-fraction of mappings g ∈ G can give consistent instances I ′(f,g)
in IY.

From consistent instances in IY to consistent instances in IN. From Lemma 7.1, for every
unqueried edge between a Steiner vertex and a not-(ε/100)-well-discovered terminal, the probability

40

that the edge is a crucial (weight-1) edge and the Steiner vertex is a secret vertex is at most 2/k8/5.
Therefore, for every u ∈ S \ T ∗ and every 1 ≤ i ≤ d′, the probability that u is a special terminal and
belongs to a group Sj with g(j) = i is at most (2/k8/5) · (k2/5) = 2/k6/5. For each 1 ≤ i ≤ d′, if we
denote by zi the number of terminals u ∈ S \ T ∗ such that some edge from E(u, Vi) has been queried,
then

Pr
[
∃j, s.t. g(j) = i, and some edge in E(Sj \ T ∗, Vi) has been queried

]
≤ 2zi

εk6/5
.

Since the algorithm performs at most ε2k6/5/109 queries, from Markov’s Bound, with probability at
least 1− 10−6 (i.e., on at least (1− 10−6)-fraction of the good instances in IY), for all pairs (i, j) with
g(j) = i, no queries has been perform on E(Sj \ T ∗, Vi). For each consistent instance I ′(f,g) ∈ IY with
the above property, it is easy to verify that the corresponding instance If in IN is a consistent instance
in IN, as the difference between w and wg, in particular a subset of edges in

⋃
1≤j≤d′ E(Sj \T ∗, Vg(j)),

has not been queried at all.

Altogether, there are at least (1− 10−6) fraction of the good instances in IY, such that for each I ′(f,g)
of them, the corresponding instance If is a consistent instance in IN.

Form the above discussion, the number of consistent instances in IY is at least 0.9·0.98·(1−10−2)|G| >
0.85|G| times the number of consistent instances in IN, and it is at most |G|/(0.9 · (1−10−6)) ≤ 1.12|G|
times the number of consistent instances in IN. Therefore, the algorithm reports correctly with
probability at most max {1/(1 + 0.85), 1.12/(1 + 1.12)} ≤ 2/3.

7.2.2 Proof of Lemma 7.1 for DN

In this subsection we prove of the first half of Lemma 7.1. We start with the following claim.

Claim 7.3. Let σ be any transcript, and let DN(σ) be the uniform distribution on all instances in IN
that are consistent with σ. Then

• for every unqueried edge between a pair of terminals such that at least one is unsettled and not
(ε/100)-well-discovered, the probability in DN(σ) that the edge is a crucial (weight-0) edge is at
most 2/k2/5; and

• for every unqueried edge between a Steiner vertex and a unsettled and not-(ε/100)-well-discovered
terminal, the probability in DN(σ) that the edge is a crucial (weight-1) edge is at most 2/k.

Proof. We first prove the first property. Consider a pair u, u′ of terminals where terminal u is unsettled
and not (ε/100)-well-discovered. Let I, I ′ be instances in IN that are consistent with σ, such that in
I, u and u′ belong to the same Tj group. We say that I ′ is host by I, iff I ′ can be obtained from I by
exchanging the role of u with another unsettled regular terminal u′′ that is not in the same group as
u in I. It is clear that in any such instance I ′, the answer of the same query will 2 (that is, the edge
is not a crucial edge). Suppose u and u′ are in group Tj . The number of such instances I ′ equals the
number of terminal u′′ such that (i) u′′ /∈ Tj , and no edge in E(u′′, Tj) has been queried; and (ii) no
edge between u and the group u′′ belongs to has been queried. Since u is not (ε/100)-well-discovered,
Property P1, the number of u′′ that violate (ii) is at most εk/100, and from Property P3, the number
of u′′ that violate (i) is at most εk/100. Therefore, I hosts at least 49k/50 instances I ′. On the other
hand, for each instance I ′, the number of instances that hosts it is at most k3/5, since |Tj | ≤ k3/5.
Altogether, over all instances in IN that are consistent with σ, at most 50/(49k2/5) ≤ (2/k2/5)-fraction
of them have (u, u′) as a crucial edge.

We now prove the second property. Consider an unsettled and not-(ε/100)-well-discovered terminal u
and a Steiner vertex v. Let I, I ′ be instances in IN that are consistent with σ, such that in I, u is a
special terminal and v ∈ V (u). We say that I ′ is host by I if I ′ can be obtained from I by exchanging

41

the role of u with a unsettled regular terminal u′ in I. The number of such instances is the number
of unsettled regular terminals u′ in I such that (i) no edge in E(u′, V (u)) has been queried; and (ii)
no edge between u and the group that contains u′ has been discovered. Since u is not (ε/100)-well-
discovered, from Property P3, the number of regular terminals that violate (i) is at most εk/100, and
Property P1, the number of regular terminals that violate (ii) is at most εk3/5 · k2/5/100 = εk/100.
Therefore, I hosts at least 49k/50 instances. On the other hand, any instance I ′ is host by at most
one instance since at most one crucial edge is incident tov. Altogether, over all instances in IN that
are consistent with σ, at most 50/49k ≤ (2/k)-fraction of them have (u, v) as a crucial edge.

In the remainder of this subsection, we will refer to (ε/200)-well-discovered vertices as well-discovered
vertices, for convenience. We call queries between two terminals regular queries, and queries between
a terminal and a Steiner node special queries. We say a query is good iff it discovers a previously-
unknown crucial edge. In other words, either (i) the query is a regular query, such that at least one
endpoint is not well-discovered, and the answer is 0, or (ii) the query is a special query such that the
terminal is not (ε/100)-well-discovered, and the answer is 1. From Claim 7.3, the probability that a
regular query is good is at most 2/k2/5, and the probability that a special query is good is at most
2/k. Therefore, if the algorithm performs at most ε2k6/5/109 queries, then from Markov’s Bound,
with probability 1/50, the number of good regular queries is at most ε2k2/5/106, and the number of
good special query is at most ε2k3/5/106.

For every settled terminal, if it is not settled by a good query, it must become well-discovered before it
become settled. Thus if we can upper bound the number of terminals that are well-discovered without
but not settled at some step, then we can upper bound the number of settled or well-discovered
terminals as well. For ease of analysis, we always assume that there are at most εk4/5/104 terminals
and εk1/5/104 special terminals that are settled or well-discovered, and we think of the algorithm as
being immediately terminated once this condition no longer holds.

There are four possiblities for a terminal to become well-discovered, and we analyze them seperately.

Possibility 1: through P3. Let u be such a vertex, so u is a regular terminal and the group that
Ti contains it has εk/200 incident edges discovered. For each such edge, it is either discovered by a
query or because the its other endpoint is settled or well-discovered. Since there are at most εk4/5/104

settled or well-discovered terminals, there are at least 0.004εk edges incident on Ti that are discovered
by queries. Thus, if the total number of queries is at most ε2k6/5/109, then there are at most εk1/5/106

groups such that the terminals in this group is well-discovered through P3. Therefore, the number of
terminals that become well-discovered through P3 is at most εk4/5/106. Note that all these terminals
are regular terminals.

Possibility 2: through P4. Let u be such a vertex, so u is a special terminal and the set V (u) has
εk/200 incident edges discovered. By the same argument, for at most εk4/5/104 of these edges, the
other endpoint is a settled or well-discovered terminal, and all the others are discovered by queries.
Therefore, the number of such terminals is at most εk1/5/106, and all of them are special terminals.

Possibility 3: through P1 but not P3/P4. Let u be such a vertex, so there are at least εk2/5/200
groups Ti such that some edge in E(u, Ti) has been discovered. Note that each such edge is discovered
either by a query, or because we have discovered all terminals in Ti. By previous analysis, there are
at most εk1/5 of them. Therefore, at least 0.004εk2/5 edges incident on u are queried.

Possibility 4: through P2 but not P3/P4. Let u be such a vertex, so there are at least εk2/5/200
special terminals u′ such that some edge in E(u, V (u′)) has been discovered. Note that such an edge
is discovered either by a query, or because u′ has already been settled. Therefore, at least 0.004εk2/5

edges incident to u are queried.

From the analysis in Possibilities 3 and 4, for any terminal that becomes well-discovered through P1
or P2 but not P3 or P4, at least 0.004εk2/5 of its incident edges have been queried. Therefore, there

42

are at most εk4/5/(4 · 106) such vertices. However, such terminals could be either regular or special,
and we still need to upper bound the number of such special terminals. Let u be any such terminal,
and consider the moment when exactly 0.004εk2/5 of its incident edges are queried. From Claim 7.3,
for any Steiner node v, the probability that (u, v) is a crucial (weight-1) edge is at most 2/k. It follows
that the probability that u is a special terminal is at most (2/k) · (k/k3/5) = 2/k3/5. By Markov’s
Bound, the number of special terminals that are well-discovered is at most εk1/5/105 with probability
at least 1/40.

Altogether, with probability 1−1/40−1/50 ≥ 9/10, the number of settled or well-discovered terminals
is at most (ε2k4/5+εk4/5+εk1/5+εk4/5)/106 < εk4/5/104, and the number of settled or well-discovered
special terminals is at most (ε2k1/5 + εk1/5)/106 + εk1/5/105 < εk1/5/104.

7.2.3 Proof of Lemma 7.1 for DY

In this subsection we provide the proof of the second half of Lemma 7.1

Recall that Steiner vertices that are incident to more than one crucial edges are called secret vertices.
We assume for now that, over the course of the algorithm,

• for every Steiver vertex, we have discovered at most one crucial edge incident to it;

• no secret vertex has more than εk/104 of its incident edges discovered;

• the number of terminals that are settled or well-discovered is at most εk4/5/104; and

• the number of special terminals that are settled or well-discovered is at most εk1/5/104.

We will show at the end of this subsection that, if any of the above condition is not satisfied, then the
algorithm has to perform at least ε2k6/5/109 as well.

We start with the following claim, whose is very similar to Claim 7.3, and is omitted here.

Claim 7.4. Let σ be any transcript, and let DY(σ) be the uniform distribution on all instances in IY
that are consistent with σ. Then

• for every unqueried edge between a pair of terminals such that at least one is unsettled and not
(ε/100)-well-discovered, the probability in DY(σ) that the edge is a crucial (weight-0) edge is at
most 2/k2/5; and

• for every unqueried edge between a Steiner vertex and a unsettled and not-(ε/100)-well-discovered
terminal, the probability in DY(σ) that the edge is a crucial (weight-1) edge is at most 2/k.

Using Claim 7.4 and the same arguments in the proof of Lemma 7.1 for DN, we can prove that the
number of terminals that are settled or well-discovered is at most εk4/5/104, and at most εk1/5/104

of them are special terminals. In order to prove that all settled or well-discovered special terminals
belong to different Sj groups, we use the following two claims.

Claim 7.5. Let u∗ be a special terminal that is either settled or (ε/200)-well discovered. Then for
every other not-(ε/100)-well-discovered terminal u and any other Steiner vertex v, the probability that
u is a special terminal in the same Sj group as u∗ and (u, v) is a crucial edge is at most 2/k7/5.

Proof. Let I, I ′ be instances in IN, let u∗ be a special terminal that is either settled or (ε/200)-well
discovered in both I and I ′, let u be a special vertex in the same Sj group as u∗ in I, and let v be a
Steiner vertex such that (u, v) is a crucial edge in I. We say I ′ is host by I, iff there are two terminals

43

u′, u′′, such that u′ is special and u′′ is regular, and I ′ can be obtained from I by giving the role of u′ to
u, giving the role of u to u′′ and giving the role of u′′ to u′. The vertex u′ can be any not-(ε/100)-well-
discovered terminal in Sj with no edge to V (u) discovered. Since u is not (ε/100)-well-discovered, and
we have assumed that each secret Steiner vertex has at most εk/104 of its incident edges discovered,
there are at least 0.99k choices for u′. On the other hand, u′′ can be any terminal that has no edge
discovered to V (u′) and the secret Steiner node of group Sj in I. By the same arguement, there are
at least 0.99k such terminal. Since we have assumed that at most εk1/5/104 special terminals are
(ε/100)-well-discovered, an instance I hosts at least 0.992k2 · (k2/5/ε) > 0.98k12/5/ε instances I ′. On
the other hand, for any instance I ′, the terminal u′ must be the terminal such that v ∈ Vu′ , and
the terminal u′′ must in the same group as u∗. So there are at most k/ε instance I that hosts I ′.
Altogether, the probability that all events happend is at most (k/ε)/(0.98k12/5/ε) ≤ 2/k7/5.

Claim 7.6. Let u be a not-(ε/100)-well-discovered terminal and let v be a Steiner vertex. Then the
probability that (u, v) is a crucial (weight-1) edge and v is an secret vertex is at most 2/k8/5.

Proof. Recall that we have assumed that v has at most one crucial edge connecting to a settled or
a well-discovered terminal discovered. By definition, any (ε/100)-well discovered terminal is also a
well discovered terminal. So there v v has at most one crucial edge connecting to a settled or a
(ε/100)-well-discovered terminal discovered. We distinguish between the following two cases.

Case 1: There does not exist a settled or (ε/100)-well discovered terminal u′, such that (u′, v) is a
crucial edge and has been discovered. For any consistent instance I such that u and v has weight 1
and v is an secret Steiner node. Suppose u ∈ Si and let Si = {si,1, . . . , si,1/ε}, and suppose v ∈ V (si,1).
By assumption, no terminal in Si is (ε/100)-well discovered. We say an instance I ′ is hosted by I if
all special terminals not in Si and their weights to the Steiner nodes are the same as I, and the set
V (si,t) in I ′ is identical to the set V (si,t) in I for all 1 ≤ t ≤ 1/ε.

We first count the number of such consistent instances I ′. For each 1 ≤ t ≤ 1/ε, we define T ∗t as the
set of regular terminals that with no edges to V (si,t) discovered. Since no terminal in Si is (ε/100)-well
discovered, every set T ∗t has size at least (1 − ε/100)k. For each 1 ≤ t ≤ 1/ε, consider any group of
terminals t1 . . . , t1/ε such that tj′ ∈ T ′j′∩T ′j . Any tj′ can have weight one to all Steiner nodes in Vsj′ and
Vsj , which means we can make any terminal in Vsj an secret terminal. Thus such group can construct

at least k3/5/ε consistent instances I ′. On the other hand, since any |Tj′ | ≥ (1− ε/100)k, the number
of such group is at least ((1−49ε/50)k)1/ε > (49/50) ·k1/ε. Thus, I hosts at least (49/50)k1/ε ·(k3/5/ε)
instances I ′.

Now we count how many instance can host an instance I ′. For any instance I ′, an instance I that hosts
it can only change the terminals in Si that has weight 1 to v, and so one of the terminal in Si should
be u. Moreover, every terminal in Si should has weight 1 to v. The total number of such instance is
at most k1/ε · 1/ε since u could replace any terminal in Si. Thus, the probability that v and u has
weight 1 and v is an secret Steiner node is at most (k1/ε−1 · (1/ε))/((49/50)k1/εk3/5 · (1/ε)) < 2/k8/5.

Case 2: There does not exist a settled or (ε/100)-well discovered terminal sj∗ , such that (sj∗ , v) is a
crucial edge and has been discovered. Note that sj∗ 6= u. For any instance I such that u and v has
weight 1. We say an instance I ′ is hosted by I as the same definition as the first case, except that now
u must still in Si, and moreover, we exchange one Steiner node in Vj∗ with Vj for some j. We first
count the number of I ′ hosted by I. We define T ′j the same as the first case. Suppose v ∈ V`∗ , for any

1 ≤ ` ≤ k3/5 and ` 6= `∗, we define v∗` as the only one vertex in V ∗j ∩ V`, and T ∗` as the set of terminals
that does not have weight one to v∗` . We also define v∗`∗ = v and T ∗`∗ as the set of terminals that does
not have weight one to v∗`∗ . Now for any 1 ≤ ` ≤ k3/5, for any group of terminals t1, . . . , t1/ε such that
for any j′ 6= j∗, tj′ ∈ T ′j′ ∩ T ∗` and tj∗ = sj∗ , we can make v∗` the secret Steiner node of this group.
Moreover, to do so, we can exchange v∗` from Vsj∗ with any Vsj′ since we will not change the weight

44

between any pair of vertices by doing so. Since the algorithm only perform at most ε2k6/5/109 queries
and settled or (ε/100)-well discovered at most O(k4/5) terminals, there are (1 − o(1))k3/5 number
of index ` such that |T ∗` | > (1 − ε/100)k. For such `, the number of groups t1, . . . , t1/ε is at least

0.99k1/ε−1. So the total number of instances I ′ hosted by I is at least (1− o(1)k3/5 ·k1/ε−1 · (1/ε). On
the other hand, for any instance I ′, it is hosted by at most k1/ε−2 · (1/ε) instance I since we cannot
exchange s`∗ and u must be a special terminal in Si. This implies that v and u has weight 1 and v is
a secret Steiner node is at most (k1/ε−2 · (1/ε))/((1− o(1))0.99k1/ε−1k3/5 · 1/ε) < 2/k8/5.

Remember that a special query is called a good query iff it discovers a crucial edge between a not-
well-discovered terminal and a Steiner node. If a special terminal is ever settled, then it is either due
to a good special query incident to it, or because it becomes well-discovered at some step. We analyze
the probability that a special query (u, v) is a good query, and u is in the same group Si with some
terminal u′ that is already settled or (ε/200)-well discovered. By Claim 7.6, the probability that the
query is a good query and v is an secret Steiner node is at most 2/k8/5. On the other hand, if the
query is a good query but v is not an secret terminal, it means v ∈ V (u). By Claim 7.5, the probability
that it is a good query and u and a fix settled or (ε/200)-well discovered u∗ in the same group Si
is at most 2/k7/5. Since there are at most εk1/5/104 such u∗. So the probability that a special is a
good query and u is in the same group Si with some terminal u′ that is already settled or (ε/200)-well
discovered is at most ε/104k6/5. With probablity at least 1− ε/1000, there is no such query through
out the algorithm by Markov’s Bound.

Now we consider the well-discovered terminals. When a terminal is well-discovered but not settled, it is
still not (ε/100)-well discovered. By Claim 7.6, the probability that it is in the same group Si with some
terminal u′ that is already settled or (ε/200)-well discovered is at most (2/k8/5) · (εk1/5/104) · k3/5 <
ε/100k4/5. Since there are at most well-discovered εk4/5/104, no well-discovered terminal belongs to
the same group with some terminal u′ that is already settled or well-discovered.

Finally, we need to prove the assumption that there is no secret Steiner node has at least εk/104 edges
discovered. Since we only performed at most ε2k6/5/109 queries, there are at most εk1/5/104 terminals
that are queried at least εk/105 times. By Claim 7.6, the probability that such terminal is secret is at
most 2/k8/5 · k = 2/k3/5. Thus with proability at least 1 − k−2/5, all these terminals are not secret.
This finishes the proof of Lemma 7.1.

45

A An O(nk)-Query (5/3)-Approximation Algorithm

In this section, we explain how the previous work [Zel93] and [Du95] lead to an O(nk)-query algorithm
for computing a (5/3)-approximate Steiner Tree. In fact, their results imply the following theorem.

Theorem 9. For any instance (V, T, w) of Steiner Tree problem, there exists a Steiner tree T ∗ with
weight at most (5/3) · ST(V, T,w), such that every edge in T ∗ is incident on some vertex in T .

We refer to such Steiner trees as good trees. From the above theorem, it is not hard to observe that
querying all terminal related distances is sufficient to find a (5/3)-approximate Steiner Tree, and the
query complexity is O(nk).

We now explain how the results in previous work [Zel93] and [Du95] imply Theorem 9.

We start by introducing some definitions. Let T be a tree, let v be a vertex of T , and let v1, . . . , vd be
the neighbors of v. For each 1 ≤ i ≤ d, we delete edges (v, v1), . . . , (v, vi−1), (v, vi+1), . . . , (v, vd), and
define Ti to be the connected component of the remaining graph that contains v, so Ti is a subtree of
T that contains v. We say that subtrees T1, . . . , Td are obtained by splitting T at v.

Consider an instance (V, T,w) and let T be a Steiner tree. Let c > 1 be an integer. We say that T
is a c-Steiner tree, iff when we split T at all terminals, then each resulting subtree contains at most
c terminals. It is easy to verify that any 2-Steiner Tree is a terminal spanning tree. We now show
that every 3-Steiner tree can be converted into a good tree with at most the same cost. Let T be a
3-Steiner tree. Assume without loss of generality that every Steiner vertex has degree at least 3 (as
otherwise we can suppress such a vertex and get another Steiner tree with at most the same cost). We
now claim that T does not contain any Steiner-Steiner edge. Assume not, then such a pair of Steiner
vertices must both belong to some subtree obtained by splitting T at all terminals, and such a subtree
contains at least (3 + 3 − 1 − 1) = 4 terminals, a contradiction. It was shown in [Zel93] and [Du95]
that, for any instance (V, T,w), there exists a 3-Steiner tree with cost at most (5/3) · ST(V, T,w), and
the ratio 5/3 here cannot be improved. Theorem 9 now follows.

B Proof of Claim 3.1

Let v1, v2, v3 be three vertices in V . Assume v1 ∈ Vx1 , v2 ∈ Vx2 , and v3 ∈ Vx3 , where x1, x2, x3 are
nodes in tree ρ. We denote by `1, `2, `3 the levels of x1, x2, x3, respectively, and assume w.l.o.g. that
`1 ≥ `2. Let x′1 be a leaf of ρ that lies in the subtree of ρ rooted at x1, and we define leaves x′2, x

′
3

similarly.

We first show that wN is a metric on V by showing that wN(v1, v2) ≤ wN(v1, v3) + wN(v2, v3). By
definition, wN(v1, v2) = distρ(x

′
1, x1) + distρ(x

′
1, x2). Let x̂ be the lowest common ancestor of nodes x1

and x2 in ρ. Assume that y is the unique vertex on the x′1 − x′2 path that is closest (under distρ) to
x3. We distinguish between the following three cases, depending on the location of y.

Case 1: y lies between (excluding) x̂ and (including) x′1. On the one hand, wN(v2, v3) ≥ distρ(x2, x3);
on the other hand, wN(v1, v3) ≥ distρ(x1, x3) + 2 ·min {distρ(x

′
1, x1), distρ(x

′
3, x3)}.

46

If y lies between (excluding) x̂ and (including) x1, then

wN(v1, v3) + wN(v2, v3) ≥ distρ(x2, x3) + distρ(x1, x3) + 2 ·min
{

distρ(x
′
1, x1),distρ(x

′
3, x3)

}
= distρ(x1, x2) + 2 · distρ(y, x3) + 2 ·min

{
distρ(x

′
1, x1), distρ(x

′
3, x3)

}
= distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 · distρ(y, x3) + 2 ·min

{
0, distρ(x

′
3, x3)− distρ(x

′
1, x1)

}
= distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 ·min

{
distρ(y, x3), distρ(y, x3) + distρ(x

′
3, x3)− distρ(x

′
1, x1)

}
≥ distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 ·min {distρ(y, x3), 0}

≥ distρ(x1, x2) + 2 · distρ(x
′
1, x1)

= distρ(x
′
1, x1) + distρ(x

′
1, x2) = wN(v1, v2).

If y lies between (excluding) x1 and (including) x′1, then

wN(v1, v3) + wN(v2, v3) ≥ distρ(x2, x3) + distρ(x1, x3) + 2 ·min
{

distρ(x
′
1, x1), distρ(x

′
3, x3)

}
= distρ(x1, x2) + 2 · distρ(y, x1) + 2 · distρ(y, x3) + 2 ·min

{
distρ(x

′
1, x1),distρ(x

′
3, x3)

}
= distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 · distρ(y, x3) + 2 ·min

{
distρ(y, x1),distρ(x

′
3, x3)− distρ(y, x

′
1)
}

≥ distρ(x1, x2) + 2 · distρ(x
′
1, x1) + 2 ·min

{
distρ(y, x3),distρ(y, x3) + distρ(x

′
3, x3)− distρ(y, x

′
1)
}

= distρ(x1, x2) + 2 · distρ(x
′
1, x1) + 2 ·min {distρ(y, x3), 0}

= distρ(x1, x2) + 2 · distρ(x
′
1, x1)

= distρ(x
′
1, x1) + distρ(x

′
1, x2) = wN(v1, v2).

Case 2: y lies between (excluding) x̂ and (including) x′2. The analysis in this case is symmetric to
that of Case 1, with an additional observation that distρ(x1, x

′
1) ≤ distρ(x2, x

′
2) (as `1 ≥ `2).

Case 3: y = x̂. In this case, from the definition of wN, wN(v2, v3) ≥ distρ(x2, x3), and wN(v1, v3) ≥
distρ(x1, x3) + 2 ·min {distρ(x

′
1, x1),distρ(x

′
3, x3)}. Therefore,

wN(v1, v3) + wN(v2, v3) ≥ distρ(x1, x2) + 2 · distρ(x̂, x3) + 2 ·min
{

distρ(x
′
1, x1), distρ(x

′
3, x3)

}
≥ distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 ·min

{
distρ(x̂, x3),distρ(x

′
3, x3) + distρ(x̂, x3)− distρ(x

′
1, x1)

}
≥ distρ(x1, x2) + 2 · distρ(x

′
1, x1) + 2 ·min {distρ(x̂, x3), 0}

= distρ(x1, x2) + 2 · distρ(x
′
1, x1)

= distρ(x
′
1, x1) + distρ(x

′
1, x2) = wN(v1, v2).

This completes the proof that wN is a metric on V .

We now proceed to show that wY is a metric on V by showing that wY(v1, v2) ≤ wY(v1, v3)+wY(v2, v3).
We distinguish between the following cases.

Case 1: v1, v2, v3 ∈ S. In this case,

wY(v1, v2) = distρ(v1, v2) ≤ distρ(v1, v3) + distρ(v2, v3) = wY(v1, v3) + wY(v2, v3).

Case 2: At most one of v1, v2, v3 lies in S. In this case,

wY(v1, v2) = wN(v1, v2) ≤ wN(v1, v3) + wN(v2, v3) = wY(v1, v3) + wY(v2, v3).

Case 3: Exactly two of v1, v2, v3 lie in S. We further consider the following subcases.

Case 3.1: v1, v2 ∈ S, and v3 /∈ S. In this case,

wY(v1, v2) ≤ wN(v1, v2) ≤ wN(v1, v3) + wN(v2, v3) = wY(v1, v3) + wY(v2, v3).

47

Case 3.2: v2, v3 ∈ S, and v1 /∈ S. The analysis in this case uses almost identical arguments as Case
1 for showing that wN is a metric (since there we only uses the fact that wN(x2, x3) ≥ distρ(x2, x3)).

Case 3.3: v1, v3 ∈ S, and v2 /∈ S. The analysis in this case uses almost identical arguments as Case
2 for showing that wN is a metric (since there we only uses the fact that wN(x1, x3) ≥ distρ(x1, x3)).

This completes the proof that wY is a metric on V .

C Proof of Observation 3.2

Let T ′ be an optimal Steiner Tree of instance (S, T, wN), and assume for contradiction that T ′ contains
an edge (ux, ux′) where ux, ux′ /∈ T (or equivalently x, x′ /∈ L(ρ)). Assume without loss of generality
that the level of x in ρ is at least the level of x′. Let x̃ be any leaf in ρ that is a descendant of x.
Consider now the unique path in T ′ connecting ux̃ to ux, that we denote by P .

Assume first that the vertex ux′ does not belong to P . Let T be the tree obtained from T ′ by replacing
the edge (ux, ux′) with edge (ux̃, ux′). It is easy to verify that T is a Steiner Tree. Moreover, from the
definition of wN,

wN(ux, ux′) = distρ(x, x
′) + 2 · distρ(x, x̃) > distρ(x, x

′) + distρ(x, x̃) = wN(ux̃, ux′),

which implies that w(T) < w(T ′), a contradiction to the assumption that T ′ is an optimal Steiner
Tree of the instance (S, T, wN).

Assume now that vertex ux′ belongs to P . Similarly, let T be the tree obtained from T ′ by replacing
the edge (ux, ux′) with the edge (ux̃, ux). It is easy to verify that T is a Steiner Tree. Moreover, from
the definition of wN,

wN(ux, ux′) = distρ(x, x
′) + 2 · distρ(x, x̃) > distρ(x, x̃) = wN(ux̃, ux),

which implies that w(T) < w(T ′), again a contradiction to the assumption that T ′ is an optimal
Steiner Tree of the instance (S, T, wN). This completes the proof of the observation.

D Proof of Observation 3.3

First of all, it is easy to see that there exists an optimal Steiner Tree such that every Steiner vertex
has degree at least 3, since we can compress degree-2 Steiner vertices without increasing the cost.

Consider now a tree T ′ such that:

1. T ′ is an optimal Steiner Tree such that every Steiner vertex has degree at least 3;

2. on top of 1, T ′ minimizes the number of Steiner vertices;

3. on top of 1 and 2, T ′ maximizes the sum of levels of all its Steiner vertices; and

4. on top of 1, 2, and 3, T ′ minimizes the number of edges incident to Steiner vertices.

For each Steiner vertex ux in T ′, we denote by d0(x), d1(x), d2(x) the number of neighbors of ux in
sets T0(x), T1(x), T2(x), respectively. Consider now a Steiner vertex ux in T ′. Let ux′ be the parent of
ux, and let ux1 , ux2 be the children of ux, where ux1 ∈ S1(x) and ux2 ∈ S2(x). We distinguish between
the following cases.

Case 1: One of d0(x), d1(x), d2(x) is 0. Assume first that d0(x) = 0. Then if d1(x) ≥ d2(x), we can
replace Steiner vertex ux with ux1 (that is, delete from T ′ the vertex ux and all its incident edges, and

48

replace them with vertex ux1 and edges in {(u, ux1) | (u, ux) ∈ E(T ′)}), without increasing the total
cost. In this way, we either reduce the number of Steiner vertices by 1, or increase the sum of levels
of all Steiner vertices, a contradiction to either 2 or 3. The case where d1(x) ≤ d2(x) is symmetric.
Assume now that d1(x) = 0 (the case where d2(x) = 0 is symmetric). Then if d2(x) ≥ d0(x), we can
replace ux with ux2 either reducing the number of Steiner vertices or increasing the sum of levels of
all Steiner vertices, leading to a contradiction to 2 or 3; if d2(x) < d0(x), we can replace ux with ux′ ,
reducing the total cost, leading to a contradiction to 1.

Case 2: One of d1(x), d2(x) is at least 2. Assume w.l.o.g. that d1(x) ≥ 2. Let u, u′ be two vertices of
T1(x) that are adjacent to ux in T ′. We can replace the edge (u, ux) with edge (u, u′), and it is easy
to verify from the definition of wN that this does increase the total cost, leading to a contradiction to
4.

Case 3: d1(x) = d2(x) = 1 and d0(x) > 2. In this case, we can replace ux with ux′ , reducing the total
cost, leading to a contradiction to 1.

Altogether, we get that d1(x) = d2(x) = 1 and d0(x) is either 1 or 2, completing the proof of property
(i) in the observation. We now focus on proving property (ii). Let T ′ be the tree defined above. Let u1
(u2, resp.) be the neighbor of ux in T1(x) (T2(x), resp.). Assume for contradiction that in there exists
some vertex u ∈ T1(x) such that u /∈W1. From similar arguments in the proof of Observation 3.2, we
can replace the edge (u1, ux) with edge (u1, u), obtaining another optimal Steiner Tree with less edges
incident to Steiner vertices, a contradiction to 4. Assume for contradiction that in there exists some
vertex u /∈ T1(x) such that u ∈W1. We root tree W1 at u1, and it is easy to see that there exists some
pair u′, u′′ of vertices in W1, such that u′ ∈ T1(x), u′′ /∈ T1(x) and u′ is the parent of u′′. Similarly,
we can replace the edge (u′, u′′) with edge (ux, u

′′), obtaining another Steiner Tree with strictly lower
cost, a contradiction to 1. Therefore, T1(x) ⊆ V (W1) ⊆ S1(x). The proof of T2(x) ⊆ V (W2) ⊆ S2(x)
is symmetric.

Last, we prove property (iii) in the observation. Let T ′ be the tree defined above. Consider a Steiner
vertex ux in T ′. We denote by ux′ the parent of ux, and denote by ux̂ the other child of ux′ . Assume for
contradiction that both ux and ux′ belong to T ′. From property (i), ux′ has a neighbor in T (x), that
we denote by u. From property (ii), since u ∈ T (x), vertex u belongs to either W1 or W2. However,
ux′ /∈ R(x), so u does not belong to either W1 or W2, a contradiction to the fact that ux′ and u are
connected by an edge. Assume for contradiction that both ux and ux̂ belong to tree T ′. Let u be
the neighbor of ux that belongs to the same connected component of T ′ \ {ux} as ux̂. From property
(i) and (ii) on ux̂, u does not belong to the corresponding subgraphs Ŵ1, Ŵ2 for ux̂. Let û be any
leaf of T (x̂). Via similar arguments, we can replace the edge (ux, u) with the edge (ux, û), obtaining
another Steiner Tree with strictly lower cost, a contradiction to 1. Assume for contradiction that none
of ux, ux′ , ux̂ belongs to T ′. Via similar arguments, it is easy to verify that we can add either ux or ux̂
to T ′ and deleting some edges, obtaining another Steiner Tree with strictly lower cost, a contradiction
to 1.

E Analysis of the Algorithm in Section 6.1

In this section, we show that the spanning tree T output by the algorithm in Section 6.1 is with high
probability an α-approximate Steiner Tree. We denote by MST the minimum spanning tree cost on
T . Therefore, it suffices to show that, with high probability, w(T) ≤ (α/2) ·MST, as MST is at most
twice the minimum Steiner Tree cost. Recall that β = α/(100 log n).

Let T ∗ be a minimum spanning tree on T . Let π = (u1, u2, . . . , u2k−2) be an Euler-tour of T ∗, and
for each 1 ≤ t ≤ 2k − 2, we let Rπ,t = {ui | t ≤ i ≤ t+ 20β log n}. We define a bad event ξ as follows.

49

Bad event ξ. Let ξ be the event that there exists some t, such that Rπ,t ∩ T ′ = ∅. We now show
that Pr[ξ] = O(n−9). Since each edge of T ∗ appears at most twice in the set {(ui, ui+1) | ui ∈ Rπ,t},
Rπ,t contains at least 10β log n distinct vertices. Therefore, the probability that a random subset of
dn/βe vertices in V does not intersect with Rπ,t is at most (1− (10β log n/k))k/β ≤ n−10. Taking the
union bound over all 1 ≤ t ≤ 2k − 2, we get that Pr[ξ1] = O(n−9). Note that, if the event ξ does not
happen, then every consecutive window of π of length 20β log n contains at least one element of T ′.

Let ui1 , ui2 , . . . , uit′ be the vertices of π that belongs to T ′ (t′ may be larger than |T ′| since we keep
all copies of the same vertex), then for each 1 ≤ j ≤ t′, |ij − ij+1| ≤ 20β log n.

Let u be any terminal in T \T ′. Assume that the first appearance of u in π is between uij and uij+1 , so
w(u, T ′) ≤ min

{
w(u, uij), w(u, uij+1)

}
≤ w(uij , uij+1), which is at most the total weight of all edges

in π between uij and uij+1 . So from triangle inequality, distπ(u, T ′) ≤
∑

ij≤t≤ij+1−1w(vt, vt+1). As

|ij−ij+1| ≤ 20β log n holds for all 1 ≤ j ≤ t′,
∑

u∈T\T ′ w(u, f(u)) ≤ 20β log n·w(T ∗) ≤ 20β log n·MST.

Finally, since w(T ′) ≤ MST, we conclude that w(T) ≤ 21β log n ·MST ≤ (α/2) ·MST. Altogether, we
conclude that, with probability 1−O(n−9), the spanning tree T output by the algorithm in Section 6.1
is an α-approximate Steiner Tree.

Acknowledgements

We thank anonymous reviwers for helpful comments and for pointing to us the previous work [Du95]
and [Zel93].

References

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (δ+ 1) vertex
coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 767–786. SIAM, 2019.

[BD97] Al Borchers and Ding-Zhu Du. The k-steiner ratio in graphs. SIAM Journal on Comput-
ing, 26(3):857–869, 1997.

[Beh21] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 873–884. IEEE, 2021.

[BGRS10] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanita. An improved lp-
based approximation for steiner tree. In Proceedings of the forty-second ACM symposium
on Theory of computing, pages 583–592, 2010.

[CC08] Miroslav Chleb́ık and Janka Chleb́ıková. The steiner tree problem on graphs: Inapprox-
imability results. Theoretical Computer Science, 406(3):207–214, 2008.

[CKT22] Yu Chen, Sanjeev Khanna, and Zihan Tan. Sublinear algorithms and lower bounds for
estimating mst and tsp cost in general metrics. arXiv preprint arXiv:2203.14798, 2022.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM Journal on computing, 34(6):1370–1379,
2005.

[CS09] Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning
trees in sublinear time. SIAM Journal on Computing, 39(3):904–922, 2009.

50

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis
of randomized algorithms. Cambridge University Press, 2009.

[Du95] Ding-Zhu Du. On component-size bounded steiner trees. Discrete applied mathematics,
60(1-3):131–140, 1995.

[FN20] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS.
ACM Trans. Algorithms, 16(1):6:1–6:13, 2020.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

[GMRV20] Christoph Grunau, Slobodan Mitrović, Ronitt Rubinfeld, and Ali Vakilian. Improved local
computation algorithm for set cover via sparsification. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2993–3011. SIAM, 2020.

[GORZ12] Michel X Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and
integrality gaps for hypergraphic steiner tree relaxations. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing, pages 1161–1176, 2012.

[GP68] Edgar N Gilbert and Henry O Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16(1):1–29, 1968.

[GR97] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 406–415,
1997.

[HK13] Mathias Hauptmann and Marek Karpiński. A compendium on Steiner tree problems. Inst.
für Informatik, 2013.

[HPIMV16] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds
for the streaming set cover problem. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 371–383, 2016.

[IMR+18] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Ali Vakilian, and Anak Yodpinyanee.
Set cover in sub-linear time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2467–2486. SIAM, 2018.

[KZ97] Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the steiner
tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

[RZ05] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approx-
imation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

[TZ22] Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner
tree. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3253–3272. SIAM, 2022.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of com-
plexity. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977),
pages 222–227. IEEE Computer Society, 1977.

51

[Zel93] Alexander Z Zelikovsky. An 11/6-approximation algorithm for the network steiner prob-
lem. Algorithmica, 9(5):463–470, 1993.

[Zel96] Alexander Zelikovsky. Better approximation bounds for the network and euclidean steiner
tree problems. Technical report, CS-96-06, Department of Computer Science, University
of Virginia, 1996.

52

	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 An (n2) Lower Bound for (5/3-)-Estimation
	4 Algorithm for a (2-0)-Estimation of Steiner Tree Cost
	4.1 An Algorithm with the Terminal-Induced Metric Given Upfront
	4.2 Proof of thm: sec cover
	4.3 Implementation without Knowing the Terminal-Induced Metric Upfront

	5 An (nk) Lower Bound for (2-)-Approximate Steiner Tree
	6 Upper and Lower Bounds for -Approximate Steiner Tree (2)
	6.1 Upper Bound
	6.2 Lower Bound

	7 An (n+k6/5) Query Lower Bound for (2-)-Estimation
	7.1 An (n) Lower Bound
	7.2 An (k6/5) Lower Bound
	7.2.1 Completing the Proof of the (k6/5) Lower Bound
	7.2.2 Proof of lem:settle-sp for DN
	7.2.3 Proof of lem:settle-sp for DY

	A An O(nk)-Query (5/3)-Approximation Algorithm
	B Proof of clm: YN metrics
	C Proof of obs: edges love terminal
	D Proof of obs: OPTprops
	E Analysis of the Algorithm in subsec: >2upper

