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Abstract
Recent work has highlighted credit networks as an e↵ective
mechanism for modeling trust in a network: agents issue
their own currency and trust each other for a certain
amount of each other’s currency, allowing two nodes to
transact if there is a chain of su�cient residual trust between
them. Under a natural model of repeated transactions, the
probability that two agents can successfully transact in a
credit network (i.e. the liquidity between these two agents)
is the same as the probability that they are connected to
each other in a uniformly random forest of the network.

Motivated by this connection, we define the RF-
connectivity between a pair of nodes in a graph G as the
probability that the two nodes belong to the same connected
component in a uniformly random forest of G. Our first re-
sult is that for an arbitrary subset S of nodes in G, the
average RF-connectivity between pairs of nodes in S is at
least 1� 2/h(GS), where h(GS) is the edge expansion of the
subgraph GS induced by S. Informally, this implies that a
well-connected “community” of nodes S in a credit network
will have high liquidity among themselves, regardless of the
structure of the remaining network. We extend this result
to show that in fact every node in S has good average RF-
connectivity to other nodes in S whenever S has good edge
expansion. We also show that our results are nearly tight by
proving an upper bound on the liquidity of regular graphs.

For our motivating application, it is important that we
relate the average RF-connectivity in S to the expansion
inside S and not merely to expansion of G since we would
like to assert that a well-connected community has high
liquidity even if the graph as a whole is not well-connected.
This naturally leads to a monotonicity conjecture: the RF-
connectivity of two nodes can not decrease when a new edge
is added to G. We show that the monotonicity conjecture is
equivalent to showing negative correlation between inclusion
of any two edges in a random forest, a long-standing open
problem. Our result about the average RF-connectivity of
nodes in S may be viewed as establishing a weak version of
the monotonicity conjecture.
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1 Overview

Given a multi-graph G = (V,E), a subset of edges
is said to be a forest of G if it does not contain any
cycles. In this paper, we will study uniformly random
forests of G. Unlike random spanning trees [23, 7, 1,
30], several simple questions regarding random forests
remain unresolved: Does there exist a polynomial time
algorithm to approximately sample a random forest
(or equivalently, approximately count the number of
forests) of a given graph [9, 24, 2]? Does the presence of
an edge in a random forest make the presence of another
edge less likely [19, 29]? And of interest to us in this
paper: can we characterize the component sizes of a
random forest [22]?

In addition to being fundamental graph-theoretic
objects (forests are independent sets of the graphic ma-
troid, and correspond to an important class of Tutte
polynomials [32]), random forests have many applica-
tions, most notably in machine learning [6, 3]. How-
ever, the motivating application for our work is credit

networks, which have emerged as an e↵ective mecha-
nism for modeling trust in transaction-oriented social
networks [11, 13, 15]. In a credit network, every node
(i.e. user) acts as a bank and prints its own currency.
Further, a weighted edge (u, v) in the network with
weight w implies that u has extended a credit line of
w currency units to v, i.e., u is willing to trust up to w
units of v’s currency, at which point this credit line is
saturated. However, this saturation (in fact, any trans-
fer of currency from v to u) results in an edge forming
in the reverse direction, from v to u, since u now has
some currency from v which it can return to v in ex-
change for some service. Payments are routed along
feasible paths; if there is no way to route a payment
from a payee to a payer, the transaction fails. A central
question in credit networks is liquidity: what fraction
of desired transactions between nodes u and v actually
succeed? Under a natural model of transaction rates,
this question, surprisingly, is equivalent to the following
question [11, 20]: what is the probability that the two
nodes u and v belong to the same component in a ran-
dom forest of the underlying graph? This connection led
to a characterization of the liquidity of credit networks
that are lines, trees, and complete graphs [11]. However,
realistic social networks are very far from each of these



idealized models. Instead, there is considerable evidence
that real-life social networks often contain (either over-
lapping, or in a core-whisker structure) sub-networks
or communities that have high expansion [5, 21]. This
leads us to ask the following questions:

If G has high edge-expansion, what is the

probability that two nodes u and v are in the

same component in a random forest of G? And

do the same bounds hold if u and v belong

to a subgraph of G with high edge-expansion,

even though G itself may not have high edge-

expansion?

In the rest of the paper, we will use the term “RF-
connectivity of u and v” to refer to the probability that
u and v are in the same connected component in a
(uniformly) random forest.

1.1 Our results Our main result is that for an
arbitrary subset S of nodes in G, the average RF-
connectivity between pairs of nodes in S is at least
1 � 2/h(GS), where h(GS) is the edge expansion of
the subgraph GS induced by S. Informally, this im-
plies that a well-connected “community” of nodes S in
a credit network will have high liquidity among them-
selves, regardless of the structure of the remaining net-
work. Two points about this result are worth noting.
First, in our motivating application, it is important that
we relate the average RF-connectivity in S to the expan-
sion inside S and not merely to expansion of G since
we would like to assert that a well-connected commu-
nity has high liquidity even if the graph as a whole is
not well-connected. Second, since many random graph
models (such as Erdős-Rényi and preferential attach-
ment [4]) have high edge expansion, our result automat-
ically applies to these models. For example, above the
connectivity threshold, the edge expansion of an n-node
Erdős-Rényi graph is ⌦(log n), giving an average pair-
wise liquidity of 1 � O(1/ log n); this resolves an open
problem from earlier work on liquidity [11].

In order to prove our main result, we use a simple
Markov Chain whose state space is all forests of G.
In this Markov chain, at each step we pick an edge
uniformly at random. If this edge is part of the current
state, the chain transitions to the forest obtained by
deleting this edge. If this edge is not part of the current
forest, and adding it does not cause a cycle, the edge is
added to the forest. The stationary distribution of this
walk is uniform; thus, to analyze the RF-connectivity
of two nodes, it su�ces to estimate the probability
that they are in the same component in this Markov
chain. This walk is simpler than the more traditional
one used to generate random forests [24] which also

allows edges to be swapped. It is plausible that the
more involved walk mixes faster. However, since we are
not interested in designing a sampling algorithm in this
paper, we choose to use the simpler walk which is easier
to analyze. We essentially show that under this walk,
we are very likely to have a giant component whenever
the graph G has good expansion. We then extend this
analysis to the case where only S has good expansion
by partitioning the set of forests into classes, with each
class corresponding to the set of edges outside S that are
in the forest; this extension is non-trivial, and suggests
a natural monotonicity conjecture, described later.

We then establish a nearly matching upper-bound:
the average RF-connectivity in a d-regular graph is at
most 1 � 1/(d + 1). Since the existence of d-regular
graphs with ⌦(d) edge-expansion is well known [27],
this yields an upper bound of 1 � ⌦(1/h(GS)) on the
average RF-connectivity for this graph family, where
S = V . Thus, our result is essentially tight, up to
constant factors in the lower order term 1/h(GS). We
also extend our main result to show that in fact every
node in S has good average RF-connectivity to other
nodes in S whenever S has good edge expansion, though
with a slightly weaker bound of 1�O(log n)/h(GS).

As mentioned before, it is important that we relate
the average RF-connectivity in S to the expansion
inside S and not merely to expansion of G. This
naturally leads to a monotonicity conjecture: the RF-

connectivity of two nodes can not decrease when a new

edge is added to G. Our result about the average RF-
connectivity of nodes in S may be viewed as establishing
a weak version of the monotonicity conjecture. We
show that the monotonicity conjecture is equivalent to
showing negative correlation between inclusion of any
two edges in a random forest, a long-standing open
problem [19, 25, 17]. This is in sharp contrast to the case
of random spanning trees, where negative correlation is
well understood [30]. We show this equivalence via an
argument that directly counts the number of forests, as
opposed to the Markov Chain approach outlined earlier.

While we were motivated to study RF-connectivity
because of its connections to liquidity in credit networks,
it is worth pointing out that this is a fundamental ques-
tion in its own right. For example, distributions of com-
ponent sizes of forests of complete graphs have been
shown to possess interesting phase transitions [22]. Our
work reinforces the importance of several open prob-
lems relating to random forests, in particular negative
correlation and e�cient approximate sampling (which
in our application will allow an easy estimate of the liq-
uidity between any two nodes). Further, it would be
interesting to use the new analysis tools developed in
this paper to study the question of strategic formation



of credit networks: how do nodes decide how much trust

to extend to each other [10, 12]?

Organization: The rest of this paper is organized as
follows. In Section 2 we formalize the notion of RF-
connectivity and its connection to liquidity in credit
networks. We present in Section 3 our results on the
relationship between RF-connectivity and expansion in
a (sub)graph. In Section 4, we establish the equivalence
between negative correlation property and the mono-
tonicity conjecture.

2 Preliminaries

2.1 Forests and RF-connectivity Let G = (V,E)
be an undirected multi-graph with n vertices and m
labeled edges. If there are multiple labeled edges
between two vertices, each of them is associated with
a unique label and is a distinct element in E.

A forest F is a subset of E that does not induce
any cycles and contains no multiple edges. Let F (G),
or simply F if the graph G is clear from the context,
denote the set of all forests of G. For 1  k  n � 1,
let Fk denote the set of forests that contain exactly k
edges. Let C (F ) denote the set of components in F ;
we represent each component by the subset of vertices
it contains, instead of edges. For each vertex u 2 V ,
let Cu(F ) denote the component that contains u in F .
We use F to denote a uniformly random forest of G, we
define:

• �u,v(G) = Pr(u 2 Cv(F)) as the RF-connectivity
between any two vertices u and v in G.

• �S(G) =
P

u2S

P
v2S:v 6=u

�u,v(G)
|S|(|S|�1) as the average

RF-connectivity between any two vertices of S for
any S ✓ V .

• �u,S(G) =
P

v2S\{u}
�u,v(G)
|S|�1 as the average RF-

connectivity between any vertex u of S and the
rest of vertices of S.

2.2 RF-connectivity and Liquidity in Credit
Networks In this section, we describe the connection
between credit networks and random forests. A credit

network G = (V, E ; c) is a directed graph over agents
in V. Edges in the network represent pairwise credit
limits between agents. A state s in the network is simply
the vector of credit capacities along all the edges in the
network. An edge (u, v) 2 E with capacity cuv(s) > 0
represents a credit line extended from u to v worth
cuv(s) units in v’s currency. Assume that capacities
are integral. Successful transactions between nodes of
the network result in a change in s. We denote by � the
set of all states that G can be in.

A transaction is specified by a tuple hu, vi, where
node u 2 V is the payer (buyer), node v 2 V is the payee
(seller). Given a state s, the transaction can go through
provided there is a feasible path for one unit of credit
flow from v to u: that is, a path P from v to u such
that each edge on the path has capacity at least one.
It is assumed that all currencies are the same. If the
transaction goes through, then for each edge (ui, ui+1)
on P , the credit capacity on each goes down by one
while the credit capacity on the edge (ui+1, ui) goes up
by one. 1

Consider a repeated transaction model where the
transaction rates are given by an n ⇥ n matrix ⇤. The
entry corresponding to ith row and jth column in ⇤
gives the probability of i initiating a transaction with
j. In this paper, we work under the assumption that
the transaction rates matrix is symmetric. Then, these
repeated transactions will induce a set of equivalence
classes S over �, and a Markov Chain whose steady
state distribution is uniform over these equivalence
classes. 2

Definition 2.1. (Liquidity [11]) Let u and v be two

nodes in G and let C be a uniformly random equiv-

alence class of S . The steady-state transaction suc-

cess probability from u to v is defined to be  u,v(G) =
Pr(hu, vi goes through in C),

Note that G induces an undirected multi-graph G =
(V,E) in a natural way: the vertices V are equal to V
and there are cuv(s) + cvu(s) labeled edges between u
and v in E, where s is any state in �. The edges are
well-defined since the sum of credit limits of u and v to
each other remain the same in any state of the network.

Proposition 2.1. �u,v(G) =  u,v(G) for any two

nodes u and v in V.

The proof of Proposition 2.1 is left to the Ap-
pendix A. Note that Proposition 2.1 also implies
�S(G) =  S(G) for any subset of vertices S ✓ V.

2.3 Uniform Sampling of a Random Forest
Consider a simple random walk M on F : Let F0 be
any forest.

Fi+1 =

8
<

:

Fi [ {e} if Fi [ {e} 2 F
Fi\{e} if e 2 Fi

Fi otherwise

1Dandekar et al. [10] characterizes when there are multiple

path from v to u, the choice of P is without loss of generality,
by a path-independence property: More details can be found in

Appendix A.
2We defer a formal treatment of state space and how they

induce the equivalence classes to Appendix A.



where e is a uniformly random edge from E.

Proposition 2.2. The stationary distribution of M is

uniform over F .

For some other random walks that sample a uni-
formly random forest, we refer the reader to [9].

3 Connectivity in a Random Forest and Edge
-Expansion

In this section, we establish a connection between
average RF-connectivity in a community and the edge
expansion of the community. Recall that the edge

expansion of an undirected graph G is defined to be

h(G) = min
S✓V : 0|S|n

2

@(S)

|S|

where @(S) is the number of edges between S and V \S
in E, and the minimum is over all nonempty subsets
of V with at most n

2 vertices. Let S be any subset of
vertices inG andGS be the subgraph ofG induced by S.
Let h(GS) denote the edge expansion of the subgraph
GS .

Our first main result is that for any subset S of
vertices in the graph, the average RF-connectivity inside
the subset S is at least 1 � 2

h(GS) . Thus vertices
in a community S that are well-connected to each
other (i.e. have high edge-expansion in the subgraph
induced by them) have high average connectivity among
themselves, regardless of the structure of the remaining
graph. We also show that this bound is essentially
tight by establishing that average RF-connectivity in
any d-regular graph is at most 1 � 1/(d + 1). Our
second main result is that not only is the average RF-
connectivity large in a well-connected community S, but
every vertex in any such community S also has high
average connectivity to other nodes in S. Specifically,
we will show that each vertex in a community S has
average RF-connectivity at least 1� lnn+2

h(GS)+1 inside S.

3.1 Average RF-connectivity in a Community

Theorem 3.1. Given a multi-graph G = (V,E) and a

subset of vertices S ✓ V , the average RF-connectivity

between pairs of nodes in S is at least 1� 2
h(GS) , where

h(GS) is the edge expansion of its induced subgraph GS.

The proof proceeds in two stages. First, we parti-
tion F into classes according to their set of edges out-
side GS in Lemma 3.1. Secondly, within each class of
forests, we show that the average RF-connectivity is at
least 1� 2

h(GS) in Lemma 3.3, obtaining the desired re-
sult.

We start by defining some additional notations. Let
ES be the set of edges in GS , and let ES = E\ES be
the set of edges outside GS . We partition F by its
restriction to ES . We say that a set of edges E0 in
ĒS is feasible if there exists a forest F 2 F such that
E0 = F \ ES . Then for any feasible set E0, we define
FE0 to be the set of forests such that F \ ES = E0 for
any F 2 FE0 .

Consider the average connectivity of forests in FE0 .
This is captured by the RF-connectivity of a vertex-
weighted multi-graph G(E0). To define this graph, note
that the connectivity created by edges of E0 naturally
induces an equivalence relation ⇠ on S. For two vertices
u, v in S, u ⇠ v if and only if u are connected to v by
E0. Let V ⇤ denote the equivalence classes of ⇠ and let
� : V 0 ! N 3 denote the number of elements in each
equivalence class. Secondly, let I = {(v, v0,)} denote
the labeled edges in GS . we define E⇤ = {([v], [v0],)},
where [·] is the equivalence class of a vertex under ⇠.
Let G(E0) = (V ⇤, E⇤).

We define �(F ) =
P

T2C(F )

��(T )
2

�
/
��(V ⇤)

2

�
to cap-

ture pairwise connectivity of F in this weighted graph
G(E0). Lemma 3.1 shows that �S(G) can be redefined
in terms of �(F ).

Lemma 3.1. Let E be the set of feasible subsets of ES.

Then �S(G) =
P

E02E
E [�(F)]·Pr(F 0\ES = E0), where

F is a uniformly random forest of G(E0) and F 0
is a

uniformly random forest of G.

Proof. Note that

�S(G) =
X

E02E

Pr(F 0 \ ES = E0)⇥

0

@
X

u2V

X

v2V :v 6=u

Pr(u 2 Cv(F 0) | F 0 \ ES = E0)

|S|(|S|� 1)

1

A .

It su�ces to show that the above sum over u and v
is equal to E [�(F)]. We define a mapping � : FE0 !
F (G(E0)) as �(F ) = {([v], [v0],) : 8 (v, v0,) 2 F\E0},
and prove that the mapping � is bijective:

• By the definition of G(E0), it is clear that �(F ) is
in F (G(E0)), hence the mapping is valid.

• Two di↵erent forests from FE0 map to di↵erent
forests in F (G(E0)), because they di↵er over the
set of edges ES .

3
Unless specified otherwise, from here on, the vertex weight

function is only assumed to take positive integer values.



Note that the mapping preserves forest connectiv-
ity. That is,

X

T2C(F )

�|T\S|
2

�
�|S|

2

� = �(�(F )),

since any two vertices v and v0 in S are connected in
F if and only if [v] = [v0] or [v] are connected to [v0] in
�(F ). Therefore,

E

2

4
X

T2C(F00)

�|T\S|
2

�
�|S|

2

�

3

5 = E [�(�(F 00))]

where F 00 is a uniform sample from FE0 .
It is clear that

P
u2S

P
v2S:v 6=u

Pr(u2Cv(F ) |F\ĒS=E0)
|S|(|S|�1)

= E
P

T2C(F00)

(|T\S|
2 )

(|S|
2 )

�
= E [�(�(F 00))].

Finally, we observe that E [�(�(F 00))] = E [�(F)] since
�(·) is a one-to-one mapping; thus completing the proof.

We now concentrate on bounding the average RF-
connectivity of G(E0) for each E0 in E . The notion of
edge expansion function can be naturally extended to
graphs with vertex weights �(·): we define it to be the
minimum of the quantity @(S)/�(S), taken over all sets
S for which �(S) is at most half of the total weight. We
will use the following easy but important monotonicity
property of expansion.

Lemma 3.2. The edge expansion function is monotone

under vertex contraction, that is, h(G(E0)) � h(GS) for
any E0 2 E .

Proof. It su�ces to consider G(E0) obtained by con-
tracting a pair of vertices v and v0 in G to v00. Let @0(·)
denote the number of edges between any subset of ver-
tices in G(E0) and its complement. Let T be any subset

of vertices of G(E0) such that �(T )  |S|
2 . If T does not

contain v00, then it’s clear that

@0(T )

�(T )
=
@(T )

�(T )
� h(GS).

Otherwise, T contains v00; let T 0 = T [ {v, v0}\{v00}.
Then

@0(T )

�(T )
=
@0(T 0)

�(T )
� h(GS),

since �(u00) = �(u) + �(u0) and @0(T 0) = @(T ). Hence
edge expansion of G(E0) is at least h(GS).

We are now ready to prove the following key lemma.

Lemma 3.3. Let G⇤ = (V ⇤, E⇤;�(·)) be a multi-graph

with vertex weight �(·) and edge expansion h(G⇤).
Then, for a uniformly random forest F of G⇤

, we have

E[�(F)] � 1� 2
h(G⇤) .

We will prove Lemma 3.3 by analyzing the random
walk M introduced in 2.3. Let n be the number of
vertices and m be the number of edges in G⇤. Let
F ⇤ denote the set of forests in G⇤. We define ↵(F ) =
max

T2C(F )
�(T ) as the maximum weight of any tree in

the forest F . Then

Lemma 3.4. For 1  k  n� 2,

X

F2F⇤
k

min(
�(V ⇤)

2
,�(V ⇤)�↵(F ))·h(G⇤)  |F ⇤

k+1|·(k+1)

Proof. Consider the overall probability that any forest
F with k+1 edges moves to any forest F 0 with k edges
in the random walk: it happens when any edge in F is
deleted after a transition. Since there are k + 1 such
edges, the probability of this event happening at state
F is k+1

m . Therefore,

X

F2F⇤
k+1

X

F 02F⇤
k

PF,F 0

|F ⇤| =
X

F2F⇤
k+1

k + 1

m · |F ⇤|

where PF,F 0 is the probability F moves to F 0 in M and
1/|F ⇤| is the stationary probability of a uniformly
random forest.

Next consider the overall probability that any forest
F with k edges moves to any forest F 0 with k+1 edges:
it happens when any edge between two trees of F is
added after a transition in the random walk. For the
number of such edges, consider two cases:

• if ↵(F )  �(V ⇤)
2 , then for each component C in

C (F ), the number of edges from C to the other
components is at least h(G⇤) times the number of
vertices in C. Therefore, the total amount of edges
between any two trees is at least h(G⇤) · �(V ⇤)/2;

• if ↵(F ) > �(V ⇤)
2 , then it will be at least (�(V ⇤) �

↵(F ))h(G⇤).

In summary, the total number of edges between any
two trees in F is at least x = min(�(V ⇤)/2,�(V ⇤) �
↵(F )) · h(G⇤). Hence with probability at least x/m,
two trees merge together after one move from state F :

X

F2F⇤
k

X

F 02F⇤
k+1

PF,F 0

|F ⇤| �

X

F2F⇤
k

min(�(V
⇤)

2 ,�(V ⇤)� ↵(F )) · h(G⇤)

m · |F ⇤|



Since the transition matrix is symmetric (PF,F 0 =
PF 0,F ), the Lemma is proved.

To bound the RF-connectivity, we only consider the
maximum weighted component of a forest. Such an
approximation is able to capture most of the connected
pairs, as we will see in the following analysis. This is
because we expect that there will be a giant component
of size n � ⌦(n/h(G⇤)) in a uniformly random forest.
Hence it does not lose too much to ignore the rest of
components in the forest.

Proof of Lemma 3.3: Note that

�(F ) � (↵(F ))2 � �(V ⇤)

(�(V ⇤))2 � �(V ⇤)

=1� (�(V ⇤)� ↵(F ))(�(V ⇤) + ↵(F ))

(�(V ⇤))2 � �(V ⇤)

�1� 2(�(V ⇤)� ↵(F ))

�(V ⇤)� 1

On the other hand, �(F ) � 0 � 1� �(V ⇤)
�(V ⇤)�1 . Combined

together,

�(F ) � 1�
2min(�(V

⇤)
2 ,�(V ⇤)� ↵(F ))

�(V ⇤)� 1
.

With this inequality,

X

F2F0
k

�(F )
|F 0|

�
X

F2F0
k

1
|F 0| �

X

F2F0
k

2min(�(V
⇤)

2 ,�(V ⇤)� ↵(F ))

(�(V ⇤)� 1)|F 0|

�
X

F2F0
k

1
|F 0| �

X

F2F0
k+1

2(k + 1)
h(G⇤)(�(V ⇤)� 1)|F 0|

�
X

F2F0
k

1
|F 0| �

X

F2F0
k+1

2
h(G⇤)|F 0|

where we use Lemma 3.4 in the second inequality and
�(V ⇤) � k + 2 in the third inequality. By summing up
this inequality from k = 0 to n � 2, and taking into
account that the right hand term is zero for k = n� 1,

E[�(F)] =
n�1X

k=0

X

F2F0
k

�(F )

|F 0|

�
n�1X

k=0

X

F2F0
k

1

|F 0| �
n�1X

k=1

X

F2Fk

2

h(G⇤) · |F 0|

�1� 2

h(G⇤)

Proof of Theorem 3.1: By Lemma 3.3, for each E⇤ 2 E
and a uniformly ranfom forest F ofG(E⇤), we know that
E[�(F)] � 1 � 2/h(G(E⇤)). Since Lemma 3.2 implies
h(G(E⇤)) � h(GS), therefore E[�(F)] � 1 � 2/h(GS).
This inequality, combined with Lemma 3.1, implies that
�S(G) � 1� 2/h(GS).

We note that the bound shown in Lemma 3.3 is
asymptotically tight in the following sense. There
exist d-regular graphs with edge expansion ⌦(d) (take
a random d-regular graph, for instance). Lemma 3.3
asserts that average connectivity in such graphs is
1�⇥(1/d). On the other hand, the lemma below shows
that in a d-regular graph, the average connectivity is
bounded by 1� 1/(d+ 1).

Lemma 3.5. The average RF-connectivity in any d-
regular graph G = (V,E) is at most d/(d+ 1).

Proof. Let there be n vertices in the graph and each
vertex’s weight is one. We will prove a stronger result:
the average RF-connectivity of any vertex u is at most
d/(d+ 1).

Group F by their restrictions to G\{u}. More
specifically, for any forest F 2 F (G\{u}), let  (F ) ✓
F denote the set of forests whose restriction to G\{u}
is equal to F . We claim that for a uniform sample F
from  (F ), E [ |Cu(F)| ]  (n� 1)(d/(d+ 1)).

Let du(T ) denote the number of edges between u
and any subset T of V \{u}. Then

E [ |Cu(F)| ] = E [
X

T2C (F)

|T | · (1� 1

du(T ) + 1
)]

 E

2

4
X

T2C (F)

|T | · (1� 1

d+ 1
)

3

5 = (n� 1) · d

d+ 1
.

Finally, by linearity of expectations, for a uniformly
random forest F 0 of G, E [ |Cu(F 0)| ]  (n�1)·d/(d+ 1).
Hence the avrage RF-connectivity of u is at most
d/(d+ 1).

As another remark, the idea of Lemma 3.4 also
leads to some other interesting consequences regarding
uniformly random forests. Without repeating similar
arguments, we simply list the results here.

Theorem 3.2. Given a graph G = (V,E) with n
vertices and a uniformly random forest F of G, then

1. Pr(↵(F)  n
2 ) 

2
h(G) ;

2. E[↵(F)] � n(1� 2
h(G) ), which also implies that the

expected number of components is at most

2n
h(G) +1.



3.2 Average RF-connectivity of Any Vertex in
a Community We continue this section by establish-
ing that not only average RF-connectivity is large when
a community has good expansion but in fact every
node in the community has high RF-connectivity (al-
beit slightly weaker than Theorem 3.1). To this end we
will use more information from structures of a tree.

Theorem 3.3. Given a multi-graph G = (V,E), a

subset of vertices S ✓ V , and a vertex u 2 S, the

average RF-connectivity between u and the rest of nodes

in S is at least 1 � lnn+2
h(GS)+1 , where h(GS) is the edge

expansion of its induced subgraph GS.

The proof again proceeds in two stages. We first
classify the set of forests based on how edges in ES̄ help
connect pairs of vertices in S. Then we bound the RF-
connectivity of u for each class of forests, by examining
the random walk M and tree structures.

We will keep using notations introduced at the
beginning Section 3.1. We overload the function �(·)
and define �u(F ) = �(Cu(F ))/�(V ⇤).

Lemma 3.6. Let E be the set of feasible subsets of ES.

Then �u,S(G) =
P

E02E
E[�u(F)] · |FE0 |/|F |, where F

be a uniformly random forest of G(E0).

Proof. Follows from the proof of Lemma 3.1.

Lemma 3.7. Let G⇤ = (V ⇤, E⇤;�) be a vertex-weighted

multi-graph with edge expansion h(G⇤). Then, for a

uniformly random forest F of G⇤
, E[�u(F)] � 1 �

lnn+2
h(G⇤)+1 .

The proof of Lemma 3.7 turns out to be more
intricate than Lemma 3.3. When an edge is removed
from the component of u, it’s not impossible that more
than half of the component get disconnected with u.
However, it is a simple fact of spanning trees that
there are at most k edge whose removal will reduce the
component size of u to below k, for k = 1 up to the size
of this tree. With this information, we first bound the
probability that the weight of Cu(F) is at most �(V ⇤)/2;

Lemma 3.8. Pr(�(Cu(F))  �(V 0)
2 )  lnn+1

h(G0) .

The following two facts will be useful in the proof
of Lemma 3.8.

Fact 3.1. Let {xj} and {yj} be two sequences of real

numbers with length k. Then, subject to the set of

constraints

iX

j=1

jxj 
iX

j=1

yj

for any i = 1, . . . , k, the sum of {xj} is at mostPk
j=1 yj/j.

Proof. Multiply the k-th constraint by 1/k on both sides
and the i-th constraint by 1/i(i + 1) as well, for all
i = 1, . . . , k � 1. Then, if we sum up the k inequalities
together, it will give us the desired inequality.

It remains to verify if the coe�cient of each variable
equals the coe�cient of the desired inequality. For xk

and yk, it’s true. For xj , where j < k, its coe�cient is

given by j
k +

Pk�1
i=j

j
i(i+1) = 1. For yj , its coe�cient is

given by 1
k +

Pk�1
i=j

1
i(i+1) =

1
j .

Fact 3.2. Let T = (V,E;�(·)) be a vertex weighted

tree of n vertices and let u be any vertex of the tree.

An edge e is called k-bad if �(Cu(T\{e}))  k, where

1  k  n� 1. Then there are at most k k-bad edges in

T .

Proof. We introduce some additional notation first. Let
�(T, k) denote the number of k-bad edges in T . Assume
that T is a rooted tree at u, wlog. If v is a neighbor of
u, then all of v’s descendants plus the root node (and
the edges connecting these nodes) are called a branch of
T . It’s clear that a branch is still a rooted tree at u.

We will prove by an induction on k. The base
case is easily verified. Assume that the fact holds
for any cases when j < k. If u has one child, then
�(T, k) = 1+�(T 0, k�1)  k, where T 0 is the minor of T
obtained by contracting u and u’s neighbor. Otherwise
if the root has at least two children, then there exists a
way to divide T into two trees T 0 and T 00 rooted at u,
each including at least one branch of u. Let w0 denote
the total vertex-weights of T 0. Then the total weights
of T 00 is w00 = �(V )� w0 + �(u).

Consider the number of k-bad edges in T 00: it’s not
zero only if w0  k, in which case there are at most
�(T 00, k�w0+1)  k�w0+1 (by induction hypothesis)
k-bad edges. Similarly, the number of k-bad edges in
T 0 is not zero only if w00  k, and can bounded by
�(T 0, k � w00 + 1)  k � w00 + 1 (again by induction
hypothesis). Summing up these two arguments, it
becomes clear that �(T, k)  max(0, k � w0 + 1, k �
w00 + 1, 2k � w0 � w00 + 2)  k, therefore the induction
hypothesis is verified for the case of k.

Proof of Lemma 3.8: Let n be the number of vertices
andm be the number of edges in G⇤. Let F ⇤ denote the
set of forests in G⇤. The lemma follows from summing
up the following inequality over k = 1, . . . , n� 2:

Pr(F 2 F ⇤
k ^

�(Cu(F))

�(V ⇤)
 1

2
)

 lnn+ 1

h(G⇤)
· Pr(F 2 F ⇤

k+1)(3.1)



Now we focus on proving inequality (3.1) for each

k. For j = 1, . . . , b�(V
⇤)

2 c, we define H (j) ✓ F ⇤
k

as the family of forests such that �(Cu(F )) = j for
each F 2 H (j). We then use the notation H ( i)
to represent the union of H (j), from j = 1 up to i.
It is clear that the LHS of inequality (3.1) is equal to

Pr(F 2 H ( b�(V
⇤)

2 c)). We’ll find a set of constraints
that govern these sets. Let i be any integer between 1
and b�(V

⇤)
2 c.

Consider the event in M when an edge in u’s
component is deleted in a forest F with k + 1 edges,
and then moves to F 0 such that �(Cu(F 0))  i. By
Fact 3.2, there’re at most min(|Cu(F )|�1, i) such edges.
By aggregating all such events, we get

X

F2F⇤
k+1

X

F 02H (i)

Pr(F = F )PF,F 0


X

F2F⇤
k+1

Pr(F = F ) · min(|Cu(F )|� 1, i)

m
=)

X

F2F⇤
k+1

X

F 02H (i)

PF,F 0


X

F2F⇤
k+1

min(|Cu(F )|� 1, i)

m
(3.2)

since Pr(F = F ) is the same for any forest F in G⇤.
From the perspective of a forest F 0, which has k

edges and such that �(Cu(F 0))  i, there are at least
�(Cu(F 0))h(G⇤) number of ways to add an edge into F 0

in the next random walk. Again by aggregating all such
events, we get

X

F 02H (i)

�(Cu(F 0))h(G⇤)

m


X

F 02H (i)

X

F2F⇤
k+1

PF 0,F =)

X

F 02H (i)

�(Cu(F
0))h(G⇤)


X

F2F⇤
k+1

min(|Cu(F )|� 1, i)(3.3)

by applying inequality 3.2 and then note that PF,F 0 =
PF 0,F for any pair of forests F and F 0.

Now for j = 1, . . . , b�(V
⇤)

2 c, we define K (j) as the
family of forests in F ⇤

k+1 such that |Cu(F )| > j for each
F 2 K (j). Then note that

X

F2H (i)

�(Cu(F ))

|F 0| =
iX

j=1

Pr(F 2H (j)) · j

and

X

F2Fk+1

min(|Cu(F )|� 1, i)

|F 0| =
iX

j=1

Pr(F 2 K (j))

by the definition of H (·).
Here we could use Fact 3.1. Let

xj = Pr(F 2H (j)) · h(G⇤) and yj = Pr(F 2 K (j))

note that yj = 0 when j � n. It’s clear that inequality
(3.3) shows that the two sequences {xj} and {yj} satisfy
the set of constraints

iX

j=1

jxj 
iX

j=1

yj ,

for i = 1, . . . , b�(V
⇤)

2 c. Therefore

b �(V ⇤)
2 cX

j=1

Pr(F 2H (j))h(G⇤)


b �(V ⇤)

2 cX

j=1

Pr(F 2 K (j))

j

=
nX

i=2

Pr(F 2 Fk+1 ^ |Cu(F)| = i)

·

0

B@
min(i�1,b �(V ⇤)

2 c)X

j=1

1

j

1

CA


nX

i=2

Pr(F 2 Fk+1 ^ |Cu(F)| = i)(1 + lnn)

 Pr(F 2 Fk+1)(1 + lnn)

Hence (3.1) is proved.

Proof of Lemma 3.7: Let @u(F ) denote the amount of
edges between Cu(F ) and the rest of nodes in G⇤. Note
that the expected number of transitions that adds one
edge to F is equal to the number of transitions that
deletes one edge from F . This is because the Markov
chain M is symmetric. Therefore

E [|Cu(F)|� 1] = E [@u(F)]

�E [min(�(Cu(F)),�(V ⇤)� �(Cu(F)))] · h(G⇤).

After rearranging the inequality, we get

E [�u(F)] � 1�
Pr(�(Cu(F))

�(V ⇤) 
1
2 ) · h(G

⇤) + 1

h(G⇤) + 1
.

And the proof is complete after applying Lemma 3.8
to the above equation.



Proof of Theorem 3.3: Let E0 2 E and F be a uniformly
random forest of G(E0). By combining Lemma 3.7
and Lemma 3.2, E[�u(F)] � 1�(lnn+ 2)/(h(GS) + 1).
This inequality, combined with Lemma 3.6, implies that
�u,S(G) � 1� 2

h(GS) .
We conclude this section with a conjecture on RF-

connectivity of a vertex in the Erdős-Rényi graph. Let
G(n, p) denote a random graph over n nodes where every
edge is present with probability p, and let V be the
vertex set of G. We denote �u,V (G) by simply �u(G)
below.

Conjecture 3.1. Consider a random graph G(n, p)
where p > 2 lnn

n . There exists a constant c and a func-

tion "(n), such that Pr(�u(G) � 1 � c
np , 8u in G) �

1� "(n), where "(n) goes to 0, as n goes to infinity.

We believe that the key to resolving this conjec-
ture is to better understand the structure of a uniformly
random spanning tree of G(n, p). We know that when
p > 2lnn/n, the diameter of a uniformly random span-
ning tree of G is O

�p
n log n

�
[8, 18], with probability

tending to 1 as n becomes large. However, not much
improvement can be achieved by using this information
alone in the proof of Lemma 3.7. In particular, any fur-
ther improvements seem to require understanding the
distribution of degree 1 and 2 nodes in a random span-
ning tree as well as the expected sizes of subtrees when
a random edge is deleted. We would like to note that
these questions are of independent interest [26].

4 Negative Correlation and Monotonicity of
Connectivity

We will now define negative correlation and monotonic-
ity of connectivity property of graphs and show (proofs
deferred to the appendix) that negative correlation im-
plies that connectivity is monotone. We begin by defin-
ing the negative correlation property. Let F be a forest
chosen uniformly at random from F . The probability
that X ✓ E is present in F is given by PX(G). If FX

be the largest subset of F with the property that X is
included in every forest of FX , then,

PX(G) =
|FX |
|F | .

Negative correlation property: Given a graph
G = (V,E), we say that the edges (u, v), (u0, v0) 2 E are
negatively correlated if

P{(u,v),(u0,v0)}(G)  P(u,v)(G) · P(u0,v0)(G).

or,

(4.4) P(u0,v0)(G | (u, v))  P(u0,v0)(G).

Here P(u0,v0)(G | (u, v)) is the probability of (u0, v0)
being present given that the forest is chosen uniformly
at random from all forests that have the edge (u, v). We
say that a graph has negative correlation property if all
pairs of edges are negatively correlated.

Monotonicity of connectivity property. Given
a graph G = (V,E), let (u, v) 62 E. Let G0 = (V,E0)
be such that E0  E [ {(u, v)}. For any pair of
vertices u, v 2 V , we say that their RF-Connectivity is
monotonically non-decreasing if 8(u0, v0) 62 E and E0 =
E [ {(u0, v0)} with G0 = (V,E0), �u,v(G0) � �u,v(G).
We say that a graph has the monotonicity property
if every pair (u, v) 2 V ⇥ V has monotonically non-
decreasing RF-Connectivity.

Theorem 4.1. The negative correlation property holds

for all graphs if and only if connectivity is monotone.

Let F (u, v) denote the largest subset of F with the
property that u and v belong to the same component of
every forest of F (u, v), then

�u,v(G) =
|F (u, v)|

|F | .

The following lemma proves some useful relations:

Lemma 4.1. Let G = (V,E) be any graph and let

G0 = (V,E0) be a graph with E0  E [ {(u, v)} where

(u, v) 62 E. Then,

P(u,v)(G
0) =

1� �u,v(G)

2� �u,v(G)

�u,v(G
0) =

1

2� �u,v(G)
.

Proof. We use F 0 to denote the set of forests of G0.
Recollect that �u,v(G) is the fraction of forests of G
that have u and v in the same component. Therefore,
1 � �u,v(G) is the fraction of forests that do not have
u and v in the same component. For every forest which
has u and v in di↵erent component, we construct a new
forest by adding the edge (u, v) to it . It is easy to see
that the resulting set of new forests is precisely F 0

(u,v).

Therefore, F 0 can be simply obtained taking the union
of F with F 0

(u,v). The new probability of connectivity,

�u,v(G0) is given by

(4.5) �u,v(G
0) =

|F (u, v)|+ |F 0
(u,v)|

|F |+ |F 0
(u,v)|

=
1

2� �u,v(G)
.

The above equality is obtained by dividing the numera-

tor and denominator by F and the fact that
|F 0

(u,v)|
|F | =



1��u,v(G). Similarly, we also get the probability that
the edge (u, v) is present in a random forest of G0 as

(4.6) P(u,v)(G
0) =

|F 0
(u,v)|

|F |+ |F 0
(u,v)|

=
1� �u,v(G)

2� �u,v(G)

Proof of Theorem 4.1:

First, assuming negative correlation property, we
show that the all pairs of vertices have non-decreasing
monotonicity.

We begin by showing that all pairs that are non-
adjacent in G i.e., all pairs (u, v) 62 E, have the
monotonicity property. Next, we use an easy extension
to prove monotonicity for all adjacent pairs as well.

We will now show that monotonicity holds for a
pair of non-adjacent vertices. Let u, v be any pair of
non-adjacent vertices, and let (u0, v0) be the edge that
is added to G to obtain G0. We augment the graph G0

by adding the edge (u0, v0) to it; let the resulting graph
be G00. There are two cases:

1. First, the pair (u0, v0) is the same as the pair (u, v).
In this case, we need to show that adding the edge
(u, v) to G increases the connectivity of u and v.
From equation (4.5), for all 0  �u,v(G)  1, we
get

�u,v(G
0) � �u,v(G).

Next, we prove the claim for all non-adjacent pairs
(u, v) where (u, v) and (u0, v0) are distinct. From
the negative correlation in G00, we have

P(u,v)(G
00 | (u0, v0))  P(u,v)(G

00).

We will now show that �u,v(G)  �u,v(G0), i.e.,
adding the edge (u0, v0) to G will only increase the
RF-Connectivity of u and v.

From (4.6), we have

(4.7) P(u,v)(G
00) =

1� �u,v(G0)

2� �u,v(G0)
.

Next, suppose we restrict ourselves to all the forests
of G00 that contain the edge (u0, v0)4. An analysis
similar to the proof of equation (4.6), we get

(4.8)

P(u,v)(G
00 | (u0, v0)) =

1� �u,v(G0 | (u0, v0))

2� �u,v(G0 | (u0, v0))
.

4We extend all the definitions to this set. We use the notation

G|(u0, v0) to indicate that the definition is restricted to the set of
forests containing the edge (u0, v0)

Applying (4.7) and (4.8) to (4.4) we get,

�u,v(G
0)  �u,v(G

0 | (u0, v0))

|F (u, v)|+ |F 0
(u0,v0)(u, v)|

|F |+ |F 0
(u0,v0)|


|F 0

(u0,v0)(u, v)|
|F 0

(u0,v0)|

Here, F 0
(u0,v0)(u, v) is the set of forests of G0 that

contain the edge (u0, v0) and have u and v in the
same component. The previous equation can be
re-written as,

|F (u, v)|
|F | 

|F (u, v)|+ |F 0
(u0,v0)(u, v)|

|F |+ |F 0
(u0,v0)|

=) �u,v(G)  �u,v(G
0)

Now we describe the case where u and v are
adjacent in graph G.

2. For the case where (u, v) is an adjacent pair. Let Ĝ
be the graph obtained by removing the edge (u, v).
Let Ĝ0 be the graph after adding edge (u0, v0) to Ĝ.
Since u and v are non-adjacent, from the proof of
case(ii), we know that �u,v(Ĝ)  �u,v(Ĝ0). Next,

we add the edge (u, v) to both Ĝ and Ĝ0 to obtain
G and G0. From equation (4.5), we get

�u,v(G) =
1

2� �u,v(Ĝ)

�u,v(G
0) =

1

2� �u,v(Ĝ0)
.

From the above equations and the fact that
�u,v(Ĝ)  �u,v(Ĝ0), we get �u,v(G)  �u,v(G0).

This concludes the proof in one direction, i.e., given
negative correlation holds, we show that connectivity
is non-decreasing. Now, we prove the other direction
that if connectivity is non-decreasing then the negative
correlation property holds.

We prove this for any two edges (u, v) and (u0, v0)
in G00. Given (u, v) and (u0, v0), let G,G0 and G00

as defined before. From the monotonicity property,
�u,v(G)  �u,v(G0), we have

�u,v(G
0)  �u,v(G

0 | (u0, v0))

Note that G00 is obtained by adding the edge (u, v) to
G0. From (4.7) and (4.8), we get

(4.9) P(u,v)(G
00) � P(u,v)(G

00 | (u0, v0)).

But, P(u,v)(G
00 | (u0, v0)) =

P(u,v),(u0,v0)(G
00)

P(u0,v0)(G
00) . Plugging

this to (4.9), we get

P(u0,v0)(G
00)P(u,v)(G

00) � P(u,v),(u0,v0)(G
00)



f

e

Figure 1: Consider the set of forests with six edges.
It can be verified that Pr(ef) = 5

24 > Pr(e)Pr(f) =
7
24 ⇥

17
24 .

implying negative correlation of (u, v) and (u0, v0).

Remark: We know that the negative correlation
property does not extend to the truncation of the set of
forests by a fixed number of edges (a counter example
is already implicitly mentioned in [14]. We draw it in
Figure 1 for the completeness of our paper). We also
know that the property holds when G is a complete
graph [29] or a series-parallel graph [31]. And the
conjecture has been verified when G has eight or fewer
vertices [17]. However, not much is known beyond that.
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A Omitted Details from Section 2.2

Let s, s0 2 � be two states in a credit network G =
(V, E ; c(·)). Let du(s) denote the indegree of a node u in

state s and ~d(s) denote the indegree sequence associated
with s. Two sates s and s0 are said to be equivalent
if and only if they correspond to the same indegree
sequence.

Dandekar et al. (Lemma 2.2 in [10]) characterizes
that two states s and s0 are equivalent if and only if
the network can be transformed from state s to state
s0 by routing transactions along feasible cycles. This
observation implies that the set of transactions that
goes through in s is equal to the set of transactions
that goes through in s0. It also leads naturally to
a path-independence property (Theorem 2.4 in [10]):
a successful payment routing from u to v along any
path leads to the same equivalence class in the Markov
chain. These two properties ensure that the repeated
transaction model reduces to a Markov chain over the
set of indegree sequences S . Under a symmetric
transaction regime, the stationary distribution of this
Markov chain is uniform over S (Corollary 2.10 in
[10]). Therefore, if Su,v is the set of indegree sequences
in which transactions from u to v go through, then

 u,v(G) = |Su,v|/|S |.
It is well-known that the number of feasible indegree

sequences of G is equal to the number of forests of G
[20, 16, 28]. Moreover, the proofs from [20] implicitly
implies Proposition 2.1. We present a brief proof here
for the completeness of this section.

Proof of Proposition 2.1: Let F (u, v) denote the set of
forests in which u and v are connected. Slightly abusing
the notation, for any edge e 2 E, we let Fe denote the
set of forests that contain the edge e, and let Fē denote
the set of forests that do not contain the edge e. We
will prove that |F (u, v)| = |Su,v|. Since |F | = |S |,
therefore �u,v(G) =  u,v(G). Consider two cases.

• If there exists a labeled edge e between u and v
in G: Let S 0 = {~d(s) | 8s 2 � s.t. s(e) = hv, ui},
where s(e) = hv, ui means that e is directed from
v to u in state s. It is not hard to see that the
amount of indegree sequences in S 0 is equal to
the amount of forests in G\{e}. Next, for any

state s0 such that ~d(s0) 2 S \S 0, by definition e
is oriented from u to v. And by Lemma 2.2 in
[10], there is no path from v to u in s0. In other
words, a transaction hv, ui cannot go through in s0.
Hence Su,v is equal to the set S 0. Finally, note the
simple fact |F (u, v)| = |F |�|Fe| = |Fē|, therefore
|F (u, v)| = |Su,v|.

• If there does not exist any labeled edge between u
and v in G: Think of adding an edge e between the
two vertices in G and a unit of credit limit between
u and v in G. Let G0 denote the new graph and G0

denote the new network. Let S 00 denote the set of
indegree sequences in G0 such that the transaction
hu, vi does not go through. We would like to show
that |Su,v| = |S | � |S 00| and |S 00| = |Fe(G0)|.
Combined with |F (u, v)| = |F | � |Fe(G0)|, we
would get |F (u, v)| = |Su,v|. The arguments is
quite similar to the first case, so we omit the details
here.
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