
ar
X

iv
:1

80
1.

02
79

3v
2

 [
cs

.D
S]

 2
3

A
ug

 2
01

8

Tight Bounds on the Round Complexity of the Distributed

Maximum Coverage Problem

Sepehr Assadi∗ Sanjeev Khanna∗

Abstract

We study the maximum k-set coverage problem in the following distributed setting. A
collection of sets S1, . . . , Sm over a universe [n] is partitioned across p machines and the goal
is to find k sets whose union covers the most number of elements. The computation proceeds
in synchronous rounds. In each round, all machines simultaneously send a message to a central
coordinator who then communicates back to all machines a summary to guide the computation
for the next round. At the end of the last round, the coordinator outputs the answer. The main
measures of efficiency in this setting are the approximation ratio of the returned solution, the
communication cost of each machine, and the number of rounds of computation.

Our main result is an asymptotically tight bound on the tradeoff between these three mea-
sures for the distributed maximum coverage problem. We first show that any r-round protocol
for this problem either incurs a communication cost of k ·mΩ(1/r) or only achieves an approxima-
tion factor of kΩ(1/r). This in particular implies that any protocol that simultaneously achieves
good approximation ratio (O(1) approximation) and good communication cost (Õ(n) communi-
cation per machine), essentially requires logarithmic (in k) number of rounds. We complement
our lower bound result by showing that there exist an r-round protocol that achieves an e

e−1 -

approximation (essentially best possible) with a communication cost of k · mO(1/r) as well as

an r-round protocol that achieves a kO(1/r)-approximation with only Õ(n) communication per
each machine (essentially best possible).

We further use our results in this distributed setting to obtain new bounds for the maximum
coverage problem in two other main models of computation for massive datasets, namely, the
dynamic streaming model and the MapReduce model.

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants CCF-1552909 and CCF-1617851. Email: {sassadi,sanjeev}@cis.upenn.edu.

http://arxiv.org/abs/1801.02793v2

1 Introduction

A common paradigm for designing scalable algorithms for problems on massive data sets is to
distribute the computation by partitioning the data across multiple machines interconnected via
a communication network. The machines can then jointly compute a function on the union of
their inputs by exchanging messages. A well-studied and important case of this paradigm is the
coordinator model (see, e.g., [35, 61, 69]). In this model, the computation proceeds in rounds, and
in each round, all machines simultaneously send a message to a central coordinator who then
communicates back to all machines a summary to guide the computation for the next round. At
the end of the last round, the coordinator outputs the answer. Main measures of efficiency in this
setting are the communication cost, i.e., the total number of bits communicated by each machine,
and the round complexity, i.e., the number of rounds of computation.

The distributed coordinator model (and the closely related message-passing model1) has been
studied extensively in recent years (see, e.g., [23, 61, 68–70], and references therein). Traditionally,
the focus in this model has been on optimizing the communication cost and round complexity issues
have been ignored. However, in recent years, motivated by application to big data analysis such as
MapReduce computation, there have been a growing interest in obtaining round efficient protocols
for various problems in this model (see, e.g., [3, 4, 10, 13, 31, 39, 40, 45, 48, 58]).

In this paper, we study the maximum coverage problem in the coordinator model: A collection
of input sets S := {S1, . . . , Sm} over a universe [n] is arbitrarily partitioned across p machines,
and the goal is to select k sets whose union covers the most number of elements from the universe.
Maximum coverage is a fundamental optimization problem with a wide range of applications in
various domains (see, e.g., [37, 50, 52, 66] for some applications). As an illustrative example of
submodular maximization, the maximum coverage problem has been studied in various recent works
focusing on scalable algorithms for massive data sets including in the coordinator model (e.g., [45,
58]), MapReduce framework (e.g., [28, 53]), and the streaming model (e.g. [20, 57]); see Section 1.1
for a more comprehensive summary of previous results.

Previous results for maximum coverage in the distributed model can be divided into two main
categories: one on hand, we have communication efficient protocols that only need Õ(n) commu-
nication and achieve a constant factor approximation, but require a large number of rounds of
Ω(p) [15, 57]2. On the other hand, we have round efficient protocols that achieve a constant factor
approximation in O(1) rounds of communication, but incur a large communication cost k ·mΩ(1) [53].

This state-of-the-affairs, namely, communication efficient protocols that require a large number
of rounds, or round efficient protocols that require a large communication cost, raises the following
natural question: Does there exist a truly efficient distributed protocol for maximum coverage, that
is, a protocol that simultaneously achieves Õ(n) communication cost, O(1) round complexity, and
gives a constant factor approximation? This is the precisely the question addressed in this work.

1.1 Our Contributions

Our first result is a negative resolution of the aforementioned question. In particular, we show that,

Result 1. For any integer r ≥ 1, any r-round protocol for distributed maximum coverage either
incurs k ·mΩ(1/r) communication per machine or has an approximation factor of kΩ(1/r).

Prior to our work, the only known lower bound for distributed maximum coverage was due

1In absence of any restriction on round complexity, these two models are equivalent; see, e.g., [61].
2We remark that the algorithms of [15,57] are originally designed for the streaming setting and in that setting are

quite efficient as they only require one or a constant number of passes over the stream. However, implementing one
pass of a streaming algorithm in the coordinator model directly requires p rounds of communication.

1

to McGregor and Vu [57] who showed an Ω(m) communication lower bound for any protocol that

achieves a better than
(

e
e−1

)
-approximation (regardless of number of rounds and even if the input is

randomly distributed). Indyk et al. [45] also showed that no composable coreset (a restricted family
of single round protocols) can achieve a better than Ω̃(

√
k) approximation without communicating

essentially the whole input (which is known to be tight [31]). However, no super constant lower
bounds on approximation ratio were known for this problem for arbitrary protocols even for one
round of communication. Our result on the other hand implies that to achieve any constant factor

approximation with any O(nc) communication protocol (for a fixed constant c > 0), Ω
(

log k
log log k

)

rounds of communication are required.
In establishing Result 1, we introduce a general framework for proving communication complex-

ity lower bounds for bounded round protocols in the distributed coordinator model. This framework,
formally introduced in Section 4, captures many of the existing multi-party communication com-
plexity lower bounds in the literature for bounded-round protocols including [12,13,34,51] (for one
round a.k.a simultaneous protocols), and [7, 8] (for multi-round protocols). We believe our frame-
work will prove useful for establishing distributed lower bound results for other problems, and is
thus interesting in its own right.

We complement Result 1 by giving protocols that show that its bounds are essentially tight.

Result 2. For any integer r ≥ 1, there exist r-round protocols that achieve:

1. an approximation factor of (almost) e
e−1 with k ·mO(1/r) communication per machine, or

2. an approximation factor of O(r · k1/r+1) with Õ(n) communication per machine.

Results 1 and 2 together provide a near complete understanding of the tradeoff between the
approximation ratio, the communication cost, and the round complexity of protocols for the dis-
tributed maximum coverage problem for any fixed number of rounds.

The first protocol in Result 2 is quite general in that it works for maximizing any monotone
submodular function subject to a cardinality constraint. Previously, it was known how to achieve a
2-approximation distributed algorithm for this problem with mO(1/r) communication and r rounds

of communication [53]. However, the previous best
(

e
e−1

)
-approximation distributed algorithm

for this problem with sublinear in m communication due to Kumar et al. [53] requires at least

Ω(log n) rounds of communication. As noted above, the
(

e
e−1

)
is information theoretically the best

approximation ratio possible for any protocol that uses sublinear in m communication [57].
The second protocol in Result 2 is however tailored heavily to the maximum coverage problem.

Previously, it was known that an O(
√
k) approximation can be achieved via Õ(n) communication [31]

per machine, but no better bounds were known for this problem in multiple rounds under poly(n)
communication cost. It is worth noting that since an adversary may assign all sets to a single
machine, a communication cost of Õ(n) is essentially best possible bound. We now elaborate on
some applications of our results.

Dynamic Streams. In the dynamic (set) streaming model, at each step, either a new set is
inserted or a previously inserted set is deleted from the stream. The goal is to solve the maxi-
mum coverage problem on the sets that are present at the end of the stream. A semi-streaming
algorithm is allowed to make one or a small number of passes over the stream and use only
O(n · poly {logm, log n}) space to process the stream and compute the answer. The streaming
setting for the maximum coverage problem and the closely related set cover problem has been stud-
ied extensively in recent years [9,11,14,15,20,25–27,29,33,36,37,43,57,66]. Previous work considered

2

this problem in insertion-only streams and more recently in the sliding window model; to the best
of our knowledge, no non-trivial results were known for this problem in dynamic streams3. Our
Results 1 and 2 imply the first upper and lower bounds for maximum coverage in dynamic streams.

Result 1 together with a recent characterization of multi-pass dynamic streaming algorithms [5]
proves that any semi-streaming algorithm for maximum coverage in dynamic streams that achieves

any constant approximation requires Ω
(

logn
log logn

)
passes over the stream. This is in sharp contrast

with insertion-only streams in which semi-streaming algorithms can achieve (almost) 2-approximation

in only a single pass [15] or (almost)
(

e
e−1

)
-approximation in a constant number of passes [57] (con-

stant factor approximations are also known in the sliding window model [27,37]). To our knowledge,
this is the first multi-pass dynamic streaming lower bound that is based on the characterization of [5].
Moreover, as maximum coverage is a special case of submodular maximization (subject to cardinal-
ity constraint), our lower bound immediately extends to this problem and settles an open question
of [37] on the space complexity of submodular maximization in dynamic streams.

We complement this result by showing that one can implement the first algorithm in Result 2 us-

ing proper linear sketches in dynamic streams, which imply an (almost)
(

e
e−1

)
-approximation semi-

streaming algorithm for maximum coverage (and monotone submodular maximization) in O(logm)
passes. As a simple application of this result, we can also obtain an O(log n)-approximation semi-
streaming algorithm for the set cover problem in dynamic stream that requires O(logm · log n)
passes over the stream.

MapReduce Framework. In the MapReduce model, there are p machines each with a memory
of size s such that p · s = O(N), where N is the total memory required to represent the input.
MapReduce computation proceeds in synchronous rounds where in each round, each machine per-
forms some local computation, and at the end of the round sends messages to other machine to
guide the computation for the next round. The total size of messages received by each machine,
however, is restricted to be O(s). Following [49], we require both p and s to at be at most N1−Ω(1).
The main complexity measure of interest in this model is typically the number of rounds. Maxi-
mum coverage and submodular maximization have also been extensively studied in the MapReduce
model [19, 22, 28, 31, 32, 45, 53, 58, 59].

Proving round complexity lower bounds in the MapReduce framework turns out to be a chal-
lenging task (see, e.g., [64] for implication of such lower bounds to long standing open problems in
complexity theory). As a result, most previous work on lower bounds concerns either communica-
tion cost (in a fixed number of rounds) or specific classes of algorithms (for round lower bounds);
see, e.g., [1, 21, 46, 62] (see [64] for more details). Our results contribute to the latter line of work
by characterizing the power of a large family of MapReduce algorithms for maximum coverage.

Many existing techniques for MapReduce algorithms utilize the following paradigm which we
call the sketch-and-update approach: each machine sends a summary of its input, i.e., a sketch,
to a single designated machine which processes these sketches and computes a single combined
sketch; the original machines then receive this combined sketch and update their sketch compu-
tation accordingly; this process is then continued on the updated sketches. Popular algorithmic
techniques belonging to this framework include composable coresets (e.g., [15, 17, 18, 45]), the fil-
tering method (e.g., [55]), linear-sketching algorithms (e.g., [2–4, 48]), and the sample-and-prune
technique (e.g., [44, 53]), among many others.

We use Result 1 to prove a lower bound on the power of this approach for solving maximum

3A related problem of maximum k-vertex coverage, corresponding to picking k vertices in a graph to cover the
most number of edges, was very recently studied in [57]. In this problem, the edges of the graph (corresponding to
elements in maximum coverage) are being presented in a dynamic stream.

3

coverage in the MapReduce model. We show that any MapReduce algorithm for maximum coverage
in the sketch-and-update framework that uses s = mδ memory per machine requires Ω(1δ) rounds of
computation. Moreover, both our algorithms in Result 2 belong to the sketch-and-update framework
and can be implemented in the MapReduce model. In particular, the round complexity of our first
algorithm for monotone submodular maximization (subject to cardinality constraint) in Result 2
matches the best known algorithm of [32] with the benefit of using sublinear communication (the
algorithm of [32], in each round, incurs a linear (in input size) communication cost). We remark
that the algorithm in [32] is however more general in that it supports a larger family of constraints
beside the cardinality constraint we study in this paper.

2 Preliminaries

Notation. For a collection of sets C = {S1, . . . , St}, we define c(C) := ∪i∈[t]Si, i.e., the set of
elements covered by C. For a tuple X = (X1, . . . ,Xt) and index i ∈ [t], X<i := (X1, . . . ,Xi−1) and
X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xt). We use sans serif fonts to denote random variables, i.e., X.

For a random variable X over a support ΩX, dist(X) denotes the distribution of X and |X| :=
log |ΩX|. We use H(X) and I(X ;Y) to denote the Shannon entropy of X and mutual information of
X and Y, respectively. For any two distributions µ and ν over the same probability space, D(µ || ν)
and ‖µ− ν‖ denote the Kullback-Leibler divergence and the total variation distance between µ and
ν, respectively. A summary of information theory facts used in this paper appears in Appendix A.

2.1 Communication Complexity Model

We prove our lower bound for distributed protocols using the framework of communication com-
plexity, and in particular in the (number-in-hand) multiparty communication model with shared
blackboard: there are p players (corresponding to machines) receiving inputs (x1, . . . , xp) from a
prior distribution D on X1 × . . .Xp. The communication happens in rounds and in each round, the
players simultaneously write a message to a shared blackboard visible to all parties. The message
sent by any player i in each round can only depend on the input of the player, i.e., xi, the current
content of the blackboard, i.e., the messages communicated in previous rounds, and public and
private randomness. In addition to p players, there exists a central party called the referee (corre-
sponding to the coordinator) who only sees the content of the blackboard and public randomness
and is responsible for outputting the answer in the final round.

For a protocol π, we use Π = (Π1, . . . ,Πp) to denote the transcript of the messages communicated
by all players, i.e., the content of the blackboard. The communication cost of a protocol π, denoted
by ‖π‖, is the sum of worst-case length of the messages communicated by all players, i.e., ‖π‖ :=∑p

i=1 |Πi|. We further refer to maxi∈[p] |Πi| as the per-player communication cost of π. We remark
that this model is identical to the distributed setting introduced earlier if we allow the coordinator
to communicate with machines free of charge. As a result, communication lower bounds in this
model imply identical communication lower bounds for distributed protocols. We refer the reader
to the excellent text by Kushilevitz and Nisan [54] for more details on communication complexity.

2.2 Submodular Maximization with Cardinality Constraint

Let V = {a1, . . . , am} be a ground set of m items. For any set function f : 2V → R and any A ⊆ V ,
we define the marginal contribution to f as a set function fA : 2V → R such that for all B ⊆ V ,
fA(B) = f(A∪B)− f(A). When clear from the context, we abuse the notation and for a ∈ V , use
f(a) and fA(a) instead of f({a}) and fA({a}), respectively. A function f is submodular iff for all
A ⊆ B ⊆ V and for all a ∈ V , fB(a) ≤ fA(a). A submodular function f is additionally monotone
iff ∀A ⊆ B ⊆ V , f(A) ≤ f(B).

The maximum coverage problem is a special case of maximizing a monotone submodular function

4

subject to a cardinality constraint of k, i.e., finding A⋆ ∈ argmaxA:|A|=k f(A): for any set S in

maximum coverage we can have an item aS ∈ V and for each A ⊆ V , define f(A) =
∣∣∣
⋃
aS∈A

S
∣∣∣. It

is easy to verify that f(·) is monotone submodular.
We use the following standard facts about monotone submodular functions in our proofs.

Fact 2.1. Let f(·) be a monotone submodular function, then:

∀A ⊆ V,B ⊆ V f(B) ≤ f(A) +
∑

a∈B\A

fA(a).

Fact 2.2. Let f(·) be a submodular function, then, for any A ⊆ V , fA(·) is subadditive, i.e.,
fA(B ∪C) ≤ fA(B) + fA(C) for all B,C ⊆ V .

3 Technical Overview

Lower Bounds (Result 1). Let us start by sketching our proof for simultaneous protocols. We
provide each machine with a collection of sets from a family of sets with small pairwise intersection
such that locally, i.e., from the perspective of each machine, all these sets look alike. At the same
time, we ensure that globally, one set in each machine is special ; think of a special set as covering a
unique set of elements across the machines while all other sets are mostly covering a set of shared
elements. The proof now consists of two parts: (i) use the simultaneity of the communication
to argue that as each machine is oblivious to identity of its special set, it cannot convey enough
information about this set using limited communication, and (ii) use the bound on the size of the
intersection between the sets to show that this prevents the coordinator to find a good solution.

The strategy outlined above is in fact at the core of many existing lower bounds for simultaneous
protocols in the coordinator model including [12,13,34,51] (a notable exception is the lower bound
of [12] on estimating matching size in sparse graphs). For example, to obtain the hard input
distributions in [13, 51] for the maximum matching problem, we just need to switch the sets in the
small intersecting family above with induced matchings in a Ruzsa-Szemerédi graph [65] (see also [6]
for more details on these graphs). The first part of the proof that lower bounds the communication
cost required for finding the special induced matchings (corresponding to special sets above), remains
quite similar; however, we now need an entirely different argument for proving the second part, i.e.,
the bound obtained on the approximation ratio. This observation raises the following question: can
we somehow “automate” the task of proving a communication lower bound in the arguments above
so that one can focus solely on the second part of the argument, i.e., proving the approximation
lower bound subject to each machine not being able to find its special entity, e.g., sets in the coverage
problem and induced matchings in the maximum matching problem?

We answer this question in the affirmative by designing a framework for proving communication
lower bounds of the aforementioned type. We design an abstract hard input distribution using
the ideas above and prove a general communication lower bound in this abstraction. This reduces
the task of proving a communication lower bound for any specific problem to designing suitable
combinatorial objects that roughly speaking enforce the importance of “special entities” discussed
above. We emphasize that this second part may still be a non-trivial challenge; for instance, lower
bounds for matchings in [13, 51] rely on Ruzsa-Szemerédi graphs to prove this part. Nevertheless,
automating the task of proving a communication lower bound in our framework allows one to focus
solely on a combinatorial problem and entirely bypass the communication lower bounds argument.

We further extend our framework to multi round protocols by building on the recent multi-party
round elimination technique of [7] and its extension in [8]. At a high level, in the hard instances of
r-round protocols, each machine is provided with a collection of instances of the same problem but

5

on a “lower dimension”, i.e., defined on a smaller number of machines and input size. One of these
instances is a special one in that it needs to be solved by the machines in order to solve the original
instance. Again, using the simultaneity of the communication in one round, we show that the first
round of communication cannot reveal enough information about this special instance and hence
the machines need to solve the special instance in only r − 1 rounds of communication, which is
proven to be hard inductively. Using the abstraction in our framework allows us to solely focus on
the communication aspects of this argument, independent of the specifics of the problem at hand.
This allows us to provide a more direct and simpler proof than [7, 8], which is also applicable to a
wider range of problems (the results in [7,8] are for the setting of combinatorial auctions). However,
although simpler than [7, 8], this proof is still far from being simple - indeed, it requires a delicate
information-theoretic argument (see Section 4 for further details). This complexity of proving a
multi-round lower bound in this model is in fact another motivation for our framework. To our
knowledge, the only previous lower bounds specific to bounded round protocols in the coordinator
model are those of [7, 8]; we hope that our framework facilitates proving such lower bounds in
this model (understanding the power of bounded round protocols in this model is regarded as an
interesting open question in the literature; see, e.g., [69]).

Finally, we prove the lower bound for maximum coverage using this framework by designing a
family of sets which we call randomly nearly disjoint ; roughly speaking the sets in this family have
the property that any suitably small random subset of one set is essentially disjoint from any other
set in the family. A reader familiar with [26] may realize that this definition is similar to the edifice
set-system introduced in [26]; the main difference here is that we need every random subsets of each
set in the family to be disjoint from other sets, as opposed to a pre-specified collection of sets as
in edifices [26]. As a result, the algebraic techniques of [26] do not seem suitable for our purpose
and we prove our results using different techniques. The lower bound then follows by instantiating
the hard distribution in our framework with this family for maximum coverage and proving the
approximation lower bound.

Upper Bounds (Result 2). We achieve the first algorithm in Result 2, namely an
(

e
e−1

)
-

approximation algorithm for maximum coverage (and submodular maximization), via an imple-
mentation of a thresholding greedy algorithm (see, e.g., [16, 26]) in the distributed setting using
the sample-and-prune technique of [53] (a similar thresholding greedy algorithm was used recently
in [57] for streaming maximum coverage). The main idea in the sample-and-prune technique is to
sample a collection of sets from the machines in each round and send them to the coordinator who
can build a partial greedy solution on those sets; the coordinator then communicates this partial
solution to each machine and in the next round the machines only sample from the sets that can
have a substantial marginal contribution to the partial greedy solution maintained by the coordina-
tor. Using a different greedy algorithm and a more careful choice of the threshold on the necessary

marginal contribution from each set, we show that an
(

e
e−1

)
-approximation can be obtained in con-

stant number of rounds and sublinear communication (as opposed to the original approach of [53]
which requires Ω(log n) rounds).

The second algorithm in Result 2, namely a kO(1/r)-approximation algorithm for any number
of rounds r, however is more involved and is based on a new iterative sketching method specific to
the maximum coverage problem. Recall that in our previous algorithm the machines are mainly
“observers” and simply provide the coordinator with a sample of their input; our second algorithm
is in some sense on the other extreme. In this algorithm, each machine is responsible for computing
a suitable sketch of its input, which roughly speaking, is a collection of sets that tries to “represent”
each optimal set in the input of this machine. The coordinator is also maintaining a greedy solution

6

that is updated based on the sketches received from each machine. The elements covered by this
collection are shared by the machines to guide them towards the sets that are “misrepresented” by the
sketches computed so far, and the machines update their sketches for the next round accordingly. We
show that either the greedy solution maintained by the coordinator is already a good approximation
or the final sketches computed by the machines are now a good representative of the optimal sets
and hence contain a good solution.

4 A Framework for Proving Distributed Lower Bounds

We introduce a general framework for proving communication complexity lower bounds for bounded
round protocols in the distributed coordinator model. Consider a decision problem4 P defined by
the family of functions Ps : {0, 1}s → {0, 1} for any integer s ≥ 1; we refer to s as size of the problem
and to {0, 1}s as its domain. Note that Ps can be a partial function, i.e., not necessarily defined
on its whole domain. An instance I of problem Ps is simply a binary string of length s. We say
that I is a Yes instance if Ps(I) = 1 and is a No instance if Ps(I) = 0. For example, Ps can denote
the decision version of the maximum coverage problem over m sets and n elements with parameter
k (in which case s would be a fixed function of m, n, and k depending on the representation of
the input) such that there is a relatively large gap (as a function of, say, k) between the value of
optimal solution in Yes and No instances. We can also consider the problem Ps in the distributed
model, whereby we distribute each instance between the players. The distributed coverage problem
for instance, can be modeled here by partitioning the sets in the instances of Ps across the players.

To prove a communication lower bound for some problem P, one typically needs to design
a hard input distribution D on instances of the problem P, and then show that distinguishing
between the Yes and No cases in instances sampled from D, with some sufficiently large probability,
requires large communication. Such a distribution inevitably depends on the specific problem P
at hand. We would like to abstract out this dependence to the underlying problem and design
a template hard distribution for any problem P using this abstraction. Then, to achieve a lower
bound for a particular problem P, one only needs to focus on the problem specific parts of this
template and design them according to the problem P at hand. We emphasize that obviously we
are not going to prove a communication lower bound for every possible distributed problem; rather,
our framework reduces the problem of proving a communication lower bound for a problem P to
designing appropriate problem-specific gadgets for P, which determine the strength of the lower
bound one can ultimately prove using this framework. With this plan in mind, we now describe a
high level overview of our framework.

4.1 A High Level Overview of the Framework

Consider any decision problem P; we construct a recursive family of distributions D0,D1, . . . where
Dr is a hard input distribution for r-round protocols of Psr , i.e., for instances of size sr of the
problem P, when the input is partitioned between pr players. Each instance in Dr is a careful
“combination” of many sub-instances of problem Psr−1 over different subsets of pr−1 players, which
are sampled (essentially) from Dr−1. We ensure that a small number of these sub-instances are
“special” in that to solve the original instance of Psr , at least one of these instances of Psr−1 (over
pr−1 players) needs to be solved necessarily. We “hide” the special sub-instances in the input of
players in a way that locally, no player is able to identify them and show that the first round of
communication in any protocol with a small communication is spent only in identifying these special
sub-instances. We then inductively show that as solving the special instance is hard for (r−1)-round
protocols, the original instance must be hard for r-round protocols as well.

4While we present our framework for decision problems, with some modifications, it also extends to search prob-
lems. We elaborate more on this in Appendix B.

7

We now describe this distribution in more detail. The pr players in the instances of distribution
Dr are partitioned into gr groups P1, . . . , Pgr , each of size pr−1 (hence gr = pr/pr−1). For every
group i ∈ [gr] and every player q ∈ Pi, we create wr instances Ii1, . . . , I

i
wr

of the problem Psr−1

sampled from the distribution Dr−1. The domain of each instance Iij is the same across all players
in Pi and is different (i.e., disjoint) between any two j 6= j′ ∈ [wr]; we refer to wr as the width
parameter. The next step is to pack all these instances into a single instance Ii(q) for the player q;
this is one of the places that we need a problem specific gadget, namely a packing function5 that
can pack wr instances of problem Psr−1 into a single instance of problem Ps′r for some s′r ≥ sr. We
postpone the formal description of the packing functions to the next section, but roughly speaking,
we require each player to be able to construct the instance Ii(q) from the instances Ii1, . . . , I

i
wr

and
vice versa. As such, even though each player is given as input a single instance Ii, we can think of
each player as conceptually “playing” in wr different instances Ii1, . . . , I

i
wr

of Psr−1 instead.
In each group i ∈ [gr], one of the instances, namely Iij⋆ for j⋆ ∈ [wr], is the special instance of the

group: if we combine the inputs of players in Pi on their special instance Iij⋆ , we obtain an instance
which is sampled from the distribution Dr−1. On the other hand, all other instances are fooling
instances: if we combine the inputs of players in Pi on their instance Iij for j 6= j⋆, the resulting
instance is not sampled from Dr−1; rather, it is an instance created by picking the input of each
player independently from the corresponding marginal of Dr−1 (Dr−1 is not a product distribution,
thus these two distributions are not identical). Nevertheless, by construction, each player is oblivious
to this difference and hence is unaware of which instance in the input is the special instance (since
the marginal distribution of a player’s input is identical under the two distributions above).

Finally, we need to combine the instances I1, . . . , Igr to create the final instance I. To do this, we
need another problem specific gadget, namely a relabeling function. Roughly speaking, this function
takes as input the index j⋆, i.e., the index of the special instances, and instances I1, . . . , Igr and
create the final instance I, while “prioritizing” the role of special instances in I. By prioritizing we
mean that in this step, we need to ensure that the value of Psr on I is the same as the value of Psr−1

on the special instances. At the same time, we also need to ensure that this additional relabeling
does not reveal the index of the special instance to each individual player, which requires a careful
design depending on the problem at hand.

The above family of distributions is parameterized by the sequences {sr} (size of instances), {pr}
(number of players), and {wr} (the width parameters), plus the packing and relabeling functions.
Our main result in this section is that if these sequences and functions satisfy some natural conditions
(similar to what discussed above), then any r-round protocol for the problem Psr on the distribution
Dr requires Ωr(wr) communication.

We remark that while we state our communication lower bound only in terms of wr, to obtain
any interesting lower bound using this technique, one needs to ensure that the width parameter wr
is relatively large in the size of the instance sr; this is also achieved by designing suitable packing
and labeling functions (as well as a suitable representation of the problem). However, as “relatively
large” depends heavily on the problem at hand, we do not add this requirement to the framework
explicitly. A discussion on possible extensions of this framework as well as its connection to previous
work appears in Appendix B.

5For a reader familiar with previous work in [7,8,12], we note that a similar notion to a packing function is captured
via a collection of disjoint blocks of vertices in [7] (for finding large matchings), Ruzsa-Szemerédi graphs in [12] (for
estimating maximum matching size), and a family of small-intersecting sets in [8] (for finding good allocations in
combinatorial auctions). In this work, we use the notion of randomly nearly disjoint set-systems defined in Section 5.1.

8

4.2 The Formal Description of the Framework

We now describe our framework formally. As stated earlier, to use this framework for proving a
lower bound for any specific problem P, one needs to define appropriate problem-specific gadgets.
These gadgets are functions that map multiple instances of Ps to a single instance Ps′ for some
s′ ≥ s. The exact application of these gadgets would become clear shortly in the description of our
hard distribution for the problem P.

Definition 4.1 (Packing Function). For integers s′ ≥ s ≥ 1 and w ≥ 1, we refer to a function
σ which maps any tuple of instances (I1, . . . , Iw) of Ps to a single instance I of Ps′ as a packing
function of width w.

Definition 4.2 (Labeling Family). For integers s′′ ≥ s′ ≥ 1 and g ≥ 1, we refer to a family of
functions Φ = {φi}, where each φi is a function that maps any tuple of instances (I1, . . . , Ig) of
Ps′ to a single instance I of Ps′′ as a g-labeling family, and to each function in this family, as a
labeling function.

We start by designing the following recursive family of hard distributions {Dr}r≥0, parametrized
by sequences {pr}r≥0, {sr}r≥0, and {wr}r≥0. We require {pr}r≥0 and {sr}r≥0 to be increasing
sequences and {wr}r≥0 to be non-increasing. In two places marked in the distribution, we require
one to design the aforementioned problem-specific gadgets for the distribution.

Distribution Dr: A template hard distribution for r-round protocols of P for any r ≥ 1.

Parameters: pr: number of players, sr: size of the instance, wr: width parameter, σr: packing
function, and Φr: labeling family.

1. Let P be the set of pr players and define gr :=
pr
pr−1

; partition the players in P into gr groups
P1, . . . , Pgr each containing pr−1 players.

2. Design a packing function σr of width wr which maps wr instances of Psr−1 to an instance
of Ps′r for some sr−1 ≤ s′r ≤ sr.

3. Pick an instance I⋆r ∼ Dr−1 over the set of players [pr−1] and domain of size sr−1.

4. For each group Pi for i ∈ [gr]:

(a) Pick an index j⋆ ∈ [wr] uniformly at random and create wr instances Ii1, . . . , I
i
wr

of
problem Psr−1 as follows:

(i) Each instance Iij for j ∈ [wr] is over the players Pi and domain Di
j = {0, 1}sr−1 .

(ii) For index j⋆ ∈ [wr], Iij⋆ = I⋆r by mapping (arbitrarily) [pr−1] to Pi and domain
of I⋆r to Di

j⋆ .

(iii) For any other index j 6= j⋆, Iij ∼ D⊗
r−1 := ⊗q∈PiDr−1(q), i.e., the product of

marginal distribution of the input to each player q ∈ Pi in Dr−1.

(b) Map all the instances Ii1, . . . , I
i
wr

to a single instance Ii using the function σr.

5. Design a gr-labeling family Φr which maps gr instances of Ps′r to a single instance Psr .
6. Pick a labeling function φ from Φ uniformly at random and map the gr instances I1, . . . , Igr

of Ps′r to the output instance I of Psr using φ.

7. The input to each player q ∈ Pi in the instance I, for any i ∈ [gr], is the input of player q
in the instance Ii, after applying the mapping φ to map Ii to I.

9

We remark that in the above distribution, the “variables” in each instance sampled from Dr are
the instances Ii1, . . . , I

i
wr

for all groups i ∈ [gr], the index j⋆ ∈ [w], and both the choice of labeling
family Φr and the labeling function φ. On the other hand, the “constants” across all instances of
Dr are parameters pr, sr, and wr, the choice of grouping P1, . . . , Pgr , and the packing function σr.

To complete the description of this recursive family of distributions, we need to explicitly define
the distribution D0 between p0 players over {0, 1}s0 . We let D0 :=

1
2 · DYes

0 + 1
2 · DNo

0 , where DYes
0 is

a distribution over Yes instances of Ps0 and DNo
0 is a distribution over No instances. The choice of

distributions DYes
0 and DNo

0 are again problem-specific.
We start by describing the main properties of the packing and labeling functions that are required

for our lower bound. For any player q ∈ Pi, define Ii(q) := (Ii1(q), . . . , I
i
wr
(q)), where for any j ∈ [wr],

Iij(q) denotes the input of player q in the instance Iij. We require the packing and labeling functions
to be locally computable defined as follows.

Definition 4.3 (Locally computable). We say that the packing function σr and the labeling family
Φr are locally computable iff any player q ∈ Pi for i ∈ [gr], can compute the mapping of Ii(q) to the
final instance I, locally, i.e., only using σr, the sampled labeling function φ ∈ Φr, and input Ii(q).

We use φq to denote the local mapping of player q ∈ Pi for mapping Ii(q) to I; since σr is fixed
in the distribution Dr, across different instances sampled from Dr, φq is only a function of φ. Notice
that the input to each player q ∈ Pi is uniquely determined by Ii(q) and φq.

Inside each instance I sampled from Dr, there exists a unique embedded instance I⋆r which is
sampled from Dr−1. Moreover, this instance is essentially “copied” gr times, once in each instance
Iij⋆ for each group Pi. We refer to the instance I⋆r as well as its copies I1j⋆, . . . , I

gr
j⋆ as special instances

and to all other instances as fooling instances. We require the packing and labeling functions to be
preserving, defined as,

Definition 4.4 (γ-Preserving). We say that the packing function and the labeling family are γ-
preserving for a parameter γ ∈ (0, 1), iff

Pr
I∼Dr

(
Psr(I) = Psr−1(I

⋆
r)
)
≥ 1− γ.

In other words, the value of Psr on an instance I should be equal to the value of Psr−1 on the
embedded special instance I⋆r of I w.p. 1− γ.

Recall that the packing function σr is a deterministic function that depends only on the dis-
tribution Dr itself and not any specific instance (and hence the underlying special instances); on
the other hand, the preserving property requires the packing and labeling functions to somehow
“prioritize” the special instances over the fooling instances (in determining the value of the original
instance). To achieve this property, the labeling family is allowed to vary based on the specific in-
stance sampled from the distribution Dr. However, we need to limit the dependence of the labeling
family to the underlying instance, which is captured through the definition of obliviousness below.

Definition 4.5. We say that the labeling family Φr is oblivious iff it satisfies the following properties:

(i) The only variable in Dr which Φr can depend on is j⋆ ∈ [wr] (it can depend arbitrarily on the
constants in Dr).

(ii) For any player q ∈ P , the local mapping φq and j⋆ are independent of each other in Dr.

Intuitively speaking, Condition (i) above implies that a function φ ∈ Φr can “prioritize” the
special instances based on the index j⋆, but it cannot use any further knowledge about the special

10

or fooling instances. For example, one may be able to use φ to distinguish special instances from
other instances, i.e., determine j⋆, but would not be able to infer whether the special instance is a
Yes instance or a No one only based on φ. Condition (ii) on the other hand implies that for each
player q, no information about the special instance is revealed by the local mapping φq. This means
that given the function φq (and not φ as a whole), one is not able to determine j⋆.

Finally, we say that the family of distributions {Dr} is a γ-hard recursive family, iff (i) it is
parameterized by increasing sequences {pr} and {sr}, and non-increasing sequence {wr}, and (ii),
the packing and labeling functions in the family are locally computable, γ-preserving, and oblivious.
We are now ready to present our main theorem of this section.

Theorem 1. Let R ≥ 1 be an integer and suppose {Dr}Rr=0 is a γ-hard recursive family for some
γ ∈ (0, 1); for any r ≤ R, any r-round protocol for Psr on Dr which errs w.p. at most 1/3 − r · γ
requires Ω(wr/r

4) total communication.

We prove Theorem 1 in the next section.

4.3 Correctness of the Framework: Proof of Theorem 1

We first set up some notation. For any r-round protocol π and any ℓ ∈ [r], we use Πℓ :=
(Πℓ,1, . . . ,Πℓ,pr) to denote the random variable for the transcript of the message communicated
by each player in round ℓ of π. We further use Φ (resp. Φq) to denote the random variable for φ
(resp. local mapping φq) and J to denote the random variable for the index j⋆. Finally, for any
i ∈ [gr] and j ∈ [wr], Iij denotes the random variable for the instance Iij.

We start by stating a simple property of oblivious mapping functions.

Proposition 4.6. For any i ∈ [gr] and any player q ∈ Pi, conditioned on input (Ii(q), φq) to player
q, the index j⋆ ∈ [wr] is chosen uniformly at random.

Proof. By Condition (ii) of obliviousness in Definition 4.5, Φq ⊥ J, and hence J ⊥ Φq = φq.
Moreover, by Condition (i) of Definition 4.5, Φq cannot depend on Ii(q) and hence Ii(q) ⊥ Φq = φq
also. Now notice that while the distribution of Iij and Iij⋆ for j 6= j⋆, i.e., D⊗

r−1 and Dr−1 are different,
the distribution of Iij(q) and Iij⋆(q) are identical by definition of D⊗

r−1. As such, Ii(q) and j⋆ are also
independent of each other conditioned on Φq = φq, finalizing the proof.

We show that any protocol with a small communication cost cannot learn essentially any useful
information about the special instance I⋆r in its first round.

Lemma 4.7. For any deterministic protocol π for Dr, I(I
⋆
r ;Π1 | Φ, J) ≤ |Π1|/wr.

Proof. The first step is to show that the information revealed about I⋆r via Π1 can be partitioned
over the messages sent by each individual player about their own input in their special instance.

Claim 4.8. I(I⋆r ;Π1 | Φ, J) ≤
∑

q∈P I(I⋆r(q) ;Π1,q | Φ, J).

Proof. Intuitively, the claim is true because after conditioning on Φ and J, the input of players
become independent of each other on all fooling instances, i.e., every instance except for their copy
of I⋆r . As a result, the messages communicated by one player do not add extra information to
messages of another one about I⋆r . Moreover, since each player q is observing I⋆r (q), the information
revealed by this player can only be about I⋆r (q) and not I⋆r . We now provide the formal proof.

Recall that Π1 = (Π1,1, . . . ,Π1,pr). By chain rule of mutual information,

I(I⋆r ;Π1 | Φ, J) =
Fact A.1-(4)

∑

q∈P

I(I⋆r ;Π1,q | Π<q1 ,Φ, J).

11

We first show that for each q ∈ P ,

I(I⋆r ;Π1,q | Π<q1 ,Φ, J) ≤ I(I⋆r ;Π1,q | Φ, J). (1)

Recall that, for any player q, I(q) denotes the input to player q in all instances in which q
is participating, and define I(−q) as the collection of the inputs to all other players across all
instances. We argue that I(q) ⊥ I(−q) | I⋆r ,Φ, J. The reason is simply because after conditioning
on I⋆r , the only variables in I(q) and I(−q) are fooling instances that are sampled from D⊗

r−1 which
is a product distribution across players. This implies that I(I(q) ; I(−q) | I⋆r,Φ, J) = 0 (by Fact A.1-
(2)). Now, notice that the input to each player q is uniquely identified by (I(q),Φ) (by locally
computable property in Definition 4.3) and hence conditioned on I⋆r ,Φ, J , the message Π1,q is a
deterministic function of I(q). As such, by the data processing inequality (Fact A.1-(5)), we have
that I(Π1,q ;Π

<q
1 | I⋆r ,Φ, J) = 0; by Proposition A.3, this implies Eq (1) (here, conditioning on Π<q1

in RHS of Eq (1) can only decrease the mutual information).
Define I⋆r(−q) as the input to all players in I⋆r except for player q; hence I⋆r = (I⋆r(q), I

⋆
r(−q)). By

chain rule of mutual information (Fact A.1-(4)),

I(I⋆r ;Π1,q | Φ, J) = I(I⋆r(q) ;Π1,q | Φ, J) + I(I⋆r(−q) ;Π1,q | I⋆r(q),Φ, J) = I(I⋆r(q) ;Π1,q | Φ, J)

since I(I⋆r(−q) ;Π1,q | I⋆r(q),Φ, J) = 0 as Π1,q is independent of I⋆r(−q) after conditioning on I⋆r(q)
(and Fact A.1-(2)). The claim now follows from Eq (1) and above equation.

Next, we use a direct-sum style argument to show that as each player is oblivious to the identity
of the special instance in the input, the message sent by this player cannot reveal much information
about the special instance, unless it is too large.

Claim 4.9. For any group Pi and player q ∈ Pi, I(I
⋆
r(q) ;Π1,q | Φ, J) ≤ |Π1,q| /wr.

Proof. We first argue that,

I(I⋆r(q) ;Π1,q | Φ, J) ≤ I(I⋆r(q) ;Π1,q | Φq, J). (2)

Let Φ = (Φq,Φ
−q) where Φ−q denotes the rest of the mapping function Φ beyond Φq. We have,

Π1,q ⊥ Φ−q | Φq, J, I⋆r(q) since after conditioning on J, Φ does not depend on any other variable in
Dr (by obliviousness property in Definition 4.5), and hence the input to player q and as a result
Π1,q are independent of Φ−q after conditioning on both Φq and J. Eq (2) now follows from the
independence of Π1,q and Φ−q and Proposition A.3 (as conditioning on Φ<q in RHS of Eq (2) can
only decrease the mutual information).

We can bound the RHS of Eq (2) as follows,

I(I⋆r(q) ;Π1,q | Φq, J) = E
j∈[wr]

[
I(I⋆r(q) ;Π1,q | Φq, J = j)

]
=

1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φq, J = j).

(j⋆ is chosen uniformly at random from [wr] and I⋆r = Iij conditioned on J = j)

Our goal now is to drop the conditioning on the event J = j. By Definition 4.5, Φq is independent
of J = j. Moreover, Iij(q) is sampled from Dr−1(q) (both in Dr−1 and in D⊗

r−1) and hence is
independent of J = j, even conditioned on Φq. Finally, by Proposition 4.6, the input to player q is
independent of J = j and as Π1,q is a deterministic function of the input to player q, Π1,q is also
independent of J = j, even conditioned on Φq and Iij(q). This means that the joint distribution of

12

Iij(q),Π1,q, and Φq is independent of the event J = j and hence we can drop this conditioning in the
above term, and obtain that,

1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φi, J = j) =
1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Φi)

≤ 1

wr

wr∑

j=1

I(Iij(q) ;Π1,q | Ii,<j(q),Φi) =
1

wr
· I(Ii(q) ;Π1,q | Φi),

where the inequality holds since Iij(q) ⊥ Ii,<j(q) | Φi and hence conditioning on Ii,<j(q) can only
increase the mutual information by Proposition A.2. Finally,

1

wr
· I(Ii(q) ;Π1,q | Φi) ≤

Fact A.1-(1)

1

w1
·H(Π1,q | Φi) ≤

Fact A.1-(3)

1

wr
·H(Π1,q) ≤

Fact A.1-(1)

1

wr
· |Π1,q| ,

finalizing the proof.

Lemma 4.7 now follows from the previous two claims:

I(I⋆r ;Π1 | Φ, J) ≤
Claim 4.8

∑

q∈P

I(I⋆r(q) ;Π1,q | Φ, J) ≤
Claim 4.9

1

wr
·
∑

q∈P

|Π1,q| =
1

wr
· |Π1| .

For any tuple (Π1, φ, j), we define the distribution ψ(Π1, φ, j) as the distribution of I⋆r in Dr

conditioned on Π1 = Π1, Φ = φ, and J = j. Recall that the original distribution of I⋆r is Dr−1. In
the following, we show that if the first message sent by the players is not too large, and hence does
not reveal much information by about I⋆r by Lemma 4.7, even after the aforementioned conditioning,
distribution of I⋆r does not change by much in average. Formally,

Lemma 4.10. If |Π1| = o(wr/r
4), then E(Π1,φ,j)

[
‖ψ(Π1, φ, j) −Dr−1‖

]
= o(1/r2).

Proof. Since I⋆r is independent of φ and j⋆ in Dr, we have Dr−1 = dist(I⋆r) = dist(I⋆r | Φ, J). As
such, it suffices to show that dist(I⋆r | Φ, J) is close to the distribution of dist(I⋆r | Π1,Φ, J). By
Lemma 4.7 and the assumption |Π1| = o(wr/r

4), we know that the information revealed about I⋆r
by Π1, conditioned on Φ, J is quite small, i.e., o(1/r4). This intuitively means that having an extra
knowledge of Π1 would not be able to change the distribution of I⋆r by much. We now formalizes
this intuition.

E
(Π1,φ,j)

[
‖ψ(Π1, φ, j) −Dr−1‖

]
= E

(Π1,φ,j)

[
‖dist(I⋆r | Π1, φ, j) − dist(I⋆r | φ, j)‖

]

≤ E
(Π1,φ,j)

[√1

2
· D(dist(I⋆r | Π1, φ, j) || dist(I⋆r | φ, j))

]

(By Pinsker’s inequality (Fact A.5))

≤
√

1

2
· E
(Π1,φ,j)

[
D(dist(I⋆r | Π1, φ, j) || dist(I⋆r | φ, j))

]

(By concavity of
√· and Jensen’s inequality)

=
Fact A.4

√
1

2
· I(I⋆r ;Π1 | Φ, J) ≤

Lemma 4.7

√
1

2
· 1

wr
· |Π1|,

which is o(1/r2) as |Π1| = o(wr/r
4).

13

Define the recursive function δ(r) := δ(r − 1)− o(1/r2)− γ with base δ(0) = 1/2. We have,

Lemma 4.11. For any deterministic δ(r)-error r-round protocol π for Dr, we have ‖π‖ = Ω(wr/r
4).

Proof. The proof is by induction on the number of rounds r.
Base case: The base case of this lemma refers to 0-round protocols for D0, i.e., protocols that

are not allowed any communication. As in the distribution D0, Yes and No instances happen w.p.
1/2 each and the coordinator has no input, any 0-round protocol can only output the correct answer
w.p. 1/2, proving the induction base.

Induction step: Suppose the lemma holds for all integers up to r and we prove it for r round
protocols. The proof is by contradiction. Given an r-round protocol πr violating the induction
hypothesis, we create an (r − 1)-round protocol πr−1 which also violates the induction hypothesis,
a contradiction. Given an instance Ir−1 of Psr−1 over players P r−1 and domain Dr−1 = {0, 1}sr−1 ,
the protocol πr−1 works as follows:

1. Let P r = [pr] and partition P r into gr equal-size groups P1, . . . , Pgr as is done in Dr. Create
an instance Ir of Dr as follows:

2. Using public randomness, the players in P r−1 sample R := (Π1, φ, j
⋆) ∼ (dist(πr),Dr), i.e.,

from the (joint) distribution of protocol πr over distribution Dr.

3. The q-th player in P r−1 (in instance Ir−1) mimics the role of the q-th player in each group
Pi for i ∈ [gr] in Ir, denoted by player (i, q), as follows:

(a) Set the input for (i, q) in the special instance Iij⋆(q) of Ir as the original input of q in
Ir−1, i.e., Ir−1(q) mapped via σr and φ to I (as is done in Ir to the domain Di

j⋆). This
is possible by the locally computable property of σr and φ in Definition 4.3.

(b) Sample the input for (i, q) in all the fooling instances Iij(q) of Ir for any j 6= j⋆ using
private randomness from the correlated distribution Dr | (I⋆r = Ir−1, (Π1,Φ, J) = R).
This sampling is possible by Proposition 4.12 below.

4. Run the protocol πr from the second round onwards on Ir assuming that in the first round
the communicated message was Π1 and output the same answer as πr.

Notice that in Line (3b), the distribution the players are sampling from depends on Π1, φ, j
⋆

which are public knowledge (through sampling via public randomness), as well as I⋆r which is not
a public information as each player q only knows I⋆r (q) and not all of I⋆r . Moreover, while random
variables Iij(q) (for j 6= j⋆) are originally independent across different players q (as they are sampled
from the product distribution D⊗

r−1), conditioning on the first message of the protocol, i.e., Π1

correlates them, and hence a-priori it is not clear whether the sampling in Line (3b) can be done
without any further communication. Nevertheless, we can prove that this is the case and to sample
from the distribution in Line (3b), each player only needs to know I⋆r (q) and not I⋆r .

Proposition 4.12. Suppose I is the collection of all instances in the distribution Dr and I(q) is the
input to player q in instances in which q participates; then,

dist(I | I⋆r = Ir−1, (Π1,Φ, J) = R) = Xq∈P dist(I(q) | I⋆r(q) = Ir−1(q), (Π1,Φ, J) = R).

Proof. Fix any player q ∈ P , and recall that I(−q) is the collection of the inputs to all players other
than q across all instances (special and fooling). We prove that I(q) ⊥ I(−q) | (I⋆r(q),Π1,Φ, J) in Dr,

14

which immediately implies the result. To prove this claim, by Fact A.1-(2), it suffices to show that
I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) = 0. Define Π

−q
1 as the set of all messages in Π1 except for the message

of player q, i.e., Π1,q. We have,

I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) ≤ I(I(q) ; I(−q) | I⋆r(q),Π1,q ,Φ, J),

since I(q) ⊥ Π
−q
1 | I(−q), I⋆r(q),Π1,q,Φ, J as the input to players P \ {q} is uniquely determined by

I(−q),Φ (by the locally computable property in Definition 4.3) and hence Π
−q
1 is deterministic after

the conditioning; this independence means that conditioning on Π
−q
1 in the RHS above can only

decrease the mutual information by Proposition A.3. We can further bound the RHS above by,

I(I(q) ; I(−q) | I⋆r(q),Π1,q,Φ, J) ≤ I(I(q) ; I(−q) | I⋆r(q),Φ, J),

since I(−q) ⊥ Π1,q | I(q), I⋆r(q),Φ, J as the input to player q is uniquely determined by I(q),Φ (again by
Definition 4.3) and hence after the conditioning, Π1,q is deterministic; this implies that conditioning
on Π1,q in RHS above can only decrease the mutual information by Proposition A.3. Finally,
observe that I(I(q) ; I(−q) | I⋆r(q),Φ, J) = 0 by Fact A.1-(2), since after conditioning on I⋆r (q), the
only remaining instances in I(q) are fooling instances which are sampled from the distribution D⊗

r−1

which is independent across the players. This implies that I(I(q) ; I(−q) | I⋆r(q),Π1,Φ, J) = 0 also
which finalizes the proof.

Having proved Proposition 4.12, it is now easy to see that πr−1 is indeed a valid r − 1 round
protocol for distribution Dr−1: each player q can perform the sampling in Line (3b) without any
communication as (I⋆(q),Π1,Φ, J) are all known to q; this allows the players to simulate the first
round of protocol πr without any communication and hence only need r−1 rounds of communication
to compute the answer of πr. We can now prove that,

Claim 4.13. Assuming πr is a δ-error protocol for Dr, πr−1 would be a
(
δ + γ + o(1/r2)

)
-error

protocol for Dr−1.

Proof. Our goal is to calculate the probability that πr−1 errs on an instance Ir−1 ∼ Dr−1. For the
sake of analysis, suppose that Ir−1 is instead sampled from the distribution ψ for a randomly chosen
tuple (Π1, φ, j

⋆) (defined before Lemma 4.10). Notice that by Lemma 4.10, these two distributions
are quite close to each other in total variation distance, and hence if πr−1 has a small error on
distribution ψ it would necessarily has a small error on Dr−1 as well (by Fact A.6).

Using Proposition 4.12, it is easy to verify that if Ir−1 is sampled from ψ, then the instance Ir
constructed by πr−1 is sampled from Dr and moreover I⋆r = Ir−1. As such, since (i) πr is a δ-error
protocol for Dr, (ii) the answer to Ir and I⋆r = Ir−1 are the same w.p. 1−γ (by γ-preserving property
in Definition 4.4), and (iii) πr−1 outputs the same answer as πr, protocol πr−1 is a (δ + γ)-error
protocol for ψ.

We now prove this claim formally. Define Rpri and Rpub as, respectively, the private and public
randomness used by πr−1. We have,

Pr
Dr−1

(πr−1 errs) = E
Ir−1∼Dr−1

E
Rpub

[
Pr
Rpri

(
πr−1 errs | Rpub

)]

= E
(Π1,φ,j⋆)

E
Ir−1∼Dr−1|(Π1,φ,j⋆)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
⋆)

]

(as Rpub ⊥ Ir−1 and Rpub = (Π1, ψ, j
⋆) in protocol πr−1)

≤ E
(Π1,φ,j⋆)

[
E

Ir−1∼ψ(Π1,φ,j⋆)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
⋆)

]
+ ‖Dr−1 − ψ(Π1, φ, j

⋆)‖
]

(by Fact A.6 for distributions Dr−1 and ψ(Π1, φ, j
⋆))

15

= E
(Π1,φ,j⋆)

E
Ir−1∼ψ(Π1,φ,j⋆)

[
Pr
Rpri

(πr−1 errs | Π1, φ, j
⋆)

]
+ o(1/r2)

(by linearity of expectation and Lemma 4.10)

= E
(Π1,φ,j⋆)

E
Ir−1∼ψ(Π1,φ,j⋆)

[
Pr
Dr

(πr−1 errs | I⋆r = Ir−1,Π1, φ, j
⋆)

]
+ o(1/r2)

(dist(Rpri) = Dr | I⋆r = Ir−1,Π1, φ, j
⋆)

≤ E
(Π1,φ,j⋆)

E
Ir−1∼ψ(Π1,φ,j⋆)

[
Pr
Dr

(πr errs | I⋆r = Ir−1,Π1, φ, j
⋆)

]
+ γ + o(1/r2)

(Psr(Ir) = Psr−1(Ir−1) w.p. 1− γ by Definition 4.4 and πr−1 outputs the same answer as πr)

= E
(I⋆r ,Π1,φ,j⋆)∼Dr

[
Pr
Dr

(πr errs | I⋆r = Ir−1,Π1, φ, j
⋆)

]
+ γ + o(1/r2)

(ψ(Π1, φ, j
⋆) = dist(I⋆r | Π1, φ, j

⋆) in Dr by definition)

= Pr
Dr

(πr errs) + o(1/r2) ≤ δ + γ + o(1/r2),

(as πr is a δr-error protocol for Dr by the assumption in the lemma statement)

finalizing the proof.

We are now ready to finalize the proof of Lemma 4.11. Suppose πr is a deterministic δ(r)-
error protocol for Dr with communication cost ‖πr‖ = o(wr/r

4). By Claim 4.13, πr−1 would be a
randomized δ(r− 1)-error protocol for Dr−1 with ‖πr−1‖ ≤ ‖πr‖ (as δ(r− 1) = δ(r) + γ + o(1/r2)).
By an averaging argument, we can fix the randomness in πr−1 to obtain a deterministic protocol
π′r−1 over the distribution Dr−1 with the same error δ(r − 1) and communication of ‖π′r−1‖ =
o(wr/r

4) = o(wr−1/r
4) (as {wr}r≥0 is a non-increasing sequence). But such a protocol contradicts

the induction hypothesis for (r − 1)-round protocols, finalizing the proof.

Proof of Theorem 1. By Lemma 4.11, any deterministic δ(r)-error r-round protocol for Dr requires
Ω(wr/r

4) total communication. This immediately extends to randomized protocols by an averaging
argument, i.e., the easy direction of Yao’s minimax principle [71]. The statement in the theorem
now follows from this since for any r ≥ 0, δ(r) = δ(r−1)−γ−o(1/r2) = δ(0)−r ·γ−∑r

ℓ=1 o(1/ℓ
2) =

1/2 − r · γ − o(1) > 1/3 − r · γ (as δ(0) = 1/2 and
∑r

ℓ=1 1/ℓ
2 is a converging series and hence is

bounded by some absolute constant independent of r).

5 A Distributed Lower Bound for Maximum Coverage

We prove our main lower bound for maximum coverage in this section, formalizing Result 1.

Theorem 2. For integers 1 ≤ r, c ≤ o
(

log k
log log k

)
with c ≥ 4r, any r-round protocol for the maximum

coverage problem that can approximate the value of optimal solution to within a factor of better than(
1
2c · k

1/2r

log k

)
w.p. at least 3/4 requires Ω

(
k
r4

·m
c

(c+2)·4r

)
communication per machine. The lower

bound applies to instances with m sets, n = m1/Θ(c) elements, and k = Θ(n2r/(2r+1)).

The proof is based on an application of Theorem 1. In the following, let c ≥ 1 be any integer
(as in Theorem 2) and N ≥ 12c2 be a sufficiently large integer which we use to define the main
parameters for our problem. To invoke Theorem 1, we need to instantiate the recursive family
of distributions {Dr}cr=0 in Section 4 with appropriate sequences and gadgets for the maximum
coverage problem. We first define sequences (for all 0 ≤ r ≤ c):

kr = pr = (N2 −N)r, nr = N2r+1, mr =
(
N c · (N2 −N)

)r
, wr = N c gr = (N2 −N)

16

Here, mr, nr, and kr, respectively represent the number of sets and elements and the parameter
k in the maximum coverage problem in the instances of each distribution Dr and together can
identify the size of each instance (i.e., the parameter sr defined in Section 4 for the distribution Dr).
Moreover, pr, wr and gr represent the number of players, the width parameter, and the number of
groups in Dr, respectively (notice that gr = pr/pr−1 as needed in distribution Dr).

Using the sequences above, we define:

coverage(N, r): the problem of deciding whether the optimal kr cover of universe [nr] with mr

input sets is at least (kr ·N) (Yes case), or at most
(
kr · 2c · log (N2r)

)
(No case).

Notice that there is a gap of roughly N ≈ k
1/2r
r (ignoring the lower order terms) between

the value of the optimal solution in Yes and No cases of coverage(N, r). We prove a lower bound
for deciding between Yes and No instances of coverage(N, r), when the input sets are partitioned
between the players, which implies an identical lower bound for algorithms that can approximate
the value of optimal solution in maximum coverage to within a factor smaller than (roughly) k1/2rr .

Recall that to use the framework introduced in Section 4, one needs to define two problem-
specific gadgets, i.e., a packing function, and a labeling family. In the following section, we design
a crucial building block for our packing function.

RND Set-Systems. Our packing function is based on the following set-system.

Definition 5.1. For integers N, r, c ≥ 1, an (N, r, c)-randomly nearly disjoint (RND) set-system
over a universe X of N2r elements, is a collection S of subsets of X satisfying the following prop-
erties:

(i) Each set A ∈ S is of size N2r−1.

(ii) Fix any set B ∈ S and suppose CB is a collection of N c·r subsets of X whereby each set in CB
is chosen by picking an arbitrary set A 6= B in S, and then picking an N -subset uniformly at
random from A (we do not assume independence between the sets in CB). Then,

Pr
(
∃ S ∈ CB s.t. |S ∩B| ≥ 2c · r · logN

)
= o(1/N3).

Intuitively, this means that any random N -subset of some set A ∈ S is essentially disjoint
from any other set B ∈ S w.h.p.

We prove an existence of large RND set-systems.

Lemma 5.2. For integers 1 ≤ r ≤ c and sufficiently large integer N ≥ c, there exists an (N, r, c)-
RND set-system S of size N c over any universe X of size N2r.

Proof. We use a probabilistic argument to prove this lemma. First, construct a collection S ′ of
N c subsets of X , each chosen independently and uniformly at random from all (N2r−1)-subsets of
X . The proof is slightly different for the case when r = 1 and for larger values of r > 1. In the
following, we prove the result for the more involved case of r > 1 and then sketch the proof for the
r = 1 case.

We start with the following simple claim.

Claim 5.3. For any two sets A,B ∈ S ′,

Pr
(
|A ∩B| ≥ 2N2r−2

)
≤ exp

(
−2N2r−2

)

17

Proof. Fix a set A ∈ S ′ and pick B uniformly at random from all (N2r−1)-subsets of X (as is the
construction in S ′ since A and B are chosen independently). For any element i ∈ A, we define an
indicator random variableXi ∈ {0, 1} which is 1 iff i ∈ B as well. Moreover, we defineX :=

∑
i∈AXi

to denote size of |A ∩B|.
By the choice of B, we have E [X] =

∑
i∈A E [Xi] =

∑
i∈A

1
N = N2r−2. Moreover, it is straight-

forward to verify that the random variables Xi are negatively correlated ; as such, we can apply
Chernoff bound to obtain that,

Pr
(
|A ∩B| ≥ 2N2r−2

)
= Pr (X ≥ 2E [X]) ≤ exp (−2E [X]) = exp

(
−2N2r−2

)

finalizing the proof.

By Claim 5.3 and taking a union bound over all
(Nc

2

)
pairs of subsets A,B ∈ S ′, the probability

that there exists two subsets A,B ∈ S ′ with |A ∩B| ≥ 2N r−2 is at most,
(
N c

2

)
· exp

(
−2N2r−2

)
≤ exp

(
−2N2r−2 + 2c · logN

)
< 1

as r ≥ 2 and c ≤ N . This in particular implies that there exists a collection S of N c many (N2r−1)-
subsets of X such that for any two sets A,B ∈ S, |A ∩B| ≤ 2N2r−2. We fix this S as our target
collection and prove that it satisfies Property (ii) of Definition 5.1 as well.

Fix any B ∈ S and define CB as in Definition 5.1. We prove that,

Claim 5.4. For any set S ∈ CB,

Pr (|S ∩B| ≥ 2c · r · logN) ≤ exp (−c · r · logN)

Proof. The proof is similar to Claim 5.3. Suppose S is chosen from some arbitrary set A ∈ S \{B}.
Note that S ∩B ⊆ A ∩B. For any element i ∈ A ∩B, define a random variable Xi ∈ {0, 1} which
is 1 iff i ∈ S as well. Define X :=

∑
i∈A∩B Xi which denotes the size of S ∩B. We have,

E [X] =
∑

i∈A∩B

|S|
|A| = |A ∩B| · N

N2r−1
≤ 2

as |A ∩B| ≤ 2N2r−2 by the property of the collection S. Again, using the fact that Xi variables
are negatively correlated, we can apply Chernoff bound and obtain that,

Pr (X ≥ 2c · r · logN) = Pr (X ≥ c · r · logN · E [X]) ≤ exp (−c · r · logN)

finalizing the proof.

To obtain the final result for r > 1 case, we can use Claim 5.4 and take a union bound on the
N c·r possible choices for the set S in CB and obtain that,

Pr
(
∃ S ∈ CB s.t. |S ∩B| ≥ 2 · c · r · logN

)
≤ N c·r · exp (−c · r · logN) = o(1/N3)

for sufficiently large N .
To obtain the result when r = 1, we can show, exactly as in Claim 5.3, that for any two sets

A,B ∈ S ′,

Pr (|A ∩B| ≥ 2c · logN) ≤ exp (−2c · logN)

and then take a union bound over all N2c possible choices for A,B and hence argue that there
should exists at least one collection S such that |A ∩B| < 2c · logN for any two A,B ∈ S. Now
notice that when r = 1, as size of each set S is exactly N , the collection CB ⊆ S and hence the
previous condition on S already satisfies the Property (ii) in Definition 5.1.

18

5.1 Proof of Theorem 2

To prove Theorem 2 using our framework in Section 4, we parameterize the recursive family of distri-
butions {Dr}cr=0 for the coverage problem, i.e., coverage(N, r,), with the aforementioned sequences
plus the packing and labeling functions which we define below.

Packing function σr: Mapping instances Ii1, . . . , I
i
wr

each over nr−1 = N2r−1 elements and
mr−1 sets for any group i ∈ [gr] to a single instance Ii on N2r elements and wr ·mr−1 sets.

1. Let A = {A1, . . . , Awr} be an (N, r, c)-RND system with wr = N c sets over some universe
Xi of N2r elements (guaranteed to exist by Lemma 5.2 since c < N). By definition of A,
for any set Aj ∈ A, |Aj | = N2r−1 = nr−1.

2. Return the instance I over the universe Xi with the collection of all sets in Ii1, . . . , I
i
wr

after
mapping the elements in Iij to Aj arbitrarily.

We now define the labeling family Φr as a function of the index j⋆ ∈ [wr] of special instances.

Labeling family Φr: Mapping instances I1, . . . , Igr over N2r elements to a single instance I on
nr = N2r+1 elements and mr sets.

1. Let j⋆ ∈ [wr] be the index of the special instance in the distribution Dr. For each permu-
tation π of [N2r+1] we have a unique function φ(j⋆, π) in the family.

2. For any instance Ii for i ∈ [gr], map the elements in Xi \Aj⋆ to π(1, . . . , N2r −N2r−1) and
the elements in Aj⋆ to π(N2r + (gr − 1) ·N2r−1) . . . π(N2r + gr ·N2r−1 − 1).

3. Return the instance I over the universe [N2r+1] which consists of the collection of all sets
in I1, . . . , Igr after the mapping above.

Finally, we define the base case distribution D0 of the recursive family {Dr}cr=0. By definition
of our sequences, this distribution is over p0 = 1 player, n0 = N elements, and m0 = 1 set.

Distribution D0: The base case of the recursive family of distributions {Dr}cr=0 .

1. W.p. 1/2, the player has a single set of size N covering the universe (the Yes case).

2. W.p. 1/2, the player has a single set {∅}, i.e., a set that covers no elements (the No case).

To invoke Theorem 1, we prove that this family is a γ-hard recursive family for the parameter
γ = o(r/N). The sequences clearly satisfy the required monotonicity properties. It is also straight-
forward to verify that σr and functions φ ∈ Φr are locally computable (Definition 4.3): both functions
are specifying a mapping of elements to the new instance and hence each player can compute its
final input by simply mapping the original input sets according to σr and φ to the new universe. In
other words, the local mapping of each player q ∈ Pi only specifies which element in the instance
I corresponds to which element in Iij(q) for j ∈ [wr]. It thus remains to prove the preserving and
obliviousness property of the packing and labeling functions.

We start by showing that the labeling family Φr is oblivious. The first property of Definition 4.5
is immediate to see as Φr is only a function of j⋆ and σr. For the second property, consider any group

19

Pi and instance Ii; the labeling function never maps two elements belonging to a single instance Ii

to the same element in the final instance (there are however overlaps between the elements across
different groups). Moreover, picking a uniformly at random labeling function φ from Φr (as is done
is Dr) results in mapping the elements in Ii according to a random permutation; as such, the set
of elements in instance Ii is mapped to a uniformly at random chosen subset of the elements in I,
independent of the choice of j⋆. As the local mapping φq of each player q ∈ Pi is only a function
of the set of elements to which elements in Ii are mapped to, φq is also independent of j⋆, proving
that Φr is indeed oblivious.

The rest of this section is devoted to the proof of the preserving property of the packing and
labeling functions defined for maximum coverage. We first make some observations about the
instances created in Dr. Recall that the special instances in the distribution are I1j⋆, . . . , I

gr
j⋆ . After

applying the packing function, each instance Iij⋆ is supported on the set of elements Aj⋆ . After
additionally applying the labeling function, Aj⋆ is mapped to a unique set of elements in I (according
to the underlying permutation π in φ); as a result,

Observation 5.5. The elements in the special instances I1j⋆, . . . , I
gr
j⋆ are mapped to disjoint set of

elements in the final instance.

The input to each player q ∈ Pi in an instance of Dr is created by mapping the sets in instances
Ii1, . . . , I

i
wr

(which are all sampled from distributions Dr−1 or D⊗
r−1) to the final instance I. As the

packing and labeling functions, by construction, never map two elements belonging to the same
instance Iij to the same element in the final instance, the size of each set in the input to player q
is equal across any two distributions Dr and Dr′ for r 6= r′, and thus is N by definition of D0 (we
ignore empty sets in D0 as one can consider them as not giving any set to the player instead; these
sets are only added to simplify that math). Moreover, as argued earlier, the elements are being
mapped to the final instance according to a random permutation and hence,

Observation 5.6. For any group Pi, any player q ∈ Pi, the distribution of any single input set to
player q in the final instance I ∼ Dr is uniform over all N -subsets of the universe. This also holds
for an instance I ∼ D⊗

r as marginal distribution of a player input is identical.

We now prove the preserving property in the following two lemmas.

Lemma 5.7. For any instance I ∼ Dr; if I⋆r is a Yes instance, then I is also a Yes instance.

Proof. Recall that the distribution of the special instance I⋆r is Dr−1. Since I⋆r is a Yes instance, all
Iij⋆ for i ∈ [gr] are also Yes instances. By definition of coverage(N, r − 1) and choice of kr−1, this
means that opt(Iij⋆) ≥ kr−1 · N . Moreover, by Observation 5.5, all copies of the special instance
I⋆r , i.e., I1j⋆ , . . . , I

gr
j⋆ are supported on disjoint set of elements in I. As kr = kr−1 · gr, we can pick

the optimal solution from each Iij⋆ for i ∈ [gr] and cover at least kr ·N elements. By definition of
coverage(N, r), this implies that I is also a Yes instance.

We now analyze the case when I⋆r is a No instance which requires a more involved analysis.

Lemma 5.8. For any instance I ∼ Dr; if I⋆r is a No instance, then w.p. at least 1− 1/N , I is also
a No instance.

Proof. Let U be the universe of elements in I and U⋆ ⊆ U be the set of elements to which the
elements in special instances I1j⋆, . . . , I

gr
j⋆ are mapped to (these are all elements in U except for the

first N2r elements according to the permutation π in the labeling function φ). In the following,

20

we bound the contribution of each set in players inputs in covering U⋆ and then use the fact that
|U \ U⋆| is rather small to finalize the proof.

For any group Pi for i ∈ [gr], let Ui be the set of all elements across instances in which the
players in Pi are participating in. Moreover, define U⋆i := U⋆ ∩ Ui; notice that U⋆i is precisely the
set of elements in the special instance Iij⋆ . We first bound the contribution of special instances.

Claim 5.9. If I⋆r is a No instance, then for any integer ℓ ≥ 0, any collection of ℓ sets from the
special instances I1j⋆ , . . . , I

gr
j⋆ can cover at most kr + ℓ · (2c · logN2r−2) elements in U⋆.

Proof. By definition of coverage(N, r − 1), since I⋆r is a No instance, we have opt(I⋆r) ≤ kr−1 ·
2c · log (N2r−2). This implies that any collection of ℓ ≥ kr−1 sets from I⋆r can only cover only
ℓ · 2c · log (N2r−2) elements; otherwise, by picking the best kr−1 sets among this collection, we can
cover more that opt(I⋆r), a contradiction. Now notice that since I⋆r is a No instance, we know that
all instances I1j⋆ , . . . , I

gr
j⋆ are also No instances. As such, any collection of ℓ ≥ kr−1 sets from each

Iij⋆ can also cover at most ℓ · 2c · log (N2r−2) elements from U⋆.
Let C be any collection of ℓ sets from special instances and Ci be the sets in C that are chosen

from the instance Iij⋆. Finally, let ℓi = |Ci|. We have (recall that c(C) denotes the set of covered
elements by C),

|c(C) ∩ U⋆| =
∑

i∈[gr]

|c(Ci) ∩ U⋆i | ≤
∑

i∈[gr]

(kr−1 + ℓi) · 2c · log (N2r−2)

= gr · kr−1 + ℓ · 2c · log (N2r−2) ≤ kr + ℓ · 2c · log (N2r−2),

where the last inequality holds because gr · kr−1 = kr.

We now bound the contribution of fooling instances using the RND set-systems properties.

Claim 5.10. With probability 1 − o(1/N) in the instance I, simultaneously for all integers ℓ ≥ 0,

any collection of ℓ sets from the fooling instances
{
Iij | i ∈ [gr], j ∈ [wr] \ {j⋆}

}
can cover at most

ℓ · r · (2c · logN) elements in U⋆.

Proof. Recall that for any group i ∈ [gr], any instance Iij is supported on the set of elements Aj
in A (before applying the labeling function φ). Similarly, U⋆i is the set Aj⋆ (again before applying
φ). Define Ci as the collection of all input sets from all players in Pi except the sets coming from
the special instance. By construction, |Ci| ≤ mr−1 · wr ≤ N c·r (as c ≥ 4r). Moreover, for any
j ∈ [wr] \ {j⋆}, since Iij ∼ D⊗

r−1, by Observation 5.6, any member of Ci is a set of size N chosen
uniformly at random from some Aj 6= Aj⋆. This implies that Ci satisfies the Property (ii) in
Definition 5.1 (as A is an (N, r, c)-RND set-system and local mappings of elements are one to one
when restricted to the mapping of Xi to Ui). As such, by definition of an RND set-system, w.p.
1− o(1/N3), any set S ∈ C can cover at most 2c · r · logN elements from U⋆i and consequently U⋆

as S ∩ (U⋆ \ U⋆i) = ∅.
We can take a union bound over the gr ≤ N2 different RND set-systems (one belonging to each

group) and the above bound holds w.p. 1− o(1/N) for all groups simultaneously. This means that
any collection of ℓ sets across any instance Iij for i ∈ [gr] and j 6= j⋆, can cover at most ℓ ·2c ·r · logN
elements in U⋆.

In the following, we condition on the event in Claim 5.10, which happens w.p. at least 1− 1/N .
Let C = Cs ∪ Cf be any collection of kr sets (i.e., a potential kr-cover) in the input instance I such

21

that Cs are Cf are chosen from the special instances and fooling instances, respectively. Let ℓs = |Cs|
and ℓf = |Cf |; we have,

|c(C)| = |c(C) ∩ U⋆|+ |c(C) ∩ (U \ U⋆)|
≤ |c(Cs) ∩ U⋆|+ |c(Cf) ∩ U⋆|+ |U \ U⋆|
≤ kr + ℓs · (2r − 2) · 2c · logN + ℓf · r · 2c · logN +N2r

(by Claim 5.9 for the first term and Claim 5.10 for the second term)

≤ 4kr + kr · (2r − 2) · 2c · logN (2kr ≥ N2r)

≤ kr · 2r · 2c · logN ≤ kr · 2c · logN2r.

This means that w.p. at least 1− 1/N , I is also a No instance.

The following claim now follows immediately from Lemmas 5.7 and 5.8.

Claim 5.11. The packing function σr and labeling family Φr defined above are γ-preserving for the
parameter γ = 1/N .

We are now ready to prove Theorem 2.

Proof of Theorem 2. The results in this section and Claim 5.11 imply that the family of distributions
{Dr}cr=0 for the coverage(N, r,) are γ-hard for the parameter γ = 1/N , as long as r ≤ 4c ≤ 4

√
N/12.

Consequently, by Theorem 1, any r-round protocol that can compute the value of coverage(N, r,)
on Dr w.p. at least 2/3 + r · γ = 2/3 + r/N < 3/4 requires Ω(wr/r

4) = Ω(N c/r4) total commu-
nication. Recall that the gap between the value of optimal solution between Yes and No instances

of coverage(N, r) is at least N/
(
2c · log (N2r)

)
≥

(
k
1/2r
r

2c·log kr

)
. As such, any r-round distributed

algorithm that can approximate the value of optimal solution to within a factor better than this
w.p. at least 3/4 can distinguish between Yes and No cases of this distribution, and hence re-

quires Ω(N c−2r/r4) = Ω
(
kr
r4

·m
c

(c+2)·4r

)
per player communication. Finally, since N ≤ 2k

1/2r
r , the

condition c ≤
√
N/12 holds as long as c = o

(
log kr

log log kr

)
, finalizing the proof.

6 Distributed Algorithms for Maximum Coverage

In this section, we show that both the round-approximation tradeoff and the round-communication
tradeoff achieved by our lower bound in Theorem 2 are essentially tight, formalizing Result 2.

6.1 An O(r · k1/r)-Approximation Algorithm

Recall that Theorem 2 shows that getting better than kΩ(1/r) approximation in r rounds requires
a relatively large communication of mΩ(1/r), (potentially) larger than any poly(n). In this section,
we prove that this round-approximation tradeoff is essentially tight by showing that one can always
obtain a kO(1/r) approximation (with a slightly larger constant in the exponent) in r rounds using
a limited communication of nearly linear in n.

Theorem 3. There exists a deterministic distributed algorithm for the maximum coverage prob-
lem that for any integer r ≥ 1 computes an O(r · k1/r+1) approximation in r rounds and Õ(n)
communication per each machine.

On a high level, our algorithm follows an iterative sketching method: in each round, each machine
computes a small collection Ci of its input sets Si as a sketch and sends it to the coordinator. The
coordinator is maintaining a collection of sets X and updates it by iterating over the received

22

sketches and picking any set that still has a relatively large contribution to this partial solution.
The coordinator then communicates the set of elements covered by X to the machines and the
machines update their inputs accordingly and repeat this process. At the end, the coordinator
returns (a constant approximation to) the optimal k-cover over the collection of all received sets
across different rounds.

In the following, we assume that our algorithm is given a value õpt such that opt ≤ õpt ≤ 2 ·opt.
We can remove this assumption by guessing the value of õpt in powers of two (up to n) and
solve the problem simultaneously for all of them and return the best solution, which increases the
communication cost by only an O(log n) factor.

We first introduce the algorithm for computing the sketch on each machine; the algorithm is a
simple thresholding version of the greedy algorithm for maximum coverage.

GreedySketch(U,S, τ). An algorithm for computing the sketch of each machine’s input.

Input: A collection S of sets from [n], a target universe U ⊆ [n], and a threshold τ .
Output: A collection C of subsets of U .

1. Let C = ∅ initially.

2. Iterate over the sets in S in an arbitrary order and for each set S ∈ S, if |(S ∩ U) \ c(C)| ≥ τ ,
then add (S ∩ U) \ c(C) to C.

3. Return C as the answer.

Notice that in the Line (2) of GreedySketch, we are adding the new contribution of the set S
and not the complete set itself. This way, we can bound the total representation size of the output
collection C by Õ(n) (as each element in U appears in at most one set). We now present our
algorithm in Theorem 3.

Algorithm 2: Iterative Sketching Greedy (ISGreedy).

Input: A collection Si of subsets of [n] for each machine i ∈ [p] and a value õpt ∈ [opt, 2 · opt].

Output: A k-cover from the sets in S :=
⋃
i∈[p] Si.

1. Let X 0 = ∅ and U0
i = [n], for each i ∈ [p] initially. Define τ := õpt/4r · k.

2. For j = 1 to r rounds:

(a) Each machine i computes Cji = GreedySketch(U j−1
i ,Si, τ) and sends it to coordinator.

(b) The coordinator sets X j = X j−1 initially and iterates over the sets in
⋃
i∈[p] C

j
i , in

decreasing order of
∣∣∣c(Cji)

∣∣∣ over i (and consistent with the order in GreedySketch for

each particular i), and adds each set S to X j if
∣∣S \ c(X j)

∣∣ ≥ 1
k1/r+1 · |S|.

(c) The coordinator communicates c(X j) to each machine i and the machine updates its
input by setting U ji = c(Cji) \ c(X j).

3. At the end, the coordinator returns the best k-cover among all sets in C :=
⋃
i∈[p],j∈[r] C

j
i

sent by the machines over all rounds.

23

The round complexity of ISGreedy is trivially r. For its communication cost, notice that at each
round, each machine is communicating at most Õ(n) bits and the coordinator communicates Õ(n)
bits back to each machine. As the number of rounds never needs to be more than O(log k), we
obtain that ISGreedy requires Õ(n) communication per each machine. Therefore, it only remains to
analyze the approximation guarantee of this algorithm. To do so, it suffices to show that,

Lemma 6.1. Define C :=
⋃
i∈[p],j∈[r] C

j
i . The optimal k-cover of C covers

(
opt

4r·k1/r+1

)
elements.

Proof. We prove Lemma 6.1 by analyzing multiple cases. We start with an easy case when |X r| ≥ k.

Claim 6.2. If |X r| ≥ k, then the optimal k-cover of X r ⊆ C covers
(

opt
4r·k1/r+1

)
elements.

Proof. Consider the first k sets added to the collection X r. Any set S that is added to X r in
(Line (2b) of ISGreedy) covers 1

k1/r+1 · |S| new elements. Moreover, |S| ≥ τ = õpt/4rk (by Line (2)
of the GreedySketch algorithm). Hence, the first k sets added to X r already cover at least,

k · 1

k1/r+1
· õpt
4rk

≥ opt

4r · k1/r+1

elements, proving the claim.

The more involved case is when |X r| < k, which we analyze below. Recall that Cji is the collection
computed by GreedySketch(U j−1

i ,Si, τ) on the machine i ∈ [p] in round j. We can assume that each∣∣∣Cji
∣∣∣ < k; otherwise consider the smallest value of j for which the for the first time there exists an

i ∈ [p] with
∣∣∣Cji

∣∣∣ ≥ k (if for this value of j, there are more than one choice for i choose the one with

the largest size of c(Cji)): in Line (2b), the coordinator would add all the sets in Cji to X j making∣∣X j
∣∣ ≥ k, a contradiction with the assumption that |X r| < k.
By the argument above, if there exists a machine i ∈ [p], with

∣∣c(C1
i)
∣∣ > opt/4k1/r+1, we are

already done. This is because the collection C1
i contains at most k sets and hence C1

i is a valid
k-cover in C that covers (opt/4k1/r+1) elements, proving the lemma in this case. It remains to
analyze the more involved case when none of the above happens.

Lemma 6.3. Suppose |X r| < k and
∣∣c(C1

i)
∣∣ ≤ opt/4k1/r+1 for all i ∈ [p]; then, the optimal k-cover

of C covers
(

opt
4r·k1/r+1

)
elements.

Proof. Recall that in each round j ∈ [r], each machine i ∈ [p] first computes a collection Cji from
the universe U j−1

i as its sketch (using GreedySketch) and sends it to the coordinator; at the end of
the round also this machine i updates its target universe for the next round to U ji ⊆ Cji . We first
show that this target universe U ji shrinks in each round by a large factor compared to Cji .

Claim 6.4. For any round j ∈ [r] and any machine i ∈ [p],
∣∣∣U ji

∣∣∣ ≤
(
1/k1/r+1

)
·
∣∣∣c(Cji)

∣∣∣.

Proof. Consider any i ∈ [p] and round j ∈ [r]; by Line (2c) of ISGreedy, we know U ji = c(Cji)\c(X j).
Hence, it suffices to show that X j covers (1 − 1/k1/r+1) fraction of c(Cji). This is true because for
any set S ∈ Cji that is not added to X j , we have,

∣∣S \ c(X j)
∣∣ < 1

k1/r+1 · |S|, meaning that at most

1/k1/r+1 fraction of any set S ∈ Cji can remain uncovered by X j at the end of the round j.

24

By Claim 6.4, and the assumption on size of
∣∣c(C1

i)
∣∣ in the lemma statement, we have,

|c(Cri)| ≤
∣∣U r−1

i

∣∣ ≤
(

1

k1/r+1

)
·
∣∣c(Cr−1

i)
∣∣ ≤

(
1

k1/r+1

)
·
∣∣U r−2
i

∣∣

(since U ji ⊆ c(Cji) ⊆ U j−1
i by construction of ISGreedy and GreedySketch)

≤
(

1

k1/r+1

)r−1

·
∣∣c(C1

i)
∣∣ ≤

(
1

k1/r+1

)r−1

· opt

4k1/r+1

(by expanding the bound on each
∣∣∣U ji

∣∣∣ recursively and using the bound on
∣∣c(C1

i)
∣∣)

≤ opt

4kr/r+1
. (3)

Fix any optimal solution OPT. We make the sets in OPT disjoint by arbitrarily assigning each
element in c(OPT) to exactly one of the sets that contains it. Hence, a set O ∈ OPT is a subset
of one of the original sets in S; we slightly abuse the notation and say O belongs to S (or input
of some machine) to mean that the corresponding super set belongs to S. In the following, we use
Eq (3) to argue that any set O ∈ OPT has a “good representative” in the collection C. This is the
key part of the proof of Lemma 6.3 and the next two claims are dedicated to its proof.

We first show that for any set O in the optimal solution that belonged to machine i ∈ [p], if O
was never picked in any X j during the algorithm, then the universe U ji at any step covers a large
portion of O. For any j ∈ [r] and i ∈ [p], define Xj := c(X j) and Cji = c(Cji). We have,

Claim 6.5. For any set O ∈ OPT \ C and the parameter τ defined in ISGreedy, if O appears in the
input of machine i ∈ [p], then, for any j ∈ [r],

∣∣∣O ∩ U ji
∣∣∣ ≥

∣∣O \Xj
∣∣− j · τ .

Proof. The idea behind the proof is as follows. In each round j, among the elements already in
U j−1
i , at most τ elements of O can be left uncovered by the set Cji as otherwise the GreedySketch

algorithm should have picked O (a contradiction with O /∈ C). Moreover, any element in Cji but
not U ji is covered by c(X j) i.e., Xj and hence can be accounted for in the term

∣∣O \Xj
∣∣.

We now formalize the proof. The proof is by induction. The base case for j = 0 is trivially true
as U0

i = [n] and X0 = ∅ (as X 0 = ∅). Now assume inductively that this is the case for integers

smaller than j and we prove it for j. By Line (2) of GreedySketch, we know
∣∣∣O ∩ U j−1

i \ Cji
∣∣∣ < τ as

otherwise the set O would have been picked by GreedySketch(U j−1
i ,Si, τ) in ISGreedy, a contradiction

with the fact that O /∈ C. Using this plus the fact that Cji = c(Cji) ⊆ U j−1
i , we have,

∣∣∣O ∩ Cji
∣∣∣ =

∣∣∣O ∩ Cji ∩ U
j−1
i

∣∣∣ ≥
∣∣∣O ∩ U j−1

i

∣∣∣−
∣∣∣O ∩ U j−1

i \ Cji
∣∣∣ ≥

∣∣O \Xj−1
∣∣− j · τ, (4)

where the last inequality is by induction hypothesis on the first term and the bound of τ on the
second term.

To continue, define Y j = Xj \Xj−1, i.e., the set of new elements covered by X j compared to
X j−1. By construction of the algorithm ISGreedy, U ji = Cji \Xj = Cji \Y j as U j−1

i and consequently
Cji do not have any intersection with Xj−1. We now have,

∣∣∣O ∩ U ji
∣∣∣ =

∣∣∣O ∩
(
Cji \ Y j

)∣∣∣ ≥
∣∣∣O ∩ Cji

∣∣∣−
∣∣O ∩ Y j

∣∣

≥
Eq (4)

∣∣O \Xj−1
∣∣− j · τ −

∣∣O ∩ Y j
∣∣

25

=
∣∣O \

(
Xj \ Y j

)∣∣− j · τ −
∣∣O ∩ Y j

∣∣ (by definition of Y j = Xj \Xj−1)

=
∣∣O \Xj

∣∣− j · τ, (since Yj ⊆ Xj)

which proves the induction step.

We next argue that since any set O ∈ OPT that is located on machine i is “well represented” in
U ri by Claim 6.5 (if not already picked in X r), and since by Eq (3), size of Cri and consequently the
number of sets sent by machine i in Cri is small, there should exists a set in Cri that also represents
O rather closely. Formally,

Claim 6.6. For any set O ∈ OPT, there exists a set SO ∈ C such that for the parameter τ defined
in ISGreedy,

|O ∩ SO| ≥
|O \Xr| − r · τ

r · k1/r+1
.

Proof. Fix a set O ∈ OPT and assume it appears in the input of machine i ∈ [p]. The claim is
trivially true if O ∈ C (as we can take SO = O). Hence, assume O ∈ OPT \ C. By Claim 6.5 and
the fact that U ri ⊆ Cri , at the end of the last round r, we have,

|O ∩ Cri | ≥ |O ∩ U ri | ≥
Claim 6.5

|O \Xr| − r · τ .

Moreover, by Eq (3), |Cri | ≤ opt/4kr/r+1. Since any set added to Cri increases Cri = c(Cri) by at
least τ = opt/4kr elements (by construction of GreedySketch), we know that,

|Cri | ≤
|Cri |

opt/4kr
≤

Eq (3)
r · k1/r+1.

It is easy to see that there exists a set SO ∈ Cri that covers at least 1/ |Cri | fraction of O ∩ Cri ;
combining this with the equations above, we obtain that,

|O ∩ SO| ≥
|O \Xr| − r · τ

r · k1/r+1
.

We are now ready to finalize the proof of Lemma 6.3. Define CO := {SO ∈ C | O ∈ OPT} for the
sets SO defined in Claim 6.6. Clearly, CO ⊆ C and |CO| ≤ k. Additionally, recall that |X | < k by
the assumption in the lemma statement. Consequently, both CO and X are k-covers in C. In the
following, we show that the best of these two collections covers (opt/4r · k1/r+1) elements.

|c(CO)|+ |c(X r)| =
∣∣∣∣∣

⋃

O∈OPT

SO

∣∣∣∣∣+ |Xr| ≥
∣∣∣∣∣

⋃

O∈OPT

(O ∩ SO)
∣∣∣∣∣+ |Xr|

=
∑

O∈OPT

|O ∩ SO|+ |Xr|

(as by the discussion before Claim 6.5 we assume the sets in OPT are disjoint)

≥
Claim 6.6

∑

O∈OPT

(|O \Xr| − r · τ
r · k1/r+1

)
+ |Xr|

=

∣∣⋃
O∈OPTO \Xr

∣∣− k · r · τ
r · k1/r+1

+ |Xr|
(again by the assumption on the disjointness of the sets in OPT and the fact that |OPT| = k)

26

≥ |c(OPT)| − |Xr| − õpt/4

r · k1/r+1
+ |Xr| (as τ = õpt/4kr)

≥ |c(OPT)| − opt/2

r · k1/r+1
≥ opt

2r · k1/r+1
. (as |c(OPT)| = opt and õpt ≤ 2 · opt)

As a result, at least one of CO or X r is a k-cover that covers (opt/4r · k1/r+1) elements, finalizing
the proof.

Lemma 6.1 now follows immediately from Claim 6.2 and Lemma 6.1.

Theorem 3 follows from Lemma 6.1 as the coordinator can simply run any constant factor
approximation algorithm for maximum coverage on the collection C and obtains the final result.

6.2 An (e
e−1

)-Approximation Algorithm

We now prove that the round-communication tradeoff for the distributed maximum coverage prob-
lem proven in Theorem 2 is essentially tight. Theorem 2 shows that using k ·mO(1/r) communication
in r rounds only allows for a relatively large approximation factor of kΩ(1/r). Here, we show that we

can always obtain an (almost)
(

e
e−1

)
-approximation (the optimal approximation ratio with sublin-

ear in m communication) in r rounds using k ·mΩ(1/r) (for some larger constant in the exponent).
As stated in the introduction, our algorithm in this part is quite general and works for maxi-

mizing any monotone submodular function subject to a cardinality constraint (see Appendix 2.2 for
definitions). Hence, in the following, we present our results in this more general form.

Theorem 4. There exists a randomized distributed algorithm for submodular maximization subject
to cardinality constraint that for any ground set V of size m, any monotone submodular function
f : 2V → R

+, and any integer r ≥ 1 and parameter ε ∈ (0, 1), with high probability computes an(
e
e−1 + ε

)
-approximation in r rounds while communicating O(k ·mO(1/ε·r)) items from V .

Remark: We emphasize that the interesting case in Theorem 4 is when r = Ω(1/ε); otherwise, the
communication cost guarantee of Theorem 4 can be achieved by a trivial protocol that communicates
the whole input to the coordinator in just a single round. Consequently, in the following, we always
assume that r = Ω(1/ε).

Our algorithm follows the sample-and-prune technique of [53]. At each round, we sample a set
of items from the machines and send them to the coordinator. The coordinator then computes a
greedy solution X over the received sets and reports X back to the machines. The machines then
prune any item that cannot be added to this partial greedy solution X and continue this process in
the next rounds. At the end, the coordinator outputs X. By using a thresholding greedy algorithm
and a more careful analysis, we show that the dependence of the number of rounds on Ω(log∆)
(where ∆ is the ratio of maximum value of f on any singleton set to its minimum value) in [53] can
be completely avoided, resulting in an algorithm with only constant number of rounds.

We assume that the algorithm is given a value õpt such that opt ≤ õpt ≤ 2 · opt. In general,
one can guess õpt in powers of two in the range ∆ to k ·∆ in parallel and solve the problem for all
of them and return the best solution. This would increase the communication cost by only a factor
of Θ(log k) (and one extra round of communication just to communicate ∆ if it is unknown). We
now present our algorithm.

27

Algorithm 1: Sample and Prune Greedy (SPGreedy).

Input: A collection Vi ⊆ V of items for each machine i ∈ [p] and a value õpt ∈ [opt, 2 · opt].

Output: A collection of k items from V .

1. Define the parameters ℓ :=
⌈
lg(1+ε) (2e)

⌉
(= Θ(1/ε)) and s = ⌈r/ℓ⌉. The algorithm consists

of ℓ iterations each with s steps.

2. For j = 1 to ℓ iterations:

(a) Let τj =
õpt
k ·

(
1

1+ε

)j−1
and Xj,0 = Xj−1,s initially (we assume X0,∗ = ∅).

(b) For t = 1 to s steps:

(i) Define V j,t = {a ∈ V | fXj,(t−1)(a) ≥ τj}.
(ii) Each machine i ∈ [p] samples each item in V j,t ∩ Vi independently and with

probability qt :=

{
4k logm
m1−(t/s) if t < s

1 if t = s
, and sends them to the coordinator.

(iii) The coordinator iterates over each received item a (in an arbitrary order) and
adds a to Xj,t iff fXj,t(a) ≥ τj.

(iv) The coordinator communicates the set Xj,t to the machines.

3. The coordinator returns Xℓ,s in the last step (if at any earlier point of the algorithm size
of some X∗,∗ is already k, the coordinator terminates the algorithm and outputs this set as
the answer).

SPGreedy requires ℓ = Θ(1/ε) iterations each consists of s = ⌈r/ℓ⌉ steps. Moreover, each
step can be implemented in one round of communication. As such, the round complexity of this
algorithm is simply O(r) (as we assumed r = Ω(1/ε)). In the following, we prove a bound on the
communication cost of this algorithm and then analyze its approximation guarantee. To do so, we
need the following auxiliary lemma on the size of each set V j,t in the algorithm.

Lemma 6.7. For any j ∈ [ℓ] and any t ∈ [s],
∣∣V j,t

∣∣ ≤ m1−(t−1)/s w.p. at least 1− 1/m2k.

Proof. Fix any iteration j ∈ [ℓ] and observe that Xj,0 ⊆ . . . ⊆ Xj,s. By submodularity of f(·), this
implies that for any a ∈ V , fXj,0(a) ≥ . . . ≥ fXj,s(a) and hence V j,1 ⊇ V j,2 ⊇ . . . ⊇ V j,s.

The bound in the lemma statement is trivially true for t = 1; hence, we prove it for any t > 1.
To do so, we show that the collection Xj,t−1, computed at the end of the (t− 1)-th step in iteration
j, has the property that the corresponding collection V j,t (which is uniquely identified by Xj,t) has
its size bounded as in the lemma statement.

Fix any set A of up to k items from V . We say that A is bad iff the set VA := {a ∈ V | fA(a) ≥ τj}
has size more than m1−(t−1)/s. For the set Xj,t to be equal to A at the end of the (t− 1)-th step (in
iteration j), necessarily no item from VA should be sampled by any of the machines in that round.
As such, for any bad set A ⊆ V ,

Pr
(
Xj,t = A

)
≤ (1− qt−1)

|VA| ≤
(
1− 4k · logm

m1−(t−1)/s

)m1−(t−1)/s

≤ exp (−4k · logm) ≤ m−4k.

Taking a union bound over
∑k

i=1

(
m
i

)
= O(mk) possible choices for a bad set A, the probability

that any bad set A is chosen as the set Xj,t is smaller than 1/m3k. Conditioned on this event, the

28

set VXj,t for the next round, i.e., the t-th round, has size at most m1−(t−1)/s. Taking a union bound
over all j ∈ [ℓ] and t ∈ [s] finalizes the proof.

It is now easy to bound the communication cost of this protocol.

Lemma 6.8. SPGreedy communicates at most O(r · k ·m1/s · logm) items w.p. at least 1− 1/mk.

Proof. We condition on the event in Lemma 6.7. As such, for each iteration j ∈ [ℓ] and each step
t ∈ [s] in this iteration, V j,t is of size m1−(t−1)/s at most. Consequently, the total number of items
sampled by the machines in step t is in expectation at most m1−(t−1)/s · qt = m1/s · 4k logm. This
means that, by Chernoff bound, w.p. at least 1 − 1/m2k, at most O(m1/s · k logm) items are
communicated by each machine in this step. The coordinator also communicates at most k items
to each machine in each step. The bound in the lemma statement now follows by taking a union
bound over all O(r) iterations and steps.

We now prove a bound on the quality of the returned solution.

Lemma 6.9. Suppose X is the set returned by SPGreedy; then, f(X) ≥ (1− 1/e − ε) · opt.

Proof. We first argue that if the set X has size < k then f(X) ≥ (1− 1/e) · opt already; note that
in this case, X = Xℓ,s. Let OPT be an optimal solution and consider any item o ∈ OPT that was
never picked by the coordinator to be added to X; this in particular means that o was not added
to Xℓ,s which implies,

fX(o) = fXℓ,s(o) < τℓ =
õpt
k

·
(

1

1 + ε

)ℓ
=

õpt
2e · k ≤ opt

e · k . (5)

The first inequality in Eq (5) holds because in step s of each iteration, every item a ∈ V with
fXℓ,s−1(a) ≥ fXℓ,s(a) (by submodularity) is sent to the coordinator and hence if fXℓ,s(o) ≥ τℓ the
coordinator would be able to find it and add it to Xℓ,s. The next two equalities are by the choices
of τℓ and ℓ, respectively, and the last inequality is true since õpt ≤ 2opt. Using this bound and the
monotone submodularity of f(·), we can write,

f(OPT) ≤
Fact 2.1

f(X) +
∑

o∈OPT\X

fX(o) ≤
Eq (5)

f(X) + |OPT| · opt
e · k = f(X) + opt/e

as |OPT| = k, which finalizes the proof in this case.
We now consider the more involved case where the coordinator picks exactly k items in X.

To continue, we need the following definitions. Let x1, . . . , xk be the items added to X by the
coordinator in this particular order. For any i ∈ [k], define X<i = x1, . . . , xi−1, i.e., the first i − 1
items added to X (define X<1 = ∅). We have,

Claim 6.10. For any i ∈ [k],

fX<i(xi) ≥
f(OPT)− f(X<i)

(1 + ε) · k .

Proof. For any item xi for i ∈ [k], by construction of SPGreedy, if i is added in iteration j ∈ [ℓ] to
X, then,

fX<i(xi) ≥ τj . (6)

29

Suppose first that the item xi is added to X in the first iteration. By the above equation,

fX<i(xi) ≥
Eq (6)

τ1 =
õpt

(1 + ε) · k ≥ opt
(1 + ε) · k ,

by the bounds on τ1 and õpt. This proves the lemma for any item xi that is added to X in the first
iteration. Now suppose xi is added in the iteration j > 1.

Consider the item o∗ ∈ OPT \ X<i with the maximum marginal contribution to fX<i . Recall
that since f(·) is submodular, by Fact 2.2, fX<i(·) is subadditive. We have,

fX<i(o∗) = max
o∈OPT\X<i

fX<i(o) ≥
Fact 2.2

1

k
·

∑

o∈OPT\X<i

fX<i(o) ≥
Fact 2.1

1

k
·
(
f(OPT)− f(X<i)

)
(7)

On the other hand, we also know that o∗ does not belong to X<i, meaning that it was not added
to X<i at least by end of iteration j − 1 (since xi is added to X<i in iteration j). Hence, again by
construction of SPGreedy, similar to the case in Eq (6),

fX<i(o∗) < τj−1. (8)

Finally,

fX<i(xi) ≥
Eq (6)

τj ≥
1

(1 + ε)
· τj−1 ≥

Eq (8)

1

(1 + ε)
· fX<i(o∗) ≥

Eq (7)

f(OPT)− f(X<i)

(1 + ε) · k ,

finishing the proof.

We can now finalize the proof of Lemma 6.9 as follows,

f(OPT)− f(X) = f(OPT)− f(X<k)− fX<k(xk) (by definition of fX<k(xk))

≤
Claim 6.10

f(OPT)− f(X<k)− f(OPT)− f(X<k)

(1 + ε) · k

=

(
1− 1

(1 + ε) · k

)
·
(
f(OPT)− f(X<k)

)

≤
(
1− 1

(1 + ε) · k

)k
·
(
f(OPT)− f(X<1)

)
(by applying Claim 6.10 recursively)

≤ (1/e + ε) · f(OPT)

as f(X<1) = 0 since X<1 = ∅ by definition. This implies that f(X) ≥ (1− 1/e− ε) · opt.

Theorem 4 now follows immediately from Lemma 6.8 and Lemma 6.9.

We conclude this section by proving the following corollary of Theorem 4 for the maximum
coverage problem, which formalizes the first part of Result 2. The proof is a direct application of
Theorem 4 plus the known sketching methods for coverage functions in [20, 57] to further optimize
the communication cost.

Corollary 5. There exists a randomized distributed algorithm for the maximum coverage prob-
lem that for any integer r ≥ 1, and any parameter ε ∈ (0, 1), with high probability computes an(

e
e−1 + ε

)
-approximation in r rounds and Õ(k

ε4
·mO(1/ε·r) + n) total communication.

30

Proof. Coverage functions are submodular (see Appendix 2.2) and hence by assigning an item aS
to V for each set S ∈ S in the input collection of the machines, we can directly use the SPGreedy

algorithm for maximum coverage; we only need to communicate the set S as a whole so that the
value of f(·) on any set of items for f (i.e., collection of sets in coverage problem) can be computed
locally, without any further communication. However, as each set requires (potentially) Θ(n) bits to
represent, the total communication cost of this direct implementation is Õ(k ·mO(1/ε·r) ·n), roughly
a factor n worse than the bounds in the corollary statement.

To achieve the bounds in Corollary 5, we can use a sketch of each set S ∈ S instead of commu-
nicating the whole set S. In particular, it was shown in [57] (see also [20]) that6,

Lemma 6.11 ([57]). Suppose U ′ is a subset of [n] chosen by picking each element in [n] indepen-

dently and w.p. q = O
(
k logm
ε2·opt

)
and define S ′ = {S ∩ U | S ∈ S}; then, with high probability, for

all collection of k sets S1, . . . , Sk in S and their corresponding sets S′
1, . . . , S

′
k in S ′,

∣∣S′
1 ∪ . . . ∪ S′

k

∣∣ = |S1 ∪ . . . ∪ Sk| · q ± ε · q · opt.

By Lemma 6.11, we can first perform a sampling step to reduce the size of the universe, while

ensuring that the returned solution on the subsampled universe is still an
(

e
e−1 +O(ε)

)
approxi-

mation of the original instance. As size of each set S in the original instance is clearly O(opt), after
the sampling, the set |S′| = O(kε2 logm) w.h.p. This step already ensures that we need at most

Õ(k/ε2) bits to communicate each set as opposed to Õ(n).
To shave off another factor of k in the communication, we need to modify SPGreedy slightly.

Firstly, we run SPGreedy with the parameter k′ = (1− ε) · k instead of the original k. Additionally,
at each step t in SPGreedy, the machines compute the sample collection of sets to send to the
coordinator as before. Let us denote this collection by VtS (S stands for sample here). Instead of
sending VtS to the coordinator directly, the machines first sample a collection of ε · k

2r uniformly
at random chosen sets from VtS and communicate them to the coordinator. The coordinator adds
these sets to a collection Y (maintained throughout the algorithm similar to the partial solution
X , corresponding to set of items X in the submodular maximization notation), and communicates
back the elements in these sets to each machine. The machines then remove any element from the
universe that is covered by these sets; then, they send the collection VtS in SPGreedy (after removing
the mentioned elements) to the coordinator. The rest of the protocol is exactly as before. At the
end, the coordinator outputs Y ∪X as the solution. Notice that this change doubles the number of
rounds in SPGreedy as each step now requires two rounds of communication.

The correctness of the algorithm follows exactly as before since Y can contain at most ε · k sets
and X has size k′ = (1 − ε) · k and hence Y ∪ X is a valid k-cover of the universe. Moreover, the
same exact argument in Theorem 4 ensures that X covers at least (1 − 1/e − ε) of the optimal

k′-cover on [n] \ c(Y), and hence is a
(

e
e−1 +O(ε)

)
-approximate k-cover also over [n] \ c(Y) (as the

best k′-cover for k′ = (1− ε) · k is a (1 + ε) approximation of best k-cover). Since anything in c(Y)
is covered by Y, the algorithm achieves a

(
e
e−1 +O(ε)

)
-approximation.

Finally, we bound the communication cost of this algorithm. After sending the additional
samples from each VtS, we know that any element in the universe that appears in more than (r/εk) ·
O(logm) fraction of the candidate sets in VtS is being covered by Y with high probability and hence
after removing c(Y) from the universe, size of each set in VtS is now in average only O(r/ε3 · logm) =

6We note the result in [57] works even when the sampling is performed using limited independence rather than
the full independence we state in the Lemma 6.11; however, as we do not need this additional feature, we state the
simpler version.

31

Õ(1/ε4) (since r = O(logm/ε), as we never need to run the algorithm for more than that many
rounds). This means that the total number of bits needed to communicate VtS is now Õ(1/ε4) ·

∣∣VtS
∣∣

bits, which finalizes the proof.

7 Applications to Other Models of Computation

We discuss the applications of our results to maximum coverage (and submodular maximization) in
the dynamic streaming model and the MapReduce framework introduced in Section 1.1. We finish
the section by making a remark about the role of partitioning of the input in the distributed model.

7.1 Maximum Coverage in Dynamic Set Streams

We first define the dynamic set streaming model formally. The definition is a straightforward
extension of the set streaming model introduced by Saha and Getoor [66] (see also [36]) to dynamic
streams similar to dynamic graph streams [4]. Indeed, if we consider the maximum coverage as a
hypergraph problem, i.e., picking k hyperedges to cover the most number of vertices (similar to [36]
for streaming set cover), then our notion of dynamic set streams is exactly the same as dynamic
hypergraph streams in [42].

Definition 7.1. A dynamic set stream Fn = 〈a1, a2, . . . , at〉 defines a set-system S over [n]. Each
ai is a tuple (Si,∆i) where Si ⊆ [n] and ∆i ∈ {−1,+1}. The multiplicity of a set S ⊆ [n] is defined
as:

F(S) :=
∑

ai:Si=S

∆i.

The multiplicity of every set is required to be always non-negative during the stream. We use the
(2n)-dimensional vector f to denote the vector of multiplicities of the sets seen in the stream.

All known algorithms for all problems in dynamic streams (not only dynamic set streams) have
a similar form: they first choose a (possibly random) integer matrix A and maintain the linear
sketch A · f in the stream. At the end of the stream, they use A · f to compute the answer. It was
shown by [56] that this is not a coincidence; any one pass streaming algorithm for approximating
any arbitrary function on multiplicity vector f in the dynamic streaming model can be reduced to
an algorithm which, before the stream begins, samples a matrix A uniformly at random from a set of
hardwired integer matrices, and then maintains the linear sketch A·f mod q, where q = (q1, . . . , qr)
is a vector of positive integers and r is the number of rows of A. The space complexity of this linear
sketching algorithm is only larger by an additive factor of the space required to sample A and
q (which is shown to be logarithmic in the dimension of the vector f in [56]). This reduction
was further extended by [5] to algorithms which make any number of passes, showing the optimal
algorithm is to adaptively choose a new linear sketch at the beginning of each pass based on the
computation in previous passes.

It is a well-known fact that any linear sketching algorithm that requires at most p passes of
adaptive sketching can be implemented in the communication model studied in this paper (see
Appendix 2.1) with p rounds of communication: each player simply computes the linear sketches
on its input and writes that on the shared blackboard; by linearity of the sketches, the players can
then combine these sketches and obtain a linear sketch of the whole input. This allows the players
to implement each round of adaptive sketching in one round of communication and compute the
final answer. It is also easy to see that the per player communication cost of this new algorithm is
at most the size of the linear sketch. Combining this with the reduction of [5] implies that if one
can prove a lower bound on the per player communication complexity of a problem in the shared

32

blackboard model, one also obtains a lower bound on the space complexity of dynamic streaming
algorithms; notice that since in the communication model we can perform the sampling of A and
q via public randomness, free of communication charge, we do not even need to pay for the extra
additive factor in space in the reduction; we refer the interested reader to [5] for more details.

The takeaway is that by applying the reduction of [5] to dynamic streaming algorithms for
maximum coverage problem and using our lower bound in Theorem 2 (which was proven in this
more general communication model), we obtain that,

Corollary 6. No p-pass semi-streaming algorithm for the maximum coverage problem in the dy-

namic streaming model can approximate the value of optimal solution to a factor of o(k
1/2p

p·log k) with a
sufficiently large probability.

We remark that one can obtain the same exact bounds in Theorem 2 for the space complexity
of dynamic streaming algorithms also; however, as our focus is on semi-streaming algorithms we
provide the above theorem which is qualitatively similar but is easier to parse.

We now turn to proving an upper bound for maximum coverage in dynamic streams using
Theorem 4. We remark that the same argument holds also for maximizing any monotone submodular
function subject to a cardinality constraint (exactly as in Section 6.2); for brevity, in the following
we only focus on the maximum coverage problem.

We show that SPGreedy can be implemented in dynamic streams. To do this, we need a primitive
that allows for sampling a set from a dynamic stream uniformly at random. This can be achieved
using ℓ0-samplers introduced in [38]. Since the dimension of the multiplicity vector f is 2n and
each set also requires Θ(n) bits to represent, a naive implementation of the best known streaming
ℓ0-samplers due to [47] requires Θ(n2) space. However, using the fact there can only be m non-zero
entries in the vector f at the end of the stream (as number of sets is at most m), we can implement
the algorithm of [47] with only O(n ·poly {logm, log n}) space (simply change the number of buckets
in Theorem 2 in [47] from n to Θ(logm)). We refer to this primitive as a set sampler.

Having the set sampler primitive; it is now easy to see that we can implement the SPGreedy

algorithm in dynamic stream. Each of the s steps of SPGreedy (in any iteration) can be implemented
by making one pass over the stream and maintaining a set sampler over the collection of sets defined
in Line (2(b)i) of SPGreedy; notice that whenever a set is updated in the stream we can decide in
Õ(n) space whether it belongs to this collection or not and hence send it to the set sampler primitive.
The rest of the algorithm is exactly as in SPGreedy and its modification in Corollary 5. By running
SPGreedy with p = O(logm/ε) passes over the stream, we obtain an algorithm with space complexity
of Õ(k/ε4 ·mO(1/ε·p) + n) = Õ(k/ε4 + n), i.e., a semi-streaming algorithm. Consequently,

Corollary 7. There exists a randomized semi-streaming algorithm for the maximum coverage prob-

lem that for any constant ε ∈ (0, 1), with high probability, computes an
(

e
e−1 + ε

)
-approximation in

O(logm/ε) passes over the stream.

Corollary 7 can also can be stated for dynamic streaming algorithms with different space bounds
corresponding to Corollary 5; however, for brevity, we only focused on semi-streaming algorithms.

Constant Pass Algorithms. We remark that our second algorithm in Result 2 does not admit a
linear sketching implementation; in fact, using Corollary 6, it is easy to prove that the GreedySketch

subroutine used by each machine cannot be implemented in dynamic streams in less than logarithmic
number of passes over the stream. As a result, we do not know if one can achieve a non-trivial semi-
streaming algorithm for maximum coverage in dynamic streams in constant passes over the stream.
In particular, can we match the lower bound in Corollary 6 for any number of passes p? We leave
this as an intriguing open question.

33

Application to Set Cover in Dynamic Streams. We finish this section by stating that our
algorithm in Corollary 7 can also be used to obtain the first dynamic streaming algorithm for the set
cover problem. The algorithm is as follows. Guess the value of optimal solution õpt for set cover in
powers of two in parallel and perform the following procedure. Run the algorithm in Corollary 7 for
each guess with the parameter k = õpt and remove all covered elements from the universe; repeat
this process until there is no uncovered element left; return the collection of all sets computed over
different passes as a set cover. It is easy to see that O(log n) iteration of this algorithm suffices to
cover all the elements (hence the O(log n) factor in the approximation ratio) and each iteration can
be implemented in O(logm) passes by Corollary 7 (O(logm · log n) passes in total). As a result,

Corollary 8. There exists a randomized semi-streaming algorithm for the set cover problem that
with high probability computes an O(log n)-approximation in O(logm · log n) passes over the stream.

7.2 Maximum Coverage in the MapReduce Framework

We now present our results for maximum coverage and submodular maximization in the MapReduce
framework described in Section 1.1.

Recall that in the sketch-and-update approach (described in Section 1.1) in the MapReduce
framework, in each round, every machine is sending a message directly to a designated central
machine for combining the sketches. By definition of the MapReduce framework, the total messages
received by the central machine can only be proportional to its memory which is of size O(s).
This enforces an upper bound on the total communication of O(s) in each round by the machines.
It is thus easy to see that efficient MapReduce algorithms in the sketch-and-update framework
immediately imply communication efficient protocols in the distributed coordinator model (note
that this is in general is not true for every MapReduce algorithm). As a result, we can interpret
Theorem 2 as proving a lower bound for sketch-and-update algorithms in the MapReduce framework.

Corollary 9. For any δ ∈ (0, 1), any MapReduce algorithm in the sketch-and-update framework
described in Section 1.1 that uses s = mδ space per machine and computes a constant factor ap-
proximation to maximum coverage requires Ω(1δ) rounds of communication.

Moreover, both algorithms in Result 2 can be implemented in the MapReduce model. In par-
ticular, we state the following corollary of Theorem 4 for submodular maximization which also
subsumes the results for coverage maximization.

Corollary 10. Let V be a universe of m items and f : 2V → R
+ be a monotone submodular function.

For any ε, δ ∈ (0, 1), there exists an
(

e
e−1 + ε

)
-approximation randomized algorithm for maximizing

f subject to a cardinality constraint in the MapReduce framework that uses p = O(m1−δ/ε) machines
each with s = O(mδ/ε) memory and computes the answer in O(1

ε·δ) rounds.

As stated in Section 1.1, our bounds in Corollary 10 matches the best known bounds of [32]
with the additional benefit of having sublinear in m communication. We again remark that the
algorithm in [32] is however more general in that it supports a larger family of constraints beside
the cardinality constraint we studied in this paper.

7.3 Adversarial vs Random Partitions

We considered adversarial input partitions in this work, meaning that the input across the ma-
chines is distributed adversarially. Several recent work have studied optimization problems in the
distributed model when the input is randomly partitioned [10,31,58]. For maximum coverage (and
submodular maximization), it was shown previously that under this assumption one can achieve a

34

constant factor approximation using Õ(n) communication per machine in only one round of com-
munication [31, 58]. Comparing this with Theorem 2 implies that an approximation factor that
can be achieved in only one round of communication and Õ(n) communication under randomized
partitions, cannot be achieved in o(logn

log logn) rounds of communication and poly(n) communication
in adversarial partitions!

We remark that separations on the round complexity of randomized and adversarial partitions
were known for some problems before (see e.g., [24,41,60] for median estimating). The striking gap
between these two cases for the distributed maximum coverage problem is another nice illustration
of this phenomenon.

Acknowledgements

The first author is grateful to Alessandro Epasto for bringing [37] to his attention and to David
Woodruff for a helpful discussion on the implication of the results in [5] for proving multi-pass
dynamic streaming lower bounds. We also thank Paul Liu and Jan Vondrak for helpful comments
on the presentation of the paper.

References

[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on the
cost of a map-reduce computation. PVLDB, 6(4):277–288, 2013.

[2] K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal algorithms for
maximum matching under resource constraints. In Proceedings of the 27th ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15,
2015, pages 202–211, 2015.

[3] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements.
In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, pages 459–467. SIAM, 2012.

[4] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and sub-
graphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14, 2012.

[5] Y. Ai, W. Hu, Y. Li, and D. P. Woodruff. New characterizations in turnstile streams with
applications. In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[6] N. Alon, A. Moitra, and B. Sudakov. Nearly complete graphs decomposable into large induced
matchings and their applications. In Proceedings of the 44th Symposium on Theory of Com-
puting Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1079–1090,
2012.

[7] N. Alon, N. Nisan, R. Raz, and O. Weinstein. Welfare maximization with limited interaction.
In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 1499–1512, 2015.

[8] S. Assadi. Combinatorial auctions do need modest interaction. In Proceedings of the 2017 ACM
Conference on Economics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017,
pages 145–162, 2017.

35

[9] S. Assadi. Tight space-approximation tradeoff for the multi-pass streaming set cover prob-
lem. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 321–335, 2017.

[10] S. Assadi and S. Khanna. Randomized composable coresets for matching and vertex cover.
In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 3–12, 2017.

[11] S. Assadi, S. Khanna, and Y. Li. Tight bounds for single-pass streaming complexity of the
set cover problem. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 698–711, 2016.

[12] S. Assadi, S. Khanna, and Y. Li. On estimating maximum matching size in graph streams.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–1742, 2017.

[13] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Maximum matchings in dynamic graph
streams and the simultaneous communication model. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 1345–1364, 2016.

[14] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos. Online maximum k-
coverage. Discrete Applied Mathematics, 160(13-14):1901–1913, 2012.

[15] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular max-
imization: massive data summarization on the fly. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August
24 - 27, 2014, pages 671–680, 2014.

[16] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, pages 1497–1514, 2014.

[17] M. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on gen-
eral communication topologies. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Nevada,
United States., pages 1995–2003, 2013.

[18] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mirrokni. Distributed balanced clustering
via mapping coresets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 2591–2599, 2014.

[19] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Distributed coverage maximization via sketching.
CoRR, abs/1612.02327, 2016.

[20] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Almost optimal streaming algorithms for cover-
age problems. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 13–23, 2017.

[21] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query processing. In Pro-
ceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 273–284, 2013.

36

[22] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy parallel approximate set
cover and variants. In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on
Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located
with FCRC 2011), pages 23–32, 2011.

[23] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan. A tight bound for set
disjointness in the message-passing model. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 668–677,
2013.

[24] A. Chakrabarti, T. S. Jayram, and M. Patrascu. Tight lower bounds for selection in randomly
ordered streams. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 720–729,
2008.

[25] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: Matchings, matroids,
and more. In Integer Programming and Combinatorial Optimization - 17th International Con-
ference, IPCO 2014, Bonn, Germany, June 23-25, 2014. Proceedings, pages 210–221, 2014.

[26] A. Chakrabarti and A. Wirth. Incidence geometries and the pass complexity of semi-streaming
set cover. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1365–1373, 2016.

[27] J. Chen, H. L. Nguyen, and Q. Zhang. Submodular maximization over sliding windows. CoRR,
abs/1611.00129, 2016.

[28] F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In Proceedings of the
19th International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
USA, April 26-30, 2010, pages 231–240, 2010.

[29] G. Cormode, H. J. Karloff, and A. Wirth. Set cover algorithms for very large datasets. In
Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 479–488, 2010.

[30] T. M. Cover and J. A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.

[31] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. The power of randomization:
Distributed submodular maximization on massive datasets. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
1236–1244, 2015.

[32] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for distributed
submodular maximization. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, New Brunswick, New Jersey, USA, pages 645–654, 2016.

[33] E. D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. On streaming and communication
complexity of the set cover problem. In Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 484–498, 2014.

[34] S. Dobzinski, N. Nisan, and S. Oren. Economic efficiency requires interaction. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
233–242, 2014.

37

[35] D. Dolev and T. Feder. Determinism vs. nondeterminism in multiparty communication com-
plexity. SIAM J. Comput., 21(5):889–895, 1992.

[36] Y. Emek and A. Rosén. Semi-streaming set cover - (extended abstract). In Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part I, pages 453–464, 2014.

[37] A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Submodular optimization
over sliding windows. In Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 421–430, 2017.

[38] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and applications.
International Journal of Computational Geometry & Applications, 18(01n02):3–28, 2008.

[39] D. V. Gucht, R. Williams, D. P. Woodruff, and Q. Zhang. The communication complexity of
distributed set-joins with applications to matrix multiplication. In Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 199–212, 2015.

[40] S. Guha, Y. Li, and Q. Zhang. Distributed partial clustering. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington
DC, USA, July 24-26, 2017, pages 143–152, 2017.

[41] S. Guha and A. McGregor. Stream order and order statistics: Quantile estimation in random-
order streams. SIAM J. Comput., 38(5):2044–2059, 2009.

[42] S. Guha, A. McGregor, and D. Tench. Vertex and hyperedge connectivity in dynamic graph
streams. In Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS
2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 241–247, 2015.

[43] S. Har-Peled, P. Indyk, S. Mahabadi, and A. Vakilian. Towards tight bounds for the streaming
set cover problem. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 371–383, 2016.

[44] S. Im and B. Moseley. Brief announcement: Fast and better distributed mapreduce algorithms
for k-center clustering. In Proceedings of the 27th ACM on Symposium on Parallelism in
Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 65–
67, 2015.

[45] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mirrokni. Composable core-sets for diversity
and coverage maximization. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27,
2014, pages 100–108, 2014.

[46] R. Jacob, T. Lieber, and N. Sitchinava. On the complexity of list ranking in the parallel external
memory model. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, pages
384–395, 2014.

[47] H. Jowhari, M. Sağlam, and G. Tardos. Tight bounds for lp samplers, finding duplicates
in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 49–58. ACM, 2011.

38

[48] M. Kapralov and D. P. Woodruff. Spanners and sparsifiers in dynamic streams. In ACM
Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 272–281, 2014.

[49] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948, 2010.

[50] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003, pages 137–146,
2003.

[51] C. Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 840–852,
2015.

[52] A. Krause and C. Guestrin. Near-optimal observation selection using submodular functions.
In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada, pages 1650–1654, 2007.

[53] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algorithms in mapreduce
and streaming. In 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’13, Montreal, QC, Canada - July 23 - 25, 2013, pages 1–10, 2013.

[54] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997.

[55] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving graph
problems in mapreduce. In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on
Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located
with FCRC 2011), pages 85–94, 2011.

[56] Y. Li, H. L. Nguyen, and D. P. Woodruff. Turnstile streaming algorithms might as well be
linear sketches. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 174–183, 2014.

[57] A. McGregor and H. T. Vu. Better streaming algorithms for the maximum coverage problem.
In 20th International Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice,
Italy, pages 22:1–22:18, 2017.

[58] V. S. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets for distributed
submodular maximization. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 153–162,
2015.

[59] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular maximiza-
tion: Identifying representative elements in massive data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013, Lake Tahoe, Nevada, United States., pages 2049–2057, 2013.

[60] J. I. Munro and M. Paterson. Selection and sorting with limited storage. Theor. Comput. Sci.,
12:315–323, 1980.

39

[61] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds for number-in-hand multiparty com-
munication complexity, made easy. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
486–501, 2012.

[62] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-round tradeoffs
for mapreduce computations. In International Conference on Supercomputing, ICS’12, Italy,
pages 235–244, 2012.

[63] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci.,
106(2):385–390, 1992.

[64] T. Roughgarden, S. Vassilvitskii, and J. R. Wang. Shuffles and circuits: (on lower bounds for
modern parallel computation). In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA,
July 11-13, 2016, pages 1–12, 2016.

[65] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978.

[66] B. Saha and L. Getoor. On maximum coverage in the streaming model & application to multi-
topic blog-watch. In Proceedings of the SIAM International Conference on Data Mining, SDM
2009, Sparks, Nevada, USA, pages 697–708, 2009.

[67] E. Verbin and W. Yu. The streaming complexity of cycle counting, sorting by reversals, and
other problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
11–25, 2011.

[68] D. P. Woodruff and Q. Zhang. Tight bounds for distributed functional monitoring. In Pro-
ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 941–960, 2012.

[69] D. P. Woodruff and Q. Zhang. When distributed computation is communication expensive. In
Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, October
14-18, 2013. Proceedings, pages 16–30, 2013.

[70] D. P. Woodruff and Q. Zhang. An optimal lower bound for distinct elements in the message
passing model. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, pages 718–733, 2014.

[71] A. C. Yao. Some complexity questions related to distributive computing (preliminary report).
In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

40

A Tools From Information Theory

The proof of the following basic properties of entropy and mutual information can be found in [30]
(see Chapter 2).

Fact A.1. Let A, B, and C be three (possibly correlated) random variables.

1. 0 ≤ H(A) ≤ |A|, and H(A) = |A| iff A is uniformly distributed over its support.

2. I(A ;B | C) ≥ 0. The equality holds iff A and B are independent conditioned on C.

3. H(A | B,C) ≤ H(A | B). The equality holds iff A ⊥ C | B.

4. I(A,B ;C) = I(A ;C) + I(B ;C | A) (chain rule of mutual information).

5. Suppose f(A) is a deterministic function of A, then I(f(A) ;B | C) ≤ I(A ;B | C) (data
processing inequality).

We also use the following two standard propositions, regarding the effect of conditioning on
mutual information.

Proposition A.2. For variables A,B,C,D, if A ⊥ D | C, then, I(A ;B | C) ≤ I(A ;B | C,D).
Proof. Since A and D are independent conditioned on C, by Fact A.1-(3), H(A | C) = H(A | C,D)
and H(A | C,B) ≥ H(A | C,B,D). We have,

I(A ;B | C) = H(A | C)−H(A | C,B) = H(A | C,D)−H(A | C,B)
≤ H(A | C,D)−H(A | C,B,D) = I(A ;B | C,D).

Proposition A.3. For variables A,B,C,D, if A ⊥ D | B,C, then, I(A ;B | C) ≥ I(A ;B | C,D).
Proof. Since A ⊥ D | B,C, by Fact A.1-(3), H(A | B,C) = H(A | B,C,D). Moreover, since
conditioning can only reduce the entropy (again by Fact A.1-(3)),

I(A ;B | C) = H(A | C)−H(A | B,C) ≥ H(A | D,C)−H(A | B,C)
= H(A | D,C)−H(A | B,C,D) = I(A ;B | C,D).

For two distributions µ and ν over the same probability space, the Kullback-Leibler divergence

between µ and ν is defined as D(µ || ν) := Ea∼µ

[
log

Prµ(a)
Prν(a)

]
. We have,

Fact A.4. For random variables A,B,C,

I(A ;B | C) = E
(b,c)∼dist(B,C)

[
D(dist(A | C = c) || dist(A | B = b,C = c))

]
.

We denote the total variation distance between two distributions µ and ν over the same proba-
bility space Ω by ‖µ− ν‖ = 1

2 ·
∑

x∈Ω |Prµ(x)− Prν(x)|.
The following Pinskers’ inequality bounds the total variation distance between two distributions

based on their KL-divergence,

Fact A.5 (Pinsker’s inequality). For any two distributions µ and ν, ‖µ − ν‖ ≤
√

1
2 · D(µ || ν).

Finally,

Fact A.6. Suppose µ and ν are two distributions for an event E, then, Prµ(E) ≤ Prν(E) + ‖µ− ν‖.

41

B Further Discussion on Our Framework

We discuss further extensions to our framework for proving communication lower bounds for bounded
round protocols introduced in Section 4 including how to use the framework to obtain lower bounds
for search problems and the connection of this framework to previous results in [7, 8, 12, 13, 34, 51].

Search Problems. We can also use our framework to prove a lower bound for a search problem
P : {0, 1}s 7→ Rs (for some range Rs); for example, think of P as finding edges of an approximate
matching. The framework is as before for the most part. In a search problem, we do not have
Yes and No instances, rather all instances are sampled from the same distribution, and the goal of
the players is to find a suitable answer in Rs, e.g., a large matching in the example above. In the
following, we discuss the changes needed in our framework to be able to prove lower bounds for
search problems as well.

Instead of having gr copies of the same special instance, we sample the special instance of each
group independently from Dr (note that this is not possible for a decision problem because we need
all special instances to be either a Yes instance or a No instance which correlates them). We also
change the definition of γ-preserving property slightly so that it ensures that to solve Psr , at least
one group of players need to solve Psr−1 on their special instance w.p. 1−γ. With this property, we
can do the embedding of (r− 1)-round instances in r-round instances in Lemma 4.11 as before with
a slight change; the players in Psr−1 only need to embed their input in one group of the distribution
Dr (as opposed to “copying” themselves gr times) and can sample the input for rest of the groups
using public randomness.

The proof is similar as before with one crucial change. Since special instances are sampled
independently, one can in fact show a stronger result than the one in Lemma 4.7 for decision
problems; in particular, for any group i ∈ [gr], one can now show that,

I(Iij⋆ ;Π1 | Φ, J) ≤
∑

q∈Pi

|Π1,q|/wr.

In other words, as only the players in group Pi can communicate information about the special
instance of this group and hence the information revealed about this special instance is bounded
by the message length of this particular group, and not all players. This improves the per player
communication lower bound by a factor of gr in each round, which is crucial for some application,
e.g., in [7]. The rest of the proof is as before.

Connection to Previous Work. The framework introduced in Section 4 plus the extension for
search problems subsumes the communication lower bounds in [7, 8], the lower bound for super
constant estimation algorithms of matching size in dense graphs in [12], and the lower bound for
combinatorial auctions in [34]. We again emphasize that our framework only facilitates proving the
communication lower bound in those arguments; to obtain the desired bound on the approximation
ratio subject to this communication lower bound, one still needs to instantiate the framework with
suitable packing and labeling functions that are designed specifically for the problem at hand at in
each of these results separately.

To obtain the lower bounds in [13, 51], the (1 + ε)-approximation lower bounds in [12], and the
lower bound for unit-demand auctions (matching markets) in [34], we need to modify the framework
as follows: in our framework, we use the fact that a protocol that reveals o(1) bits of information in
distribution D0, cannot solve the problem P0 with probability more than 1/2+o(1), which is always
true (by Lemma 4.10 and Fact A.6). However, in some scenarios, if we insists on only revealing o(1)
bits of information about D0, we cannot hope to achieve any meaningful lower bounds for D1 (as w1

cannot be sufficiently large in the parameters of the problem); this is the case for the aforementioned

42

results. To achieve those (and similar) simultaneous lower bounds, we need to apply Lemma 4.7
with larger values of |Π1| and obtain that, for some suitably chosen value of t, only o(t) bits of
information are revealed about the instance of D0; this allows for proving a communication lower
bound of Ω(w1 · t) instead of Ω(w1) which follows directly from our framework. However, in this
case, one needs to also argue that revealing o(t) bits of information about D0 still does not allow
for solving this problem with a sufficiently large probability. This step is again problem specific
and was shown to be correct for [13, 51] using a combinatorial argument, in [34] using a reduction
to set disjointness in communication complexity [63], and in [12] using an information complexity
lower bound for the boolean hidden hypermatching problem [67]. We remark that except for the
argument in [12], the aforementioned results were proven using different combinatorial arguments;
our framework suggests a unified approach for proving all these lower bounds.

43

	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Communication Complexity Model
	2.2 Submodular Maximization with Cardinality Constraint

	3 Technical Overview
	4 A Framework for Proving Distributed Lower Bounds
	4.1 A High Level Overview of the Framework
	4.2 The Formal Description of the Framework
	4.3 Correctness of the Framework: Proof of Theorem ??

	5 A Distributed Lower Bound for Maximum Coverage
	5.1 Proof of Theorem ??

	6 Distributed Algorithms for Maximum Coverage
	6.1 An O(r k1/r)-Approximation Algorithm
	6.2 An (ee-1)-Approximation Algorithm

	7 Applications to Other Models of Computation
	7.1 Maximum Coverage in Dynamic Set Streams
	7.2 Maximum Coverage in the MapReduce Framework
	7.3 Adversarial vs Random Partitions

	A Tools From Information Theory
	B Further Discussion on Our Framework

