
SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. 1467–1493

THE ALL-OR-NOTHING MULTICOMMODITY FLOW PROBLEM∗

CHANDRA CHEKURI† , SANJEEV KHANNA‡, AND F. BRUCE SHEPHERD§

Abstract. We consider the all-or-nothing multicommodity flow problem in general graphs. We
are given a capacitated undirected graph G = (V, E,u) and a set of k node pairs s1t1, s2t2, . . . , sktk.
Each pair has a unit demand. A subset S of {1, 2, . . . , k} is routable if there is a multicommodity
flow in G that simultaneously sends one unit of flow between si and ti for each i in S. Note that
this differs from the edge-disjoint path problem (edp) in that we do not insist on integral flows for
the pairs. The objective is to find a maximum routable subset S. When G is a capacitated tree,
the problem already generalizes b-matchings, and even in this case it is NP-hard and APX-hard to
approximate. For trees, a 2-approximation is known for the cardinality case and a 4-approximation
for the weighted case. In this paper we show that the natural linear programming relaxation for
the all-or-nothing flow problem has a polylogarithmic integrality gap in general undirected graphs.
This is in sharp contrast to edp, where the gap is known to be Θ(

√
n); this ratio is also the best

approximation ratio currently known for edp. Our algorithm extends to the case where each pair
siti has a demand di associated with it and we need to completely route di to get credit for pair i; we
assume that the maximum demand of the pairs is at most the minimum capacity of the edges. We
also consider the online admission control version where pairs arrive online and the algorithm has
to decide immediately on its arrival whether to accept it and the accepted pairs have to be routed.
We obtain a randomized algorithm which has a polylogarithmic competitive ratio for maximizing
throughput of the accepted requests if it is allowed to violate edge capacities by a (2 + ε) factor.

Key words. all-or-nothing, multicommodity flow, routing, undirected graphs, approximation

AMS subject classifications. 68Q25, 68W25, 90C27, 90C59

DOI. 10.1137/100796820

1. Introduction.

1.1. Background. A pervasive problem in communication networks is that of
allocating bandwidth to satisfy a given collection of service requests. In situations
where there is limited network capacity but an abundance of requests, one must opti-
mize over the choice of which requests to satisfy. Such maximization problems arise,
for instance, in the area of bandwidth trading, or when operators carve out subnets
(so-called VPNs) within their network, for sale to interested enterprise customers.
Constraints on how bandwidth may be allocated vary according to the type of re-
questing service, as well as the technology in the underlying network. In SONET
networks, for instance, each request must reserve a path between its origin and desti-
nation, each link of the path supporting the traffic rate specified by the request. (In
this paper, we ignore any restrictions imposed by requirements that traffic be pro-
tected against network failures.) In many cases, including in data networks, the scale

∗Received by the editors June 1, 2010; accepted for publication (in revised form) March 28, 2013;
published electronically July 2, 2013. A preliminary version of this paper appeared in Proceedings of
ACM STOC, 2004. The first and third authors did most of the work on this paper while at Lucent
Bell Labs; they acknowledge support from basic research grant N00014-02-M-0125 from the Office of
Naval Research to Bell Labs.

http://www.siam.org/journals/sicomp/42-4/79682.html
†Department of Computer Science, University of Illinois, Urbana, IL 61801 (chekuri@cs.

illinois.edu). This author received recent support from NSF grant CCF-0728782.
‡Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA

19104 (sanjeev@cis.upenn.edu). This author was supported in part by an Alfred P. Sloan Research
Fellowship, NSF Career Award CCR-0093117, and NSF grant CCF-1116961.

§Mathematics and Statistics, McGill University, 805 Sherbrooke West, Montreal, QC H3A 2K6,
Canada (bruce.shepherd@mcgill.ca).

1467

1468 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

of demands is large relative to the fine granularity at which it can be managed and
routed. In such settings, it makes sense to design the networks in terms of (fractional)
flows, rather than (unsplittable) paths.

In this paper, we discuss and compare several fundamental models related to this
class of optimization problems. In each model we are given an n-node capacitated
graph G = (V,E, u) (undirected or directed); here u denotes a nonnegative integer
edge (we use edge to also refer to a directed arc) capacity vector. In addition, we are
supplied with a set of k (unit) demand node pairs s1t1, s2t2, . . . , sktk, each possibly
with its own weight wi. We call the si’s and ti’s terminals; note that they need not be
distinct. A subset S of the demands {1, 2, . . . , k} is routable if the demands in S can
be simultaneously “satisfied” while obeying the capacity of the graph. The objective
is to find a largest (or maximum w-weight) routable subset of demands. Depending on
what restrictions we place on how demands may be routed, we obtain several distinct
models.

In this setting, a fundamental problem is the edge-disjoint paths problem (edp).
Here, a set S is routable if G contains edge-disjoint paths Pi for each i ∈ S such that
Pi is a path from si to ti. For this problem, the best approximation ratio known is
O(

√
n) for undirected graphs [13] and is O(min((n logn)2/3,

√
m)) for directed graphs

[39]. The directed version of this problem is provably hard to approximate. In [22],
it was shown that for any fixed ε > 0, there is no O(n1/2−ε)-approximation algorithm
unless P = NP . The story for undirected edp is incomplete, however. Even though
the approximation ratio is polynomial in n, the best known inapproximability bound
states that the problem is hard to approximate to within a factor of Ω(log1/2−ε)
unless NP �⊂ ZPTIME(nO(polylog(n))) [1]. Closing this gap is a fundamental open
problem in approximation algorithms. Such divergence in our understanding of the
approximability of undirected versus directed versions of a problem is not rare, and
some other examples include generalized Steiner network and the multicut problem.
Partly motivated by this gap in our understanding for undirected edp, we focus on
a class of maximization problems where demands only request a fractional unit flow
in the network. This forms a relaxation of edp and our positive bounds in this case
improve on the best known for edp. (We establish a polylogarithmic approximation.)
Some of these ideas have also subsequently led to improved understanding for certain
classes of undirected edp [11, 12, 13, 14].

1.2. All-or-nothing multicommodity flows. For the remainder of the paper
we study the all-or-nothing multicommodity flow problem which was introduced in
[16]; we denote this problem by an-mcf. For this version, a set S is routable if there
is a multicommodity flow in G that satisfies every demand i ∈ S. In other words
we want to find the largest weight subset of S such that the maximum concurrent
multicommodity flow for the subset is at least 1. This differs from edp problem in
that we do not insist on integral flows for the pairs. We also observe that given S,
the problem of deciding whether all of S can be routed is polynomial-time solvable
via linear programming (LP). In contrast, for edp this same decision problem is NP-
complete; moreover, while for a fixed number of demands it is polynomial-time solvable
by the work of Robertson and Seymour [37], it is NP-hard for undirected graphs even
when the terminals are restricted to lie among a given set of four nodes [19].

In trees, the an-mcf problem coincides with the maximum integer multicom-
modity flow problem, and this generalizes the general b-matching problem. This
problem on trees is APX-hard [21] and a 2-approximation is known for the cardinal-
ity case (each wi = 1) [21] and a 4-approximation for the weighted case [16]. For

ALL-OR-NOTHING MULTICOMMODITY FLOW 1469

general graphs, where fractional routings come into play, there is no previous work on
an-mcf. On the other hand, recently it was shown that for general undirected graphs,
an-mcf is Ω(log1/2−ε)-hard to approximate for any ε > 0 under the assumption that
NP �⊂ ZPTIME(nO(polylog(n))) [1]. As noted earlier, this is also the strongest
hardness result known for “EDP” [1].

A natural LP relaxation (which we denote by mcf-lp) for the an-mcf is as
follows. For each demand pair i, let Pi denote the paths joining si, ti in G. We then
have a nonnegative variable x(P) for each P ∈ Pi and each i = 1, 2, . . . , k. The
objective is to maximize

∑
i wi

∑
P∈Pi

x(P) subject to the constraints
∑

P∈Pi
x(P) ≤

1 for each demand i, and
∑

P :e∈P x(P) ≤ u(e) for each edge e. Note that this
same LP is also valid for edp, and in fact all known approximation algorithms for
edp obtain their ratios directly or indirectly via the lower bound provided by the
LP. Throughout, we let OPT denote the optimal value of the LP relaxation for the
instance under consideration. Our main result is the following.

Theorem 1.1. There is a polynomial-time algorithm which given an undirected
n-node instance of an-mcf problem returns a solution with weight Ω(OPT

log3 n log logn
).

In contrast to the above, an Ω(
√
n) integrality gap is known for this LP when

applied to edp [21]; we mention that this gap is tight [13]. For the an-mcf prob-

lem, in [1] an integrality gap of log1/2−ε n is established for the natural flow based
LP relaxation. Our proof of Theorem 1.1 uses the results of Räcke on hierarchically
decomposing undirected graphs to construct demand-oblivious routings for multicom-
modity flow problems [33]. Specifically, for a given n-node capacitated graphG, Räcke
constructs an oblivious routing by means of a flow template as follows. For each pair
of nodes s, t, a template must specify a fractional unit flow between s and t. Räcke’s
template has the following property. Given any demand matrix on the nodes, routing
the flow according to the flow template (that is, if a pair st has a demand d, then d
units of flow are routed along the fixed flow paths for the unit flow from s to t with
each path getting d times its share of the unit flow), the congestion on any edge is
O(log3 n) times the optimal congestion for routing the given demand matrix. In the
present setting we combine these oblivious routings of Räcke with other routings to
avoid bottlenecks in lightly capacitated regions of the network. Azar et al. [6] and
Applegate and Cohen [2] show that the optimal (with respect to congestion) oblivious
routing can be computed in polynomial time by solving an LP. Bansal et al. [7] give
an online algorithm to compute a near optimal oblivious routing. However we need
the tree-based hierarchical scheme of Räcke in our algorithm. We note that some
other applications of oblivious routing schemes also need the tree based hierarchical
decomposition. See Maggs et al. [32] for an application to speed up iterative solvers
of linear systems.

We have thus far assumed that each demand i asks for a “unit” flow between
its endpoints, but on occasion we may be supplied more generally with a demand di
other than 1. We mention that our techniques equally apply to such multicommodity
demand flow problems (an-dmcf). Here, a subset S of the demands is routable if
there exists a multicommodity flow in G that satisfies each demand i ∈ S. Note that
we maintain the all-or-nothing aspect that we receive the credit wi for demand i only
if we fulfill the whole demand di. For an instance of the demand flow problem, we
let dmax = max{di : i ∈ S} and umin = min{u(e) : e ∈ E}. When dmax ≤ umin (no
bottleneck case), our result for unit demand carries over with a loss of a constant factor
in the approximation ratio by a result in [16], whose proof is based on the grouping
and scaling technique of [28]. On the other hand, when dmax and umin are allowed

1470 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

to be arbitrary, it was noted in [22] that the demand flow problem cannot in general
be approximated better than O(n1/2−ε) if integer flows are required. However, the
proof from [22] extends directly to show the same hardness even if fractional flows are
permitted. In [9], the integrality gap of the LP for demand flow is shown to be Ω(n)
even when G is a path. Under the no-bottlneck assumption we obtain the following
extension of Theorem 1.1. Here OPT is the value of an optimal fractional solution to
flow based LP relaxation for an-dmcf (described formally in section 3.5).

Theorem 1.2. There is a polynomial-time algorithm which given an undirected
n-node instance of the multicommodity demand flow problem (an-dmcf) returns a
solution with weight at least Ω(OPT

log3 n log logn
) such that the flow on each edge e is at

most u(e) if dmax ≤ umin.
Admission control in the online setting. We have defined the an-mcf and

an-dmcf problems as offline optimization problems. We also consider the online
versions of these problems. We are given a capacitated graph G up front; however,
the pairs that need to be routed arrive online. When a pair siti is presented to
the online algorithm, it has to immediately decide if it should accept or reject the
pair, and if it accepts, it has to route one unit of flow from si to ti (di units in the
demand case). For the unit demands case, the competitive ratio of the algorithm
is the worst-case ratio of the number of demands routed by the online algorithm
to the optimal offline algorithm. For nonunit demands, we compare the sum total
of demands routed (throughput) by the online algorithm to the flow routed by the
optimal offline algorithm. We assume that once a pair is accepted it stays forever. In
the routing literature this is referred to as the permanent connection model [35]. We
have the following theorem.1

Theorem 1.3. For the an-mcf and an-dmcf problems there are randomized
online algorithms that route Ω(OPT

log5 n log logn
) flow such that the flow on each edge e is

at most (2 + ε)u(e) if dmax ≤ umin.
The approximation ratios in this paper improve by a logn factor for graphs that

exclude minors of fixed size, in particular for planar graphs.

1.3. Related work. The all-or-nothing flow problem in general graphs was in-
troduced in [16]. They obtain results in the context where the supply network is a
tree. Of course, in the tree case, there is no advantage to allowing fractional routing:
each commodity must route all its demand on a single path. General multicommod-
ity flow problems that require each demand to be routed on a single path are called
unsplittable flow problems (ufp). edp is a special case of ufp where all demands are
1. Multicommodity flow and disjoint path problems, along with several variants and
special cases, have been extensively studied both for their fundamental importance to
combinatorial optimization and their applications to a variety of areas such as network
routing, VLSI layout, parallel computing, and many others. We refer the reader to
[36, 30, 20, 26, 35, 38, 22, 29, 33, 10] for some pointers. Here we confine ourselves to
mentioning the directly relevant literature on edp and ufp and their online variants.

We first consider the offline case. For both edp and ufp the best known ap-
proximation ratio is O(

√
n) for undirected graphs [13] and O(min((n logn)2/3,

√
m))

for directed graphs [39, 38]. edp and ufp are log1/2−ε n-hard in undirected graphs
[1] and are Ω(n1/2−ε)-hard in directed graphs [22]. If all pairs share a source, then
edp reduces to the single commodity maximum flow problem and can be solved in

1The conference version of this paper incorrectly claimed slightly stronger results for the online
problem.

ALL-OR-NOTHING MULTICOMMODITY FLOW 1471

polynomial time. Even for ufp, the single source case is tractable in that most variants
have constant factor approximation algorithms [25, 28, 18]. For edp and ufp, large
capacities help. Randomized rounding [36] yields constant factor approximation algo-
rithms if dmax ≤ umin/(Ω(logn)). More generally if dmax ≤ umin/B for integer B, then
an approximation ratio of O(n1/B) is achievable [38, 5]. We mention that all the of-
fline bounds for edp and ufp also apply to the integrality gap of mcf-lp. It is known,
however, that mcf-lp has an integrality gap of Ω(

√
n) [21] and this is tight [13].

Now we consider the online versions of edp and ufp. These problems have appli-
cations in ATM networks and are usually referred to as admission control for virtual
circuit routing. A variety of models exist based on whether the circuits (pairs) are
permanent or temporary and in the temporary case whether their durations are known
or unknown. We refer the reader to the survey [35] for more details. Here we confine
ourselves to the case of permanent connections. In this case online edp asks us to
maximize the number of pairs accepted compared to the offline optimal. For ufp we
are interested in maximizing the throughput, that is, the sum of demands accepted.
For both these problems the best competitive ratios are comparable to the offline
approximation ratios. However, if capacities are large relative to the demands (a re-
alistic assumption in practice) the algorithm of Awerbuch, Azar, and Plotkin [4] is
O(log n)-competitive provided dmax ≤ umin/Ω(logn).

In the context of edp and ufp we can also consider the problem of routing a
given set of demands S so as to minimize the congestion of the routing. Congestion
of a routing is defined as the maximum over all edges of the ratio of the flow on
the edge to its capacity. If flows can be split, then the minimum congestion routing
can be computed by solving an LP. However, for integral flow paths or for unsplit-
table flow, randomized rounding is the only effective algorithm known and yields an
O(log n/ log logn) approximation [36]. In directed graphs this gap is known to be
tight [31], that is, there are instances where S can be fractionally routed with conges-
tion 1 while any integral routing has Ω(log n/ log logn) congestion. Recently Chuzhoy
et al. [17] have shown that in directed graphs, the minimum congestion to route a
given set of demands is hard to approximate within a factor of Ω(logn/ log logn),
effectively closing the approximability of the problem. Despite this hardness, even in
the case where demands to be routed arrive online, an O(log n)-competitive ratio is
possible [3]. More recently, Räcke [33] obtained a randomized O(log3 n)-competitive
algorithm for minimizing congestion that is oblivious; this result of Räcke [33] is the
starting point for our work. The ratio has been improved to O(log2 n log logn) by
Harrelson, Hildrum, and Rao [24], and recently Räcke [34] has obtained an optimal
O(log n) bound. These polylogarithmic bounds on oblivious routing hold only for
undirected graphs. Polynomial-factor lower bounds are known on the competitive
ratio for oblivious routing in node-capacitated undirected graphs and consequently
also in directed graphs [23].

2. Preliminaries. We consider multicommodity flow problems in a given ca-
pacitated graph G = (V,E, u) and we assume that each capacity u(e) is an integer.
We let n = |V | and m = |E|. For any graph G and a node subset S ⊆ V , we denote
by δG(S), or simply δ(S) if G is clear from the context, the set of edges of G with
exactly one endpoint in S.

An instance of a multicommodity flow problem consists of a graph G = (V,E, u)
and a collection of undirected demand pairs siti for i = 1, 2 . . . , k, where each si, ti ∈ V .
Without loss of generality we assume that demand pairs are distinct. Otherwise, we
can add dummy nodes to ensure this. In addition, we may have a weight wi associated

1472 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

with each demand. Let Pi denote the set of paths joining si, ti in G. For each path
P in G, let x(P) denote a nonnegative variable. An assignment x is called a multi-
commodity flow and is said to satisfy demand i if

∑
P∈Pi

x(P) = 1. (If in addition,
a demand has an associated value di, then the right-hand side changes from 1 to di.)
The load of x on the edge e is l(e) =

∑
i

∑
P∈Pi:e∈P x(P) and the congestion on e is

l(e)/u(e). The flow x is feasible if the congestion on each edge is at most 1. A set S
of demands is routable if there is a feasible flow that satisfies each demand i ∈ S. We
say that a demand i is routed on path P if x(P) > 0. We also refer to a flow as being
obtained by routing a demand on certain paths.

The objective of the all-or-nothing multicommodity flow problem is to find a
maximum weight routable set. The natural relaxation for this problem is to find a
feasible flow that maximizes

∑
i

∑
P∈Pi

wix(P). To facilitate further discussion, we
introduce a new variable xi for each pair i, where xi =

∑
P∈Pi

x(P), and write the
LP relaxation below:

max
k∑

i=1

wixi s.t.(2.1)

xi −
∑

P∈Pi

x(P) = 0, 1 ≤ i ≤ k,

k∑

i=1

∑

P∈Pi:e∈P

x(P) ≤ u(e), e ∈ E,

xi, x(P) ∈ [0, 1], 1 ≤ i ≤ k, P ∈ ∪iPi.

We prefer this path formulation for flows to the compact formulation for ease of
presentation. Either formulation admits a polynomial-time algorithm to solve this
relaxation. We let OPT denote the value of an optimum solution to the above re-
laxation. We assume that u(e) ≤ m for each i because of the following reason. We
can find a basic solution to (2.1) in polynomial time. One can easily argue that the
number of demands for which xi ∈ (0, 1) is at most m. If the demands for which
xi = 1 form Ω(1) of OPT, then we immediately have a good approximate solution.
Thus the difficult case is when most of the LPs profit is accrued through the (at most
m) fractionally routed demands. In this case, we may restrict to these demands and
note that the total load on any edge is at most m. We may thus assume from now on
that the edge capacities have been appropriately reduced and are hence polynomially
bounded in |V |, |E|. We also assume that each node v is the endpoint of at most one
demand pair in the input instance; it is easy to add dummy nodes to ensure this.

Consider two nonnegative vectors π, π′ defined on the nodes of G such that L =∑
v π(v) =

∑
v π

′(v). By distributing (or routing) π(v) units of flow from v to π′, we
refer to a (single-source) flow f with the property that for each v′, there is a flow of
value π(v)π′(v′) from v to v′. By distributing flow from π to π′, we implicitly refer
to a multicommodity flow such that for each v we are distributing π(v) units of flow
from v to π′. We sometimes say that we are sending flow from the distribution π to
the distribution π′.

2.1. Oblivious routing and Räcke trees. For a graphG, we call a capacitated
tree T = (VT , ET , uT) with a specified root node rt a Räcke tree for G if the leaves
of T are precisely the nodes of G. In particular, rt is not one of the leaves. Note
that each edge e ∈ T determines, in a natural way, a partition (S, V − S) of G’s
nodes, corresponding to the nodes of G that appear in the leaves of the two resulting

ALL-OR-NOTHING MULTICOMMODITY FLOW 1473

subtrees in T − e. The capacity of an edge e in T , denoted by uT (e), is defined as the
total capacity on edges in the cut δG(S). We also let h(T) denote the height of T .
Each Räcke tree induces a canonical routing strategy for G, independent of the set of
demands. These (demand) oblivious routings are discussed in more detail later; we
first describe some of their basic properties.

An oblivious routing strategy consists of defining a unit flow Fst for each pair of
nodes s, t; this collection of flows is called a routing template. Given a collection of
demands of, say, di between si and ti, a template induces a flow as follows. For each i
and each P ∈ Pi, route Fsiti(P)di amount of flow along P . The multicommodity flow
obtained is said to be routed according to the oblivious routing. For each oblivious
routing scheme one can consider the worst-case congestion of the scheme defined as
follows. Consider a set X of “demands” in G, i.e., X is a multiset of undirected edges
uv with u, v ∈ V . X is routable in G if there is a feasible multicommodity flow for
the demands of X in the capacities of the edges of G. The congestion of routing X
according to a given oblivious routing scheme is the maximum, over all edges e of G,
the total flow on e divided by the capacity of e. The worst-case congestion α ≥ 1 of
an oblivious routing scheme is the maximum, over all routable demand sets X , of the
congestion caused by routing X according to the oblivious scheme.

Each Räcke tree T induces a specific oblivious routing scheme (discussed further
in section 2.2). We define α(G, T), the congestion caused by this scheme in the
following specific way. Consider a set X of demands in G. X is routable in T if there
is a feasible multicommodity flow for X in T : each demand of X is routed along the
unique path connecting its endpoints in T and the total flow on each edge e of T is
at most uT (e). The quantity α(G, T) is then the maximum, over all demand sets X
that are routable in T , of the congestion caused by routing X in G according to the
oblivious routing scheme given by T .

Theorem 2.1 (Räcke [33]). Let G be an undirected graph on n nodes. There
exists a Räcke tree T with α(G, T) = O(log3 n) and h(T) = O(log n).

Räcke’s original construction did not yield a polynomial-time algorithm to find
such a T . Subsequently, two independent papers [8] and [24] obtained polynomial-time
algorithms. In [24] it is shown how to construct T with α(G, T) = O(log2 n log logn)
and h(T) = O(log n). The bound on α(G, T) improves by a logarithmic factor when
G is a planar graph. In the following, we let α(G) denote the minimum of α(G, T)
over some computable class of Räcke trees T for G.

2.2. The Räcke routing scheme. In this section we describe the oblivious
routing strategy of Räcke [33] based on a hierarchical decomposition of the given
graph. We need a refinement of Räcke’s result, and hence we delve into the details of
how the oblivious routings are constructed. In doing so, we follow the approach and
methods of [8] which simplified that of [33], in addition to giving a polynomial-time
construction of the decomposition in [33].

Let T = (VT , ET , uT) be a Räcke tree for G = (V,E, u). We denote by Tv the
subtree of T rooted at v and let Lv denote the leaves of the subtree Tv and Gv, the
subgraph of G induced by Lv. Recall then that uT (e) equals the capacity of the cut
δ(Lv) in G. A key feature of Räcke’s routing is that any demand st with s, t ∈ Lv

is entirely routed within the subgraph Gv. We now describe the oblivious routing of
Räcke in detail.

First we set up some notation. Consider a nonleaf node v ∈ VT with children
v1, v2, . . . vk. We deal with two important sets of edges induced by such a node v. The
first is the set of edges in the cut induced by the leaves Lv, that is, δG(Lv). Second, we

1474 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

say an edge is separated by v if either it lies in δ(Lv) or it has its endpoints in distinct
subtrees Tvi , Tvj . Let S(v) denote the set of such edges. A measure of these edges’
capacity is critical in the following; we denote by U(v) the sum

∑
i u(δ(Lvi)). Note

that the capacity of each edge in S(v) is accounted for twice except for those in δ(Lv),
which are accounted for once. For a node a ∈ V (G) such that a ∈ Lv, we denote
by ucut

v (a) the total capacity on the edges incident to a that lie in the cut δG(Lv),
in other words, the quantity u(δG(a) ∩ δG(Lv)). We denote by usep

v (a) the quantity
u(δG(a) ∩ S(v)). We denote by πcut

v (a) and πsep
v (a) the quantities ucut

v (a)/u(δG(Lv))
and usep

v (a)/U(v), respectively. Note that
∑

a∈Lv
πcut
v (a) =

∑
a∈Lv

πsep
v (a) = 1. We

sometimes refer to πsep
v () as the distribution at v.

We describe a strategy for routing traffic from a node s ∈ V to a node t ∈ V .
Let P = (s = v0, v1, . . . , vp, vp+1, . . . , vl = t) be the unique path in T joining s and t,
where vp is the “high point” of the path (the least common ancestor of s and t in T).
We construct a unit flow from s to t by concatenating a collection of (multicommodity)
flow vectors that act as building blocks. We describe these now.

Each edge and each internal node of P sponsor a transformation of flow as we
now describe. An edge (y, v) (where y is a child of v) transforms the node supply
vector πcut

y on nodes of Ly into a node demand vector πsep
v on nodes of Lv. This is

called a spreading transformation. In other words, it is distributing flow from πcut
y

to πsep
v . This transformation is accomplished by a multicommodity flow denoted by

f(y,v) (called the spreading flow) in Gv. For each a ∈ Ly and b ∈ Lv, the flow f(y,v)
routes d(y,v)(a, b) = πcut

y (a) · πsep
v (b) flow between a and b. We also denote by f(v,y)

the flow obtained by reversing the orientation on the flow paths in f(y,v).
If v is an internal node of P , then v transforms the node supply vector πsep

v on
the nodes of Lv into a demand πcut

v on the nodes of Lv. This is called a concen-
trating transformation and is accomplished by a multicommodity flow fv (called the
concentrating flow) on Gv that routes for a, b ∈ Lv, an amount of flow dv(a, b) =
πsep
v (a) · πcut

v (b) between a and b.
We now return to constructing a unit flow from s to t. This flow, denoted by Fs,t,

is obtained from the path P by merging the flows f(v0,v1), fv1 , f(v1,v2), fv2 , . . ., fvp−1 ,
f(vp−1,vp), f(vp,vp+1), fvp+1, f(vp+1,vp+2), fvp+2 , . . ., f(vl−1,vl).

At this point, we have not mentioned anything about the actual flow paths for
these flow vectors. A key aspect of Räcke’s strategy is that these flows are used as
building blocks for many different demand pairs. He shows that the resulting tem-
plate is efficient (with regard to congestion) as long as for each nonleaf node v in T
there is an efficient routing for a canonical multicommodity problem in Gv called the
exchange flow problem for v. For each non leaf node v ∈ T , we consider a multicom-
modity flow gv in the graph Gv for the following exchange flow problem. For each pair
of nodes a, b in Lv, the exchange flow must route Dv(a, b) = usep

v (a) · usep
v (b)/U(v) =

πsep
v (a) · πsep

v (b) · U(v) (we write D(a, b) if v is clear from the context) amount of
flow between a and b. We denote by qv ≤ 1 a throughput guarantee for this prob-
lem, indicating that we may route qvD(a, b) times each of these demands simultane-
ously in the graph Gv (in other words, the maximum concurrent flow for the demand
matrix Dv).

The heart of Räcke’s technique is to show that we may obtain our flow vectors
fv, f(y,v) from a solution for these exchange flow problems.2 One may show that
if some set of demands can be routed in T with congestion 1, then routing along

2The final congestion guarantee α(G, T) is ≥ 1/qv; however, the precise dependence varies based
on the specifics of the construction of the tree T and is not relevant for our application.

ALL-OR-NOTHING MULTICOMMODITY FLOW 1475

the flow vectors Fs,t obtained through the exchange flows has congestion α(G, T)
in G.

Lemma 2.2. Let T be a Räcke tree for G and let X be a set of demands that is
routable in T and such that for each st ∈ X, the path joining s, t in T contains r. For
v ∈ V , let X(v) be the number of demands in X incident to v. Then, in G we can
distribute X(v) units of flow from each v ∈ V to the Räcke distribution at r (that is,
we can route X(v)πsep

r (u) flow from v to each u ∈ Lr) with congestion α(G, T).
Proof. Consider the Räcke routing of X in G. For any pair st ∈ X , r is the least

common ancestor. It follows that the Räcke routing for st consists of distributing one
unit of flow from s to its Räcke distribution πsep

r at r and similarly for t. Note that
πsep
r is agnostic to the terminal from which flow originates. Since X is routable in T

with congestion 1, it follows that the congestion in G for Räcke routing X is at most
α(G, T).

3. The offline algorithm. In this section, we present an O(α(G) log n) approx-
imation algorithm for the an-mcf problem. We first develop a scheme that allows
us to route a large fraction of demands with low congestion. Specifically, we show

that for any ε(n) > 0, we can obtain a solution of weight Ω(ε(n)OPT
log3 n log log n

) such that

the flow on any edge e is at most ε(n)u(e) + 1. We then design a more sophisticated
routing scheme that allows us to obtain a solution of weight Ω(OPT

log3 n log log n
) with-

out exceeding any edge capacities. We make use of the following known results for
an-mcf on trees with integer capacities. For the cardinality case there is a polynomial-
time algorithm that routes at least OPT/2 pairs [21], and for the weighted case there
is an algorithm that routes pairs of weight at least OPT/4; here OPT is the optimum
solution value to the LP relaxation.

3.1. Starting point. We start by describing a simple algorithm that is the
starting point of our approach:

(a) Construct a Räcke tree T for G.
(b) Scale down all tree capacities by setting ut(e) = �uT (e)/α(G)�. Let T denote

this new tree.
(c) Solve the all-or-nothing LP induced on T , and let OPT(T) denote the value

of an optimal LP solution.
(d) Find a set X of weight at least Ω(OPT(T)) that can be routed integrally

[21, 16].
(e) For each routed pair st ∈ X , send 1 unit of flow from s to t in G using the

flow function Fs,t specified by the Räcke routing.
Lemma 3.1. If all edges in T are of capacity at least α(G), there is a simple

O(α(G))-approximation algorithm for any instance of the an-mcf problem in G.
Proof. Let OPT(G) denote the optimal LP solution value for our instance of

an-mcf. Clearly OPT(T) ≥ OPT(G). Further, by our assumption that uT (e) ≥ α(G)

for all e ∈ T , �uT (e)/α(G)� ≥ uT (e)/2α(G) and hence OPT(T) ≥ OPT(T)
2α(G) . Using

[16], we can choose a subset of pairs X that can be feasibly routed in T so that
w(X) is at least OPT(T)/4; in the cardinality case by [21] we can choose X so that
|X | ≥ OPT(T)/2. Note that if X is feasible on T , then in T we can route α units of
demand for each i ∈ X . Thus in G we can route α demand for each pair in X with
congestion at most α. Hence we can scale down and fractionally route a unit amount
for each i in X with congestion 1.

We subsequently often refer to an instance as consisting of a triple (G, T,X),
where X is a set of demands that can be feasibly routed on an associated Räcke tree

1476 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

T for G. Recall also that each node in V is the endpoint of at most one demand pair
in X .

3.2. Preprocessing the instance. The simple approach outlined above does
not apply when there are edges in T of capacity less than α(G). In the following
we assume (using [21, 16]) that we are starting with a set of demands X of weight
Ω(OPT(T)) which is feasible for the tree T , i.e., can be integrally routed on the
capacitated Räcke tree T .

For a node v of T , we denote by �v, its level or the distance from the root. For a
demand st ∈ X , we define its level to be the level of the least common ancestor of s
and t in T , denoted by lca(s, t). An instance (G′, T ′, X ′) of an-mcf is called nice if
X ′ can be routed on T ′ with congestion 1 and the level of each demand is 0, that is,
for each (s, t) ∈ X , lca(s, t) is the root of T ′.

Lemma 3.2. Given a feasible instance (G, T,X) of an-mcf we can obtain in
polynomial-time p ≤ n nice an-mcf instances (Gi, Ti, Xi), 1 ≤ i ≤ p such that (a)
each Gi is a subgraph of G and each Xi ⊆ X, (b) Gi’s are pairwise node-disjoint, and

(c)
∑

iw(Xi) = Ω(w(X)
h(T)).

Proof. By the pigeonhole principle, there exists a subset X ′ ⊆ X with w(X ′) ≥
w(X)/h(T) such that all demands in X ′ have the same level. We focus on the set
X ′ from here on and let � be the common level for pairs in X ′. Let r1, r2, . . . , rp
be the nodes of T at level l. For each i, let Ti denote the tree Tri and X ′

i denote
the demands of X ′ with both ends in Tri . We also let Gi be the subgraph of G
induced by the leaves of Ti. Note that the graphs Gi are node-disjoint and that Ti is
a valid Räcke tree for Gi. Thus the instances (Gi, Ti, Xi), 1 ≤ i ≤ p, are disjoint and
feasible, have the property that the level of each demand is 0, and collectively satisfy∑

iw(Xi) = Ω(w(X)
h(T)).

3.3. Low congestion routings for NICE instances. Our next goal is to show
that given a nice instance (G, T,X) and any given ε(n) > 0, we can find a large
subset Z ⊆ X that can be routed in G with low congestion—a flow of ε(n)u(e) + 1
on each edge e. We start by establishing a simple lemma about grouping subsets of
nodes in an edge-disjoint manner.

Lemma 3.3. Let G be a connected graph with a weight function ρ : V →[0,W]
such that

∑
v∈V ρ(v) ≥ W . We can find p > (

∑
v∈V ρ(v)/2W−1/2) edge-disjoint con-

nected subgraphs H1 = (V1, E1), H2 = (V2, E2), . . ., Hp = (Vp, Ep) and node-disjoint
subsets S1, S2, . . . , Sp such that for each i, (i) Si ⊆ Vi and (ii) W ≤

∑
v∈Si

ρ(v)≤ 2W .
Proof. The weight of a node subset X is

∑
v∈X ρ(v) and is denoted by ρ(X). X

is called heavy if ρ(X) ≥ W . Let T ′ be a spanning tree of G rooted at an arbitrary
node r. For any node x let T ′

x be the subtree rooted at x. Choose some x such that
V (T ′

x) is heavy, but none of x’s children has this property (x exists since ρ(V) ≥
W). Let x1, x2, . . . , x� be the children of x in T ′. Let j be the smallest index such

that γ = ρ(x) +
∑j

i=1 ρ(V (T ′
xi
)) ≥ W . Since ρ(V (T ′

xi
)) < W for 1 ≤ i ≤ � and

ρ(x) ≤ W , W ≤ γ < 2W . We obtain H1 by taking the tree obtained from the union
of T ′

x1
, T ′

x2
, . . . , T ′

xj
with x. We set S1 to be the nodes in H1 with nonzero weight.

We remove T ′
x1
, T ′

x2
, . . . , T ′

xj
from T ′ and set ρ(x) = 0 to obtain a new tree T

′′
. We

iterate this process on T
′′
until the total weight of the remaining nodes falls below

W . Note that a node can participate in many subgraphs that we create; however,
it can have positive weight only in the first subgraph. At the end of the process we
have the desired edge-disjoint connected subgraphs H1, H2, . . . , Hp and disjoint sets
of nodes S1, S2, . . . , Sp with Si ⊆ V (Hi). From the construction, for 1 ≤ i ≤ p,

ALL-OR-NOTHING MULTICOMMODITY FLOW 1477

W ≤ ρ(Si) < 2W . The final tree has weight at most W . Therefore 2pW +W > ρ(V),
and hence, p > ρ(V)/(2W)− 1/2.

Let S be the set of terminals for X . Note that a terminal is the endpoint of a
single demand in X .

Lemma 3.4. Let (G, T,X) be a nice instance. We can distribute ε
α(G) flow from

each v ∈ S according to the Räcke distribution πsep
r on V (G) such that the flow on

any edge e ∈ G is at most εu(e).

Proof. Following the proof of Lemma 2.2, we know that X can be routed in G,
using Räcke routing, with a congestion of α(G). Scaling down the flow by α(G)/ε and
noting that each demand is distributing its flow to the distribution πsep

r gives us the
desired result.

For each v ∈ V (G), we define β(v) ∈ [0, 1) as follows: if v is a terminal β(v) =
ε/α(G); else β(v) = 0. Let β =

∑
v β(v). We will assume β ≥ 1 for otherwise we can

simply route an arbitrary pair on a path connecting them and we obtain the desired
approximation easily. We use Lemma 3.3 with W = 1 to group the terminals S into
disjoint clusters S1, S2, . . . , Sp, where p = max(1,Ω(β)) such that

∑
v∈Si

β(v) ≥ 1.
Note that the lemma guarantees that each cluster Si has at least α(G)/ε and at most
2α(G)/ε terminals.

We now identify a subset of Z ⊆ X that can be routed in G with low congestion.
We order the pairs st ∈ X in nonincreasing order of their weight, consider them one
by one, and build a set of demands Z which we ultimately route. Initially Z = ∅.
We also maintain a set of active clusters: initially all clusters are active. Let st be
the current demand pair. We say that the pair st is feasible at s if s is in an active
cluster. We add st to Z if both s and t are feasible. Otherwise we reject the pair st.
If st is added to Z we mark the cluster containing s as inactive. We do similarly for
t. Note that both s, t could be in the same cluster.

Lemma 3.5. The procedure produces Z ⊆ X such that w(Z) = Ω(ε
α(G)w(X)).

Each cluster Si contains 0, 1, or 2 terminals for demands in Z. If it contains 2, then
they are the endpoints of the same demand.

Proof. We charge the rejected pairs in X \Z to those in Z. Suppose st is rejected
because the cluster containing s was already marked. We charge st to the pair s′t′ ∈ Z
that marked the cluster of s. Note that the weight of pair s′t′ is no smaller than that
of st since it was considered earlier in the ordering. Since each cluster has as most
2α(G)/ε terminals, a pair in Z is charged by at most 4α(G)/ε other pairs. This proves
that w(Z) = Ω(ε

α(G)w(X)). The second part of the lemma is easy to see from the

marking procedure.

Lemma 3.6. The subset Z can be routed in G such that on each edge e, the flow
is at most 1 + εu(e).

Proof. Consider a pair st in Z. Suppose first that s, t lie in a common clus-
ter. In this case we simply connect s and t by a path in this cluster. Otherwise,
each of s, t sends a unit of flow to the root’s distribution πsep

r . Let Si, Sj be the
active clusters that contained s and t, respectively, when st was added to Z. We
distribute one unit of flow from s to the nodes in Si such that each node v ∈ Si

gets a flow γ(v) ≤ β(v). This is feasible since
∑

v∈Si
βv ≥ 1 and Si is connected.

Each node v ∈ Si then sends γ(v) flow to the root’s distribution πsep
r . The terminal

t similarly sends its unit of flow to the root’s distribution πsep
r using nodes in its

cluster Sj .

We bound the congestion of an edge e as follows. The edge e can belong to at
most one cluster. Within a cluster it can be used to route at most one unit of flow

1478 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

from a terminal. Now consider flow on e from the routings from terminals to the root
distribution. For v, let f(v) be the total flow that is routed from v to πsep

r . From our
routing above it is easy to see that f(v) ≤ β(v) ≤ ε

α(G) . Now we can apply Lemma

3.4 to claim that this flow on e is at most εu(e). Hence the total flow on e is at most
1 + εu(e).

Theorem 3.7. Given an instance of an-mcf (G,X) and a Räcke tree T , there is
a polynomial-time algorithm that routes Ω(εOPT

h(T)α(G,T)) demands from X where OPT

is the optimum LP solution for X on G such that the flow on any edge e of G is at
most 1 + εu(e).

Using [24] there is a Räcke tree T for G such that α(G, T) = O(log2 n log logn)
and h(T) = O(log n); hence we obtain an approximation ratio of O(log3 n log logn/ε).
For planar graphs or graphs that exclude a constant size minor, [24] gives a Räcke tree
T such that α(G, T) = O(log n log logn) and h(T) = O(log n) and hence we obtain
an approximation ratio of O(log2 n log logn) for these graphs.

3.4. Congestion 1 routings for NICE instances. We now show how to find
a routing that does not violate the capacities. To simplify the description we focus on
the cardinality version of the problem; we mention, as needed, the simple modifications
that are needed for the weighted version. Again we work with nice instances. Let
(G, T,X) be a nice instance. We say that a capacitated graph G is 2-edge connected
if the uncapacitated multigraph obtained by making u(e) copies of each edge e is
2-edge connected.

Theorem 3.8. Given a nice instance (G, T,X) of an-mcf, there is a
polynomial-time algorithm that routes max{1,Ω(|X |/α(G, T))} pairs from X in G
without violating capacities.

The rest of this section is devoted to the proof of the above theorem. We assume
without loss of generality that u(e) = 1 for all e. The basic idea for the proof of
Theorem 3.8 is similar to that in section 3.3. Given a nice instance (G, T,X) each
of the pairs in X can route ε/α(G) flow to the root distribution such that each edge
e has a load of at most εu(e) = ε. In section 3.3 we used tree-based clustering.
Each terminal that we chose to route, then sent one unit of flow to Ω(α(G)/ε) other
terminals in its cluster. This additional routing required one unit of capacity on the
edges in each cluster. In this section we present a more complicated clustering in
which a terminal can send one unit of flow to Ω(α(G)) other terminals using at most
1/2 unit of capacity on the edges of its cluster subgraph (which may no longer be a
tree). Choosing ε = 1/2 ensures that no edge capacity is violated.

Recall that each node s ∈ V (G) is incident to at most one demand pair in X .
From the given nice instance (G, T,X) we define a node weight function ρ as follows:
ρ(v) = 1/(2α(G)) if v is a terminal in X and ρ(v) = 0 otherwise. Hence a node v
is a terminal if and only if ρ(v) > 0. For a set S, ρ(S) =

∑
v∈S ρ(v). Therefore

ρ(V) = |X |/α(G). For a graph H and weight vector ρ′ : V (H) → [0, 1], we say that a
node v is a center in H if the following property is true: there is a single-source flow
of one unit that originates at v and such that the flow terminating at any node y �= v
is at most ρ′(y) and the flow on any edge is at most 1/2. A node v is a center in H
with respect to a subset S ⊂ V (H) if the flow is constrained to be terminated only at
nodes in S.

Lemma 3.9. Let H = (V,E) be a connected graph with a node weight function
ρ : V → R+ such that ρ(V) ≥ 1. Then there is a center v in H with respect to ρ.

Proof. We prove this for the case when H is a tree T and ρ(V) = 1. The proof is
by induction on n = |V |. For n ≤ 2 the claim can be easily verified. Assume n > 2.

ALL-OR-NOTHING MULTICOMMODITY FLOW 1479

Then there exists a node v of degree at least 2. Consider the trees T1, T2, . . . , Tk

produced by the removal of v from H . If maxi ρ(V (Ti)) ≤ 1/2, then v is the desired
center. Otherwise let T1 be such that ρ(V (T1)) > 1/2. Let T ′ be a tree obtained by

removing T2, . . . , Tk from H and setting ρ(v) = ρ(v) +
∑k

i=2 ρ(V (Ti)). By induction,
the tree T ′ has a center v′. Note that v′ �= v since v is a leaf in T ′ and ρ(v) < 1/2,
and hence v′ ∈ V (T1). It can be easily checked that v′ is a center for T as well.

We need a slight relaxation of the definition of a center. We call a node v a
pseudocenter in a subgraph H of G if either v is a center or if the following is true:
there is a single source flow of one unit that originates at v and such that the total
flow terminating at a node y �= v is at most ρ(y) and the flow on any edge other than
a cut edge of G is at most 1/2. Note that the flow on a cut edge can be up to 1.

Lemma 3.10. Let G be a unit capacity graph and X a set of node pairs. Let C
be the set of cut edges in G. Let f be a multicommodity flow in G that sends one unit
of flow for each pair in X with the condition that the flow on any edge is strictly less
than 2 if it is in C and at most 1 otherwise. Then there is another multicommodity
flow f ′ that sends one unit of flow for each pair in X and such that the load on any
e ∈ E is at most 1.

Proof. Given f we decompose it into flow paths for each pair. We ensure that
all the flow paths are simple paths. Let f ′ be the resulting flow. We claim that f ′

satisfies the desired properties. We have that the flow on any edge under f ′ is at most
that under f , so all we need to show is that the flow under f ′ is at most 1 for each
e ∈ C. Let G1 and G2 be the components of G − e. If a pair st ∈ X is such that
s, t ∈ G1 or s, t ∈ G2, then it is clear that the flow between s and t does not use e
since the flow paths are simple. Hence the only flow that uses e is for a pair s′t′ such
that s′ ∈ V (G1) and t′ ∈ V (G2). For such a pair the whole unit of their flow crosses
e. Since the load on any cut edge is strictly less than 2, there is at most one such
pair, and hence the flow on e is at most 1.

Our goal is to prove the following clustering lemma.

Lemma 3.11. Given a nice instance (G, T,X) we can find a subset Z ⊂ X with
|Z| = Ω(ρ(V)) = Ω(|X |/α(G)) with the following properties. There is a collection
of connected edge-disjoint subgraphs H1, H2, . . . , Hp such that (i) each Hi contains
terminals for at most one pair in Z, (ii) each Hi contains a set of nodes Si such that
the sets S1, . . . , Sp are disjoint, and (iii) for each pair st ∈ Z, if s ∈ Hi, then either
s is a pseudocenter of Hi with respect to ρ and Si or t is also in Hi (and similarly
for t).

Outline of congestion 1 routing. We prove Theorem 3.8 from the above
lemma. A pair st ∈ Z is mated if there is an Hi with s, t ∈ Hi. From the properties
of the above lemma, we can route all the mated pairs in an edge-disjoint fashion. We
now show that the unmated pairs in Z can also be routed. It thus follows that we
can route at least half the pairs in Z with congestion 1 in G.

Let st be an unmated pair. We have that s ∈ Hi and t ∈ Hj with i �= j and
further Hi and Hj contain no other terminals from Z. Since s is a pseudocenter in
Hi with respect to Si, it can send one unit of flow to Si such that each node v ∈ Si

receives flow of at most γ(v) ≤ ρ(v) and the total flow on each edge e ∈ Hi is at
most 1/2, unless e is a cut edge of G in which case the flow can be up to 1. Since the
Si’s are node disjoint, the total flow received by a node v is at most γ(v). Now each
node v sends γ(v) flow to the root’s distribution πsep

r . Lemma 3.4 implies that we can
route this flow sending at most 1/2 unit of flow on each edge. Thus, all the terminals
in unmated pairs can simultaneously route one unit of flow to the root’s distribution

1480 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

πsep
r such that the flow on any edge e is at most 3/2 if e is a cut edge of G and 1

otherwise. From Lemma 3.10, we conclude that all the unmated pairs can be routed
without violating edge capacities.

In the weighted case, Lemma 3.11 can be generalized to ensure that w(Z) =
Ω(w(X)/α(G)). The above outline can be easily extended to the weighted case.

The rest of the subsection is devoted to the proof of Lemma 3.11.

Initial clustering. We first describe an algorithm to find the clusters Hi. We start
with a basic clustering as given by Lemma 3.3 with W = 1 and ρ(v) = 1/(2α(G))
for terminals in X . Let H1, . . . , Hp and S1, . . . , Sp be as guaranteed by Lemma 3.3.
We have that p = Ω(|X |/α(G)). Instead of using a tree for Hi as before, we define
our clusters Hi to be the subgraph induced by V (Hi). These larger clusters remain
edge-disjoint since the proof of Lemma 3.3 actually guarantees that for i �= j, Hi and
Hj have at most one node in common. In the following we assume for simplicity that
the Hi are actually node disjoint and therefore that Si = V (Hi). This does not affect
the proof and we will indicate later how this assumption can be dispensed with.

Lemma 3.9 implies that in each cluster Hi, we can choose a center node, denoted
by ci = c(Hi). Note that there may be many choices for a cluster center. For a
terminal s, we denote by H(s) the unique cluster Hi such that s ∈ Si.

Phase 1 demands. The terminal pairs Z guaranteed by Lemma 3.11 are obtained
in two phases, starting with the clusters H1, H2, . . . , Hp. Let X ′ = X . We create an
initial set Z greedily as follows. We consider pairs one by one in order of nonincreasing
weight. If st is the current pair, we add st to Z and remove from X ′ all pairs s′t′ if
either s′ or t′ is in H(s) ∪ H(t). We repeat this until X ′ is empty. This procedure
is very similar to the one in section 3.3. Using a counting argument similar to that
of Lemma 3.5 we claim that |Z| = Ω(p). By construction, every cluster H contains
either 0, 1, or 2 terminals from Z, and if it contains 2, then these are the endpoints
of a pair from Z.

At this point we could proceed as outlined above if each of the terminals in Z is a
center of its cluster. However, this need not be the case and for this we need to refine
Z and also allow the merging of multiple clusters. The following characterization is
useful for working with nodes that cannot be cluster centers.

Lemma 3.12. Let H be a connected graph with ρ(V (H)) ≥ 1. For any v ∈ V (H),
if v is not a center, then there exists a cut edge e in H such that every center of H
lies in a distinct component from v in H − e.

Proof. Let H ′ be a graph obtained by adding a new node t to H and an edge
of capacity ρ(w) from t to each w ∈ V (H) and setting the capacity of each edge in
H to 1/2. If v is not a center, then there exists a v − t cut δH′(S) of capacity less
than 1 in H ′, where v is chosen to lie in S. Since ρ(H) ≥ 1, if S = V (H), then this
cut has capacity at least 1. Hence V (H)− S is nonempty. But then |δH(S)| = 1 for
otherwise the cut has capacity at least 1 in H ′. By definition of a center node, any
center cannot lie in S, hence the lemma.

A node s may be a terminal in Z but not a center for H(s). In this case the
preceding lemma guarantees that there is a cut edge e such that in H(s) − e, s is
in a component F that does not contain c(H(s)). Let e1, e2, . . . , e� be cut edges in
H(s) that separate s from c(H(s)) such that if Fi is the component containing s in
H(s) − ei, then Fi ⊂ Fi+1 for 1 ≤ i < �. Call an edge e′ = xy external if x ∈ H(s)
and y �∈ H(s). Suppose F� has an external edge incident to one of its nodes. Then
let j be the smallest index such that there is an external edge incident to Fj and let
e(s) = xy be this edge and let H ′ be the cluster that contains y. We refer to H ′ as

ALL-OR-NOTHING MULTICOMMODITY FLOW 1481

being tagged by s (or by H(s)) and denote it by R(s). We observe that e1, . . . , ej−1

are actually cut edges in G, for otherwise it would contradict the minimality of j.

We need a method for turning terminals into centers in larger, merged clusters;
this is captured in the following lemma.

Lemma 3.13 (tagging lemma). Let s be a terminal that is not a center in H(s).
Suppose e(s) = xy exists and P is a path from x starting with e(s) to a cluster H(s′)
such that P is edge-disjoint from H(s). Then, s is a pseudocenter in H(s)∪P ∪H(s′).
If e(s) does not exist, then s is a pseudocenter in H(s).

Proof. We first consider the case that e(s) exists. Let c and c′ be centers of H(s)
and H(s′), respectively. Let G′ = H(s)∪P ∪H(s′). To prove that s is a pseudocenter
in G′, we add a new node t to G′ and connect it to each node a in G′ with an edge
of capacity ρ(a). We make the capacity of each edge in G′ equal to 1/2 except the
cut edges e1, e2, . . . , ej−1 to which we assign a capacity 1. Consider a minimum s-t
cut S in G′ that contains s. By Lemma 3.12, neither c nor c′ is in S since they are
centers in G′. If one of e1, . . . , ej−1 is in δG′(S), then this cut has capacity at least 1,
so suppose this is not the case. Note that there are two paths in G′ from s to c and c′

such that each edge, other than e1, e2, . . . , ej−1, is used in at most one of the paths.
Since δG′(S) contains no cut edges, it must contain at least two edges, and hence the
cut has capacity at least 1.

In the case that e(s) does not exist, we have that e1, . . . , e� are cut edges in G.
An argument similar to the above works by considering the auxiliary graph obtained
by adding t to nodes in H(s).

We could apply a greedy procedure if each cluster is tagged only by a few ter-
minals. However, a cluster can be tagged by many terminals in Z. We thus capture
the tagging structure by creating a digraph D whose nodes are the clusters. We put
an arc in D from H to H ′ if H tags H ′ and H does not contain both terminals of a
pair in Z. If H does not tag any cluster and contains a terminal from Z, we simply
put a loop arc from H to itself. Note that a cluster node has out-degree 1 if and
only if it contains a single terminal from Z and 0 otherwise. Let D′ be the digraph
obtained from D by identifying to a single node the two clusters associated with each
pair st ∈ Z and then eliminating any loops. One sees that this results in |Z| new
nodes and each of these has out-degree at most 2. We call the nodes that represent
the pairs in Z special. The remaining nodes, one each for cluster that does not have
terminals in Z, have out-degree 0.

We create a stable set I of size |Z|/5 among special nodes as follows. The total
out-degree of nodes in D′ is at most 2|Z|. Thus there must be a special node x with
in-degree at most 2. We add x to I and remove x and nodes that have arcs to and
from x from D′. Repeating this process we get the desired set I. In the weighted case
one needs more care. A similar argument as above can be used to show that D′ can
be colored with five colors where each color class is a stable set. We simply pick I to
be the color class with the largest weight where the weight of a node in D′ is equal
to the weight of the corresponding pair in Z.

We trim down Z to the demand pairs corresponding to the special nodes in I.
We now consider the clusters in D corresponding to the terminals in Z. Consider a
pair st ∈ Z. There are three types of pairs in Z: (i) both s and t belong to the same
cluster, (ii) s and t belong to different clusters and H(s) tags H(t) or vice versa, and
(iii) s and t belong to different clusters and neither of the clusters tags the other. Let
Z1, Z2, and Z3 be the pairs in Z according to the above classification. For a pair st
in Z1, we do not need to do anything since H(s) contains both s and t. For a pair

1482 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

st ∈ Z2 we amalgamate H(s) and H(t) into a single connected cluster since they have
an edge between them. If Z1 ∪Z2 contained at least half the weight of the pairs from
Z, then we could simply connect these pairs by disjoint paths in their corresponding
clusters. Hence we may focus on Z3 from now on.

We call a cluster a transit cluster if it is tagged by some terminal in Z3. From
the construction of I, there is no transit cluster among terminals in Z. The basic
approach is captured by the tagging lemma. If clusters H,H ′ both tag a cluster C,
then by connecting H and H ′ by a path P through C, we may have any node in H
or H ′ act as a pseudocenter in H ∪ H ′. We show that we may pair up all clusters
tagging C by edge-disjoint paths through C and hence by merging clusters we get a
large number of clusters with pseudocenters. The following simple lemma shows how
to match up the tagging clusters.

Lemma 3.14. Let T be a tree and A be some even multiset of nodes in V (T).
Then there exists |A|/2 edge-disjoint paths in T such that each node v ∈ A is the
endpoint of exactly nv of these paths, where v occurs nv times in A.

Proof. If nv > 1, then we may take as one of our paths the singleton path v and
remove two copies of v from A. So we assume that nv = 0 or nv = 1 for each node of
T . Let S be the set of nodes with nv = 1. Consider rooting T at an arbitrary node r.
For each node v, let Tv be the subtree of T rooted at v. Let Tx be minimal such that
S ∩V (Tx) ≥ 2. Let x1, . . . , xh be the children of x. By minimality of Tx, each Txi has
at most one node in S. We can assume without loss of generality that each Txi has a
node vi in S; otherwise we can remove Txi from T . If x ∈ S, then we connect v1 to
x by a path and remove Tx1 from T . Otherwise we match up v1 to v2 by a path and
remove Tx1 and Tx2 from T . We then repeat this process. It is easy to check that this
inductively matches up the pairs in S by edge-disjoint paths.

For a transit cluster C let d(C) denote the number of clusters that tag C. Without
loss of generality let H1, . . . , H� be the clusters that tag C. Let ei = uivi denote the
edge responsible for Hi tagging C with ui ∈ Hi and vi ∈ C. Note that the vi need
not be distinct. For v ∈ C let nv be the number of ei that are incident to v. We make
use of Lemma 3.14, by considering a spanning tree of C, to connect the clusters that
tag C. If d(C) = 1 we do not do anything. Otherwise we connect 2�d(C)/2� clusters
that tag C by edge-disjoint paths. Note that a path P that connects clusters H(s)
and H(s′) has e(s) and e(s′) as its first and last edges, respectively. We call this the
pairing procedure on C. See Figure 3.1. Based on this procedure we define a graph
B on the terminals in Z3 as follows. We put a self-loop on a node s either if s is
a center in H(s) or if the cluster C that H(s) tags has d(C) = 1. We add an edge
between s and s′ in B if R(s) = R(s′) = C and are connected by a path from the
pairing procedure on C.

If a node s in B does not have an edge incident to it, then d(R(s)) is an odd
number greater than 1 and H(s) was left unmatched in the pairing procedure on
R(s). Let Y be the pairs st in Z3 such that neither s nor t is isolated in the graph B;
these are the pairs that have a chance to have their clusters expanded appropriately.
We claim that |Y | ≥ |Z3|/3. Let a be the number of isolated terminals. Since each
isolated terminal is the unique unmatched terminal in a transit cluster of degree at
least 3, the total number of terminals is at least 3a, and the number of pairs with
an isolated terminal is at most a. Hence |Y | ≥ |Z3| − a ≥ |Z3|/3 as claimed. In the
weighted case we need to ensure that the left-behind pairs are not of heavy weight.
We can ensure this as follows. Lemma 3.14 guarantees that any even multiset of nodes
in V (T) can be matched up. Thus in the pairing procedure for C we ensure that the

ALL-OR-NOTHING MULTICOMMODITY FLOW 1483

Fig. 3.1. Pairing using C.

unpaired terminal is the one with the lowest weight among all terminals tagging C.
The rest of the details are simple yet tedious and we omit them.

From Y we obtain a subset Y ′ such that |Y ′| ≥ |Y |/3 as follows. We consider
pairs in Y one by one in nonincreasing weight order and add the current pair st to Y ′

if neither s nor t is connected by an edge in B to a terminal of some previously added
pair in Y ′. Since the degree of each node in B is at most 1, adding a pair to Y ′ can
result in the removal at most two pairs from Y and hence |Y ′| ≥ |Y |/3. Moreover, it
is easy to see that for a terminal s from a pair uv ∈ Y ′ (s could be u or v) exactly
one of the following properties holds: (i) s has a self-loop in B, (ii) ss′ is an edge in
B and s′ is not an endpoint of a pair in Y ′, or (iii) st is an edge in B and st is a
pair from Y . We process each terminal s from the pairs in Y ′ as follows. If s is a
pseudocenter in H(s) we do nothing. If R(s) has degree 1, then we amalgamate H(s)
and R(s) into a single cluster via the edge e that H(s) uses to tag R(s) (note that in
this case s has a self-loop in B). If H(s) is connected to H(s′) via a path P through
the transit cluster R(s), then we amalgamate H(s) and H(s′) using the path P . If
ss′ ∈ Y ′, then the amalgamated cluster has both endpoints of a pair; otherwise by
Lemma 3.13, s is a pseudocenter in the amalgamated cluster.

After the processing above, the pairs that remain in Y ′ are in clusters that satisfy
Lemma 3.11. Thus either |Y ′| = Ω(|Z|) or |Z1 ∪ Z2| = Ω(|Z|), and in either case we
obtain the conditions asserted in Lemma 3.11.

We now address the assumption that we made about the Hi being node disjoint.
In the above proof the only place where we use this assumption is when we find an
external edge to tag another cluster. The notion of tagging and the subsequent claims
are easily verified if a cluster tags another cluster by a shared node instead of an edge
between the clusters.

3.5. Multicommodity demand flows. We now consider an-dmcf, which gen-
eralizes an-mcf in the following way. Each pair siti has a nonnegative demand di. A
subset S of the given pairs is routed if there is a feasible multicommodity flow for the
pairs in S where the demand routed for pair siti in S is di. We can translate our result
for an-mcf to an-dmcf at the expense of an additional constant factor in the approxi-
mation ratio. This works under the no-bottleneck assumption that dmax ≤ umin which

1484 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

is commonly made in this context. Alternatively, one needs to allow an additive dmax

congestion. The translation is obtained via a grouping and scaling technique of [28]
that works for a large class of column-restricted packing integer programs (CPIPs).
We consider the following LP relaxation for an-dmcf that is very similar to the
one for an-mcf in section 2 with the main difference being that we eliminated the
variables xi:

max
k∑

i=1

wi

∑

P∈Pi

x(P) s.t.(3.1)

k∑

i=1

di
∑

P∈Pi:e∈P

x(P) ≤ u(e), e ∈ E,

∑

P∈Pi

x(P) ≤ 1, 1 ≤ i ≤ k,

x(P) ∈ [0, 1], 1 ≤ i ≤ k, P ∈ ∪iPi.

We observe that the first set of constraints are packing constraints of the form
Ax ≤ b, where A ≥ 0; moreover the constraint matrix A is column-restricted in
that each column has the value in each nonzero entry. If all demands are 1 this is
a relaxation for an-mcf and we have established a polylogarithmic bounds on the
integrality gap. The techniques of [28] show that the integrality gap of a CPIP is
within a constant factor of the integrality gap of its corresponding 0-1 PIP; in [16]
the relevant theorems are stated in a transparent and directly applicable form. In
particular we refer to Theorem 3.1. We note that (3.1) is technically not a CPIP due
to the second set of constraints; however, the integrality gap translations can be done
in the same way (for more details see section 4.3 in [16]). In our particular setting
the 0-1 PIP corresponds to an-mcf and the CPIP corresponds to an-dmcf. Thus,
the result for an-mcf, with an additional constant factor, gives us Theorem 1.2.

4. The online algorithm. We now describe a randomized online algorithm for
the an-mcf problem. The reader would be served well if the earlier offline clustering
arguments are fresh in mind. We focus here on the unit demand case and sketch
the extension to routing arbitrary demands at the end of the section. Recall that
we seek to maximize the throughput, which in the unit-demand case is equivalent
to the number of routed pairs. For any ε > 0, our algorithm achieves a competitive
ratio of Ω(h(T)3α(G))/ε) in expectation, provided we allow a congestion of (2 + ε)
on the edges. (Recall that h(T), α(G) denote the height and congestion parameters
associated with the Räcke tree for G.) For the unit demand case, we in fact achieve
a slightly stronger guarantee on the congestion, namely, the total flow on each edge
is bounded by 2 + εu(e).

As before, our starting point is a Räcke tree T for the input graphG, which we can
assume is a connected graph. We compare the performance of the online algorithm
against the maximum possible number of demands that can be routed in the Räcke
tree T . The latter is clearly an upper bound on the optimal solution value. We borrow
the essential ideas from the offline algorithm; however, the clustering scheme requires
nontrivial modifications since we do not have an a priori LP solution to work with.

We assume that all edges in the Räcke tree are directed toward the root, and
routing a pair (s, t) is thus equivalent to routing both s and t to the root in accordance
with the Räcke routing. We also assume, for technical reasons that will be clear soon,

ALL-OR-NOTHING MULTICOMMODITY FLOW 1485

that each demand pair (s, t) is an ordered pair, where s is the source node and t is
the destination node; given an unordered pair st we can produce a consistent ordered
pair by using an ordering of the nodes of G and using the lower numbered node in s, t
as the source. For any node x in T , let T (x) denote the subtree of T rooted at x, and
let G(x) denote the connected subgraph of G that corresponds to T (x). We let L(x)
denote the leaves in T (x). For a leaf node z and an ancestor x in T , we let P [z � x]
denote the path from z to x in T .

4.1. The preprocessing phase. We start with a preprocessing phase that al-
lows the online algorithm to consider only demand pairs (s, t) for which lca(s, t) is
the root of the tree. We lose a factor of h(T) in the (expected) competitive ratio
in order to ensure this property. We also modify the capacities in the Räcke tree to
satisfy some useful properties; this alteration does not change the value of an optimal
solution.

As a first preprocessing step, the algorithm guesses uniformly at random a level
�∗ ∈ {1, . . . , h(T)}. The algorithm considers routing a request pair (s, t) only if
lca(s, t) is a node at level �∗ in the tree. Thus the Räcke tree is implicitly partitioned
into disjoint trees T1, T2, . . . , Tq with roots r1, r2, . . . , rq, and we only consider a pair
(s, t) if lca(s, t) ∈ {r1, r2, . . . , rq}. This process loses at most a factor of h(T) in
expectation. Without loss of generality, from here on we focus our attention on a
single Räcke tree T = Ti with root node r = ri and an underlying connected graph
G = Gi. We abuse notation and assume that G = Gi and T = Ti.

The second preprocessing step reduces capacity of some tree edges so as to ensure
the following two properties:

(P1) Along any path from a leaf node to the root, the edge capacities are non-
decreasing.

(P2) For each edge e = (x, y) of the oriented T , the capacity uT (e) is equal to the
maximum amount of flow in T that can be routed to x from the leaves in the
subtree of T (x).

In doing this capacity reduction, we preserve the “routing capacity” of the tree
(recall that at this point, we are only considering demands routed via the root) by
proceeding as follows. We say that an edge e = (x, y) is a violating edge if the parent
edge e′ = (y, z) has uT (e

′) < uT (e) (property (P1) is violated) or the capacity of
uT (e) is greater than the maximum flow that can be routed from leaves of T (x) to x
(property (P2) is violated). As long as there is a violation of either (P1) or (P2), we
find the deepest violating edge and reduce its capacity by the least amount needed to
fix the violation.

The following proposition is easy to see.
Proposition 4.1. The tree T ′ obtained by the capacity reduction steps satisfies

properties (P1) and (P2). Morever, if S is a set of request pairs such that the root is
the least common ancestor of each pair in the set, then S is routable in T if and only
if it is routable in T ′.

4.2. The algorithm. Recall that all edges in T are directed toward the root.
For a leaf node z, we say that a node x is the last bottleneck node in T if and only
if the capacity of every edge on the path P [z � x] from z to node x is smaller than
α(G)/ε, and the capacity of every edge on the path P [x� r] is at least α(G)/ε. By
property (P1), such a node x must exist. Note that the last bottleneck node x for
a leaf node z may be the node z itself or the root r. If x = z, then every edge in
P [z � r] has capacity at least α(G)/ε, and if x = r, then every edge in P [z � r] has
capacity less than α(G)/ε.

1486 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

Overview of the algorithm. The online algorithm chooses a pair of integers �1, �2 ∈
{1, . . . , h(T)} uniformly at random and routes only demands (s, t) such that the last
bottleneck node for s is a node at level �1 and the last bottleneck node for t is a node at
level �2. This worsens the expected competitive ratio achieved by the online algorithm
by a factor of h(T)2. Prior to the arrival of any demands, the algorithm identifies
once and for all a collection of edge-disjoint connected subgraphs of G, called clusters,
such that each leaf node z has a unique cluster Cz assigned to it. In the following,
we use some clustering arguments similar to those used in section 3.3. The cluster of
z always contains z as a node. Note that multiple leaf nodes may map to the same
cluster. If the algorithm accepts a demand pair (s, t) for routing, it first distributes
a unit of flow from s to a cluster Cs in G(x), where x is the last bottleneck node for
s. We ensure that Cs has routing capacity of at least α(G)/ε to the root. Similarly,
it distributes a unit of flow from t to a cluster Ct in G(y) whose routing capacity is
at least α(G)/ε; here y is the last bottleneck node for t. It then routes a unit of flow
from Cs to r, and from Ct to r, using the Räcke distribution. The cluster-to-cluster
routing induces a congestion of ε on the edges of G. The algorithm ensures that (i) no
cluster gets used more than once, (ii) no edge appears in more than two clusters, and
(iii) the cluster-to-cluster routing induces an overall congestion of ε. Thus the overall
congestion of the resulting routing solution is bounded by (2 + ε). It now remains to
describe the clustering scheme.

The clustering scheme. Let Γ1 denote the set of all nodes at level �1, and let Γ2

denote the set of all nodes at level �2 in the Räcke tree T . Note that for any pair
of distinct nodes x, x′ ∈ Γ1, the graphs G(x) and G(x′) are node-disjoint connected
subgraphs of G. Similarly for any pair of distinct nodes y, y′ ∈ Γ2, the graphs G(y)
and G(y′) are node-disjoint connected subgraphs of G. For each node x ∈ Γ1, we do
an edge-disjoint clustering using only edges in G(x), and the resulting clusters are
only used for routing demands originating at a leaf node in L(x); moreover, the leaf
should have x as its last bottleneck node. Similarly, we perform a clustering in G(y)
for each y ∈ Γ2; hence overall, each edge is in at most two clusters.

Fix a node x in T . We describe the clustering scheme for the leaves L(x) in
the graph G(x). If x is a leaf node, then x is in its own cluster and there is nothing
further to do. We refer to such nodes x as self-clustered nodes. Otherwise, consider the
capacitated tree T (x) and recall that it satisfies properties (P1) and (P2). We define a
new capacity function u′

T for edges in T (x) as follows: u′
T (e) = min{uT (e), α(G)/ε}.

Let f be a flow of value
∑p

i=1 u
′
T (xi, x) from the leaves of T (x) to the node x in

accordance with the capacity function u′
T . Note that such a flow is guaranteed to exist

by properties (P1) and (P2). We will slightly abuse the notation and for each leaf node
z in T (x), we let f(z) denote the amount of flow that z sends to x in this flow solution;
note that f(z) ≤ α(G)/ε for all z and

∑
z∈L(x) f(z) =

∑p
i=1 u

′
T (xi, x). We will assume

from here on that total flow arriving into x, namely,
∑p

i=1 u
′
T (xi, x), is at least α(G)/ε

for the following reason. If x is the root and
∑p

i=1 u
′
T (xi, x) < α(G)/ε, then an

optimal algorithm can route at most α(G)/ε pairs via the root. Thus any algorithm
that accepts a single pair to route is α(G)/ε-competitive. We ignore this trivial case.
Otherwise, suppose x is an internal node of T . Then if

∑p
i=1 u

′
T (xi, x) < α(G)/ε, it

follows that
∑p

i=1 u
′
T (xi, x) =

∑p
i=1 uT (xi, x) = uT (x, x

′), where x′ is the parent of x.
Since uT (x, x

′) < α(G)/ε, no leaf in L(x) has x as its last bottleneck node and hence
we do not need to cluster G(x).

At a high level, our goal now is to cluster leaf nodes in G(x) into clusters of f -
weight Θ(α(G)/ε) such that each cluster satisfies an additional property, namely, at
most Θ(α(G)/ε) demands can originate from any cluster in any feasible solution. In

ALL-OR-NOTHING MULTICOMMODITY FLOW 1487

order to do this clustering, we consider a graph H on p nodes defined as follows. The
graph H has a node v(xi) for each G(xi), and there is an edge between two nodes
v(xi) and v(xj) if and only if there is an edge between a node in G(xi) and a node
in G(xj). The node v(xi) inherits the total f -weight of leaves in G(xi), that is, the
f -weight of v(xi) is

∑
z∈L(xi)

f(z). We refer to the nodes v(x1), . . . , v(xp) as the hub
nodes. Our clustering scheme, described next, will proceed in two steps. In the first
step, it will first create node-disjoint trees whose f -weight is at least α(G)/ε. Some of
the trees created in this step may have f -weight that far exceeds α(G)/ε; the second
step of the clustering scheme recovers edge-disjoint clusters of f -weight Θ(α(G)/ε)
from these trees.

Let T be an arbitrary rooted spanning tree of H . While the f -weight of T is
α(G)/ε or more, we find a deepest node η with the property that the subtree rooted
at η has f -weight at least α(G)/ε, remove the sub-tree rooted at η from T , and label η
as a heavy hub node. We repeat this process on the remaining tree; let T1, T2, . . . , Tk
denote the subtrees removed in this manner. The process terminates when the f -
weight of the remaining tree is less than α(G)/ε; we merge the remaining tree with
Tk and the root of the new tree is the root of Tk before merging. Any node in H
not labeled as heavy in this process is called a light hub node. Observe that only the
roots of the subtrees produced are heavy. Note that the f -weight of a tree Ti may be
much greater than α(G)/ε. We remark that this process is slightly different from the
clustering scheme in the proof of Lemma 3.3 which produces edge-disjoint clusters but
allows a node to be in multiple clusters; we want node-disjoint clustering here since
H is a virtual graph and each node represents a subgraph of G. We next describe
a process that takes the trees T1, T2, . . . , Tk and uses them to recover edge-disjoint
clusters of f -weight Θ(α(G)/ε) from each Ti.

Assume without loss of generality that the nodes have been renumbered so that
v(xi) is the root of the tree Ti for 1 ≤ i ≤ k. We describe the creation of two sets of
edge-disjoint clusters Ci and C′

i from each Ti. From Ti we create an expanded tree T ′
i

for Ti as follows. We replace the root node v(xi) by an arbitrary rooted spanning tree
of the graph G(xi), and any edge (v(x�), v(xi)) in Ti is replaced by an edge (v(x�), v)
where v is some node in G(xi) that is connected to some node in G(x�). We emphasize
that only the root node of Ti is expanded into a spanning tree; the nodes of T ′

i are
the nodes of G(xi) and the nonroot nodes of Ti. Thus T ′

i is a rooted tree that has
the property that for each hub node v(x�) ∈ T ′

i , the total weight of the subtree of T ′
i

rooted under v(x�) is at most α(G)/ε. The nodes of G(xi) inherit their f -weight in the
expanded tree T ′

i while the f -weight of each hub node of T ′
i is the same as its weight

in Ti. We now use the clustering scheme of Lemma 3.3 on T ′
i to create edge-disjoint

clusters using the f -values as weights such that each cluster has an f -weight between
α(G)/ε and 2α(G)/ε. Let C′

i denote the set of clusters that we create for the tree
T ′
i . Since any hub node in T ′

i has the property that its subtree has f -weight at most
α(G)/ε, the clustering scheme ensures that each light hub node appears in exactly
one cluster. Given any cluster in C ∈ C′

i, we can expand C into a cluster in G(x) by
replacing any light hub node v(x�) in the cluster C by a spanning tree of G(x�); the
expanded cluster C would be used for routing demands originating at the leaf nodes
in L(x�).

We observe that the preceding process that created the clusters in C′
i used up

the graph G(xi) (via its spanning tree expansion) to connect the light hub nodes
in the tree Ti. We also need to ensure that the leaf nodes in L(xi) corresponding to
the root node of Ti are also assigned to a cluster. We create an alternate cluster for
this purpose. We define Ci to be the single cluster defined by an arbitrarily chosen

1488 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

spanning tree of the connected subgraph of G(x) induced by Ti and let Ci = {Ci}.
Note that the f -weight of Ti is at least α(G)/ε. We only assign the cluster to the leaf
nodes L(xi), although the other nodes contribute to the f -weight of Ci.

For each i ∈ [1..k], the clusters in C′
i are edge-disjoint by construction, and there

is only a single cluster in Ci. However, the cluster Ci ∈ Ci can share edges with
clusters in C′

i. The leaves L(xi) of the root of Ti participate in the clusters of C′
i but

are not assigned to them. Similarly, the leaves L(x�) of a nonroot hub node v(x�)

participate in the single cluster of Ci but are not assigned to it. Let C(x) =
⋃k

j=1 Ci
and C′(x) =

⋃k
j=1 C′

i. Since the trees T1, . . . , Tk are node-disjoint, the clusters in C(x)
are edge-disjoint, and the clusters in C′(x) are edge-disjoint. In our online routing
scheme, we will choose uniformly at random one of C(x) or C′(x) for routing, ensuring
edge-disjointness among the clusters utilized in the routing.

Remark. The clustering scheme can be somewhat simplified if we settle for a
congestion of 4+ ε instead of 2+ ε. We could allow an edge to be in up to two clusters
and have a single set of clusters for each x instead of keeping track of C′(x) and C(x)
and accounting for them separately.

The lemma below summarizes a key property of the clustering scheme defined
above.

Lemma 4.2. Let C be any cluster in C(x) ∪ C′(x). Let S = {(s′1, t′1), . . . , (s′j , t′j)}
be a set of requests routable in T such that for 1 ≤ i ≤ j, (i) lca(s′i, t

′
i) = r and (ii)

the last bottleneck node for s′i is x. Then the number of requests in S with a source
assigned to C is at most 2α(G)/ε.

Proof. Let L′(x) be the set of leaves in T (x) such that x is the last bottleneck
node for them; note that L′(x) ⊆ L(x). Any z ∈ L′(x) has an edge of capacity less
than α(G)/ε on the path P [z � x]. By assumption, {s′1, . . . , s′j} ⊆ L′(x). Since S is
routable in T , for each pair (s′i, t

′
i) the path from s′i to r goes via x. In computing the

flow f , we truncated the edge-capacities to α(G)/ε; this does not affect the routability
of the pairs in S.

Now first consider the case that C ∈ C(x). Then C corresponds to some heavy
hub node, say, v(xi), and is only assigned the leaf nodes in L(xi). Since uT ′(xi, x) ≤
α(G)/ε and S is routable in T , it follows that at most α(G)/ε requests in S can
originate in C. Now consider a cluster C ∈ C′(x). Suppose C was created from the
tree T ′

i for some 1 ≤ i ≤ k. Then for any light hub node xj , the cluster C either
contains all leaves in L(xj) or no leaves from L(xj), along with a subset of leaf nodes
in the set L(xi). (Recall that v(xi) is the heavy hub node identified with the tree T ′

i .)
Let v(x�1), . . . , v(x�q) be the light hub nodes whose leaves appear in C. Then by our
clustering process,

∑q
j=1 uT ′(xj� , x) ≤ 2(α(G)/ε), and thus the number of demands

in S that originate from C cannot exceed 2α(G)/ε, as claimed in the lemma.

Overall algorithm. Recall that in the preprocessing step we have already restricted
to demands with a least common ancestor at some fixed level �∗ in the Räcke tree.
We summarize below the online algorithm for routing demands whose ancestor is a
particular node r. At the outset we fix two integers �1, �2 ∈ {1, 2, . . . , h(T)} which
are chosen independently at random. Recall that we let Γ1 and Γ2 denote the set
of all nodes at level �1 and level �2, respectively, in the tree T . For each node in
x ∈ Γ1, we compute the set of clusters C(x) and C′(x). We choose uniformly at
random between the clustering C(x) and C′(x). If C(x) is chosen, each leaf node v
such that v appears in the subtree of a heavy hub node is assigned the unique cluster
in C(x) in which it appears, and all other leaf nodes do not get a cluster assignment.
If C′(x) is chosen, then each leaf node v such that v appears in the subtree of a light

ALL-OR-NOTHING MULTICOMMODITY FLOW 1489

hub node is assigned the unique cluster in C′(x) in which it appears, and all other
leaf nodes do not get a cluster assignment. Thus each leaf node in G(x) gets assigned
a cluster with probability 1/2. We do the same random cluster assignment for each
node y ∈ Γ2.

(a) Consider an arriving request (s, t). Reject it outright if either of the following
conditions holds:

• lca(s, t) is not r or
• the levels of last bottleneck nodes of s and t are not �1, �2.

(b) Let x, y be the last bottleneck nodes of s, t, respectively; x is at level �1 and
y is at level �2. We accept the request (s, t) if all three conditions below are
satisfied:
(b1) s is either a self-clustered node (i.e., a leaf node) or it was assigned a Γ1-

cluster at the beginning of the algorithm, and t is either a self-clustered
node (i.e., a leaf node) or it was assigned a Γ2-cluster at the beginning
of the algorithm.

(b2) If s is not a self-clustered node, then its assigned Γ1-cluster is unused
thus far, and if t is not a self-clustered node, then its Γ2-cluster is unused
thus far, and

(b3) There is a path in T of residual capacity at least α(G)/ε from each of x
and y to r.

(c) If the pair (s, t) is accepted, we proceed as follows. If node s is not self-
clustered, it distributes one unit of flow to nodes in its cluster in accordance
with the weight function f such that a node z with weight f(z) received a
flow of at most f(z)·ε/α(G). Each of the nodes in the cluster in turn sends its
flow to the root according to the Räcke distribution at the root. If we route
using a cluster, we mark it as used; this does not apply to a self-clustered
node. We next remove a capacity of α(G)/ε from the edges along the path
from x to r. We proceed in a similar manner for the node t and remove a
capacity of α(G)/ε from the edges along the path from y to r.

Analysis. We first observe that the algorithm correctly routes the accepted pairs.
For each routed pair (s, t), the algorithm creates a unit flow from s to the root r in
T . This corresponds to s distributing one unit of flow to the nodes in G according
to the Räcke distribution given by r. Similarly t distributes one unit of flow to the
nodes in G according to the Räcke distribution given by r. This ensures that each
accepted pair has a unit flow sent from s to t.

We now bound the congestion on the edges induced by the routing of the accepted
pairs.

Lemma 4.3. The algorithm routes the accepted pairs such that the flow on an
edge e with capacity u(e) is at most 2 + 2εu(e).

Proof. For each demand pair (s, t) routed by the online algorithm, the routing uses
a cluster for the source s, a cluster for the destination t, and a routing to distribute
flow from the nodes in the cluster of s to the nodes in the cluster of t. The routing
inside the clusters for source nodes creates at most a congestion of 1 on each edge
in G since for any pair of nodes x′, x′′ ∈ Γ1, the graphs G(x′) and G(x′′) are node-
disjoint, the clusters for a node x are edge-disjoint, and each cluster is used at most
once. Similarly, the routing inside the clusters for destination nodes creates at most a
congestion of 1 on each edge in G. Finally, we claim that for any edge e in G, the total
capacity utilized in the Räcke routings over all pairs is at most 2εu(e). Consider a leaf
node z and let f ′(z) be the total flow it receives from all end nodes of accepted pairs

1490 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

that it then sends to the root using the Räcke distribution. It suffices to prove that
T supports a simultaneous flow of α(G)/(2ε) · f ′(z) from each leaf node z to the root
r; this implies that in G these routings induce a congestion of at most 2εu(e). To see
this, focus on a node x ∈ Γ1. If x is a leaf, then it belongs to its own cluster each time
a pair with endpoint x is routed, we remove α(G)/ε capacity on the path P [x � r].
Now suppose x is an internal node. For each routed pair (s, t) with s ∈ L(x), we
remove a capacity of α(G)/ε on the path P [x � r]. Therefore, what remains is to
ensure each leaf z ∈ L(x) can route α(G)/(2ε) · f ′(z) to x. Note that z is in at most
one cluster in G(x) and since a cluster is used at most once, f ′(z) ≤ 2ε/α(G) · f(z)
by the algorithm’s routing. (The factor of 2 is to account for the fact that x may also
be in Γ2 for the destination nodes.) Recall that, by definition, the leaves in L(x) can
simultaneously send a flow of f(z) each to x in T .

Thus the overall flow on an edge e at most 2 + 2εu(e).

We now show that the online algorithm routes in expectation a polylogarithmic
fraction of demands routed by an optimal solution. Fix an optimal solution OPT
where we only consider demands (s, t) with lca(s, t) = r. Let SOPT be the set of
demand pairs st routed in OPT such that the levels of last bottleneck nodes of s and
t are �1 and �2, respectively. Note that SOPT is a random set and that E[SOPT] ≥
OPT/h(T)2; we use the fact that the pairs or ordered for this claim. Let SON denote
the set of demands routed by the online algorithm.

Lemma 4.4. The expected size of the set SOPT \ SON is bounded by (3|SOPT \
SON|)/4 + O(α(G)/ε) · |SON|. Thus in expectation, we have |SON| = Ω(ε/α(G)) ·
|SOPT|.

Proof. Consider any demand (s, t) ∈ SOPT \ SON. The probability that (s, t)
is rejected in step (b1) above is bounded by 3/4, and thus the expected number of
demands rejected in this manner is at most (3|SOPT \ SON|)/4. We now account
for the remaining demand pairs in SOPT \ SON and show that their number can be
bounded by O(α(G)/ε)|SON|.

If (s, t) is rejected in step (b2) above, then SON contains a demand (s′, t′) such
that either s, s′ share a cluster of node x ∈ Γ1 or t, t′ share a cluster of a node y ∈ Γ2.
If s, s′ share a cluster we charge (s, t) to the demand (s′, t′) routed in SON. From
Lemma 4.2, the total number of requests in SOPT that can originate in the clusters
of s and t is bounded by 2α(G)/ε each. Therefore we charge each demand in SON at
most 4α(G)/ε times in this manner.

We now account for demands that are rejected in step (b3) above. We observe
that if a demand routed in SOPT shares an edge in T with a demand routed in SON

along the path from x to r, then it must share all the edges on the path from x to
r (since we only consider demands with least common ancestor r). Similarly, if a
demand routed in SOPT shares an edge with a demand routed in SON along the path
from y to r, then it must share all the edges on the path from y to r. Since we remove
α(G)/ε capacity along the paths from x and y to r for each demand routed in SON,
we can account for all demands in SOPT rejected in step (b2) by charging at most
2α(G)/ε demands to each demand in SON.

Thus combining accounting of demands rejected in steps (b1), (b2), and (b3), we
get |SOPT \ SON| ≤ (3|SOPT \ SON|)/4+ 6(α(G)/ε)|SON|. Hence |SON| = Ω(ε/α(G)) ·
|SOPT|.

Since E[SOPT] ≥ OPT/h(T)2, we have that E[SON] = Ω(OPT · ε/(α(G)h(T)2)).
Finally, since we lose an additional factor of h(T) in the preprocessing phase, we
obtain the following theorem.

ALL-OR-NOTHING MULTICOMMODITY FLOW 1491

Theorem 4.5. For any ε > 0, the online algorithm routes in expectation an
Ω
(

ε
(h(T))3α(G)

)
-fraction of demands routed in an optimal solution. Moreover, the flow

on each edge e in the graph G is bounded by 2+ εu(e) in the solution generated by the
online algorithm.

Extension to nonunit demands. Now we consider the case when request pairs
may have different demands. The ideas here are standard and have been used several
times in the literature and therefore we only give a sketch of the arguments. Let d(st)
denote the demand for pair st. The objective function is the amount of total demand
routed; in other words routing a demand st gives a value d(st). We assume that dmax ≤
umin. We assume by scaling that umin = 1 and hence d(st) ≤ 1 for each pair. Call
a demand pair st large if d(st) > 1/2; otherwise it is small. The algorithm randomly
chooses upfront whether to route only demands that are large or only demands that
are small. This affects the expected profit only by a factor of 2. If all demands are
large, then we can simply use the unit-demand online algorithm by pretending that
each of the large demands has a unit demand. If all demands are less than 1/2 we can
apply the same algorithm as the one described above for the unit demand problem
with the following minor changes. When routing a demand on the tree we keep track
of the capacity used by the demand. When using a cluster, we let multiple demands
use a cluster as long as the total sum of the demands using the cluster does not exceed
1. The analysis is similar to the unit-demand problem. The reason to split into large
and small demands follows standard ideas and avoids the following situation. Consider
a graph consisting of a single edge of capacity 1. If a small demand of size ε arrives
first and the algorithm accepts, then the adversary gives a demand of size 1 which
cannot be routed. If the algorithm rejects the first demand, then the adversary gives
no further demands. Clearly no deterministic algorithm can overcome this situation.
On the other hand if all demands are guaranteed to be at most 1/2, then it can be
seen that accepting the first demand is not a problem in the throughput measure.

5. Conclusions. We obtained a polylogarithmic approximation for the
an-mcf problem, a natural relaxation of the edge-disjoint path problem. A main
technical tool is the hierarchical graph decomposition that Räcke developed for obliv-
ious routing. In subsequent work [12] we introduce a general framework for approx-
imating routing problems that relies on well-linked decompositions. The Räcke tree
based algorithm in this paper can be viewed in that framework; the tree implic-
itly gives a well-linked decomposition (in fact the general framework is inspired by
this observation). In this paper the approximation ratio we obtained for an-mcf is
O(α(G, T)h(T)), where T is a Räcke tree for G, α(G, T) is the congestion bound,
and h(T) is the height of the tree. If one is interested in the cardinality version of
the problem, then an O(α(G, T)) bound can be obtained; thus the ratios that we
give in this paper can be improved by a logarithmic factor for the cardinality version.
In particular it can be shown that the tree T yields an O(α(G, T))-well-linked de-
composition. Well-linked decompositions can also be obtained for node-capacitated
routing problems [12], while it is known that there are no oblivious routings with
polylogarithmic congestion in the node-capacitated setting [23]. The well-linked
framework and related ideas have led to several new algorithms [11, 12, 13, 14, 27, 15]
for disjoint paths and an-mcf. In some recent work Räcke [34] obtained an asymp-
totically optimal bound of O(log n) for oblivious routing. This new result also re-
lies on hierarchical graph decompositions but differs in an important technical way
from the previous approach [33, 24]. The desired oblivious routing is constructed
from a convex combination of hierarchical decompositions (trees); each tree in the

1492 C. CHEKURI, S. KHANNA, AND F. B. SHEPHERD

decomposition is a Räcke tree. Several algorithmic applications that rely on a single
hierarchical decomposition can be modified to rely on the convex decomposition (see
[34]). However, it is not apparent yet whether the convex decomposition would yield
a well-linked decomposition with an O(log n) ratio; if it did, the ratio would match
a lower bound (shown in the conference version of [15] but to appear in the journal
version of [11]).

It is an interesting open problem to obtain improved online algorithms for the
an-mcf problem. We believe that a polylogarithmic competitive ratio can be obtained
with congestion (1 + ε). Finally, is there a deterministic algorithm that achieves a
polylogarithmic competitive ratio with constant congestion?

Acknowledgments. The authors thank two anonymous reviewers for their
detailed comments, which helped improve the paper.

REFERENCES

[1] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar, and L. Zhang, In-
approximability of edge-disjoint paths and low congestion routing on undirected graphs,
Combinatorica, 30 (2010), pp. 485–520.

[2] D. Applegate and E. Cohen, Making intra-domain routing robust to changing and uncer-
tain traffic demands: Understanding fundamental tradeoffs, in Proceedings of ACM SIG-
COMM, 2003, pp. 313–324.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line routing of virtual circuits
with applications to load balancing and machine scheduling, J. ACM, 44 (1997), pp. 486–
504.

[4] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive online routing, in Proceed-
ings of IEEE FOCS, 1993, pp. 32–40.

[5] Y. Azar and O. Regev, Combinatorial algorithms for the unsplittable flow problem, Algorith-
mica, 44 (2006), pp. 49–66.

[6] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, Optimal oblivious routing in
polynomial time, J. Comput. System Sci., 69 (2004), pp. 383–394.

[7] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, Online oblivious routing, in Proceedings
of SPAA, 2003, pp. 44–49.

[8] M. Bienkowski, M. Korzeniowski, and H. Räcke, A practical algorithm for constructing
oblivious routing schemes, in Proceedings of SPAA, 2003, pp. 24–33.

[9] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, Approximation algorithms for the
unsplittable flow problem, Algorithmica, 47 (2007), pp. 53–78.

[10] C. Chekuri and S. Khanna, Edge disjoint paths revisited, ACM Trans. Algorithms, 3 (2007).
[11] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs, in Pro-

ceedings of IEEE FOCS, 2004, pp. 71–80.
[12] C. Chekuri, S. Khanna, and F. B. Shepherd, Multicommodity flow, well-linked terminals,

and routing problems, in Proceedings of ACM STOC, 2005, pp. 183–192.
[13] C. Chekuri, S. Khanna, and F. B. Shepherd, An O(

√
n) approximation and integrality gap

for disjoint paths and unsplittable flow, Theory Comput., 2 (2006), pp. 137–146.
[14] C. Chekuri, S. Khanna, and F. B. Shepherd, A note on multiflows and treewidth, Algorith-

mica, 54 (2009), pp. 400–412.
[15] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs with

constant congestion, SIAM J. Comput., 39 (2009), pp. 281–301.
[16] C. Chekuri, M. Mydlarz, and F. B. Shepherd, Multicommodity demand flow in a tree and

packing integer programs, ACM Trans. Algorithms, 3 (2007).
[17] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar, Hardness of directed routing with

congestion, in Proceedings of ACM STOC, 2007, pp. 165–178.
[18] Y. Dinitz, N. Garg, and M. X. Goemans, On the single source unsplittable flow problem,

Combinatorica, 19 (1999), pp. 17–41.
[19] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow

problems, SIAM J. Comput., 5 (1976), pp. 691–703.
[20] A. Frank, Packing paths, cuts, and circuits—a survey, in Paths, Flows and VLSI-Layout,

B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer-Verlag, Berlin, 1990,
pp. 49–100.

ALL-OR-NOTHING MULTICOMMODITY FLOW 1493

[21] N. Garg, V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for inte-
gral flow and multicut in trees, Algorithmica, 18 (1997), pp. 3–20.

[22] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis, Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems, J. Comput. System Sci., 67 (2003), pp. 473–496.

[23] M. T. Hajiaghayi, R. D. Kleinberg, T. Leighton, and H. Räcke, Oblivious routing on
node-capacitated and directed graphs, ACM Trans. Algorithms, 3 (2007).

[24] C. Harrelson, K. Hildrum, and S. Rao, A polynomial-time tree decomposition to minimize
congestion, in Proceedings of SPAA, 2003, pp. 34–43.

[25] J. M. Kleinberg, Single-source unsplittable flow, in Proceedings of IEEE FOCS, 1996,
pp. 68–77.

[26] J. M. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, Ph.D. thesis, MIT,
Cambridge, MA, 1996.

[27] J. M. Kleinberg, An approximation algorithm for the disjoint paths problem in even-degree
planar graphs, in Proceedings of IEEE FOCS, 2005, pp. 627–636.

[28] S. G. Kolliopoulos and C. Stein, Improved approximation algorithms for unsplittable flow
problems, SIAM J. Comput., 31 (2001), pp. 919–946.

[29] P. Kolman and S. Scheideler, Improved bounds for the unsplittable flow problem, J. Algo-
rithms, 61 (2006), pp. 20–44.

[30] T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in de-
signing approximation algorithms, J. ACM, 46 (1999), pp. 787–832.

[31] T. Leighton, S. Rao, and A. Srinivasan, Multicommodity flow and circuit switching, in
Proceedings of the Hawaii International Conference on System Sciences (HICSS), 1998,
pp. 459–465.

[32] B. Maggs, G. Miller, O. Parekh, R. Ravi, and S. L. M. Woo, Finding effective support-tree
preconditioners, in Proceedings of SPAA, 2005, pp. 176–185.

[33] H. Räcke, Minimizing congestion in general networks, in Proceedings of IEEE FOCS, 2002,
pp. 43–52.

[34] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in
Proceedings of ACM STOC, 2008, pp. 255–264.

[35] S. Plotkin, Competitive routing of virtual circuits in ATM networks, IEEE J. Selected Areas
in Communications, 13 (1995), pp. 1128–1136.

[36] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[37] N. Robertson and P. D. Seymour, Graph Minors XIII. The Disjoint Paths Problem, J.
Comb. Theory, Ser. B, 63(1), 1995, pp. 65–110, http://dx.doi.org/10.1006/jctb.1995.1006.

[38] A. Srinivasan, Improved approximations for edge-disjoint paths, unsplittable flow, and related
routing problems, in Proceedings of IEEE FOCS, 1997, pp. 416–425.

[39] K. Varadarajan and G. Venkataraman, Graph decomposition and a greedy algorithm for
edge-disjoint paths, in Proceedings of ACM-SIAM SODA, 2004, pp. 379–380.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

