
(1 + Ω(1))-Approximation to MAX-CUT Requires Linear Space

Michael Kapralov∗ Sanjeev Khanna† Madhu Sudan‡ Ameya Velingker§

Abstract
We consider the problem of estimating the value of MAX-
CUT in a graph in the streaming model of computation.
We show that there exists a constant ε∗ > 0 such that any
randomized streaming algorithm that computes a (1 + ε∗)-
approximation to MAX-CUT requires Ω(n) space on an n
vertex graph. By contrast, there are algorithms that produce
a (1 + ε)-approximation in space O(n/ε2) for every ε > 0.
Our result is the first linear space lower bound for the task
of approximating the max cut value and partially answers
an open question from the literature [2]. The prior state of

the art ruled out (2 − ε)-approximation in Õ(
√
n) space or

(1 + ε)-approximation in n1−O(ε) space, for any ε > 0.

Previous lower bounds for the MAX-CUT problem

relied, in essence, on a lower bound on the communication

complexity of the following task: Several players are each

given some edges of a graph and they wish to determine

if the union of these edges is ε-close to forming a bipartite

graph, using one-way communication. The previous works

proved a lower bound of Ω(
√
n) for this task when ε = 1/2,

and n1−O(ε) for every ε > 0, even when one of the players

is given a candidate bipartition of the graph and the graph

is promised to be bipartite with respect to this partition or

ε-far from bipartite. This added information was essential

in enabling the previous analyses but also yields a weak

bound since, with this extra information, there is an n1−O(ε)

communication protocol for this problem. In this work, we

give an Ω(n) lower bound on the communication complexity

of the original problem (without the extra information)

for ε = Ω(1) in the three-player setting. Obtaining this

Ω(n) lower bound on the communication complexity is the

main technical result in this paper. We achieve it by a

∗School of Computer and Communication Sciences, EPFL,

Lausanne, Switzerland. Email: michael.kapralov@epfl.ch
†Department of Computer and Information Science, Uni-

versity of Pennsylvania, Philadelphia, PA 19104. Email:

sanjeev@cis.upenn.edu. Supported in part by National Science

Foundation grants CCF-1116961, CCF-1552909, CCF-1617851,
and IIS-1447470.
‡Harvard John A. Paulson School of Engineering and Applied

Sciences, 33 Oxford Street, Cambridge, MA 02138, USA. Email:
madhu@cs.harvard.edu. Supported in part by NSF Award CCF

1565641.
§School of Computer and Communication Sciences, EPFL,

Lausanne, Switzerland. Email: avelingk@cs.cmu.edu. This
work was partly done while the author was at Carnegie Mellon

University. Supported in part by National Science Foundation
grant CCF-0963975.

delicate choice of distributions on instances as well as a

novel use of the convolution theorem from Fourier analysis

combined with graph-theoretic considerations to analyze the

communication complexity.

1 Introduction

In this paper, we consider the space complexity of
approximating MAX-CUT in the streaming model of
computation. We elaborate on these terms and describe
our main result below.

The input to the MAX-CUT problem is an undi-
rected graph, and the goal is to find a bipartition of
the vertices of this graph (or a cut) that maximizes the
number of edges that cross the bipartition. The size of
a MAX-CUT on graph G, denoted MAX-CUT(G), is
the number of edges that cross the optimal bipartition.
An algorithm A is said to produce an α-approximation
to the size of the MAX-CUT if for every graph G, the
algorithm’s output A(G) satisfies MAX-CUT(G)/α ≤
A(G) ≤ MAX-CUT(G).

In this paper, we study the space complexity of ap-
proximating MAX-CUT in the streaming model of com-
putation. The streaming model of computation, for-
mally introduced in the seminal work of [8] and moti-
vated by applications in processing massive datasets, is
an extremely well-studied model for designing sublinear
space algorithms. For the MAX-CUT problem in this
model, the edges of the input graph G are presented as a
stream to a (randomized) algorithm, which must output
an α-approximation to MAX-CUT(G). The complexity
measure is the space complexity, namely, the number of
bits of memory used by the streaming algorithm, mea-
sured as a function of n, the number of vertices in G.

Our main result is a strong lower bound (optimal
to within polylogarithmic factors) on the space required
for a strong approximation to the MAX-CUT size.
Specifically, we show that there is an α > 1 such
that every α-approximation algorithm in the streaming
model must use Ω(n) space (see Theorem 1.1).

Context and Significance. There are two basic algo-
rithmic results for MAX-CUT in the streaming model:
On the one hand, the trivial algorithm that counts the
number, say m, of edges in G and outputs m/2 is a 2-
approximation that uses O(log n) space. On the other

hand, if one has Õ(n) space1, one can get an approxi-
mation scheme, i.e., a (1 + ε)-approximation algorithm
for every ε > 0, by building a “cut-sparsifier” [10, 28].

Given just the two algorithms above, it is possible
to envision three possible scenarios for improving the
approximability of MAX-CUT: (1) Perhaps MAX-CUT
has an approximation scheme in polylogarithmic space?
(2) Perhaps MAX-CUT admits a space-approximation
tradeoff, i.e., for every α > 1, there is a β < 1 such
that an α-approximation can be computed in nβ space?
(3) Perhaps there is an α < 2 and an algorithm using
nβ space for some β < 1 that can compute an α-
approximation to MAX-CUT. (Note that the scenarios
are nested with (1) ⇒ (2) ⇒ (3).)

Previous works [25, 21] have ruled out scenario (1)
above, making progress on an open question from [1]. In
particular, these works have showed that for every β <
1, there exists α > 1 such that a streaming algorithm
with space nβ cannot compute an α-approximation to
MAX-CUT. The work of [21] also shows that β < 1/2
and α < 2 are not simutaneously achievable. These
results still allow for either scenario (2) or (3). Our
result achieves the next level of understanding by ruling
out scenario (2) as well:

Theorem 1.1. (Main result) There exists ε∗ > 0
such that every randomized single-pass streaming algo-
rithm that yields a (1 + ε∗)-approximation to the MAX-
CUT size with probability at least 9/10 must use Ω(n)
space, where n denotes the number of vertices in the
input graph.

This step has also been suggested as an open
problem in the Bertinoro workshop [2], though we settle
their question only partially since the question suggests
a particular approach to proving the lower bound,
which we do not follow. Eventually we suspect that
even scenario (3) is not achievable, but ruling this out
involves more technical challenges. Indeed, one of the
hopes of this work is to introduce some techniques that
may be useful in the eventual resolution of this problem.

Techniques. As with most lower bounds in streaming,
ours is obtained by a reduction from a communication
complexity problem. However, the communication
problem and even communication model in this paper
are somewhat new, so we describe our model and then
explain why the novelty is necessary and useful.

Roughly, our paper considers a T -player sequen-
tial communication game, that we call the Implicit
Hidden Partition Problem, where player Pi, for
1 ≤ i ≤ T , is given a set of edges Ei on vertex set [n],

1Throughout this paper we use the notation Õ(f(n)) to denote
the set ∪c>0O(f(n)(log(f(n))c)).

and the players wish to determine whether ∪iEi forms
a bipartite graph or is ε-far from being bipartite. (To
be more precise, in our actual game the players also get
some “non-edges” Fi and they also need to verify that
(most of) the edges of Fi do not cross the bipartition,
but we ignore this distinction here since it is not concep-
tually significant.) The communication is one-way and
player Pi is only allowed to broadcast a message based
on its own input and broadcast messages from players
Pj for 1 ≤ j < i. We show that for T = 3 and some
ε > 0, there is a distribution on inputs for which this
task requires Ω(n) communication.

The communication problems from previous works
included an additional player P0 whose input was a
bipartition of the vertices of the graph, and later
players needed to verify that the graph was bipartite
with respect to this bipartition. The presence of this
additional player was essential to previous analyses.
These analyses roughly suggested that when the input
graph is far from being bipartite, conditioned on not
discovering a violating edge, the information of the first
i players is effectively dominated by the information of
P0 — i.e., knowledge of the partition subsumes all other
knowledge. This suggests a reduction from the T (or
T + 1) player communication problem to several two-
player games involving player P0 and Pi for 1 ≤ i ≤ T ,
and this two player game can be analyzed as in [14, 29].
Implementing this reduction does take technical work,
but the intuition works!

For our purposes, the presence of the 0-th player
poses an insurmountable obstacle—with this player,
there is a O(

√
n · poly(1/ε)) communication protocol

(based on the “birthday paradox”) to distinguish bipar-
tite graphs that are ε-far from being bipartite! Indeed,
one can just send information about the classification of
about

√
n vertices with respect to the bipartition and

check how many edges violate the bipartition. Harder
communication complexity problems (e.g. the Boolean
Hidden Hypermatching Problem of [29]—see [25, 21])
have been considered, leading to stronger n1−O(ε) lower
bounds on testing ε-closeness to bipartite, but they still
use an explicit candidate bipartition and admit n1−O(ε)

protocols for any constant ε. This forces us to remove
the 0-th player, thereby leading to the (in retrospect,
more natural) “Implicit Hidden Partition” problem that
we introduce explicitly in this paper.

The removal of the 0-th player, however, forces us
to introduce new mechanisms to cope with the leakage
of information as the protocol evolves. We do so by
changing the communication model to allow for some
“public inputs” and some “private inputs”. All inputs
to player i are selected after the transmission of the
message of player i − 1, and the public input becomes

known to all players while the private input is known
only to player i. (In our case, the public input is a
superset of the edges Ei and the private input is the
set Ei.) This separation brings back a little flexibility
into our analysis, but the task of bounding the flow
of relevant information as the protocol evolves remains
challenging and, indeed, we are only able to carry out
such an analysis for T = 3, by a careful choice of input
distributions and paramters.

One major challenge is the task of finding the
right set of hard instances for the problem. Natural
candidates (for example the one suggested in [2]) would
involve random bipartite graphs and random graphs;
however, the presence of vertices of degree larger than
2 in these graphs poses obstacles to our analysis. So we
pick a delicate distribution in which the graph formed
by E1∪E2 has no cycles and no vertices of degree> 2 (so
E1∪E2 is a union of paths). Of course, this implies that
the resulting graph is bipartitite, thereby allowing the
final edge set E3 to come into play. Our final edge set E3

is chosen to be either a random graph consistent with
this bipartition (the YES case), or a random sufficiently
dense graph (the NO case) so that the resulting graph
(E1 ∪ E2 ∪ E3) is Ω(1)-far from being bipartite. The
choice of parameters is delicate—we need to ensure that
the distributions of E3 in the YES and NO cases are
statistically close while still ensuring that E1 ∪E2 ∪E3

is far from bipartite in the case of NO instances.
Finally, we are left with the task of actually ana-

lyzing the communication protocols aiming to solve the
communication problem on the aforementioned distri-
bution. As with previous works [14], we make use of
Fourier analysis. We specifically analyze the set of bi-
partitions that are consistent with the set of public in-
puts and messages broadcast thus far and then look at
the Fourier coefficients of the indicator function of this
set. We employ relatively elementary methods (at least
given previous works) to analyze this set after the player
P1 speaks. To analyze the set after player P2 speaks,
we perform some combinatorial analysis involving the
special distributions on E1 and E2 and then incorpo-
rate this combinatorics into the Fourier language, while
finally combining the effects of the two steps using the
convolution theorem in Fourier analysis. While the use
of this theorem is natural in our setting (involving a
composition of many messages, that corresponds to a
product of various indicator functions), the fact that
the convolved coefficients can be subjected to spectral
analysis appears somewhat novel, and we hope it will
spur further progress on this and other questions.

Related work. The past decade has seen an extensive
body of work on understanding the space complexity of
fundamental graph problems in the streaming model;

see, for instance, the survey by McGregor [27]. It is
now known that many fundamental problems admit
streaming algorithms that only require Õ(n) space (i.e.
they do not need space to load the edge set of the
graph into memory) – e.g., sparsifiers [3, 24, 7, 22],
spanning trees [6], matchings [4, 5, 15, 19, 16, 17, 26, 9],
spanners [7, 23]. Very recently it has been shown that
it is sometimes possible to approximate the cost of
the solution without even having enough space to load
the vertex set of the graph into memory (e.g. [20, 13,
11]). Our work contributes to the study of streaming
algorithms by providing a tight impossibility result for
non-trivially approximating MAX-CUT value in o(n)
space.

Organization. We formally define our communication
problem and describe its connection to streaming algo-
rithms for approximating MAX-CUT value in Section 2.
We then state the main technical lemmas and prove the
main theorem in Section 3. The proof of the main tech-
nical lemma of our communication lower bound is given
in Section 4. The gap analysis is omitted in this paper
but can be found in the full version of this paper.

2 Communication problem and hard
distribution

In this section, we introduce a multi-player “sequential”
communication problem and state our lower bound for
this problem. We first describe the general model in
which this problem is presented.

We consider a sequential communication model
where T players sequentially receive public inputs Mt

and private inputs wt, for t ∈ [T]. A problem in
this model is specified by an F (M1, . . . ,MT ;w1, . . . , wT)
and the goal of the players is to compute this func-
tion. A protocol for this problem Π is specified
by a sequence of functions Π = (r1, . . . , rt). At
stage t ∈ [T], the t-th player announces its message
at = rt(M1, . . . ,Mt; a1, . . . , at−1;wt), and the message
aT is defined to be the output of the protocol Π.
The complexity of Π, denoted |Π|, is the maximum
length of the messages {at}t∈[T]. We consider the dis-
tributional setting, i.e., where the inputs are drawn
from some distribution µ and the error of the proto-
col is the probability that its output does not equal
F (M1, . . . ,MT ;w1, . . . , wT). By Yao’s minmax princi-
ple, we assume, without loss of generality, that the com-
munication protocol is deterministic. Also, for the re-
mainder of the paper, addition over {0, 1}n and matrix
multiplication occurs modulo 2.

We now describe the specific communication prob-
lem that we consider in this work.

Implicit Hidden Partition (IHP) Problem. The

T -player Implicit Hidden Partition problem IHP(n)
for positive integer n is defined as follows: The public
inputs are sets of edges, M1, . . . ,MT , on vertex set [n],
while the private inputs w1, . . . , wT are {0, 1}-colorings
of the corresponding sets of edges. The goal is to
distinguish the case in which the colorings are valid
(i.e., there exists a cut such that every edge of ∪tMt is
colored 1 if and only if it crosses the cut) from the case
in which no such cut exists. A convenient representation
of the inputs will be to represent the edges Mt as
incidence matrices Mt ∈ {0, 1}mt×n and the coloring
by wt ∈ {0, 1}mt , for t ∈ [T], where mt denotes the
number of edges of Mt. In this representation a coloring
x ∈ {0, 1}n is valid if and only if Mtx = wt for every
t ∈ [T].

In the instances we use, we will set T = 3, while M1

andM2 will be (incidence matrices of) matchings so that
their rows sum to 2 and columns sum to at most 1. Also,
M3 ∈ {0, 1}m3×n will be the edge incidence matrix of
a suitable cycle-free subgraph of an Erdős-Rényi graph
below the threshold for emergence of a giant component.

Distributional Implicit Hidden Partition
(DIHP) Problem. In this work, we will actu-
ally deal with a distributional version of IHP with
T = 3 that we denote DIHP. DIHP has three param-
eters: a positive even integer ∆, a positive integer n
divisible by ∆, and a real number α with 0 < α < 1.
DIHP(n,∆, α) is defined to be IHP(n) on inputs
chosen from a distribution D = 1

2 (DY +DN), where DY
and DN are defined as follows: In both the distribu-
tions DY and DN , the triples (M1,M2,M3) are chosen
identically from a process Pn,∆,α that we describe
below shortly. In DY , the private inputs w1, w2, w3

are chosen by sampling X∗ ∈ {0, 1}n uniformly and
settting wt = MtX

∗ for t ∈ {1, 2, 3}. Note that the
distribution DY is supported on YES instances. In the
distribution DN , the wt’s are uniformly random strings
chosen independently of each other. As we show later,
the distribution DN is mostly supported on NO in-
stances that are, in fact, far from YES instances,
where distance is measured in terms of the number of
edges that have to be removed in order to produce a
valid coloring.

Although the notation Mt denotes an mt × n edge
incidence matrix, we will often use Mt to denote the cor-
responding graph as well. However, the sense in which
Mt is used will be clear from context. Furthermore, we
will use Et to denote the set of edges specified by Mt.

Edge Sampling Process Pn,∆,α. We now specify the
process Pn,∆,α, which is used to sample the graphs (edge
incidence matrices) M1, M2, M3 in both DY and DN .
The set M1 is a deterministic perfect matching that

matches vertex i to i+ n/2 for every i ∈ [n/2]. The set
M2 is a also a matching sampled as follows: We sample
a permutation π : [n/2] → [n/2] uniformly and then
match the vertex π(i) to the vertex π(i + 1) + n/2 for
every i that is not divisible by ∆/2. (Note that by this
process, the union of the graphs M1∪M2 is a collection
of disjoint paths, each of length ∆ − 1.) Finally, we
sample M3 in three steps:

Step 1. We first sample a random graph M ′3 from
the Erdős-Rényi model with parameter α/n, i.e., every
possible edge is included independently with probably
α/n.

Step 2. We remove all edges in M ′3 that have
already been included in M1 ∪ M2 to get a subgraph
M ′′3 .

Step 3. We now consider the connected compo-
nents of M ′′3 and, for every component that contains
a cycle, we remove all edges of that component. The
resulting subgraph is M3.

Note that since α is close to 1, the graph M3

(or M ′3 for that matter) is subcritical and most of its
components are of constant size. At most a constant
number of edges of M ′3 appear in M1 ∪M2 and another
small constant appear in cycles. Thus, for all practical
purposes, M3 behaves like M ′3. In particular, as we
show later, the fraction of invalidly colored edges in a
random coloring of the edges remains nearly the same
in M1 ∪M2 ∪M3 as in M1 ∪M2 ∪M ′3.
The following theorem is the main technical contribu-
tion of the paper:

Theorem 2.1. There exist constants ∆∗ > 0 and
0 < α∗ < 1 such that for every even integer ∆ ≥
∆∗ and every α ∈ (α∗, 1), there exists c > 0 such
that the following holds: For every sufficiently large
integer n that is divisible by ∆, every protocol Π for
DIHP(n,∆, α) that succeeds with probability at least
2/3 satisfies |Π| ≥ cn.

We accompany the above theorem with a reduction
from DIHP to MAX-CUT:

Theorem 2.2. (Reduction from DIHP to MAX-
CUT) There exist constants ∆∗ > 0 and 0 < α∗ < 1
such that for every even integer ∆ ≥ ∆∗ and every
α ∈ (α∗, 1), there exists ε∗ > 0 such that the following
holds: If there exists a single-pass streaming (1 +
ε∗)-approximation algorithm for MAX-CUT with space
complexity s(n) that succeeds with probability at least
9/10, then there exists a protocol Π for DIHP(n,∆, α)
with |Π| ≤ s(n) +O(log n) that succeeds with probability
at least 2/3.

Central to both of the above theorems is a com-
binatorial analysis that establishes that DN is sup-
ported mostly on NO instances and that, furthermore,
these instances generate MAX-CUT instances (under
the reduction used in Theorem 2.2) whose optimum is
bounded away from the total number of edges by a con-
stant fraction. The following definition gives the (sim-
ple) reduction which simply outputs the edges of the
DIHP instance that are labelled 1, and then the lemma
establishes the above formally.

Definition 2.1. Given I = (M1,M2,M3;w1, w2, w3),
the reduction R(I) outputs the stream containing edges
of M1 that are labelled 1 in w1, followed by the edges of
M2 labelled 1 in w2, followed by the edges of M3 labelled
1 in w3. (Within each Mt, the order of the edges in the
stream is arbitrary.)

Lemma 2.1. There exist constants ∆∗ > 0 and 0 <
α∗ < 1 such that for every α ∈ (α∗, 1) and even
integer ∆ ≥ ∆∗, there is a constant ε∗ > 0 for which
the following conditions hold for the reduction R from
Definition 2.1:

(1) If I = (M1,M2,M3;w1, w2, w3) is sampled from
DY of DIHP(n,∆, α), then R(I) is a bipartite
graph.

(2) If I is sampled from DN , then with probability at
least 95/100, R(I) is a graph on m edges with
MAX-CUT value at most (1− ε∗)m.

Our main theorem (Theorem 1.1) follows immedi-
ately from Theorem 2.1 and Theorem 2.2. The proof of
Lemma 2.1 is omitted in this paper but appears in the
full version of this paper. Theorem 2.2 is simple to prove
using Lemma 2.1. We devote the rest of this section to
providing this proof, as well as a proof of Theorem 1.1.
The rest of the paper focuses on proving Theorem 2.1.

Reduction from DIHP to MAX-CUT. We now
provide a proof of Theorem 2.2.

Proof. [of Theorem 2.2] Let R be the reduction from
Definition 2.1. Let α∗ and ∆∗ be the constants guaran-
teed by Lemma 2.1. We fix an α ∈ (α∗, 1) as well as an
even integer ∆ ≥ ∆∗. Let ε∗ > 0 be the constant from
Lemma 2.1 for this choice of α and ∆.

It is easy to see that for instances I sampled from
DY , the MAX-CUT value of G = R(I) is m, the
number of edges of G since G is bipartite. Moreover, by
Lemma 2.1, the MAX-CUT value of R(I) for instances
I sampled from DN is at most (1−ε∗)m with probability
at least 95/100.

Now suppose ALG is a one-pass streaming al-
gorithm with space complexity s(n) that produces a

(1 − ε∗)-approximation to the MAX-CUT value with
success probability at least 9/10. Consider the follow-
ing protocol Π for DIHP(n,∆, α), which makes use of
ALG as a subroutine: Augment ALG with a counter m
for the total number of edges presented to it. This takes
O(log n) additional bits of space for simple input graphs
on n vertices. Now, for each t ∈ {1, 2, 3}, let player t
(1.) run (the augmented) ALG on the state posted by
player t−1 with the stream of edges formed by enumer-
ating all edges in Mt for which the corresponding value
in wt is 1 and, (2.) if t ∈ {1, 2}, pass on the resulting
state of ALG to the next player. In other words, the
players simulate ALG on the stream R(I). The last
player then takes the ending state of ALG and checks
whether the output MAX-CUT value of ALG is at least
m/(1 + ε∗). If so, the player outputs YES; otherwise,
the player outputs NO .

It is clear that the aforementioned simulation suc-
ceeds on DIHP(n,∆, α) with probability at least 2/3.
Moreover, the amount of communication |Π| in Π is at
most the amount of space used for our augmented ALG.
Thus, |Π| ≤ s(n) +O(log n), as desired.

Given Theorem 2.2 and Theorem 2.1, our main theo-
rem follows easily and the proof is included below for
completeness.

Proof. [of Theorem 1.1] Let α∗1 and ∆∗1 be the constants
guaranteed by Theorem 2.1, and let α∗2 and ∆∗2 be
the constants of Theorem 2.2. Let ∆ be the smallest
even integer larger than max{∆∗1,∆∗2} and choose α ∈
(max{α∗1, α∗2}, 1). Let ε∗ be the constant given by
Theorem 2.2 for this choice of α and ∆.

Now, suppose there exists a randomized single-
pass streaming algorithm ALG that yields a (1 + ε∗)-
approximation to MAX-CUT with probability at least
9/10. Let s(n) be the amount of space used by ALG
on input graphs with n nodes. By Theorem 2.2, there
is a protocol Π for DIHP(n,∆, α) with |Π| ≤ s(n) +
O(log n) such that Π succeeds with probability at least
2/3.

Now, Theorem 2.1 implies that |Π| ≥ c′n for some
constant c′. Hence, s(n) ≥ c′n−O(log n) ≥ cn for some
constant c > 0 and sufficiently large n, which completes
the proof.

3 Analysis of communication problem via
Fourier techniques

In this section, we first review Fourier analysis on the
boolean hypercube, then review relevant communica-
tion complexity techniques that were developed in prior
work [14], explain why they do not suffice for our result,
and give an outline of our approach.

3.1 Fourier analysis on the boolean hypercube
Let p : {0, 1}n → R be a real valued function defined
on the boolean hypercube. We use the following
normalization of the Fourier transform:

p̂(v) =
1

2n

∑
x∈{0,1}n

p(x) · (−1)x·v.

With this normalization, the inverse transform is given
by

p(x) =
∑

v∈{0,1}n
p̂(v) · (−1)x·v.

We will use the relation between multiplication of
functions in the time domain and convolution in the
frequency domain to analyze the Fourier spectrum of
f1 ·f2. With our normalization of the Fourier transform
the convolution identity is

(3.1) (̂p · q)(v) = (p̂ ∗ q̂)(v) =
∑

x∈{0,1}n
p̂(x)q̂(x+ v).

The main object of our analysis will be the Fourier
transform of h2 = f1 · f2 (these functions are defined

later in Definition 3.1). By (3.1), we have ĥ2 =

f̂1 ∗ f̂2. This identity will form the basis of our proof.
We will also need Parseval’s equality, which, with our
normalization, takes the form

||p̂||2 =
∑

v∈{0,1}n
p̂(v)2

=
∑

v∈{0,1}n

 1

2n

∑
x∈{0,1}n

p(x) · (−1)x·v

2

=
1

2n

∑
x∈{0,1}n

p(x)2 =
1

2n
||p||2.

(3.2)

Remark 3.1. If f(x) : {0, 1}n → {0, 1} is the indicator
of a set A ⊆ {0, 1}n, we have ||f ||2 = |A|, so that

||f̂ ||2 = |A|
2n .

3.2 The basic setup We use the notation Xi:j

to denote (Xi, Xi+1, . . . , Xj). Recall that the mes-
sages posted by the players are denoted by at =
rt(M1:t, a1:t−1, wt), where Mt are public mt × n edge
incidence matrices and wt are private inputs to players.
We use s to denote the maximum of the bit lengths of
messages posted by the players. Our goal is to show
that if s� n, then the total variation distance between
the distribution of the publicly shared information (mes-
sages a1, a2, a3 and graphs M1,M2,M3) in the YES and
NO cases is small. As we show, this task can be sim-
plified as follows. It suffices to consider the YES case

only and show that if s � n, then the distribution of
wt = MtX

∗ conditional on the publicly posted content
up to time t (namely, a1, . . . , at−1 and M1, . . . ,Mt) is
close to the uniform distribution in total variation dis-
tance for t = 1, 2, 3 (recall that wt is actually uniformly
distributed in the NO case). Our proof of this fact re-
lies on Fourier analytic techniques for reasoning about
the distribution of MtX

∗ conditioned on typical com-
munication history.

More specifically, our goal is to show that the
total variation distance between the distribution of
(M1:3, a1:3) for the YES and NO instances is vanish-
ingly small. It suffices to consider the YES case only.
Fix t ∈ {1, 2, 3} and let X∗ ∈ {0, 1}n denote a uniform
random vector conditioned on the graphs M1:t and mes-
sages aY1:t−1. In Lemma 3.2, we show that it suffices to
show that with high probability, for each t = 1, 2, 3, the
distribution of MtX

∗ is close to uniform in {0, 1}mt and
is, hence, indistinguishable from the NO case.

Conditioning on messages posted up to time t
makes X∗ uniformly random over a certain subset
of the binary cube. We will analyze this subset of
the hypercube or, rather, the Fourier transform of its
indicator function, and show that if communication is
small, the distribution of X∗ conditional on typical
history is such that MtX

∗ is close to uniformly random
in total variation distance.

We now define notation that lets us reason about
the distribution of X∗ at each step t. Since we assume
that the protocol is deterministic and the prior distri-
bution of X∗ is uniform over {0, 1}n, the distribution of
X∗ conditioned on the publicly posted content thus far
is uniform over some set Bt ⊆ {0, 1}n. We prove the
desired claim by analyzing the Fourier spectrum of the
indicator function of Bt. It turns out to be convenient
to represent Bt as the intersection of simpler subsets At

of the hypercube, where each At essentially conveys the
information that the t-th player’s message gives about
X∗. We give formal definitions below.

Definition 3.1. (Sets At,Bt and their indicator
functions ft, ht) Fix α ∈ (0, 1) and integers n ≥ 1
and t ∈ {1, 2, 3}. Consider a YES instance (M1:3, w1:3)
of DIHP(n,∆, α) with X∗ being the (random) hidden
partition (so that wt = MtX

∗). Recall that at =
rt(M1:t, a1:t−1, wt).

We define Areduced,t ⊆ {0, 1}mt as the set of
possible values of wt = MtX

∗ that lead to the message
at, and we define At to be the set of values of X∗ ∈
{0, 1}n that correspond to Areduced,t. Formally, letting
gt(·) := rt(M1:t, a1:t−1, ·) : {0, 1}mt → {0, 1}s, we define

Areduced,t = g−1
t (at) ⊆ {0, 1}mt

At = {x ∈ {0, 1}n : Mtx ∈ Areduced,t}
.(3.3)

Moreover, for each t = 1, 2, 3, let ft : {0, 1}n →
{0, 1} denote the indicator function of At, and let
ht = f1f2 · · · ft, so that ht is the indicator of Bt :=
A1∩A2∩. . .∩At. We let B0 := {0, 1}n for convenience.

Our proof of near-uniformity of MtX
∗ condi-

tioned on a typical history of communication in
DIHP(n,∆, α) is inspired by the work of [14], which
used Fourier analysis to give a communication lower
bound on the (explicit) hidden partition problem (where
Alice is given X∗, Bob gets (M,w), and Bob needs
to check whether w = MX∗). In our setting, their
results translate to showing that if X∗ is uniform in
B ⊆ {0, 1}n, where |B|/2n ≥ 2−s with s = O(

√
n), and

the indicator function h of B satisifies

(3.4)

(
2n

|B|

)2 ∑
v∈{0,1}n,|v|=2`

ĥt(v)2 ≤ (4
√

2s/`)2`

for all 0 ≤ ` ≤ s, where |v| denotes the Hamming weight
of v, then the distribution of MX∗ is close to uniform
for a random sparse graph M (a random matching
in [14]). This translates to a lower bound of Ω(

√
n)

on the communication complexity of the explicit hidden
partition problem, but this is too weak for our purposes.

To improve this bound we need to replace the right
hand side of the inequality above to a form (O(s)/`)`

from (O(s)/`)2`. Unfortunately, such an improvement
is not possible for the explicit hidden partition problem,
which stems from the fact that X∗ is known to Alice.
In our case, X∗ is not known to any player, but we need
an analysis that can take advantage of this key fact. We
now outline our approach for doing so.

Our first observation is that if the bound in (3.4)
could be strengthened by replacing the exponent on the
righthand side with ` (i.e., reducing the exponent by a
factor of 2), an Ω(n) lower bound would follow. This
observation is formalized in Lemma 3.1, which is stated
below. Although we do not prove Lemma 3.1 in this
paper, the proof appears in the full version of this paper.

Lemma 3.1. Let ∆ > 0 be an even integer. Then, for
every 0 < α < 1, there exists a constant 0 < c < 1 such
that for every δ ∈ (n−1/10, c), the following conditions
hold if n is any sufficiently large multiple of ∆:

(1) Let B = A1, as defined in Definition 3.1. Then, for
every choice of matchings M1,M2 sampled accord-
ing to Pn,∆,α, the distribution of M2x is uniform
over {0, 1}m2 when x is uniformly random in B.

(2) Let B ⊆ {0, 1}n, |B| = 2n−z for z ≤ δ4n, and
let h : {0, 1}n → {0, 1} be the indicator of B.

If
(

2n

|B|

)2∑
v:|v|=2` ĥ(v)2 ≤

(
64δ4n
`

)`
holds for all

` ≤ δ4n, then the following conditions hold: Let
M1,M2,M3 be sampled according to Pn,∆,α. Then,
with probability at least 1 − O(δ) over the choice
of M3, the total variation distance between the
distribution of M3x, where x is uniformly random
in B, and the uniform distribution over {0, 1}m3

is O(δ/
√

1− α). In particular, one can take c =

min

{(
1−α
512

)1/4
,
(
e−α log2(32/(31+α))

32

)1/4
}

.

We note that such a strengthening of (3.4) is im-
possible for an indicator function f : {0, 1}n → {0, 1}
of an arbitrary subset B ⊆ {0, 1}n with |B| = 2n−z,
z ≤ δ2n—a subcube of appropriate size shows that (3.4)
is essentially the best possible bound. Our improvement
crucially uses the fact that unlike in the boolean hidden
matching problem, in DIHP, the players only have in-
direct access to X∗ via linear functions MtX

∗. In
particular, the sets whose indicator functions we ana-
lyze are of a special form (see Definition 3.1).

If we could prove that the preconditions of
Lemma 3.1 hold w.h.p. for h2, we would be done by
Lemma 3.1. It turns out that one can prove that these
preconditions are satisfied for h1 = f1 rather directly
(see Theorem 4.1) using the fact that the compression
function g1 (see Definition 3.1) is applied to the parities
of xa + xb, (a, b) ∈ M1. Proving a similar result for the
function h2 = f1 · f2 is challenging, and this proof is
the main technical contribution of our paper. In order
to do that, we need to analyze the Fourier transform
h2 = f1 · f2, which we do using the convolution identity
ĥ2 = f̂1 ∗ f̂2. Our main bound on the Fourier transform
of f1 · f2 is stated below.

Lemma 3.2. There exists C > 1 such that for every
even integer ∆ > 2, γ > n−1/5 smaller than an absolute
constant, and α ∈ (0, 1), the following conditions hold
for sufficiently large n divisible by ∆: Let Π be a
protocol for DIHP(n,∆, α) such that |Π| =: s, where
s = s(n) = ω(

√
n) and s(n) ≤ 1

2048C∆2 γ
5n. Then, there

exists an event E that only depends on X∗,M1,M2 and
occurs with probability at least 1−O(γ) over Pn,∆,α and
the choice of X∗ ∈ {0, 1}n such that, conditioned on E,
one has

(1) |B2|/2n ≥ 2−γ
4n.

(2)
(

2n

|B2|

)2∑
v∈{0,1}n,|v|=2` ĥ2(v)2 ≤ (C∆2γ4n/`)` for

all ` ≤ γ4n.

Before we present the proof of Theorem 2.1, we
require one simple lemma about total variation distance
of two probability distributions, which appears with
proof in [21].

Lemma 3.3. (Lemma 5.6 in [21]) Let (X,Y 1),
(X,Y 2) be random variables taking values on a finite
sample space Ω = Ω1 × Ω2. For any x ∈ Ω1, let Y ix ,
i = 1, 2 denote the conditional distribution of Y i given
X = x. Then,

‖(X,Y 1)− (X,Y 2)‖tvd = EX

[
‖Y 1

X − Y 2
X‖tvd

]
.

Proof. [of Theorem 2.1] Suppose ∆ > 0 is an even
integer and 0 < α < 1. Then, we choose δ ∈ (0, 1)
as well as γ ∈ (0, 1) such that γ < (64/C∆2)1/4δ.
Moreover, we pick δ and γ to be sufficiently small
such they obey the upper bounds in the hypotheses of
Lemmas 3.1 and 3.2. Also, assume n is a sufficiently
large multiple of ∆ (in particular, n−1/10 < δ and
n−1/5 < γ) so that δ and γ obey the lower bounds in the
hypotheses of Lemmas 3.1 and 3.2. Moreover, assume
γ is sufficiently small so that the event E in Lemma 3.2
occurs with probability greater than 1/2.

We now assume that Π is a protocol for
DIHP(n,∆, α) that uses less than 1

2048C∆2 γ
5n bits

of communication, where C > 0 is the constant in
Lemma 3.2.

Recall that the first player posts the message
a1 = r1(M1, w1). We now consider the distribution
of (M1,M2, a1, w2). Let DY

1 and DN
1 be the distribu-

tions of (M1,M2, a1, w2) on YES and NO instances,
respectively. Thus, DY

1 = (M1,M2, a, pM1,M2,a), where
pM1,M2,a is the distribution of M2x conditional on
r1(M1, x) = a. For any M1, M2, a, we let DY

(M1,M2,a) =

pM1,M2,a and DN
(M1,M2,a) = UM2

denote the distribution
of w2 given the message a and edge incidence matrices
M1,M2 for the YES and NO instances, respectively.
(Here, Ur denotes the uniform distribution on {0, 1}r.)
Moreover, note that the distribution of (M1,M2, a1) is
identical in both the YES and NO cases. Thus, by
Lemma 3.3 and part (1) of Lemma 3.1, we have

‖DY
1 −DN

1 ‖tvd = EM1,M2,a

[
‖DY

(M1,M2,a) −D
N
(M1,M2,a)‖

]
= 0.

Moreoever, since a2 = r2(M1,M2, a1, w2), another
simple application of Lemma 3.3 implies that∥∥DY

2 −DN
2

∥∥
tvd

= 0,

where DY
2 and DN

2 denote the distributions of
(M1,M2, a1, a2) for the YES and NO instances, re-
spectively.

Now, let E be the event for the YES case that is
guaranteed by Lemma 3.2. Recall that E occurs with
probability 1−O(γ) over Pn,∆,α and the random choice
of X∗ ∈ {0, 1}n. Moreover, Lemma 3.2 implies that for

any YES instance conditioned on E , we have that for
all ` ≤ γ4n,(

2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

ĥ2(v)2 ≤
(
C∆2γ4n

`

)`
≤
(

64δ4n

`

)`
,

where h2, B2 are defined as in Definition 3.1. Thus,
letting q := qM1,M2,M3,a1,a2 denote the distribu-
tion on M3x conditioned on r1(M1, x) = a1 and
r2(M1,M2, a1) = a2, we see that part (2) of Lemma 3.1
implies that, given the occurrence of E ,

(3.5) ‖q − UM3
‖tvd = O(δ/

√
1− α).

with probability p ≥ 1− O(δ)

Pr[E]
≥ 1−O(δ) over the choice

of M3 (since γ was chosen small enough to guarantee
that Pr[E] ≥ 1/2). Therefore, since E only depends on
X∗, M1, M2, Lemma 3.3 and (3.5) imply that

‖DY
3 −DN

3 ‖tvd
= Pr[E] ·EZ|E [EM3

[‖q − UM3
‖tvd]] + Pr[E] · 1

≤ Pr[E] ·EZ|E
[
p ·O(δ/

√
1− α) + (1− p) · 1

]
+ Pr[E]

≤ Pr[E](1− p(1−O(δ/
√

1− α))) + (1−Pr[E])

≤ 1−Pr[E] · p(1−O(δ/
√

1− α))

≤ 1− (1−O(γ))(1−O(δ))(1−O(δ/
√

1− α))

= O(γ) +O(δ) +O(δ/
√

1− α),

where Z denotes (M1,M2, a1, a2), while DY
3 and DY

3

denote the distribution of (M1,M2,M3, a1, a2, w3) in
the YES and NO instances, respectively. We choose
δ, γ to be small enough so that the above total variation
distance is less than 1/3.

Finally, observe that since a3 =
r3(M1,M2,M3, a1, a2, w3), the total variation dis-
tance of the distributions of (M1,M2,M3, a1, a2, a3)
in the YES and NO cases is also less than 1/3,
which means that Π cannot distinguish the YES and
NO cases with advantage more than 1/6 over random
guessing, i.e., the success probability of Π is less than
2/3.

Hence, it follows that any algorithm Π for
DIHP that succeeds with probability at least 2/3
must use at least cn bits of communication, for c =

1
2048C∆2 γ

5. This completes the proof of the claim.

4 Proof of main lemma (Lemma 3.2)

The main result of this section is a proof of Lemma 3.2.
The main idea behind the proof is to use the convolution

v1 v2

v3 v4

v5 v6 v7 v8

v9 v10

Figure 1: Illustration of P ∗(v), where v = {v1, . . . , v10}
(marked red). Edges of M1 are shown as solid lines,
edges of M2 as dashed lines. The set of paths P (v) is
the set of edges between the marked nodes. The paths
v5 − v6, v7 − v8 and v9 − v10 consist only of an edge
of M2, and hence are not grounded. Grounded paths
P ∗(v) are marked green (paths v1 − v2 and v3 − v4).

identity to express the Fourier transform of h2 in terms
of the Fourier transform of f1 and f2. Specifically, for
every v ∈ {0, 1}n, we have, by the convolution identity,

(4.6) ĥ2(v) = f̂1 · f2(v) =
∑

w∈{0,1}n
f̂1(w) · f̂2(w + v).

Besides the convolution identity, we use the structure of
the Fourier transform of f1 and f2. Specifically, we use
the fact that f̂1 and f̂2 are supported on edges of M1

and M2, respectively (equivalently, they are zero except
on the column span of (M1;M2)). This allows us to

classify the terms f̂1(w) · f̂2(w + v) on the rhs of (4.6)
according to the weight of w and w+v. We would like to
show that only very few large weight coefficients f̂1(w)

can contribute to ĥ2(v) for a low weight v. Note that
this is intuitively necessary for the proof, as according to
our bounds the `22 mass of coefficients of f̂1 or f̂2 grows
with the weight level. We prove that a high weight
coefficient is unlikely to appear on the rhs of (4.6) if
the coefficient on the lhs is low weight in section 4.1 (see
Lemma 4.1). Then in section 4.2, we show how these

bounds imply that not too much `22 mass of f̂1 can be
trasferred from high weight levels to low weight levels
(see Lemma 4.4). Finally, in section 4.3, we put the
developed results together into a proof of Lemma 3.2.

4.1 Useful definitions and basic claims The fol-
lowing definitions form the basis of our analysis.

Definition 4.1. Given matchings M1,M2 such that
M1 ∪M2 is a union of paths, a vector v ∈ {0, 1}n is
called admissible with respect to M1,M2 if v has an even
number of nonzeros on every path in M1 ∪M2.

Definition 4.2. (Path decomposition of admissi-
ble coefficients) Given M1,M2 such that M1 ∪M2

is a union of paths, for any v ∈ {0, 1}n admissible wrt
M1,M2, let P (v) denote the unique set of vertex dis-
joint paths in M1 ∪M2 whose endpoints are exactly the
nonzeros of v.

Claim 4.1. The path decomposition is well defined for
any admissible v ∈ {0, 1}n.

Proof. It suffices to show that for any admissible v
the set of paths P (v) exists and is unique. Existence
follows immediately from definition of admissibility.
Uniqueness follows since M1 ∪ M2 is a collection of
simple vertex disjoint paths.

Definition 4.3. Given M1,M2 such that M1 ∪M2 is
a union of paths, for any v ∈ {0, 1}n admissible wrt
M1,M2, let P ∗(v) ⊆ P (v) denote the set of paths in
P (v) that contain at least one edge of M1. We refer to
P ∗(v) as the core of the path decomposition of v.

Note that paths in P (v) \ P ∗(v) are all of length one,
i.e. edges of M2. See Fig. 1 for an illustration.

We will often associate matchingsM with the sets of
vertices that they match. For example, for w ∈ {0, 1}n,
we will write w ⊆ M1 to denote the fact that w is
a subset of the vertices matched by M1. We will
say that w is supported on edges of M1 if for every
e = {u, v} ∈ M1, one has either w ∩ {u, v} = ∅ or
w ∩ {u, v} = {u, v}. The following claim is crucial to
our subsequent analysis:

Lemma 4.1. For every even integer ∆ > 2 and α ∈
(0, 1), if matchings M1,M2 are sampled from Pn,∆,α,
then the following conditions hold for every `, k ≥ 0.
Conditioned on M1, for every subset w ⊆M1 such that
|w| = 2k, we have the following:

(1) PrM2
[∃M ′ ⊆ M2 s.t. |P ∗(w + M ′)| = ` | M1] ≤

(O(∆))`
(
n/2
`

)(
n/2
k

)−1
.

(2) For every M ′ ⊆ M2, one has |P ∗(w + M ′)| ≥
|w|/∆.

Proof. The second claim follows by recalling that our
input distribution on matchings is such that M1 ∪M2

does not contain cycles, and the largest path length in
the graph induced by M1 ∪M2 is not larger than ∆.

We now prove the first claim. We first upper bound
the number of w ⊆ M1 such that |P ∗(w + M ′)| = `
for some M ′ ⊆ M2, i.e. the core of w + M ′ contains
` paths. We then show that since the distribution of
M2 is invariant under permutation of edges of M1, this
gives the result.

We now upper bound the number of sets of ` paths
that each contain at least one edge of M1, given M1

and M2 (we refer to such paths as grounded). Given
M1,M2, in order to select a grounded set of paths, it
suffices to first select ` edges from M1, one per path (at

most
(
n/2
`

)
choices). Then order these edges arbitrarily,

and for each t = 1, . . . , `,

• choose whether the path starts with an edge of M1

or an adjacent edge of M2 (three choices);

• choose a direction to go on the corresponding path
in M1 ∪M2 (at most 2 choices);

• choose a number of steps to go for (at most 2∆
choices).

Putting the bounds above together, we get that for
any M1,M2, the number of grounded sets of k paths
is bounded by (12∆)`

(
n/2
`

)
.

Next, we recall that the matchings M1,M2 are gen-
erated as follows (our description here is somewhat more
detailed than in Section 2, and results in exactly the
same distribution; this formulation is more convenient
for our analysis):

• Let M1 be a perfect matching that matches, for
each i = 1, . . . , n/2, vertex i to vertex i + n/2.
Note that edges of M1 are naturally indexed by
[n/2]: the i-th edge matches i to i + n/2, for
i ∈ [n/2] = {1, 2, . . . , n/2}.

• Choose a permutation π of [n/2] = {1, 2, . . . , n/2}
uniformly at random. Partition edges of M1 into
r = n/∆ sets S1, . . . , Sr with ∆/2 edges each,
where ∆ is an even integer that divides n, by letting

Sj =

{
π

(
∆

2
· (j − 1) + 1

)
, π

(
∆

2
· (j − 1) + 2

)
,

. . . , π

(
∆

2
· (j − 1) +

∆

2

)}
for each j = 1, . . . , n/∆.

• For each j = 1, . . . , n/∆, let M2,j match, for each
i = 1, . . . ,∆/2 − 1, the node π

(
∆
2 · (j − 1) + i

)
to

the node π
(

∆
2 · (j − 1) + i+ 1

)
+ n/2. Note that

|M2,j | = ∆
2 − 1 for each j.

Let M1 :=
⋃r
j=1M1,j and M2 :=

⋃r
j=1M2,j .

By the derivation above, we have that for any
permutation π, the number of grounded sets of k paths
in the union M1 ∪ M2 generated by our process is
bounded by (12∆)`

(
n/2
`

)
. Denote this set by P`(π) and

note that for every P there exists a unique w ⊆ M1

such that |P ∗(w + M ′)| = ` for some M ′ ⊆ M2.

Specifically, w = P ∩ M1 satisfies these constraints.
Let S(π) := {P ∩ M1 : P ∈ P(π)}. Thus, we have

|S(π)| = (12∆)`
(
n/2
`

)
. We now note that S(id) is hence

a fixed set of at most (12∆)`
(
n/2
`

)
subsets of edges. At

the same time for every permutation π of [n/2] one has

(4.7) S(π) = π−1(S(id)).

Since π is uniformly random, we thus get for every
w ∈ {0, 1}n with |w| = 2k,

Prπ[w ∈ S(π)] = Prπ[w ∈ π−1(S(id))]

= Prπ[π(w) ∈ S(id)]

= |S(id)|/
(
n/2

k

)
= (12∆)`

(
n/2

`

)(
n/2

k

)−1

,

(4.8)

where we used the fact that π(w) is uniformly random
in the set of unordered k-tuples of edges of M1 when π
is uniformly random. This completes the proof.

4.2 Bounds on expected transfer of Fourier
mass In this section, we use the convolution iden-
tity (4.6) to bound the contribution of Fourier trans-

forms f̂1 and f̂2 to the Fourier transform ĥ2 of h2 =
f1·f2 (see Definition 3.1). The main result of this section
is Lemma 4.4. The more basic bounds on the Fourier
transform of f1 and f2 are provided by Theorem 4.1,
whose proof appears in the full version of this paper.
Part (1) of the theorem shows that f̂1 and f̂2 are sup-
ported on edges of matchings M1 and M2 respectively,
while parts (2) and (3) use this fact to derive upper
bounds of the form (O(s)/`)` (i.e., with the improved
exponent of ` as opposed to 2` that we are looking for)

for the amount of mass on weight level ` in f̂1 and f̂2,
respectively.

Theorem 4.1. Let M ∈ {0, 1}m×n be the incidence
matrix of a matching M , where the rows correspond to
edges e of M (Meu = 1 if e is incident on u and 0
otherwise). Let g : {0, 1}m → {0, 1}s for some s > 0.
Let a ∈ {0, 1}s and let Areduced := {z ∈ {0, 1}m :
g(z) = a}. Furthermore, let f : {0, 1}n → {0, 1} denote
the indicator of the set

A := {x ∈ {0, 1}n : g(Mx) = a}.

Suppose that |A| = 2n−d for some d ∈ [0, n]. Then,

(1) The only nonzero Fourier coefficients of f̂ are of

the form f̂(MTw) for some w ∈ {0, 1}m.

(2) For all ` ∈ [0, d] and every Q ⊆M ,

22d
∑

v∈{0,1}n
|v|=2`+|Q|

v⊇Q

f̂(v)2 ≤ 2|Q|(64d/`)`,

where |Q| denotes the number of vertices in Q.

(3) 22d
∑
v∈{0,1}n f̂(v)2 = 2d (Parseval’s equality).

The proof of Theorem 4.1 is omitted but appears in the
full version of this paper.

Lemma 4.2. For any v ∈ {0, 1}n, one has ̂(f1 · f2)(v) =
0 if v is not admissible with respect to M1,M2, and
̂(f1 · f2)(v) = f̂1(P (v) ∩M1) · f̂2(P (v) ∩M2) otherwise.

Proof. By the convolution identity (4.6) we have
̂(f1 · f2)(v) =

∑
x∈{0,1}n f̂1(x)f̂2(v + x). By Theo-

rem 4.1, (1) applied to the sets Ai, messages ai,
functions gi, i ∈ {1, 2} (as per Definition 3.1) we

also have that f̂1(x) 6= 0 only if x is a union of

edges of M1, and f̂2(v + x) 6= 0 if v + x is a union

of edges of M2. We can thus write ̂(f1 · f2)(v) =∑
M ′1⊆M1,M

′
2⊆M2

M ′1+M ′2=v

f̂1(M ′1)f̂2(M ′2). Since M1 and M2 are

edge disjoint and M1 ∪M2 is a union of paths, we have
that for every admissible v ∈ {0, 1}n, there exists a
unique pairM ′1 ⊆M1,M

′
2 ⊆M2 such that v = M ′1+M ′2.

Lemma 4.3. For any w ⊆ M1 with |w| = 2k, the
number of v ∈ {0, 1}n with |v| = 2` and |P ∗(v)| = `
such that v = w + M ′2 for some M ′2 ⊆ M2 is upper
bounded by 22k.

Proof. For each path M1 ∪M2, designate one endpoint
to be the left endpoint and the other to be the right
endpoint arbitrarily. Note that for each path, this fixes
an ordering of vertices (left to right). We associate two
binary variables with each of the two endpoints of each
edge e ∈ w. Denote these binary variables by L(e) and
R(e). Then for each v ∈ {0, 1}n and every e ∈ w, we
let L(e) = 1 if P (v) extends beyond the left endpoint
of e, and 0 otherwise. Similarly, R(e) = 1 if P (v)
extends beyond the right endpoint of e, and 0 otherwise.
Note that the collection of variables {(L(e), R(e))}e∈w
uniquely determines P (v). On the other hand, the
number of possible assignments of L(e), R(e) for e ∈ w
is upper bounded by 22k, proving the lemma.

We now state and prove Lemma 4.4. For an event
E , we let I[E] denote the indicator function of E .

Lemma 4.4. For every even integer ∆ > 2, every
α ∈ (0, 1), every s ≤ n/256, and any protocol Π
for DIHP(n,∆, α), the following conditions hold for
sufficiently large n. If f1, f2 : {0, 1}n → {0, 1} are
indicator functions of A1 and A2, respectively, then
for every 0 ≤ ` ≤ s, 0 ≤ k ≤ n/2, and w ∈ {0, 1}n
with |w| = 2k, the following conditions hold for every
M1,A1.

(1) If k ≤ `, then

EM2

(2n

|A2|

)2

· I′ ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

≤ 4`(O(∆))k

(
64s

`− k

)`−k
,

where I′ = I
[
|A2|
2n ≥ 2−s

]
.

(2) If k ≥ `, then

EM2

(2n

|A2|

)2

· I′ ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

≤ (O(∆))`8k

(
k − `
n/2

)k−`
,

where I′ = I
[
|A2|
2n ≥ 2−s

]
.

Proof. We classify elements v according to the size
of the core P ∗(v). Let w = M ′1 ⊆ M1. For any
v ∈ {0, 1}n, |v| = 2` admissible wrt M1, M2, note
that |P (v)| = `, as every path in P (v) contributes 2
to the weight of v via its two endpoints. Note that
P ∗(v) ⊆ P (v), so |P ∗(v)| is between 0 and `:

∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2 =
∑̀
r=0

∑
v∈{0,1}n
|v|=2`
|P∗(v)|=r

P∗(v)∩M1=w

f̂2(w + v)2.

Since paths in P (v) \ P ∗(v) are all of length 1 and
correspond to edges of M2, any admissible v can be
represented uniquely as v = v′ + x, where P ∗(v) =
P ∗(v′) = P (v′) and x ⊆M2 is supported on edges of M2

and is disjoint from P ∗(v) (see Fig. 1 for an illustration
of P ∗(v)). Substituting this into the rhs of the equation

above, we get

∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

=
∑̀
r=0

∑
v∈{0,1}n
|v|=2`
|P∗(v)|=r

f̂2(w + v)2

=
∑̀
r=0

∑
v′∈{0,1}n
|v′|=2r
|P∗(v′)|=r

P∗(v′)∩M1=w

∑
x⊆M2

x∩P∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

=: Y1.

Let I′ = I
[
|A2|
2n ≥ 2−s

]
. By Theorem 4.1, (2)

invoked with A = A2, f = f2, g = g2, M = M2,

Q = P ∗(v′) ∩ M2, k = ` − r, and d = log2

(
2n

|A2|

)
,

we get

(
2n

|A2|

)2

· I′
∑
x⊆M2

x∩P∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

≤ 2|Q|(64s/(`− r))`−r

≤ 22k(64s/(`− r))`−r,

(4.9)

where we have used the fact that |Q| ≤ 2` (the set
P ∗(v′) is a disjoint union of edges of M1 and M2 that
form paths; the number of edges of M2 on each such
path is no more than a factor of 2 larger than the
number of edges of M1). Putting the bounds above
together, and taking an expectation over M2 conditional
on M1 and A1, we get that EM2

[Y1] is bounded from

above by

EM2

(

2n

|A2|

)2

· I′ ·
min{k,`}∑
r=0

∑
v′∈{0,1}n
|v′|=2r
|P∗(v′)|=r

P∗(v′)∩M1=w

·
∑
x⊆M2

x∩P∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M1,A1

= EM2

min{k,`}∑
r=0

∑
v′∈{0,1}n
|v′|=2r
|P∗(v′)|=r

P∗(v′)∩M1=w

(
2n

|A2|

)2

· I′

·
∑
x⊆M2

x∩P∗(v′)=∅
|x|=`−r

f̂2(w + v′ + x)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M1,A1

≤ EM2

22k ·
min{k,`}∑
r=0

(
64s

`− r

)`−r

∑
v′∈{0,1}n
|v′|=2r
|P∗(v′)|=r

I[P ∗(v′) ∩M1 = w]

∣∣∣∣∣∣∣∣∣∣∣
M1,A1

≤ EM2

22k · 22k ·
min{k,`}∑
r=0

(
64s

`− r

)`−r

· I[∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r]

∣∣∣∣∣∣M1,A1

= 24k

min{k,`}∑
r=0

(
64s

`− r

)`−r
·PrM2

[∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r|M1,A1]

=: Y2,

(4.10)

where I[E] stands for the indicator of event E . We have
used (4.9) to go from the second line to the third, as well
as Lemma 4.3 to conclude that

∑
v′∈{0,1}n
|v′|=2r
|P∗(v′)|=r

I[P ∗(v′) ∩

M1 = w] ≤ 22k and obtain the fourth line. Note that
the summation above is over r between 0 and min{k, `}.
To see that the size of the core P ∗(w + M ′2) = P ∗(v)
cannot be larger than 2`, note that each path in the
core contributes two distinct endpoints to the weight of
v. To see that the size of the core P ∗(w+M ′2) = P ∗(v)
cannot be larger than k, note that every path in the
core must contain at least one edge in M2 that belongs
to w, and these edges are disjoint.

By Lemma 4.1, we have that

Pr [∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r |M1]

≤ (O(∆))r
(
n/2

r

)(
n/2

|w|/2

)−1

.

Substituting this bound into the equation above, we get

Y2 ≤ 16k ·
min{k,`}∑
r=0

(64s/(`− r))`−r

·Pr [∃M ′2 ⊆M2 : |P ∗(w +M ′2)| = r |M1]

≤ 16k ·
min{k,`}∑
r=0

(64s/(`− r))`−r

· (O(∆))r
(
n/2

r

)(
n/2

k

)−1

=: Y3.

(4.11)

We now consider two cases, depending on whether k ≤ `
or k ≥ ` (the cases overlap, giving us two rather similar
bounds for k = `).

Case 1: k ≤ `. Using the bound (n/k)k ≤
(
n
k

)
≤

(en/k)k in (4.11), we obtain

Y3 = 16k
min{k,`}∑
r=0

(
64s

`− r

)`−r
(O(∆))r

(
n/2

r

)(
n/2

k

)−1

= 16k
k∑
r=0

(
64s

`− r

)`−r
(O(∆))r

(
n/2

r

)(
n/2

k

)−1

≤ 16k
(

64s

`− k

)`−k k∑
r=0

(64s)k−r
[

(`− k)`−k

(`− r)`−r

]

· (O(∆))r
(en

2r

)r ((n/2)

k

)−k
≤ 4` · (O(∆))k(64s/(`− k))`−k

k∑
r=0

(128s/n)k−r

· (`− k)`−k(k − r)k−r

(`− r)`−r
· kk

rr(k − r)k−r

=: Y4.

(4.12)

We now note that aabb

(a+b)a+b
= exp(a ln a + b ln b − (a +

b) ln(a + b)) ≤ 1 for all a ≥ 0, b ≥ 0, by convexity
of the function x lnx. Furthermore, for fixed a+ b, the

maximum of (a+b)a+b

aabb
is achieved when a = b and equals

2a+b. Applying the first bound with a = `−k, b = k− r
gives

(4.13)
(`− k)`−k(k − r)k−r

(`− r)`−r
≤ 1,

and applying the second bound with a = r, b = k − r
gives

(4.14)
kk

rr(k − r)k−r
≤ 2k.

Substituting these bounds into (4.12) yields

Y4 = 4` · (O(∆))k
(

64s

`− k

)`−k
·
k∑
r=0

(
128s

n

)k−r
· (`− k)`−k(k − r)k−r

(`− r)`−r

· kk

rr(k − r)k−r

≤ 4` · (O(∆))k(64s/(`− k))`−k

·
k∑
r=0

(128s/n)k−r · kk

rr(k − r)k−r

≤ 4` · (O(∆))k
(

64s

`− k

)`−k k∑
r=0

(
128s

n

)k−r
≤ 4`(O(∆))k

(
64s

`− k

)`−k
,

where we have used (4.13) and (4.14). Substituting this
into (4.11) and then in (4.10), we get the result for the
case k ≤ ` (Case 1).

Case 2: k ≥ `. Using the bound (n/k)k ≤
(
n
k

)
≤

(en/k)k in (4.11), we obtain

Y3 = 16k
min{k,`}∑
r=0

(
64s

`− r

)`−r
(O(∆))r

(
n/2

r

)(
n/2

k

)−1

= 16k(O(∆))`
∑̀
r=0

(
64s

`− r

)`−r
·
(
n/2

r

)(
n/2

k

)−1

≤ 16k(O(∆))`
∑̀
r=0

(
64s

`− r

)`−r
(n/2)r−kkk/rr

≤ 16k(O(∆))`
(
k − `
n/2

)k−`
·
∑̀
r=0

(
64s

`− r

)`−r
(n/2)r−`

kk

rr(k − `)k−`

≤ 16k(O(∆))`
(
k − `
n/2

)k−`
·
∑̀
r=0

(
128s

n

)`−r
kk

rr(k − `)k−`(`− r)`−r

≤ 16k(O(∆))`
(
k − `
n/2

)k−`
·
∑̀
r=0

(
128s

n

)`−r
kk``

rr(`− r)`−r(k − `)k−```

≤ 16k(O(∆))`
(
k − `
n/2

)k−`
·
∑̀
r=0

(
128s

n

)`−r
``

rr(`− r)`−r
kk

(k − `)k−```

=: Y5.

Again, by convexity arguments as in Case 1, we have
``

rr(`−r)`−r
kk

(k−`)k−``` ≤ 2`+k. Substituting this in the

derivation above, we get

Y5 = 16k(O(∆))`
(
k − `
n/2

)k−`
·
∑̀
r=0

(128s/n)`−r
``

rr(`− r)`−r
kk

(k − `)k−```

≤ 16k(O(∆))`2`+k
(
k − `
n/2

)k−`∑̀
r=0

(128s/n)`−r

≤ 32k(O(∆))`
(
k − `
n/2

)k−`
,

since s < n/256, by assumption of the lemma.

4.3 Putting it together We now present a proof of
Lemma 3.2, which we restate here for convenience of the
reader:

Lemma 3.2 There exists C > 1 such that for every
even integer ∆ > 2, γ > n−1/5 smaller than an absolute
constant, and α ∈ (0, 1), the following conditions hold
for sufficiently large n divisible by ∆: Let Π be a
protocol for DIHP(n,∆, α) such that |Π| =: s, where
s = s(n) = ω(

√
n) and s(n) ≤ 1

2048C∆2 γ
5n. Then, there

exists an event E that only depends on X∗,M1,M2 and
occurs with probability at least 1−O(γ) over Pn,∆,α and
the choice of X∗ ∈ {0, 1}n such that, conditioned on E,
one has

(1) |B2|/2n ≥ 2−γ
4n.

(2)
(

2n

|B2|

)2∑
v∈{0,1}n,|v|=2` ĥ2(v)2 ≤ (C∆2γ4n/`)` for

all ` ≤ γ4n.

Proof. We denote

E1 :=
{
|A1|/2n ≥ 2−s−log2(2/γ)

}
E2 :=

{
|At|/2n ≥ 2−s−log2(2/γ) for t ∈ {1, 2}

}
.

(4.15)

Note that E2 ⊆ E1. We will later show that for every
t ∈ {1, 2},

(4.16) Pr[Et] ≥ 1−O(γ).

Note that neither E1 nor E2 coincides with the event E—
we define E at the end of the proof as the intersection of
E2 and the success event for an application of Markov’s
inequality (see Eq. (4.25) and Eq. (4.26)).

We prove that if matchings M1,M2 are selected
according to the random process Pn,∆,α, then the
following conditions hold:

(1) |B2|
2n = |A1|

2n ·
|A2|
2n for all choices of M1,M2, f1, f2;

(2) Conditioned on E1 for all ` ∈ [1, 2s],(
2n

|B1|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1(v)2 ≤ (128s/`)`.

(3) Conditioned on E2 for all ` ∈ [1, 2s],(
2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 ≤ (O(∆2/γ) · s/`)`.

We prove claims above, then put them together to
get the proof of the lemma. Claims (1) and (2) are
simple, and the proof of the lemma from the claims is
simple as well. The bulk of the proof is in (3). We now
give the proof of the lemma assuming the claims above.

We now combine (1)-(3) to obtain the result of the
lemma. Recall that h2 = f1 · f2.

First, for ` ∈ [1, 2s], we have that (3) implies(
2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 ≤ (O(∆2/γ)s/`)`

≤ (C∆2γ4n/`)`

for sufficiently large C, since s ≤ 1
2048C∆2 γ

5n by
assumption of the lemma.

It remains to show that this bound holds for all
` ≤ γ4n, i.e., we need to consider ` in the range [2s, γ4n].
We note that, conditioned on E , one has

2n

|B2|
=

2n

|A1|
· 2n

|A2|
≤ (22s)2 ≤ 24s,

where we have combined (1) with the fact that condi-
tioned on E ⊆ E2, one has |At|/2n ≥ 2−s−log2(2/γ) ≥
2−2s for every t ∈ {1, 2} and sufficiently large n, since

γ > n−1/5 and s = s(n) = ω(
√
n). Thus, by Theo-

rem 4.1, (3) (Parseval’s equality), we have

(
2n

|Bt|

)2 ∑
v∈{0,1}n
|v|=2`

ĥt(v)2 ≤
(

2n

|Bt|

)2 ∑
v∈{0,1}n

ĥt(v)2

≤ 2n

|Bt|
≤ 24s.

(4.17)

for t ∈ {1, 2} and all `.
We now show that the rhs above is dominated by

(C∆2γ4n/`)` for ` ∈ [2s, γ4n], provided that C > 0 is
a sufficiently large absolute constant. Indeed, recalling
that ∆ is a positive integer, we note that as long as
C ≥ e, we have that (C∆2γ4n/`)` is monotonically
increasing2 for ` ∈ [2s, γ4n]. Thus, the smallest value is
achieved when ` = 2s and equals

(C∆2γ4n/(2s))2s ≥ (4C∆2γ4n/(γ5n))2s

≥ (4C∆2/γ)2s

≥ 24s,

where we have used the assumption that s ≤
1

2048C∆2 γ
5n ≤ 1

8γ
5n. This establishes part (2) of the

lemma statement. Also, note that (1) of the lemma
statement holds, since

|B2|
2n
≥ 2−4s ≥ 2−γ

4n,

since 4s ≤ 4 · (γ5n/2048C∆2) ≤ γ4n. This completes
the proof of the lemma assuming claims (1)-(3) above.

We now prove the claims.
First, we establish Claim (1), which follows from

the fact that M1 ∪M2 does not contain cycles. Indeed,
by (4.6), we have

ĥ2(0) =
∑

w∈{0,1}n
f̂1(w) · f̂2(w)

= f̂1(0n) · f̂2(0n) +
∑

w∈{0,1}n\0n
f̂1(w) · f̂2(w),

and by Theorem 4.1, (1), all w ∈ {0, 1}n \ 0n such that

f̂1(w) 6= 0 and f̂2(w) 6= 0 can be perfectly matched
by both M1 and M2. Let M ′1 ⊆ M1 denote the set
of edges of M1 that perfectly match elements of w to
each other, and let M ′2 ⊆M2 denote the set of edges of
M2 that perfectly match elements of w to each other.

2Since the function (ea/b)b is monotone increasing for any
b ∈ (0, b].

However, this implies that M ′1 ∪M ′2 must be a union of
cycles (note that M ′1 and M ′2 do not share edges by our
construction), which is impossible as M1 ∪M2 does not
contain cycles. Thus, the second term on the rhs of the
equation above is zero, and we get

|B2|
2n

= |ĥ2(0n)| = |f̂1(0n)| · |f̂2(0n)| = |A1|
2n
· |A2|

2n
,

as desired. This establishes Claim (1).
Let us now concentrate on Claim (2). Note that

the claim only applies to ` ≥ 1, which will be useful for
simplifying calculations somewhat below.

Typical messages. First, note that for each t ∈ {1, 2},
the function gt induces a partition Kt

1,K
t
2, . . . ,K

t
2s of

{0, 1}mt , where s is the bit length of the message at
(recall that we assume wlog that messages are the same
length for all t). The number of points in {0, 1}mt that
belong to sets Kt

i of size less than γ2mt−s is bounded
by 2s · γ2mt−s < γ2mt , i.e., at least a 1 − γ fraction of
{0, 1}mt is contained in large sets Kt

i , whose size is at
least γ2mt−s. We call a message m typical if |Kt

m| ≥
γ2mt−s. Moreover, we say that at = gt(Mtx) is typical
if Mtx is typical. We have that at = gt(z) is not typical
with probability at most γ if z is uniformly random in
{0, 1}mt . Letting d := log2 (2n/|A1|), we now conclude
that with probability at least 1 − γ/2 over the choice
of X∗ ∈ {0, 1}n, one has d ≤ s + log2(2/γ). Since
γ > n−1/5 and s = ω(

√
n) by assumption of the lemma,

we have d ≤ s + log2(2/γ) ≤ 2s for sufficiently large
n. We now invoke Theorem 4.1, (2) on the function f1

with d ≤ s + log2(2/γ) ≤ 2s, which establishes Claim
(2).

Finally, we establish Claim (3). First note that
by Lemma 3.1, (1) applied to A1 and M2, we get
that M2X

∗ is uniformly distributed over {0, 1}m2 when
X∗ is uniformly distributed over A1. We thus have
that the argument on ‘typical’ sets from the above
paragraph applies even when we condition on M1 and
the first player’s message a1 (equivalently, on the set
A1). Thus, with probability 1 − O(γ), we have that
log2 (2n/|A2|) ≤ s+log2(2/γ), which establishes (4.16).

Thus, assume E2 holds. Recall that d =
log2 (2n/|A1|) ≤ s + log2(1/γ) ≤ 2s. We now claim
that for every k ≤ 2s,

(4.18)

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(v)2 ≤ (128s/k)k

and

(4.19)

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|≥4s

f̂1(w)2 ≤ 24s.

Indeed, (4.19) holds by Theorem 4.1, (3):

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|≥4s

f̂1(w)2 ≤ 22d
∑

w∈{0,1}n
f̂1(w)2

= 2d

≤ 24s.

For (4.18), note that if k ≤ d, then Theorem 4.1, (2)
implies that(

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ≤ (64d/k)k ≤ (128s/k)k,

as desired, while if d < k ≤ 2s, then Theorem 4.1, (3)
implies that(

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ≤ 2d

≤ (128s/d)d

≤ (128s/k)k,

since (128s/k)k is a monotonically increasing function
in k for k ≤ 2s. This establishes (4.18).

Next, by Lemma 4.2, we have that for any v ∈
{0, 1}n, ̂(f1 · f2)(v) = 0 if v is not admissible with

respect to M1,M2, while ̂(f1 · f2)(v) = f̂1(P (v) ∩M1) ·
f̂2(P (v) ∩M2) otherwise. Thus, for any ` ≥ 0,∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 =
∑

v∈{0,1}n
|v|=2`

v admissible
wrt M1,M2

f̂1(P (v) ∩M1)2

· f̂2(P (v) ∩M2)2

=
∑

v∈{0,1}n
|v|=2`

∑
w∈{0,1}n

f̂1(w)2f̂2(w + v)2.

Note that the second line follows from the first by letting
w := P (v) ∩M1 (so that w + v = (P (v) ∩M1) + v =

P (v) ∩M2 and, thus, f̂1(w)2 · f̂2(w + v)2 = f̂1(P (v) ∩
M1)2 ·f̂2(P (v)∩M2)2) as well as noting that there exists

at most one w ∈ {0, 1}n such that f̂1(w)2 ·f̂2(w+v)2 6= 0
(see the proof of Lemma 4.2).

We now further partition the set of w ∈ {0, 1}n
in the inner summation on the rhs above according to
weight and obtain

∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

=
∑

v∈{0,1}n
|v|=2`

∑
w∈{0,1}n

f̂1(w)2 · f̂2(w + v)2

=

∆·∑̀
k=0

∑
v∈{0,1}n
|v|=2`

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 · f̂2(w + v)2

=

∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·

 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

 .

(4.20)

Note that we have restricted the summation over k
to the range [0,∆ · `] in line 3, as this is justified by
Lemma 4.1, (2), which implies that |P ∗(w + M ′)| ≥
|w|/∆ for all M ′ ⊆ M2, and so, |v| = |w + (v + w)| =
|w+M ′| ≥ |w|/∆, or k = |w|/2 ≤ ∆ · ` for all v, w such

that f̂1(w)f̂2(v + w) 6= 0.
Taking the expectation of (4.20) with respect to

M2 (conditional on M1, A1, and E2), we obtain

EM2

(2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2

=

(
2n

|A1|

)2

·EM2

(2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2

≤

∆·∑̀
k=0

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

·EM2

(2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2

 .
In what follows, we apply Lemma 4.4 to the inner

summation on last line above. In order to reason about
‘typical’ messages as defined above, we let

I?1 := I

[
|A1|
2n
≥ 2−2s

]
and I?2 := I

[
|A2|
2n
≥ 2−2s

]
.

Note that

I?1 ≥ I

[
|A1|
2n
≥ 2−s−log2(2/γ)

]
I?2 ≥ I

[
|A2|
2n
≥ 2−s−log2(2/γ)

]
.

(4.21)

Specifically, we have for that for any ` ≤ 2s,

(
2n

|A1|

)2 ∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(2n

|A2|

)2

·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2

=

(
2n

|A1|

)2 ∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

I?1 · I?2

·
(

2n

|A2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1, E2

≤
(

2n

|A1|

)2
1

Pr[E2]

∆·∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(

2n

|A2|

)2

· I?1 · I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

= 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(

2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

 ,
where we have used (4.21) to conclude that both I?1
and I?2 equal 1 when E2 occurs, as well as the fact that
Pr[E2] = 1 − O(γ) ≥ 1/2 (when γ is smaller than an
absolute constant) by (4.16) and the fact that I?1 is
independent of M2.

We now apply Lemma 4.4 to the expectation over
M2 in the last line above. Since Lemma 4.4 provides
two bounds (one for ` ≤ k and another for ` ≥ k), we
split the summation into two and apply the respective

part of the lemma to each summation. Specifically, we
have

2

(
2n

|A1|

)2

· I?1 ·
∆∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(2n

|A2|

)2

·I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

≤ 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(

2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

+ 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀

k=`+1

∑
w∈{0,1}n
|w|=2k

f̂1(w)2 ·EM2

(

2n

|A2|

)2

· I?2 ·
∑

v∈{0,1}n
|v|=2`

f̂2(w + v)2

∣∣∣∣∣∣∣∣M1,A1

= S1 + S2,

where we let

S1 = 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

4`(O(∆))k
(

64(2s)

`− k

)`−k
·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2

S2 = 2

(
2n

|A1|

)2

· I?1 ·
∆∑̀

k=`+1

(O(∆))`8k
(
k − `
n/2

)k−`
·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2.

We now proceed to bound the terms S1 and S2 sepa-
rately.

Bounding S1. We have

S1 = 2

(
2n

|A1|

)2

· I?1 ·
∑̀
k=0

4`(O(∆))k
(

64(2s)

(`− k)

)`−k
·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2

= 2
∑̀
k=0

4`(O(∆))k
(

64(2s)

(`− k)

)`−k
· I?1 ·

(
2n

|A1|

)2

·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2

≤ 4`+1
∑̀
k=0

(O(∆))k
(

64(2s)

(`− k)

)`−k
·
(

64(2s)

k

)k

= (O(∆))`
∑̀
k=0

(
128s

`− k

)`−k
·
(

128s

k

)k

= (O(∆))`
(

128s

`

)` ∑̀
k=0

``

(`− k)`−kkk

= (O(∆))`
(

128s

`

)` ∑̀
k=0

2`

≤
(

128s

`

)`
(O(∆))`

≤
(
O(∆)s

`

)`
,

(4.22)

where we have used (4.18) as well as the fact that
(a+b)a+b

aabb
≤ 2a+b for all a, b > 0. Note that we have

absorbed the factor of 4`+1 into (O(∆))` crucially using
the assumption that ` > 0.

Bounding S2. Observe that

S2 = I?1 ·
∆·∑̀

k=`+1

(O(∆))`8k
(
k − `
n/2

)k−`(
2n

|A1|

)2

·
∑

w∈{0,1}n
|w|=2k

f̂1(w)2.

We split this summation further into two summations,
one over k ∈ [`+ 1, 2s] and the other over k ∈ [2s,∆ · `]
(assuming that the second range is nonempty).

Case 1: k ∈ [`+ 1, 2s]. We have

2s∑
k=`+1

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· I?1

·
(

2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

≤
s∑

k=`+1

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`(
64(2s)

k

)k

≤
(
O(∆)s

`

)` s∑
k=`+1

(
2048s

n

)k−`
(k − `)k−```

kk

≤
(
O(∆)s

`

)` s∑
k=`+1

(
2048s

n

)k−`

≤
(
O(∆)s

`

)` s∑
k=`+1

(
2048s

n

)k−`

≤
(
O(∆)s

`

)`
,

(4.23)

using (4.18), as well as the fact that aabb/(a+ b)a+b ≤ 1
for all a, b > 0 and s < n/4096.

Case 2: k ∈ [2s,∆ · `]. Note that increasing the
upper limit in the summation to ∆ ·2s ≥ ∆ · ` may only
increase the sum since the summands are non-negative.
We upper bound the sum of k in this range as follows:

2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· I?1 ·

(
2n

|A1|

)2 ∑
w∈{0,1}n
|w|=2k

f̂1(w)2

≤
2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
· 24s

≤
2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`(
8∆s

k

)k
,

where we have used (4.19) and the fact that

(
8∆s

k

)k
≥
(

8∆s

2s

)2s

≥ (4∆)2s ≥ 24s.

We now upper bound the expression on the last line
above as follows:

2∆·s∑
k=2s

(O(∆))`8`+(k−`)
(
k − `
n/2

)k−`
·
(

8∆s

k

)k

≤
(
O(∆2)s

`

)` 2∆·s∑
k=2s

(
O(∆)s

n

)k−`
(k − `)k−```

kk

≤
(
O(∆2)s

`

)` ∞∑
k=2s

(
O(∆)s

n

)k−`
≤
(
O(∆2)s

`

)` ∞∑
k=`+1

(
O(∆)s

n

)k−`

≤
(
O(∆2)s

`

)`
,

(4.24)

where we have used the fact that aabb/(a+ b)a+b ≤ 1
for all a, b > 0.

Putting Eq. (4.22), Eq. (4.23) and Eq. (4.24) to-
gether, we get that for every 0 < ` ≤ 2s,

S1 + S2 ≤ (O(∆)s/`)` + (O(∆)s/`)` + (O(∆2)s/`)`

= (O(∆2)s/`)`,

where we again have used the assumption that ` >
0 to absorb a constant factor into the O(∆) term.
Substituting this bound in the derivations above, we
note that for every 0 < ` ≤ 2s,

EM2

(2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

∣∣∣∣∣∣∣∣M1,A1, E2

=

(
O(∆2)s

`

)`
.

Thus, Markov’s inequality implies that with proba-
bility at least 1−O(γ), one has that for every 0 < ` ≤ 2s,
there exists an absolute constant K > 0 such that

(4.25) PrM2

(2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2

> (K(∆2/γ)s/`)`

∣∣∣∣∣M1,A1, E2

]
≤ γ`.

Therefore, by a union bound over 0 < ` ≤ 2s,

PrM2

(2n

|B2|

)2 ∑
v∈{0,1}n
|v|=2`

f̂1 · f2(v)2 > (K(∆2/γ)s/`)`

for some ` ∈ [1, 2s]

∣∣∣∣∣∣∣∣M1,A1, E2

≤
∑
`≥1

γ` = O(γ),

(4.26)

since γ is bounded from above by an absolute constant.
We now define the event E (promised by the lemma)
as the intersection of E2 and the success event for
the application of Markov’s inequality above. This
completes the proof of Claim (3), as desired.

References

[1] Bertinoro workshop 2011, problem 45, http: //

sublinear. info/ 45 .
[2] Bertinoro workshop 2014, problem 67, http: //

sublinear. info/ 67 .
[3] K. Ahn and S. Guha, Graph sparsification in the

semi-streaming model, ICALP, (2009), pp. 328–338.
[4] , Linear programming in the semi-streaming

model with application to the maximum matching prob-
lem, ICALP, (2011), pp. 526–538.

[5] K. Ahn and S. Guha, Access to data and number of it-
erations: Dual primal algorithms for maximum match-
ing under resource constraints, CoRR, abs/1307.4359
(2013).

[6] K. J. Ahn, S. Guha, and A. McGregor, Analyz-
ing graph structure via linear measurements, SODA,
(2012), pp. 459–467.

[7] , Graph sketching: Sparsification, spanners, and
subgraphs, PODS, (2012).

[8] N. Alon, Y. Matias, and M. Szegedy, The space
complexity of approximating the frequency moments, in
STOC, 1996, pp. 20–29.

[9] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavt-
sev, Tight bounds for linear sketches of approximate
matchings, CoRR, (2015).

[10] A. A. Benczúr and D. R. Karger, Approximating
s-t minimum cuts in Õ(n2) time, Proceedings of the
28th annual ACM symposium on Theory of computing,
(1996), pp. 47–55.

[11] R. H. Chitnis, G. Cormode, H. Esfandiari,
M. Hajiaghayi, A. McGregor, M. Monemizadeh,
and S. Vorotnikova, Kernelization via sampling
with applications to dynamic graph streams, CoRR,
abs/1505.01731 (2015).

[12] R. Durrett, Random Graph Dynamics (Cambridge
Series in Statistical and Probabilistic Mathematics),
Cambridge University Press, New York, NY, USA,
2006.

[13] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat,
M. Monemizadeh, and K. Onak, Streaming al-
gorithms for estimating the matching size in planar
graphs and beyond, SODA, (2015).

[14] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz,
and R. de Wolf, Exponential separation for one-
way quantum communication complexity, with applica-
tions to cryptography, SIAM J. Comput., 38 (2008),
pp. 1695–1708.

[15] A. Goel, M. Kapralov, and S. Khanna, On the
communication and streaming complexity of maximum
bipartite matching, SODA, (2012).

[16] V. Guruswami and K. Onak, Superlinear lower
bounds for multipass graph processing, CCC, (2012).

[17] Z. Huang, B. Radunović, M. Vojnović, and
Q. Zhang, Communication complexity of approximate
maximum matching in distributed graph data, STACS,
(2015).

[18] J. Kahn, G. Kalai, and N. Linial, The influence
of variables on boolean functions (extended abstract),
29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October
1988, (1988), pp. 68–80.

[19] M. Kapralov, Better bounds for matchings in the
streaming model, SODA, (2013).

[20] M. Kapralov, S. Khanna, and M. Sudan, Ap-
proximating matching size from random streams, in
25th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014.

[21] , Streaming lower bounds for approximating
MAX-CUT, in 26th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2015.

[22] M. Kapralov, Y. T. Lee, C. Musco, C. Musco,
and A. Sidford, Single pass spectral sparsification in
dynamic streams, FOCS, (2014).

[23] M. Kapralov and D. Woodruff, Spanners and
sparsifiers in dynamic streams, PODC, (2014).

[24] J. A. Kelner and A. Levin, Spectral sparsification
in the semi-streaming setting, STACS, (2011), pp. 440–
451.

[25] D. Kogan and R. Krauthgamer, Sketching cuts in
graphs and hypergraphs, ITCS, (2015).

[26] C. Konrad, Maximum matching in turnstile streams,
CoRR, abs/1505.01460 (2015).

[27] A. McGregor, Graph stream algorithms: a survey,
SIGMOD Record, 43 (2014), pp. 9–20.

[28] D. Spielman and N. Srivastava, Graph sparsifica-
tion by effective resistances, STOC, (2008), pp. 563–
568.

[29] E. Verbin and W. Yu, The streaming complexity of
cycle counting, sorting by reversals, and other prob-
lems, SODA, (2011), pp. 11–25.

