
Set Cover in the One-pass Edge-arrival Streaming Model
Sanjeev Khanna

Department of Computer and

Information Science, University of

Pennsylvania

Philadelphia, PA, US

sanjeev@cis.upenn.edu

Christian Konrad

Department of Computer Science,

University of Bristol

Bristol, UK

christian.konrad@bristol.ac.uk

Cezar-Mihail Alexandru

Department of Computer Science,

University of Bristol

Bristol, UK

ca17021@bristol.ac.uk

ABSTRACT

We study the Set Cover problem in the one-pass edge-arrival stream-

ing model. In this model, the input stream consists of a sequence of

tuples (𝑆,𝑢), indicating that element 𝑢 is contained in set 𝑆 . This

setting captures the streamingDominating Set problem and is more

general and harder to solve than the Set Cover set-arrival setting,
where entire sets with all their elements arrive in the stream one-

by-one.

We prove the following results (𝑛 is the size of the universe,𝑚

is the number of sets):

(1) A work by [Khanna, Konrad, ITCS’22] on streaming Dom-
inating Set implies a one-pass Õ(

√
𝑛)-approximation algo-

rithmwith space Õ(𝑚) for edge-arrival Set Cover in adversar-
ially ordered streams. We show that this space bound is best

possible up to poly-log factors in that every 𝛼-approximation

algorithm, for 𝛼 = Ω(
√
𝑛), requires space Ω̃(𝑚𝑛2

𝛼4
) in ad-

versarially ordered streams, even if the algorithm is only

required to output an 𝛼-approximation of the size of an opti-

mal cover.

(2) As our main result, we give a one-pass Õ(
√
𝑛)-approximation

algorithm with space Õ(𝑚√
𝑛
) for edge-arrival Set Cover in

random order streams. This result together with the lower

bound mentioned above establishes a strong separation be-

tween the adversarial and random order settings.

(3) Finally, in adversarial order streams, we show that non-trivial

algorithms with space 𝑜 (𝑚) can be achieved at the expense

of increased approximation factors Ω̃(
√
𝑛), which is in con-

trast to the set-arrival setting, where space Õ(𝑛) is enough
for a Θ(

√
𝑛)-approximation, and space Ω(𝑛) is needed for

an 𝑜 (𝑛/log𝑛)-approximation. We give an 𝛼-approximation

algorithm for one-pass edge-arrival Set Cover with space

Õ(𝑚𝑛
𝛼2
), for every 𝛼 = Ω̃(

√
𝑛).

CCS CONCEPTS

• Theory of computation→ Streaming models; Streaming,

sublinear and near linear time algorithms.

KEYWORDS

Streaming Algorithms, Set Cover, Random Order, Lower Bounds

This work is licensed under a Creative Commons Attribution

International 4.0 License.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0127-6/23/06.

https://doi.org/10.1145/3584372.3588678

ACM Reference Format:

Sanjeev Khanna, Christian Konrad, and Cezar-Mihail Alexandru. 2023. Set

Cover in the One-pass Edge-arrival Streaming Model. In Proceedings of the

42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3584372.3588678

1 INTRODUCTION

The advent of Big Data has fueled the need for algorithms that are

able to process huge quantities of data while maintaining a memory

that is much smaller than the size of the input. Data streaming

algorithms fulfil this role and have received significant attention

since more than two decades. A data streaming algorithm processes

its input sequentially in a single pass (or few passes) and uses a

memory of size sublinear in the input size. We are interested in

how well fundamental problems can be solved in this model, in

particular, how the space requirements of such algorithms depend

on the desired solution quality, as well as on various other aspects

of the model, such as the arrival order of the input data or the

number of passes.

In this paper, we consider the Set Cover problem in the one-pass

streaming model. In Set Cover, we are given a universeU of size

𝑛 and a family S = {𝑆1, . . . , 𝑆𝑚} of𝑚 subsets 𝑆𝑖 ⊆ U, 𝑖 ∈ [𝑚], of
the universeU. The objective is to output a smallest subset T ⊆ S
that covers the entire universe, i.e., such that

⋃
𝑆∈T 𝑆 = U, and

a cover certificate 𝐶 : U → T , indicating for each element 𝑢 a

set in T that covers/contains 𝑢. We will consider approximation

algorithms for Set Cover. We say that a (streaming) algorithm is an

𝛼-approximation algorithm if it outputs a cover of size at most 𝛼

times the size of a smallest set cover.

Set Cover in the Set-arrival Model. Set Cover in the so-called

set-arrival model has been extensively studied in the literature

[1, 4, 10, 12, 13, 15, 22]. In the set-arrival model, a streaming algo-

rithm sees a sequence of the input sets in arbitrary order, where each

set arrives together with all its elements. The one-pass setting in

the set-arrival model is fully understood: For any 𝛼 = 𝑜 (
√
𝑛), results

by Assadi, Khanna, and Li [4] show that space Θ̃(𝑚𝑛𝛼)
1
is neces-

sary and sufficient. It is also known that an Θ(
√
𝑛)-approximation

can be computed with space Õ(𝑛) [10, 13]. Together, these results
show that set-arrival Set Cover undergoes a phase transition at ap-

proximation factor 𝛼 = Θ(
√
𝑛), namely, Õ(𝑛) space is sufficient for

𝑂 (
√
𝑛)-approximation but Θ̃(𝑚𝑛𝛼) space is needed for 𝛼 = 𝑜 (

√
𝑛).

Furthermore, it is not hard to see that the lower bound for stream-

ing Dominating Set by [19] also applies to set-arrival Set Cover and

1
We write Õ, Θ̃, and Ω̃ to mean𝑂,Θ and Ω, respectively, where poly log factors are

suppressed.

127

https://orcid.org/0009-0000-2601-1689
https://orcid.org/0000-0003-1802-4011
https://orcid.org/0009-0009-2921-7434
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3584372.3588678
https://doi.org/10.1145/3584372.3588678
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584372.3588678&domain=pdf&date_stamp=2023-06-18

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

shows that space Ω(𝑛) is necessary for any approximation factor

𝑜 (𝑛/log𝑛).

Set Cover in the Edge-arrival Model. In this paper, we study Set
Cover in the one-pass edge-arrival model. In this model, the input

stream consists of a sequence of tuples (𝑆,𝑢), indicating that ele-

ment 𝑢 ∈ U is contained in set 𝑆 . Bateni et al. [6] were the first to

consider this model and gave a 𝑝-pass ((1+𝜖) log𝑛)-approximation

streaming algorithm with space Õ(𝑚𝑛𝑂 (
1

𝑝
) + 𝑛). The edge-arrival

setting also appeared in a work by Indyk et al. [16] who observed

that their multi-pass streaming algorithm for fractional Set Cover
can also be implemented in the edge-arrival setting. Furthermore,

Khanna and Konrad [19] studied the Dominating Set problem in

the graph streaming model, which can be seen as a special case

of edge-arrival Set Cover with𝑚 = 𝑛 sets. Their results imply the

following algorithm:

Theorem 1 ([19] KK-algorithm). There is a randomized one-

pass Õ(
√
𝑛)-approximation streaming algorithm for edge-arrival Set

Cover with space Õ(𝑚). We will refer to this algorithm as the KK-

algorithm.

Since the edge-arrival setting is more general than the set-arrival

setting, lower bounds for Set Cover in the set-arrival setting, in

particular, the Ω̃(𝑚𝑛/𝛼) space lower bound for𝛼 = 𝑜 (
√
𝑛) by Assadi

et al. [4], also applies to the edge-arrival setting. Furthermore, since

the Õ(𝑚𝑛𝛼)-space algorithm byAssadi et al. can also be implemented

in the edge-arrival setting (see the Appendix of [19] for details), the

edge-arrival setting is also completely understood for 𝛼 = 𝑜 (
√
𝑛).

The KK-algorithm together with the Ω̃(𝑚𝑛𝛼) space lower bound
by Assadi et al. imply that, similar to the set-arrival setting, Set
Cover in the edge-arrival setting also undergoes a phase transition

at approximation factor 𝛼 = Θ̃(
√
𝑛).

1.1 Our Results

While the regime 𝛼 = 𝑜 (
√
𝑛) is fully understood for edge-arrival

Set Cover in the adversarial order setting, the space complexity

for 𝛼 = Ω(
√
𝑛) is open. In our first result, we resolve the space

complexity for 𝛼 = Θ̃(
√
𝑛) up to poly-logarithmic factors, showing

that space Ω̃(𝑚) is necessary, which renders the KK-algorithm

(Theorem 1) best possible:

Theorem 2. Let 𝛼 ≥
√
𝑛. Then any randomized 𝛼-approximation

one-pass streaming algorithm for edge-arrival Set Cover in adversarial
order streams requires Ω̃(𝑚𝑛2/𝛼4) space, even if the algorithm is only

required to output an 𝛼-approximation of the size of an optimal cover.

The fact that our lower bound even holds for algorithms that only

output an approximation of the optimal set cover size is a substantial

strength. Indeed, the Ω(𝑚𝑛/𝛼) lower bound for 𝛼 = 𝑜 (
√
𝑛) by

Assadi, Khanna, and Li [4] crucially relies on the fact that algorithms

output a cover certificate, and it is an open problem whether this

requirement can be lifted.

Next, as ourmain result, we give a one-pass Õ(
√
𝑛)-approximation

streaming algorithm with space Õ(𝑚√
𝑛
) for random order streams,

i.e., streams where the arrival order of the tuples (𝑆,𝑢) is chosen uni-
formly at random. This result together with the lower bound stated

in Theorem 2 establish a strong separation between the adversarial

and random order settings.

Approx. Space Stream order Ref.

𝛼 = 𝑜 (
√
𝑛) Θ̃(𝑚𝑛𝛼) adversarial [4]

𝛼 = Θ̃(
√
𝑛) Õ(𝑚) adversarial [19]

𝛼 = Ω̃(
√
𝑛) Ω̃(𝑚𝑛2

𝛼4
) LB, Õ(𝑚𝑛

𝛼2
) UB adversarial here

𝛼 = Θ̃(
√
𝑛) Õ(𝑚√

𝑛
) random here

Table 1: Set Cover in the one-pass edge-arrival model

Theorem 3. Suppose that𝑚 = Ω̃(𝑛2) ∩ poly(𝑛). Then, there is a
randomized one-pass Õ(

√
𝑛)-approximation streaming algorithm for

edge-arrival Set Cover with space Õ(𝑚√
𝑛
), when the input stream is

in random order.

Random order streams have received significant attention in

the data streaming literature for a variety of problems, including

matchings [2, 7, 17, 18, 20], ruling sets [3], frequency moments

[8], and submodular maximization [14]. The random order model

is considered to be a more realistic model than the worst-case

(adversarial) order model since, in practice, data rarely arrives in

the worst possible order. Regarding Set Cover, our paper is the first
to study edge-arrival Set Cover in random order streams. In the set-

arrival setting, it is known that the one-pass random order setting

is not easier than the adversarial order setting for approximation

factors 𝛼 = 𝑜 (
√
𝑛) [4].

Last, returning to the adversarial order setting, we show that

the regime 𝛼 = Ω̃(
√
𝑛) is non-trivial in the edge-arrival setting,

which is counter to the set-arrival setting, where space Θ̃(𝑛) is
enough for aΘ(

√
𝑛)-approximation and necessary for an𝑜 (𝑛/log𝑛)-

approximation. We obtain the following result:

Theorem 4. For any 𝛼 = Ω̃(
√
𝑛), there is a randomized one-pass

streaming algorithm for Set Cover with expected approximation ratio

𝛼 in the edge-arrival model with space Õ(𝑚𝑛
𝛼2
).

While the lower bound of Theorem 2 and the upper bound of

Theorem 4 match up to poly-logarithmic factors for 𝛼 = Θ̃(
√
𝑛), we

leave it as an interesting open problem to close the gap between

the two bounds for other values of 𝛼 = Ω̃(
√
𝑛).

Table 1 summarizes all results known on the edge-arrival setting.

1.2 Techniques

We describe below the techniques used behind our results. We will

describe the techniques behind our main result, our random order

streaming algorithm, last since this description builds upon the

description of our adversarial order algorithm.

Lower Bound for Adversarial Order Streams. We first discuss our

Ω̃(𝑚𝑛2/𝛼4) space lower bound for 𝛼-approximation algorithms.

Our lower bound is proved in the one-way multi-party commu-

nication setting, where each of overall 𝑡 parties holds a portion of

the input instance. The parties communicate via messages in order,

that is, the first party sends a message 𝑀1 to the second, who in

turn sends a message 𝑀2 to the third. This continues until the last

party 𝑡 has received a message𝑀𝑡−1 and then outputs the result of

the protocol. It is well-known that a lower bound on the minimum

message length of the longest individual message implies a space

lower bound for one-pass streaming algorithms.

128

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

We first point out that, in order to prove lower bounds above

Θ̃(𝑛) for an approximation factor 𝛼 = Ω(
√
𝑛), we require 𝑡 =

Ω(𝛼2/𝑛) parties since there is a simple deterministic 𝑡-party proto-

col with approximation factor 2

√
𝑛𝑡 and maximum message length

Õ(𝑛) (omitted due to space restrictions).

Indeed, our lower bound construction uses 𝑡 = Θ(𝛼2
log

2 𝑛/𝑛)
parties and is a reduction from the 𝑡-party version of the Set-
Disjointess problem. In 𝑡-party Set-Disjointess, each party holds a

subset of a universe of size𝑚. The parties are guaranteed that either

their sets are all pairwise disjoint or there is a unique element that

appears in all sets. The goal is to decide between these two cases,

and it is known that every protocol solving 𝑡-party Set-Disjointness
requires at least one message of size Ω(𝑚/𝑡2).

We work with a family of random sets 𝑇1, . . . ,𝑇𝑚 , each of size√
𝑛𝑡 , and partitions of each of these sets into 𝑡 random subsets

𝑇 1

𝑖
, . . . ,𝑇 𝑡

𝑖
of size

√︁
𝑛/𝑡 each such that𝑇𝑖 = 𝑇 1

𝑖
¤∪ . . . ¤∪𝑇 𝑡

𝑖
. Then, given

a 𝑡-party Set-Disjointness instance (𝑆1, . . . , 𝑆𝑡) with 𝑆𝑖 ⊆ [𝑚], every
party 𝑝 includes the partial set 𝑇

𝑝

𝑖
into the Set Cover instance if

and only if 𝑖 ∈ 𝑆𝑝 .
Observe that if the sets (𝑆1, . . . , 𝑆𝑡) are pairwise disjoint, then

every set in the Set Cover instance is of size
√︁
𝑛/𝑡 . On the other

hand, if the sets (𝑆1, . . . , 𝑆𝑡) are uniquely intersecting, then there

exists one set in the Set Cover instance of size
√
𝑛𝑡 . Denote this

set by 𝑇𝑗 . We will argue that, since the parties cannot determine

which is the case, most of the elements of 𝑇𝑗 need to be covered

using other partial sets𝑇
𝑝

𝑗 ′ . However, the sizes of these random sets

are chosen such that with high probability, each partial set 𝑇
𝑝

𝑗 ′ can

cover only 𝑂 (log𝑛) elements of 𝑇𝑗 . Thus, an algorithm requires

Ω(
√
𝑛𝑡/log𝑛) such sets to cover 𝑇𝑗 while the single set 𝑇𝑗 may in

fact be part of the input. The approximation guarantee, therefore,

is 𝛼 = Ω(
√
𝑛𝑡/log𝑛), which allows us to choose 𝑡 = Θ(𝛼2

log
2 𝑛/𝑛)

to yield a lower bound of Ω(𝑚/𝑡2) = Ω(𝑚𝑛2/(𝛼4
log

4 𝑛)).
The implementation of this idea requires the last party to fork

the execution of the algorithm in the reduction𝑚 times. In parallel

run 𝑖 , the setU \𝑇𝑖 is added to the instance, which allows focusing

on covering the elements 𝑇𝑖 . See Section 3 for further details.

Algorithm for Adversarial Order Streams. We will now explain

the ideas underlying our one-pass randomized 𝛼-approximation

algorithm with space Õ(𝑚𝑛/𝛼2), for 𝛼 = Ω̃(
√
𝑛). Our algorithm

constitutes an improvement over the KK-algorithm by Khanna and

Konrad [19]. We will first discuss the KK algorithm and then our

improvements.

The key challenge in designing algorithms for edge-arrival Set
Cover is the fact that sets may be spread out over the input stream

and algorithms cannot take decisions based on the entire content

of a set. In the set-arrival setting where entire sets arrive in the

stream, algorithms can greedily add sets to the solution if they cover

enough not-yet covered elements. This strategy does not work here.

The KK-algorithm provides a solution to this problem based on the

use of uncovered-degree counters for the sets: Every tuple (𝑆𝑖 , 𝑢)
arriving in the stream increments the uncovered-degree 𝑑 (𝑆𝑖) of 𝑆𝑖
if 𝑢 is not yet covered by the algorithm. Intuitively, we only want to

add a set to the solution if it covers enough yet-uncovered elements.

However, since this information is not available at any one moment,

a probabilistic inclusion process is used instead: Whenever the

uncovered degree of a set reaches 𝑖 ·
√
𝑛, for any integral 𝑖 ≥ 1,

the set is included in the solution with probability 2
𝑖 ·
√
𝑛
𝑚 , and, if

included, covers then all elements contained in this set that arrive

from this moment onward in the stream.

The key point of the analysis of the KK-algorithm is to show

that the probabilistic inclusion process does not add too many sets

to the solution. To see this, denote by S𝑖 ⊆ S the subset of level-𝑖

sets, which are those sets with uncovered-degree in [𝑖
√
𝑛, (𝑖 +1)

√
𝑛)

at the end of the stream. Then, according to the inclusion rule, we

expect to add at least |S𝑖 | · 2𝑖 ·
√
𝑛
𝑚 level-𝑖 sets to the solution. In

order for not too many sets to be included, this can only work if

the number of level 𝑖 sets decreases exponentially, and, indeed, it is

shown in [19] that E |S𝑖 | ≤ 1

2
E |S𝑖−1 |, for every 𝑖 , which implies

that each level only contributes Õ(
√
𝑛) sets to the final solution.

TheKK-algorithm requires space Θ̃(𝑚) for storing the uncovered-
degrees of all sets. To go below this space bound, we thus cannot

maintain the uncovered-degrees of all sets. Instead, for each set,

we maintain its current level instead of its uncovered-degree. This

requires us to use a different promotion strategy for the sets to

reach the next level since uncovered-degrees are no longer avail-

able. Whenever a tuple (𝑆𝑖 , 𝑡) arrives in the stream such that 𝑡 is

not yet covered, we increase the level of 𝑆𝑖 with probability
1

𝛼 .

At a first glace, this strategy does not appear to allow us to

decrease the space requirements since we need to maintain the

current level of every set. However, we show that, for 𝛼 = Ω̃(
√
𝑛),

only Õ(𝑚𝑛/𝛼2) sets reach the second level over the course of the

algorithm. Hence, it is sufficient to explicitly store only the levels

of those Õ(𝑚𝑛/𝛼2) sets that were promoted at least once, which

achieves the desired space bound.

Algorithm for Random Order Streams. At a high-level, our ran-

dom arrival order algorithm for set cover aims to simulate the KK

algorithm [19], albeit this time by rotating sets through the memory

in blocks of 𝑂 (𝑚/
√
𝑛) sets at a time: at any given moment in time,

the algorithm tracks arriving edges for only a predetermined collec-

tion of 𝑂 (𝑚/
√
𝑛) sets. Intuitively speaking, even though each set

effectively only sees an𝑂 (1/
√
𝑛)-fraction of the stream, the random

arrival order of the stream should still make it possible to collect a

statistical signal that highlights sets that can cover Ω̃(
√
𝑛) of yet

uncovered elements. However, a number of challenges emerge in

successfully implementing this high-level intuition. First, the length

of the stream that needs to be examined to register such a signal

for a set 𝑆 depends on the number of new elements that 𝑆 is able

to cover. In particular, if this number is 𝛾
√
𝑛, it is crucial that any

such set 𝑆 is included in the solution by the time a �̃� (1/𝛾)-fraction
of the stream is consumed because otherwise, 𝜔 (

√
𝑛) elements that

𝑆 could have covered would have already passed by in the stream.

So the duration of the stream that should be assigned to process-

ing a set needs to depend on how many elements it would end up

covering in the solution. We address this by designing a family

of algorithms that are run successively, where the first algorithm

consumes only about a
1√
𝑛
-fraction of the stream, and in general,

the 𝑖𝑡ℎ algorithm consumes the next
2
𝑖
√
𝑛
-fraction of the stream. This

ensures that every relevant set gets detected in a timely manner,

before too many of its incident edges have passed.

129

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

A second challenge emerges in ensuring that not too many sets

are chosen in our implementation of the KK algorithm. With each

successive level, the KK algorithm geometrically increases the rate

at which a relevant set 𝑆 (one that covers Ω̃(
√
𝑛) of yet uncovered

elements) is sampled. It is then necessary that the number of sets

considered for sampling at each successive level is geometrically

decreasing. This goal is achieved in [19] via the following argument.

If too many sets are being considered for sampling at level 𝑗 , it must

necessarily be the case that some uncovered element 𝑥 is contribut-

ing many edges towards such sets. The original implementation

of the KK algorithm where each set is being tracked at all times,

naturally confers a monotonicity property that ensures that if a

set 𝑆 is chosen for sampling at a level 𝑗 , then it must have been

also chosen for sampling at all previous levels. The analysis in [19]

then shows that with high probability, one of the sets containing

the element 𝑥 would have been sampled before level 𝑗 starts, and

hence element 𝑥 would have been marked as covered when level 𝑗

starts. Both these properties are somewhat difficult to ensure in our

setting since the reduced �̃� (𝑚/
√
𝑛) space requires working with

very sparse information about the sets and elements, making it

hard to ensure either monotonicity or coverage of elements that

have many incident edges.

We ensure monotonicity by demanding an increasingly stronger

statistical signal as we go from one level to the next. This ensures

that if a set 𝑆 is chosen for sampling at a level 𝑗 , then even allow-

ing for stochastic deviations, with high probability, it must have

also been chosen at every previous level. However, an element 𝑥

that would have been covered in the KK algorithm, may continue

providing statistical signal for sampling other sets in our setting

simply because while a set 𝑆 containing the element 𝑥 has been

added to our solution, the actual edge (𝑆, 𝑥) is yet to arrive in the

stream. This can lead to sampling too many sets at level 𝑗 . We

overcome this by tracking another statistical signal with the goal

of identifying elements that would have been covered in the KK

algorithm in a timely manner. This task is made more difficult by

the availability of �̃� (𝑚/
√
𝑛) space. Nonetheless, we show that we

can detect this early enough in the stream and optimistically mark

such elements as covered, and hence prevent them from creating

too many sets for sampling. These ideas together allow us to obtain

a Õ(
√
𝑛)-approximation using only �̃� (𝑚/

√
𝑛) space.

1.3 Further Related Work

Saha and Geetor [22] initiated the study of (set-arrival) Set Cover in
the streaming model and gave a𝑂 (log𝑛)-approximation algorithm

that makes 𝑂 (log𝑛) passes over the input and uses space Õ(𝑛).
Emek and Rosén showed that an 𝑂 (

√
𝑛)-approximation can be

obtained in a single pass with the same amount of space. This has

been extended to multiple passes by Chakrabarti and Wirth [10],

who showed that an𝑂 (𝑛
1

𝑝+1)-approximation can be achieved using

𝑝 passes and space Õ(𝑛), as long as 𝑝 is constant, which, as proved

in their paper, is best possible.

Regarding algorithms that use substantially more space, results

by Assadi [1] and Har-Peled et al. [15] show that, using a poly-

logarithmic number of passes, an 𝛼-approximation can be achieved

using space Õ(𝑚𝑛
1

𝛼) and this space bound is optimal.

Set Cover on massive inputs can be solved well in practice. Most

practical approaches are based on efficient implementations of the

Greedy Set Cover algorithm [11, 21, 23]. It is also known that the

streaming algorithm of Emek and Rosén [13] only produces slightly

larger covers as those produced by Greedy in practice, albeit using

substantially less memory [5].

1.4 Outline

We present in Section 2 a graphical representation of Set Cover
instances that is used throughout the paper. We then give our lower

bound for adversarial order streams in Section 3. Next, we present

our streaming algorithm for the random order setting in Section 4,

and our algorithm for the adversarial order setting is presented in

Section 5. Finally, we conclude in Section 6.

2 PRELIMINARIES

Throughout this paper, we assume that every element 𝑢 ∈ U is

contained in at least one set since otherwise the set cover instance

would not be feasible.

We make use of a representation of the input Set Cover instance
(S,U) with𝑚 = |S| and 𝑛 = |U| as a bipartite graph. This repre-
sentation is obtained by setting S andU as the two bipartitions of

the graph, and for every set 𝑆𝑖 ∈ S and every𝑢 ∈ 𝑆𝑖 , we include the
edge (𝑆𝑖 , 𝑢) in the graph. More formally, we define 𝐺 = (S,U, 𝐸)
with (𝑆𝑖 , 𝑢) ∈ 𝐸 if and only if 𝑢 ∈ 𝑆𝑖 . Then, a cover T ⊆ S of

the input instance corresponds to a subset of vertices of the left

bipartition whose neighborhood equals the entire right bipartition.

3 LOWER BOUND FOR ADVERSARIAL ORDER

STREAMS

In this section, we will prove that every one-pass streaming algo-

rithm for Set Cover in the edge-arrival model with approximation

factor 𝛼 ≥
√
𝑛 requires Ω(𝑚𝑛2/(𝛼4

log
4 𝑛)) space.

Our lower bound is obtained by a reduction from the one-way

𝑡-party version of the Set Disjointness problem. In this problem,

each party 1 ≤ 𝑖 ≤ 𝑡 holds a subset 𝑆𝑖 ⊆ U of the universeU = [𝑛].
The players are promised that either all sets 𝑆1, . . . , 𝑆𝑡 are pairwise

disjoint, i.e., 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ holds, for every 𝑖 ≠ 𝑗 , or the sets uniquely

intersect, i.e., |⋂𝑖 𝑆𝑖 | = 1 and |𝑆𝑖 ∩ 𝑆 𝑗 | = 1, for every 𝑖 ≠ 𝑗 , hold.

The objective is to decide which is the case.

It is well-known that the one-way communication complexity of

𝑡-party Set Disjointness is Ω(𝑛/𝑡) [9], which implies that at least

one of the 𝑡 − 1 messages involved needs to be of size Ω(𝑛/𝑡2).

Theorem 5 ([9]). Let P be a protocol that solves the 𝑡-party Set-
Disjointness problemwith error atmost 1/4. Then, at least onemessage

in P is of size Ω(𝑛/𝑡2).

Our lower bound requires a family of sets with small pairwise

intersection. We first establish the existence of such a set family in

Lemma 1, and then give our lower bound in Theorem 2.

Lemma 1. Let𝑚, 𝑡, 𝑛 be integers with 𝑡 ≤ 𝑛 and𝑚 = 𝑂 (poly(𝑛)).
Then, there exists a family of sets 𝑇1, . . . ,𝑇𝑚 ⊆ [𝑛], each of size

𝑠 =
√
𝑛 · 𝑡 , and partitions of the sets such that, for every 1 ≤ 𝑖 ≤ 𝑚

and 1 ≤ 𝑟 ≤ 𝑡 , 𝑇𝑖 = 𝑇 1

𝑖
¤∪ . . . ¤∪ 𝑇 𝑡

𝑖
and |𝑇 𝑟

𝑖
| = 𝑠

𝑡 =
√︁
𝑛/𝑡 holds, and

130

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

for every 𝑖, 𝑗 and 𝑟 with 𝑖 ≠ 𝑗 :

|𝑇 𝑟𝑖 ∩𝑇𝑗 | = 𝑂 (log𝑛) .

Proof. Wewill show that random sets𝑇1, . . . ,𝑇𝑚 fulfil this lemma

with non-zero probability, which implies the existence of such a set

family.

To this end, suppose that each 𝑇𝑖 is a random subset of [𝑛] of
size 𝑠 =

√
𝑛 · 𝑡 , and let 𝑇𝑖 = 𝑇

1

𝑖
¤∪ . . . ¤∪𝑇 𝑡

𝑖
be a random partition of

𝑇𝑖 . Fix now indices 𝑖, 𝑗 and 𝑟 , with 𝑖 ≠ 𝑗 , and let 𝑇𝑗 = {𝑥1, . . . , 𝑥𝑠 }.
Then:

E[|𝑇 𝑟𝑖 ∩𝑇𝑗 |] =
𝑠∑︁
𝑘=1

Pr[𝑥𝑘 ∈ 𝑇 𝑟𝑖] = 𝑠 ·
𝑠/𝑡
𝑛

=
𝑠2

𝑛 · 𝑡 = 1 .

By Chernoff bounds, we obtain that |𝑇 𝑟
𝑖
∩ 𝑇𝑗 | = 𝑂 (log𝑛) with

probability 1 − 1

𝑛𝐶
, for any constant 𝐶 . Taking a union bound over

all indices 𝑖, 𝑗 and 𝑟 (𝑖 ≠ 𝑗), we see that the previous statement

holds for all such indices with probability 1−𝑚2 · 𝑡 · 1

𝑛𝐶
, which can

be bounded from below by 1 − 1

𝑛 by choosing 𝐶 large enough and

using the fact that𝑚 = 𝑂 (poly(𝑛)). □

Theorem 2. Let 𝛼 ≥
√
𝑛. Then, every 𝛼-approximation one-pass

streaming algorithm for Set Cover in the edge-arrival model with

error probability at most 1/(4𝑚) uses space Ω(𝑚𝑛2/𝛼4
log

4 𝑛), even
if the algorithm only outputs an 𝛼-approximation of the size of an

optimal cover.

Proof. Let 𝑡 be an integer. Let 𝑇1,𝑇2, . . . ,𝑇𝑚 ⊆ [𝑛] with |𝑇𝑖 | =
𝑠 =
√
𝑛 · 𝑡 , for all 𝑖 , be a set family as in the statement of Lemma 1,

i.e., each set 𝑇𝑖 can be partitioned into subsets 𝑇 1

𝑖
, . . . ,𝑇 𝑡

𝑖
, each of

size 𝑠/𝑡 , such that, for any 𝑖, 𝑗, 𝑟 with 𝑖 ≠ 𝑗 , |𝑇𝑖 ∩ 𝑇 𝑟𝑗 | = 𝑂 (log𝑛)
holds.

Let A be an algorithm as in the statement of the theorem, and

let (𝑆1, . . . , 𝑆𝑡) be an instance of 𝑡-party Set-Disjointness with 𝑆𝑖 ⊆
[𝑚]. The 𝑡 parties use A to solve the instance. To this end, every

party 𝑖 includes all the partial sets 𝑇 𝑖
𝑏
with 𝑏 ∈ 𝑆𝑖 in the Set Cover

instance. The parties then executeA on this instance by forwarding

thememory state. More concretely, the first party runsA on the sets

𝑇 1

𝑏
, for every 𝑏 ∈ 𝑆1, and sends the memory state of the algorithm

to the second party. Upon receiving the memory state of A from

party 𝑖 − 1 (𝑖 ≥ 2), party 𝑖 continues the execution of A on the sets

𝑇 𝑖
𝑏
, for every 𝑏 ∈ 𝑆𝑖 .
The last party behaves as follows. After having executed A on

her share of the input, the party forks the execution of A and runs

𝑚 parallel executions. In the parallel execution 𝑗 , the last party

continues the execution of A on set 𝑇 𝑗 = [𝑛] \𝑇𝑗 .
Observe that if (𝑆1, . . . , 𝑆𝑡) uniquely intersect then there exists

a cover of size 2 in the parallel run 𝑗 =
⋂
𝑖 𝑆𝑖 . This is because the

sets 𝑇𝑗 and 𝑇 𝑗 are part of the input in run 𝑗 and form such a cover.

Suppose now that (𝑆1, . . . , 𝑆𝑡) are pairwise disjoint. Then, for
any 1 ≤ 𝑗 ≤ 𝑚, an optimal cover in parallel run 𝑗 is of size at least

OPT0 = 𝑂 (𝑠−𝑠/𝑡
log𝑛
), since the 𝑠 elements in 𝑇𝑗 need to be covered,

which can be achieved by the at most one set 𝑇𝑘
𝑗
, for some 𝑘 , and

then via other sets which, by the properties of the set family, have

an intersection with 𝑇𝑗 of size at most 𝑂 (log𝑛).
The last party generates the output as follows: If one of the

parallel runs returns an estimate of the size of the optimal cover of

at most OPT0 − 1, then the party reports uniquely intersecting. If

no such run exists then the party reports pairwise disjoint.

For the algorithmA to output a solution of size at most OPT0−1

when there is a solution of size 2, it is required that its approximation

factor 𝛼 is such that:

𝛼 · 2 ≤ OPT0 − 1 = 𝑂 (𝑠 − 𝑠/𝑡
log𝑛

) ,

which yields 𝛼 = 𝑂 (𝑠/log𝑛) = 𝑂 (
√
𝑛 · 𝑡/log𝑛). We can thus choose

a value 𝑡 = Θ(𝛼2
log

2 𝑛/𝑛). Then, by Theorem 5, we obtain that A
uses space Ω(𝑚

𝑡2
) = Ω(𝑚𝑛2

𝛼4
log

4 𝑛
).

In order to have correctly invoked Theorem 5, we require that

the probability that none of the parallel runs fail to be at least 3/4.
Using the union bound, we see that this is achieved if the error

probability of A is
1

4𝑚 . □

In the full version of this paper, we give a 𝑡-party protocol with

approximation factor 𝛼 = 2

√
𝑛𝑡 and maximum message length

Õ(𝑛). The existence of such a protocol highlights the need for

𝑡 = Ω(𝛼2/𝑛) parties in order to prove our lower bound.

Remark. While the lower bound above is stated for algorithms

with a success probability of at least 1 − 1/4𝑚, we note that any

algorithm A with success probability of at least 3/4 can be con-

verted into an algorithm with a success probability of at least

1−1/(4𝑚) by running𝑂 (log𝑚) parallel copies ofA, and outputting

the smallest answer over all runs. Thus we can also conclude an

Ω(𝑚𝑛2/(𝛼4
log

4 𝑛 log𝑚)) space lower bound for algorithms that

are only required to succeed with probability at least 3/4.

4 ALGORITHM FOR RANDOM ORDER

STREAMS

In this section, we present our algorithm for random order streams.

We will first present the algorithm and discuss some of its key prop-

erties in Subsection 4.1. Three key invariants that hold throughout

the algorithm and the main theorem are then presented in Sub-

section 4.2. Due to space resitrictions, the proofs of two of these

invariants are deferred to the appendix.

4.1 Algorithm

The key idea behind our algorithm (see Algorithm 1 for a listing)

is to process the input sets S in

√
𝑛 batches S1, . . . ,S√𝑛 , each of

size
𝑚√
𝑛
, focusing on at most one batch at any one moment. This

allows us to reduce the space complexity from Õ(𝑚) to Õ(𝑚√
𝑛
). We

assume that the number of sets𝑚 and the size of the universe 𝑛

are known to the algorithm, and, w.l.o.g., we also assume that the

input stream length 𝑁 is known. This is without loss of generality

for the following reason: First, we can assume that 𝑁 ≥ 𝑚√
𝑛
since

otherwise the entire stream would fit into memory. Furthermore,

we also know that 𝑁 ≤ 𝑚 · 𝑛 since every set is of size at most 𝑛.

We can therefore run a logarithmic number of executions of our

algorithm in parallel, using the guess 2
𝑖 𝑚√
𝑛
for the value 𝑁 in run 𝑖 .

Since our algorithm is not sensitive to the exact value of 𝑁 , the run

with the guess closest to 𝑁 will therefore produce a valid solution.

131

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

Algorithm 1 Random Order Õ(𝑚√
𝑛
)-space Õ(

√
𝑛)-approx. Alg.

Require: Integers𝑚,𝑛, 𝑁 , large constant 𝐶 , S is arbitrarily parti-

tioned into subsets S1, . . . ,S√𝑛
1: Sol← {} {output set cover to be computed}

2: Throughout the algorithm:

3: Keep track of marked (as covered) elements using𝑂 (𝑛) space
4: For every element, store first set that contains element using

space Õ(𝑛)
5: Run epoch 0:

6: Sample every set w.p. 𝑝0 = 𝐶 ·
√
𝑛
𝑚 log𝑚, add to Sol if sampled

7: Detect and mark every element of degree ≥ 1.1 𝑚√
𝑛
by pro-

cessing first Θ(
√
𝑛𝑁 log𝑚
𝑚) edges of the stream (see Lemma 6)

8: Run Algorithms A(1) . . .A(
1

2
log(𝑛)−3 log log(𝑚)−2)

:

9: for 𝑖 ← 1 . . . 𝐾 := 1

2
log(𝑛) − 3 log log(𝑚) − 2 do

10: �̃� ← sample each element of S with probability 𝑞0 = 1

𝑛
{Tracked special sets}

11: Run epoch 𝑗 of algorithm A(𝑖) :
12: for 𝑗 ← 1 . . . log𝑚 − 1

2
log𝑛 do

13: 𝑇 ← ∅ {Data structure for tracking}

14: �̃� ′ ← ∅ {Subsampled special sets of current epoch 𝑗 }

15: Run subepoch 𝑘 of epoch 𝑗 of algorithm A(𝑖) :
16: for 𝑘 ← 1 . . .

√
𝑛 do

17: 𝐶 [𝑆] ← 0, for every 𝑆 ∈ S𝑘 {Counter for each set}

18: for ℓ𝑖 := 2
𝑖 ·𝑁

𝑛 log𝑚
times do {length of subepoch is ℓ𝑖 }

19: Let (𝑢, 𝑆) be next edge in stream

20: if 𝑆 ∈ Sol then
21: mark 𝑢, store 𝑆 as the witness for covering 𝑢 and

continue with next edge in stream

22: if 𝑢 marked then continue with next edge in stream

23: {𝑢 not yet marked and 𝑆 ∉ Sol}
24: if 𝑆 ∈ �̃� then {𝑆 was a special set in epoch 𝑗 − 1 and

sampled for tracking}

25: Add edge (𝑢, 𝑆) to 𝑇
26: if 𝑆 ∈ S𝑘 then

27: 𝐶 [𝑆] ← 𝐶 [𝑆] + 1

28: if 𝐶 [𝑆] = 𝑗 · log
6 (𝑚) then {𝑆 is special, eligible for

sampling into Sol and �̃� ′}

29: Add 𝑆 to Sol with probability 𝑝 𝑗 = 𝐶 · 2
𝑗
√
𝑛

𝑚 log𝑚

30: Add 𝑆 to �̃� ′ with probability 𝑞 𝑗 = min{ 2
𝑗

𝑛 , 1}
31: Mark every yet unmarked 𝑢 if 𝑇 contains at least 1.085 ·

𝑚2
𝑖−1

𝑛2
log𝑚

edges incident to 𝑢

32: �̃� ← �̃� ′ {update subsampled set of special elements}

33: Cover yet uncovered elements in remainder of stream:

34: for remaining edges (𝑢, 𝑆) in stream do

35: if 𝑆 ∈ Sol and 𝑢 does not have a covering certificate then

36: Mark 𝑢, store 𝑆 as the witness for covering 𝑢

37: Post-processing/Patching phase:

38: For every element 𝑢 that does not yet have a covering witness

(this may include marked elements): Cover 𝑢 using the first set

that 𝑢 was incident, see Line 4

39: return Sol and cover certificate

Our algorithm gradually adds sets to the initially empty set Sol
(Line 1), which constitutes the output set cover when the algorithm

terminates. In particular, a set that is added to Sol is never removed.

The algorithm also maintains the set ofmarked as covered elements,

i.e., elements that are either covered by one of the sets in Sol or that
are likely to be covered at a later stage (Line 3). We also store, for

each element, a cover certificate, i.e., a set that covers the element.

Furthermore, for each element 𝑢, we remember the first set in the

stream that covers 𝑢 (Line 4). These sets are required in the post-

processing stage in order to cover any elements that have not been

covered over the course of the algorithm.

The algorithm then enters epoch 0. In epoch 0, the algorithm adds

every set with probability 𝑝0 = 𝐶 ·
√
𝑛
𝑚 log𝑚 to Sol (Line 6). This

ensures that elements with degree Ω(𝑚√
𝑛
) are covered by one of

these sets with high probability.We therefore next identify elements

of such large degree by detecting their signal in only a small fraction

of the stream and mark these elements as covered (Line 7). Observe

that we have not yet necessarily observed an edge that covers such

an element 𝑢, however, with high probability, such an edge will be

observed at a later stage.

Next, the algorithm runs 𝐾 = 1

2
log(𝑛) − 3 log log(𝑚) − 2 algo-

rithms A(1) ,A(2) , . . . ,A(𝐾) sequentially. Each algorithm A(𝑖) con-
sists of log𝑚 − 1

2
log𝑛 epochs, and each epoch of

√
𝑛 subepochs.

The

√
𝑛 subepochs are used for processing the sets S1, . . . ,S√𝑛 in

turn. Each subepoch of algorithm A(𝑖) processes ℓ𝑖 = 2
𝑖𝑁

𝑛 log𝑚
input

edges, which implies that, overall,

𝐾∑︁
𝑖=1

(log𝑚 − 1

2

log𝑛) ·
√
𝑛 · ℓ𝑖 ≤

𝐾∑︁
𝑖=1

log(𝑚) ·
√
𝑛 · 2

𝑖𝑁

𝑛 log𝑚

=
𝑁
√
𝑛
·
𝐾∑︁
𝑖=1

2
𝑖 <

𝑁
√
𝑛
· 2

1

2
log(𝑛)−3 log log(𝑚)−1 = 𝑁 /(2 · log

3𝑚)

(1)

input edges are processed in algorithms A(1) ,A(2) , . . . ,A(𝐾) . Epoch

0 runs on only Θ(
√
𝑛𝑁 log𝑚
𝑚) = 𝑜 (𝑁 /log

3𝑚) edges. Hence, when
algorithm A(𝐾) finishes, only 𝑁 /(2 · log

3𝑚) + 𝑜 (𝑁 /log
3𝑚) ≤

𝑁 /log
3𝑚 edges have been processed.

Algorithm A(𝑖) focuses on those sets that are incident to at least

Ω(𝑛
2
𝑖) yet uncovered elements. More specifically, in epoch 𝑗 of

algorithm A(𝑖) , the algorithm counts the number of edges observed

between every set 𝑆 and the yet unmarked elements (Line 27).

Since this step would require Ω(𝑚) space, this is implemented via

running

√
𝑛 subepochs sequentially and only the𝑚/

√
𝑛 sets in S𝑟

are considered in subepoch 𝑟 . We call a set in epoch 𝑗 special if

we have observed at least 𝑗 · log
6𝑚 edges between the set and

yet unmarked elements. Each special set is then added to Sol with
probability 𝑝 𝑗 = 2

𝑗 · 𝑝0 (Line 29) and to a set �̃� ′ with probability

𝑞 𝑗 =
2
𝑗

𝑛 (Line 30). Before illustrating the purpose of �̃� ′, we give
more intuition as to why the sampling probability 𝑝 𝑗 = 2

𝑗 · 𝑝0 for

adding special sets to Sol is suitable. In Lemma 8, we will prove

that the number of special sets in epoch 𝑗 is bounded by 1.1𝑚
2
𝑗 with

high probability. Hence, since each of the special sets is included in

Sol with probability 𝑝 𝑗 = 𝐶 · 2
𝑗
√
𝑛 log𝑚
𝑚 , with high probability, we

132

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

add only Õ(
√
𝑛) sets to Sol in every epoch of every algorithm A(𝑖) ,

and, thus, Sol contains at most Õ(
√
𝑛) sets when the last algorithm

A(𝐾) has finished.
We will next discuss the purpose of �̃� ′. Recall that every special

set in epoch 𝑗 of algorithm A(𝑖) is included in �̃� ′ with probability

𝑞 𝑗 =
2
𝑗

𝑛 . The set �̃� ′, which becomes set �̃� in epoch 𝑗+1 (see Line 32),

is used for tracking. Our analysis crucially relies on being able to

identify elements that are incident to at least 1.1 · 𝑚

2
𝑗
√
𝑛
special sets

in epoch 𝑗 . Since special sets are included in Sol with probability

𝑝 𝑗 = 𝐶 · 2
𝑗
√
𝑛 log𝑚
𝑚 , such elements are covered by special sets that

are added to Sol with high probability and we can thus mark these

elements as covered (observe that this is very similar to epoch 0). On

an intuitive level, once an element is marked, the element cannot

continue to contribute to increasing the counters of sets, which

implies that we expect fewer and fewer sets to become special

as the algorithm proceeds. This observation also justifies that the

inclusion probabilities double between epochs, i.e., 𝑝 𝑗 = 2 · 𝑝 𝑗−1. In

order to identify elements of such high degree, we make use of the

fact that the special elements in epoch 𝑗 are a subset of the special

elements in epoch 𝑗 −1 with high probability (Lemma 5), a property

implied by the fact that, for a set to be special in epoch 𝑗 + 1, we

require to observe log
6𝑚 edges towards yet unmarked elements

more than in epoch 𝑗 , and a probabilistic argument shows that it is

extremely unlikely that a set exceeds the higher threshold in epoch

𝑗 + 1 but not the lower threshold in epoch 𝑗 . We therefore take a

uniform random sample of the special elements in epoch 𝑗 (the

set �̃� ′, which becomes �̃� in epoch 𝑗 + 1) and track/store all edges

between the sampled sets and the edges of epoch 𝑗 + 1. We prove

in Lemma 6 that this sample is indeed enough to detect elements

that are incident to at least 1.1 · 𝑚

2
𝑗+1√𝑛 special elements in epoch

𝑗 + 1. These elements are then marked as covered in Line 31.

Once algorithm A(𝐾) has finished, we process the remaining

edges and mark yet unmarked elements if they are incident to sets

in Sol and store their covering witnesses. In the post-processing

step, we cover the yet uncovered elements at a rate of one set per

element in order to make sure that we indeed output a legal cover

(Line 38). We observe that some marked elements may not have

found a covering witness prior to the post-processing stage. This

can happen when a high degree element is marked as covered in

Line 31, but all its incident edges towards sets in Sol have appeared
earlier in the stream. Our analysis accounts for this via the notion

of missed edges. We prove that, for every set 𝑆 added to Sol, there
are only Õ(

√
𝑛) missed edges incident to 𝑆 .

4.2 Analysis

We use 𝑁 to denote the input stream length. We assume that the

number of sets𝑚 is larger than𝐶 ·𝑛2
log

3𝑚, for a sufficiently large

constant 𝐶 , and polynomially bounded (in 𝑛), i.e.,𝑚 = poly 𝑛.

For any set 𝑆 , we will denote by 𝑁 (𝑆) the set of elements that

are contained in 𝑆 . Thus the stream contains edges of the form

(𝑆, 𝑥) for all 𝑥 ∈ 𝑁 (𝑆). For any set 𝑆 , and a subset 𝑋 ⊆ [𝑛], we will
denote by (𝑆, 𝑋) the set of all edges of the form (𝑆, 𝑥) for 𝑥 ∈ 𝑋 .

Denote by Sol(𝑖) the variable Sol at the moment when algorithm

A(𝑖) finished, and let 𝑈 (𝑖) ⊆ U be the set of elements that are not

covered by Sol(𝑖) , i.e., 𝑈 (𝑖) = U \ ∪
𝑆∈Sol(𝑖) 𝑆 . Note that even if an

element 𝑥 can be covered by a set 𝑆 ∈ Sol(𝑖) , it may be that the

edge (𝑆, 𝑥) appeared in the stream before the set 𝑆 was included

in our solution; in this case the element 𝑥 may remain marked as

uncovered but 𝑥 will not be included in𝑈 (𝑖) . We will refer to such

edges as missed edges.

Our analysis relies on proving the three invariants (I1), (I2), and

(I3) from which our main result is derived. We will next state these

invariants, then state and prove our main result. For space reasons,

Invariants (I2) and (I3) are proved in the appendix.

(I1): At the end of A(𝑖) , with probability at least 1 − (𝑖)/𝑚5
, for

any set 𝑆 ∉ Sol(𝑖) , the set 𝑆 can cover at most (𝑛/2𝑖) · log
9𝑚

elements in𝑈 (𝑖) .
(I2): If a set 𝑆 is included in Sol(𝑖) during the execution of A(𝑖) ,

thenwith probability at least 1−1/𝑚3
, there are𝑂 (

√
𝑛 log

9𝑚)
missed edges that are incident on the set 𝑆 only.

(I3): With probability at least 1 − 1/𝑚3
, the total number of sets

added to Sol during the execution of A(𝑖) is 𝑂 (
√
𝑛 log

2𝑚).

We note at this occasion that we have not attempted to minimize

the poly-log factors appearing in our analysis.

Theorem 3. Let 𝑚 = Ω̃(𝑛2) ∩ poly(𝑛). Then, Algorithm 1 is a

one-pass Õ(
√
𝑛)-approximation streaming algorithm for edge-arrival

Set Cover in the random order setting that uses space Õ(𝑚√
𝑛
) and

succeeds with high probability over the random ordering of the input

and the random coin flips of the algorithm.

Proof. We first analyse the space requirements of the algorithm

and then establish the approximation factor.

Space Analysis. We start by observing that for any 𝑖 , all vari-

ables used by algorithm A(𝑖) except �̃�, �̃� ′,𝑇 and Sol are of size at
most �̃� (𝑚/

√
𝑛). We will see in Lemma 8 that the number of special

sets in epoch 𝑗 is at most 1.1𝑚
2
𝑗 with high probability. Since the

tracked sets in epoch 𝑗 are the special sets from epoch 𝑗 − 1 subsam-

pled with probability 𝑞𝑖−1, by Chernoff bounds, we track at most

Õ(𝑞 𝑗−1

𝑚
2
𝑗−1
) = Õ(𝑚𝑛) special sets in epoch 𝑗 with high probability.

This bounds the sizes of �̃� ′ and �̃� by Õ(𝑚𝑛). Furthermore, we will

prove in Lemma 6 that |𝑇 | = Õ(𝑚√
𝑛
). Last, the algorithm can easily

be modified so that |Sol| ≤ 𝑛 always holds. Indeed, if |Sol| reaches
the size 𝑛 then we report a trivial cover that covers every element

with a single set (recall the algorithm stores for every element the

first set that it is contained in). This establishes the space complexity

of the algorithm.

Approximation Ratio Analysis. Assuming the three invariants

(I1), (I1), and (I3) hold, we can show that, with probability at

least 1 − 1/𝑚, our algorithm outputs a solution that is at most

𝑂 (
√
𝑛 log

12𝑚) times the size of the optimal solution. To see this,

we first observe that by Invariant (I3), with probability at least

1−1/𝑚2
, the total number of sets added to Sol byA(1) ,A(2) , ...,A(𝐾) ,

is bounded by 𝑂 (
√
𝑛 log

3𝑚). We next observe that with proba-

bility at least 1 − 1/𝑚2
, by Invariant (I2), we have that for ev-

ery set 𝑆 included in Sol during the execution of the algorithms

A(1) ,A(2) , ...,A(𝐾) , there are only 𝑂 (
√
𝑛 log

9𝑚) missed edges. Fi-

nally, by Invariant (I1), we know that when A(𝐾) terminates, no

133

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

set outside of Sol can cover more than 𝑂 (
√
𝑛 log

12𝑚) elements in

𝑈 (𝐾) . So during the patching phase, the total number of sets added

by our algorithm is at most 𝑂 (
√
𝑛 log

12𝑚) times more than the

number of sets used by an optimal solution.

Putting together, we obtain that with probability at least 1− 1/𝑚,

we output a solution whose size is at most𝑂 (
√
𝑛 log

12𝑚) = Õ(
√
𝑛)

times the optimal solution. □

4.3 Concentration Result

The random order assumption allows us to prove a concentration

result that we will use throughout our analysis.

Lemma 2. Let 𝐼 ⊆ [𝑁] be a subset of positions in the stream with

|𝐼 | = ℓ . Let 𝑆 ∈ S be any set and let 𝑋 ⊆ 𝑆 be a fixed subset of 𝑆 .

Then, with probability at least 1− 1

𝑚20
, we have that the total number

of edges of the form (𝑆, 𝑥) with 𝑥 ∈ 𝑋 that appear in the locations 𝐼

is:

(1) at least 0.99 · ℓ
𝑁
|𝑋 | and at most 1.01 · ℓ

𝑁
|𝑋 |, if |𝐼 | ≤ 0.001𝑁

and
ℓ
𝑁
|𝑋 | ≥ 𝐶 log𝑚, for a large enough constant 𝐶 ;

(2) at most 𝐶 log(𝑚) ·max{ ℓ
𝑁
|𝑋 |, 1}, for some large constant 𝐶 ,

if ℓ ≤ 𝑁
2
;

(3) at least
ℓ
𝑁
|𝑋 | (1− 1√

𝑛
) − log(𝑚)

√︃
ℓ
𝑁
|𝑋 | (1 − 1√

𝑛
) and at most

ℓ

𝑁 (1− 1√
𝑛
) |𝑋 | + log(𝑚)

√︂
ℓ

𝑁 (1− 1√
𝑛
) |𝑋 |, if ℓ ≤

𝑁√
𝑛
and

ℓ
𝑁
|𝑋 | ≥

log
6𝑚.

Due to space restrictions, the proof of this lemma is deferred to

the appendix.

4.4 Proof of Invariant (I1)

Lemma 3 (Invariant (I1)). At the end of A(𝑖) , with probability

at least 1 − 𝑖/𝑚5
, for any set 𝑆 ∉ Sol(𝑖) , the set 𝑆 can cover at most

(𝑛/2𝑖) · log
9𝑚 elements in𝑈 (𝑖) .

Proof. We will prove invariant (I1) by induction. At the start of
A(𝑖) , with probability at least 1 − (𝑖 − 1)/𝑚5

, we have that for any

set 𝑆 ∉ Sol(𝑖) , the set 𝑆 can cover at most (𝑛/2𝑖−1) log
9𝑚 elements.

This is clearly true when the algorithm A(1) starts as no set can

cover more than 𝑛 elements. Now suppose this invariant holds at

the end of the algorithm A(𝑖−1)
. Assume by way of contradiction,

that there is a set 𝑆 such that 𝑆 does not get sampled during A(𝑖)

but 𝑆 contains at least (𝑛/2𝑖) · log
9𝑚 elements in 𝑈 (𝑖) . Let 𝑋 =

𝑁 (𝑆) ∩𝑈 (𝑖) ; by our assumption, we have |𝑋 | ≥ (𝑛/2𝑖) · log
9𝑚.

Consider any epoch E(𝑖)
𝑗

(the 𝑗 th epoch ofA(𝑖)) and let us analyze

the sub-epoch of E(𝑖)
𝑗

that is devoted to the processing of set 𝑆 . Let

𝐼 ⊆ [𝑁] denote the set of indices (positions in the stream) during

which we processed set 𝑆 so far. Since 𝑆 ∉ Sol(𝑖) , 𝑆 has only been

observed in epoch 0, in all subepochs of the algorithmsA(1) through
A(𝑖−1)

dedicated to processing 𝑆 , in the first (𝑗 − 1) subepochs of
A(𝑖) dedicated to processing 𝑆 , and part of the 𝑗𝑡ℎ epoch of A(𝑖) .

We can thus bound |𝐼 | by

|𝐼 | ≤ 𝐶
√
𝑛𝑁 log𝑚

𝑚
+

(
𝑖−1∑︁
𝑟=1

log𝑚 · ℓ𝑟

)
+ 𝑗 · ℓ𝑖

≤ 𝑁

2 ·
√
𝑛
+

𝐾∑︁
𝑟=1

log𝑚 · ℓ𝑟

=
𝑁

2 ·
√
𝑛
+

𝐾∑︁
𝑟=1

log𝑚 · 2
𝑟𝑁

𝑛 log𝑚

≤ 𝑁

2 ·
√
𝑛
+ 2

𝐾+1𝑁
𝑛

≤ 𝑁
√
𝑛
,

where we used the bound 2
𝐾 = 𝑜 (

√
𝑛) and𝑚 = Ω(𝑛2).

By Lemma 2, we know that with probability at least 1−1/𝑚20
, the

total number of edges in (𝑆, 𝑁 (𝑆)) that appear in 𝐼 can be bounded

by

1.01 · |𝑁 (𝑆) |
𝑁

· |𝐼 | ≤ 1.01 · |𝑁 (𝑆) |
𝑁

· 𝑁√
𝑛
≤ 1.01 · |𝑁 (𝑆) |√

𝑛
≤ 1.01

√
𝑛 ,

where we used the trivial bound |𝑁 (𝑆) | ≤ 𝑛.
Now note that the indices in 𝐼 are the only locations where

the algorithm has thus far observed edges incident on 𝑆 . Thus

if we fix the set 𝐽 of all the locations in the stream where edges

incident on 𝑆 appear, and the set 𝑌 ⊆ [𝑛] of elements such that

only edges in (𝑆,𝑌) appear in the stream at indices in 𝐼 , then all

edges in (𝑆, 𝑁 (𝑆) \𝑌) appear in a uniformly at random permutation

on indices in 𝐽 \ 𝐼 . In particular, this means that all elements in

𝑋 \𝑌 appear as in a uniformly at random chosen permutation over

indices in 𝐽 \ 𝐼 . We also note at this stage that the algorithm would

process these elements since, as we show in Lemma 7, uncovered

elements are not marked with high probability.

Again invoking Lemma 2, we know that with probability at least

1 − 1/𝑚20
, the total number of edges of the form (𝑆, 𝑋) that appear

in the sub-epoch of E(𝑖)
𝑗

devoted to processing set 𝑆 can be bounded

from below by

0.99 · |𝑋 \ 𝑌 |
𝑁

· ℓ𝑖 = 0.99 · (𝑛/2
𝑖) · log

9𝑚 − 2

√
𝑛

𝑁
· 2

𝑖𝑁

𝑛 log𝑚

≥ 0.99 log
8𝑚 − 𝑜 (1) .

Thus with probability at least 1 − 1/𝑚20
, during the sub-epoch

of E(𝑖)
𝑗

devoted to processing the set 𝑆 , the set 𝑆 gets selected for

sampling with probability 𝑝 𝑗 (since 0.99 log
8𝑚 − 𝑜 (1) ≥ 𝑗 · log

6𝑚).

Moreover, by taking a union bound over all epochs, we know that

this assertion holds for set 𝑆 in every epoch E(𝑖)
𝑗

with probability

at least 1 − 1/𝑚19
. Thus conditioned on this event, the set 𝑆 is

guaranteed to get sampled with probability 1, and hence included

in the solution before A(𝑖) terminates. By taking a union bound

over all sets, we conclude that the probability that Invariant (I1) is
violated during A(𝑖) is bounded by 1/𝑚18

, completing the proof. □

5 ALGORITHM FOR ADVERSARIAL ORDER

STREAMS

We will now present our Õ(𝑚𝑛/𝛼2) space 𝛼-approximation stream-

ing algorithm, for 𝛼 = Ω̃(
√
𝑛), for edge-arrival Set Cover.

134

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

Our algorithm is depicted in the listing of Algorithm 2. In this

listing, we assume that we have a function Coin(𝑝) to our disposal,
which evaluates to 1 with probability 𝑝 and to 0 with probability

1 − 𝑝 . The algorithm proceeds as follows:

While processing the stream, the algorithm computes a partial

cover consisting of sets𝐷0, . . . , 𝐷log𝑚 , where𝐷𝑖 is the partial cover

of level 𝑖 . In parallel to the computation of these sets, for each

element 𝑢 ∈ U, the algorithm stores an arbitrary set 𝑅(𝑢) that
contains 𝑢 (lines 9 and 10). Then, in a post-processing step, if an

element 𝑢 is not covered in the partial cover

⋃
𝑖 𝐷𝑖 then the set

𝑅(𝑢) is added to the cover certificate (line 25), thereby ensuring

that the output indeed covers all elements.

Next, we will discuss how the sets 𝐷𝑖 are computed. Every set

is assigned a level, which is initialized to 0. The map 𝐿, defined in

Line 3, stores the levels of all those sets whose level is at least 1.

Then, whenever a tuple (𝑆,𝑢) arrives in the stream such that 𝑢 is

not yet covered, the level of 𝑆 is increased by 1 with probability
1

𝛼
in Line 18. Furthermore, whenever the level of a set is increased

to ℓ , then the set is included in 𝐷𝑖 with probability 𝑝ℓ =
𝛼2ℓ+1

𝑚𝑛𝑙
in

Line 21, which completes the description of the algorithm.

Analysis

Due to space restrictions, we defer the analysis to the full version

of this paper. We obtain the following theorem:

Theorem 4. For any 𝛼 ≥ 2

√
𝑛, Algorithm 2 is a randomized

one-pass semi-streaming algorithm for Set Cover in the edge-arrival

model with expected approximation factor 𝑂 (𝛼 log𝑚) and space re-
quirements Õ(𝑚𝑛

𝛼2
).

Remark. The space bound claimed in the previous theorem a

priori only holds in expectation. However, this bound can easily

be turned into a high probability bound or even into a worst-case

bound at the expense of a marginal 𝑜 (1) increase in the expected

approximation ratio.

Last, similar to [19], we could also turn the expected approxima-

tion guarantee into a high probability guarantee at the expense of

an additional log𝑚 factor in the approximation ratio. See [19] for

details.

6 CONCLUSIONS

In this paper, we showed that the Õ(
√
𝑛)-approximation Õ(𝑚) space

KK-algorithm byKhanna andKonrad [19] for edge-arrival Set Cover
in the adversarial order setting is optimal up to poly-logarithmic

factors in that every 𝛼-approximation streaming algorithm requires

space Ω̃(𝑚𝑛2/𝛼4). For the regime when 𝛼 = 𝜔 (
√
𝑛), we improved

upon the KK-algorithm by showing that an 𝛼-approximation can be

achieved in one pass using only Õ(𝑚𝑛/𝛼2) space. As ourmain result,

we showed that the space barrier of Θ̃(𝑚) for Õ(
√
𝑛)-approximation

algorithms can be broken when the stream is in random order. For

this setting, we gave a Õ(
√
𝑛)-approximation streaming algorithm

that uses space Õ(𝑚√
𝑛
).

We conclude with two natural open problems.

First, while our space lower bound of Ω̃(𝑚𝑛2/𝛼4) and the space

bound of Õ(𝑚𝑛/𝛼2) required by our algorithm match for 𝛼 =

Θ̃(
√
𝑛) up to poly-logarithmic factors, the bounds differ for larger

Algorithm 2 Single-pass Streaming Algorithm for Set Cover in
the Edge-arrival Setting

Require: Bipartite input graph 𝐺 = (S,U, 𝐸) with |S| = 𝑚 and

|U| = 𝑛
1: 𝐷1, 𝐷2, . . . , 𝐷log𝑚 ← {}
2: for every 𝑢 ∈ U: 𝑅(𝑢) ← ⊥ {we store an arbitrary set that

covers 𝑢, for every 𝑢 ∈ U}

3: 𝐿 ← empty map with keys in S and values in [log𝑚] {for
storing sets with level ≥ 1}

4: 𝑈 ← ∅ {keep track of dominated nodes (𝑈 ⊆ U always holds)

}

5: For every 𝑢 ∈ U : 𝐶 (𝑢) ← ⊥ {output cover certificate}

6: Let 𝐷0 ⊆ S such that every set is included in 𝐷0 with probabil-

ity 𝑝0 := 𝛼
𝑚

7: while stream not empty do

8: Let (𝑆,𝑢) be the next edge in the stream

9: if 𝑅(𝑢) = ⊥ then

10: 𝑅(𝑢) ← 𝑆 {store an arbitrary set that covers 𝑢}

11: if 𝑢 ∈ 𝑈 then {ignore edge if incident to already covered

element fromU}

12: Continue with next edge in stream

13: {element 𝑢 is not yet covered}

14: ℓ ← 0 {level of set 𝑆}

15: if 𝑆 ∈ 𝐿 then {look up level in 𝐿}

16: ℓ ← 𝐿[𝑆]
17: if Coin(1

𝛼) then
18: ℓ ← ℓ + 1 {increase level of 𝑆}

19: 𝐿[𝑆] ← ℓ {store level in 𝐿}

20: if Coin

(
𝑝ℓ := 𝛼2ℓ+1

𝑚𝑛ℓ
=

(
𝛼2

𝑛

)ℓ
𝑝0

)
then

21: 𝐷ℓ ← 𝐷ℓ ∪ {𝑆}
22: if 𝑆 ∈ ⋃

𝑖≥0
𝐷𝑖 then {𝑢 is dominated by 𝑆}

23: 𝑈 ← 𝑈 ∪ {𝑢}
24: 𝐶 (𝑢) ← 𝑆

25: For every 𝑢 ∈ U \𝑈 : 𝐶 (𝑢) ← 𝑅(𝑢)
26: return Cover ∪log𝑚

𝑖=0
𝐷𝑖 ∪ {𝑅(𝑢) : 𝑢 ∈ U \ 𝑈 } and cover

certificate 𝐶

values of 𝛼 . Can we close the gap between the two bounds for all

values of 𝛼 = Ω̃(
√
𝑛)?

Second, our Õ(
√
𝑛)-approximation algorithm for random order

streams uses space Õ(𝑚√
𝑛
) and thus breaks the Θ̃(𝑚) space bound

for adversarial order streams. However, can we further reduce the

space requirements in the random order setting or can prove a

matching lower bound? We conjecture that the right answer is

Õ(𝑚√
𝑛
), that is, the space bound achieved here is optimal up to

poly-logarithmic factors.

ACKNOWLEDGMENTS

Sanjeev Khanna is supported in part by NSF awards CCF-1934876

and CCF-2008305. Christian Konrad is supported by EPSRC New

Investigator Award EP/V010611/1. Cezar-Mihail Alexandru is sup-

ported by EPSRC DTP studentship EP/T517872/1.

135

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

REFERENCES

[1] Sepehr Assadi. 2017. Tight Space-Approximation Tradeoff for the Multi-Pass

Streaming Set Cover Problem. In Proceedings of the 36th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA,

May 14-19, 2017, Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts (Eds.).

ACM, 321–335. https://doi.org/10.1145/3034786.3056116

[2] Sepehr Assadi and Soheil Behnezhad. 2021. Beating Two-Thirds For Random-

Order Streaming Matching. In 48th International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual

Conference) (LIPIcs, Vol. 198), Nikhil Bansal, Emanuela Merelli, and James Worrell

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1–19:13.

[3] Sepehr Assadi and Aditi Dudeja. 2021. Ruling Sets in Random Order and Ad-

versarial Streams. In 35th International Symposium on Distributed Computing

(DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 209),

Seth Gilbert (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 6:1–6:18. https://doi.org/10.4230/LIPIcs.DISC.2021.6

[4] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2021. Tight Bounds for Single-Pass

Streaming Complexity of the Set Cover Problem. SIAM J. Comput. 50, 3 (2021).

https://doi.org/10.1137/16M1095482

[5] Michael Barlow, Christian Konrad, and Charana Nandasena. 2021. Streaming

Set Cover in Practice. In Proceedings of the Symposium on Algorithm Engineering

and Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021, Martin

Farach-Colton and Sabine Storandt (Eds.). SIAM, 181–192. https://doi.org/10.

1137/1.9781611976472.14

[6] MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. 2017. Al-

most Optimal Streaming Algorithms for Coverage Problems. In Proceedings of the

29th ACM Symposium on Parallelism in Algorithms and Architectures (Washington,

DC, USA) (SPAA ’17). Association for Computing Machinery, New York, NY, USA,

13–23. https://doi.org/10.1145/3087556.3087585

[7] Aaron Bernstein. 2020. Improved Bounds for Matching in Random-Order Streams.

In 47th International Colloquium on Automata, Languages, and Programming,

ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (LIPIcs,

Vol. 168), Artur Czumaj, Anuj Dawar, and Emanuela Merelli (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:13.

[8] Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. 2018.

Revisiting Frequency Moment Estimation in Random Order Streams. In 45th

International Colloquium on Automata, Languages, and Programming (ICALP

2018) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 107), Ioannis

Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 25:1–

25:14. https://doi.org/10.4230/LIPIcs.ICALP.2018.25

[9] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. 2003. Near-Optimal Lower

Bounds on the Multi-Party Communication Complexity of Set Disjointness. In

18th Annual IEEE Conference on Computational Complexity (Complexity 2003),

7-10 July 2003, Aarhus, Denmark. IEEE Computer Society, 107–117. https://doi.

org/10.1109/CCC.2003.1214414

[10] Amit Chakrabarti and Anthony Wirth. 2016. Incidence Geometries and the Pass

Complexity of Semi-Streaming Set Cover. In Proceedings of the Twenty-Seventh

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,

USA, January 10-12, 2016, Robert Krauthgamer (Ed.). SIAM, 1365–1373. https:

//doi.org/10.1137/1.9781611974331.ch94

[11] Graham Cormode, Howard J. Karloff, and Anthony Wirth. 2010. Set cover

algorithms for very large datasets. In Proceedings of the 19th ACM Conference on

Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,

October 26-30, 2010, Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong

Wu, Kevyn Collins-Thompson, and Aijun An (Eds.). ACM, 479–488. https:

//doi.org/10.1145/1871437.1871501

[12] Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. 2014. On

Streaming and Communication Complexity of the Set Cover Problem. In Dis-

tributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,

October 12-15, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8784),

Fabian Kuhn (Ed.). Springer, 484–498. https://doi.org/10.1007/978-3-662-45174-

8_33

[13] Yuval Emek and Adi Rosén. 2016. Semi-Streaming Set Cover. ACM Trans.

Algorithms 13, 1 (2016), 6:1–6:22. https://doi.org/10.1145/2957322

[14] Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zen-

klusen. 2022. Streaming Submodular Maximization Under Matroid Constraints.

In 49th International Colloquium on Automata, Languages, and Programming

(ICALP 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 229),

Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff (Eds.). Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 59:1–59:20.

https://doi.org/10.4230/LIPIcs.ICALP.2022.59

[15] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. 2016. Towards

Tight Bounds for the Streaming Set Cover Problem. In Proceedings of the 35th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2016, San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and Wang-Chiew

Tan (Eds.). ACM, 371–383. https://doi.org/10.1145/2902251.2902287

[16] Piotr Indyk, SepidehMahabadi, Ronitt Rubinfeld, Jonathan R. Ullman, Ali Vakilian,

and Anak Yodpinyanee. 2017. Fractional Set Cover in the Streaming Model.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA

(LIPIcs, Vol. 81), Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.

Vempala (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:20.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.12

[17] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. 2014. Approximating

matching size from random streams. In Proceedings of the Twenty-Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,

January 5-7, 2014, Chandra Chekuri (Ed.). SIAM, 734–751. https://doi.org/10.

1137/1.9781611973402.55

[18] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos.

2020. Space Efficient Approximation to Maximum Matching Size from Uniform

Edge Samples. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, Shuchi Chawla

(Ed.). SIAM, 1753–1772. https://doi.org/10.1137/1.9781611975994.107

[19] Sanjeev Khanna and Christian Konrad. 2022. Optimal Bounds for Dominating Set

in Graph Streams. In 13th Innovations in Theoretical Computer Science Conference,

ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA (LIPIcs, Vol. 215), Mark

Braverman (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 93:1–93:23.

https://doi.org/10.4230/LIPIcs.ITCS.2022.93

[20] Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum Match-

ing in Semi-streaming with Few Passes. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques - 15th International Work-

shop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge,

MA, USA, August 15-17, 2012. Proceedings (Lecture Notes in Computer Science,

Vol. 7408), Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio

(Eds.). Springer, 231–242. https://doi.org/10.1007/978-3-642-32512-0_20

[21] C. L. Lim, Alistair Moffat, and Anthony Ian Wirth. 2014. Lazy and Eager Ap-

proaches for the Set Cover Problem. In Thirty-Seventh Australasian Computer

Science Conference, ACSC 2014, Auckland, New Zealand, January 2014 (CRPIT,

Vol. 147), Bruce Thomas and Dave Parry (Eds.). Australian Computer Society,

19–27. http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV147Lim.html

[22] Barna Saha and Lise Getoor. 2009. On Maximum Coverage in the Streaming

Model & Application to Multi-topic Blog-Watch. In Proceedings of the SIAM

International Conference on Data Mining, SDM 2009, April 30 - May 2, 2009, Sparks,

Nevada, USA. SIAM, 697–708. https://doi.org/10.1137/1.9781611972795.60

[23] Stergios Stergiou and Kostas Tsioutsiouliklis. 2015. Set Cover at Web Scale. In

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for

Computing Machinery, New York, NY, USA, 1125–1133. https://doi.org/10.1145/

2783258.2783315

A RANDOM ORDER ALGORITHM

A.1 Proof of Concentration Result: Lemma 2

Proof. The experiment described in the statement of the lemma

can be seen as follows. We are given a ground set of size 𝑁 and

a subset of the ground set 𝑋 of size |𝑋 |. We now pick a random

subset of the ground set of size ℓ . We would like to show that the

number of elements of 𝑋 in this subset is concentrated with high

probability.

We first prove the upper bound. To this end, consider the pro-

cess of repeatedly (ℓ times) drawing elements from the ground set

without replacement. Denote by 𝑌𝑖 the number of elements of 𝑋

that were drawn within the first 𝑖 steps. Then, the probability that

the (𝑖 + 1)th element drawn is from 𝑋 is:

|𝑋 | − 𝑌𝑖
𝑁 − 𝑖 ≤

|𝑋 |
𝑁 − ℓ .

This process is stochastically dominated by a sequence of indepen-

dent Bernoulli trials with success probability 𝑝 =
|𝑋 |
𝑁−ℓ . This process

has the expected value 𝜇 = 𝑝 · ℓ = ℓ
𝑁−ℓ |𝑋 |. Hence, by a Chernoff

bound,𝑌ℓ ≤ 𝐶 log𝑚 ·max{ ℓ
𝑁−ℓ |𝑋 |, 1}, for a large constant𝐶 , which

implies the second result. To prove the upper bound of the first

result, we use the assumptions ℓ ≤ 0.001𝑁 and
ℓ
𝑁
|𝑋 | ≥ 𝐶 log𝑚,

for some large constant 𝐶 . Then, the expected value 𝜇 is bounded

136

https://doi.org/10.1145/3034786.3056116
https://doi.org/10.4230/LIPIcs.DISC.2021.6
https://doi.org/10.1137/16M1095482
https://doi.org/10.1137/1.9781611976472.14
https://doi.org/10.1137/1.9781611976472.14
https://doi.org/10.1145/3087556.3087585
https://doi.org/10.4230/LIPIcs.ICALP.2018.25
https://doi.org/10.1109/CCC.2003.1214414
https://doi.org/10.1109/CCC.2003.1214414
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1007/978-3-662-45174-8_33
https://doi.org/10.1007/978-3-662-45174-8_33
https://doi.org/10.1145/2957322
https://doi.org/10.4230/LIPIcs.ICALP.2022.59
https://doi.org/10.1145/2902251.2902287
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.12
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1137/1.9781611975994.107
https://doi.org/10.4230/LIPIcs.ITCS.2022.93
https://doi.org/10.1007/978-3-642-32512-0_20
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV147Lim.html
https://doi.org/10.1137/1.9781611972795.60
https://doi.org/10.1145/2783258.2783315
https://doi.org/10.1145/2783258.2783315

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

as

𝜇 =
ℓ

𝑁 − ℓ |𝑋 | ≥
ℓ

𝑁
|𝑋 | ≥ 𝐶 log𝑚 ,

for a large constant 𝐶 . Hence, by a Chernoff bound, we have that

with probability at least 1 − 1

𝑚21
,

𝑌ℓ ≤ 1.001

ℓ

𝑁 − ℓ |𝑋 | ≤ 1.001

ℓ

𝑁 − 0.001𝑁
|𝑋 |

=
1.001

1 − 0.001

· ℓ
𝑁
|𝑋 | ≤ 1.01 · ℓ

𝑁
|𝑋 | .

Next, we prove the upper bound of result 3. We use the assump-

tions ℓ ≤ 𝑁√
𝑛
and

ℓ
𝑁
|𝑋 | ≥ log

6𝑚. In this case, the expected value

𝜇 is at least log
6𝑚. By a Chernoff bound, the probability that the

outcome is larger by an additive 𝛿𝜇 term is at most 𝑒−
𝛿2

2+𝛿 𝜇 . Hence,

we can choose 𝛿 =
log𝑚√
𝜇

to obtain an error probability of at most

1

𝑚20
(for large enough𝑚). We thus conclude that with probability

1 − 1

𝑚20
, we have

𝑌ℓ ≤
ℓ

𝑁 − ℓ |𝑋 | + log(𝑚)
√︂

ℓ

𝑁 − ℓ |𝑋 |

≤ ℓ

𝑁 (1 − 1√
𝑛
)
|𝑋 | + log(𝑚)

√√
ℓ

𝑁 (1 − 1√
𝑛
)
|𝑋 | .

Next, we prove the lower bound results, and we first focus on

result 1. We condition on the event that the upper bound holds, i.e.,

𝑌ℓ ≤ 1.01 · ℓ
𝑁
|𝑋 |. We then bound the inclusion probability of item

𝑖 + 1 as follows:

|𝑋 | − 𝑌𝑖
𝑁 − 𝑖 ≥

|𝑋 | − 1.01 · ℓ · |𝑋 |
𝑁

𝑁
=
|𝑋 |
𝑁

(
1 − 1.01 · ℓ

𝑁

)
≥ |𝑋 |

𝑁
(1 − 0.0001 · 1.01) .

Our process thus stochastically dominates a sequence of indepen-

dent Bernoulli trials with success probability 𝑝 =
|𝑋 |
𝑁
(1 − 0.0001 ·

1.01). Similar to the calculation above, by Chernoff bounds, we ob-

tain that 𝑌ℓ ≥ 0.99 · ℓ |𝑋 |
𝑁

holds with probability at least 1 − 1

𝑚21
. By

a union bound. both upper and lower bounds hold with probability

1 − 1

𝑚20
.

We now turn to the lower bound stated as result 3. By the same

calculation as for result 1 (observe that we even use the upper bound

from result 1 here), we see that the resulting process stochastically

dominates a sequence of ℓ independent Bernoulli trials with success

probability 𝑝 =
|𝑋 |
𝑁
(1− 1.01√

𝑛
) (using ℓ ≤ 𝑁√

𝑛
). The expected number

of successes of this process is therefore 𝜇 = ℓ
𝑁
|𝑋 | (1 − 1.01√

𝑛
), which,

by the assumption of result 3, is at least log
6𝑚(1− 1.01√

𝑛
). Denote by

𝑍 the number of observed successes. Then, by a Chernoff bound,

Pr[𝑍 ≤ 𝜇 − 𝛿𝜇] ≤ 𝑒𝜇𝛿
2/2 .

Hence, setting 𝛿 =
log𝑚√
𝜇

, we obtain a failure probability of 𝑒 log
2𝑚/2

,

which is at most
1

𝑚20
for large enough𝑚. The result follows.

□

A.2 Proof of Invariant (I2)

Lemma 4 (Invariant (I2)). If a set 𝑆 is included in Sol(𝑖) during
the execution of A(𝑖) , then with probability at least 1 − 1/𝑚3

, there

are only 𝑂 (
√
𝑛 log

9𝑚) missed edges that are incident on the set 𝑆 .

Proof. Fix any set 𝑆 ∈ Sol(𝑖) . W.l.o.g. assume that the set 𝑆

was added to Sol(𝑖) during the execution of A(𝑖) . We also assume

that |𝑆 | ≥ 𝐶′ ·
√
𝑛 log

3𝑚, for some large 𝐶′, since otherwise the
statement is trivially true.

Let Γ be the set of slots in the stream in which edges incident on 𝑆

appear during the execution of epoch 0 and algorithms A(1) , ...,A(𝑖) .
To prove invariant (I2), it suffices to show that with probability at

least 1− 1/𝑚3
, the number of elements in (𝑆 ∩𝑈 (𝑖)) that appear in

Γ is bounded by𝑂 (
√
𝑛 log

3𝑚), as this is precisely the set of missed

edges incident on 𝑆 . To bound this quantity, we will partition Γ
into two sets, Γ1 and Γ2, where Γ1 ⊆ Γ denotes the set of slots in

epoch 0 and in the executions of A(1) , ...,A(𝑖) which reside in the

sub-epochs of these algorithms devoted to the processing of the

set 𝑆 . We will refer to these slots as observed slots of 𝑆 as they are

the slots where the algorithm observes which elements incident

on 𝑆 appear. We will refer to the set of remaining slots, namely

Γ2 = Γ \Γ1, as the unobserved slots of 𝑆 . Note that once we fix the set

of elements in 𝑆 that appear in the observed slots, the execution of

the algorithms A(1) , ...,A(𝑖) , is oblivious to the remaining elements

of 𝑆 that appear in the unobserved slots. Moreover, each remaining

element of set 𝑆 is equally likely to appear in any of the unobserved

slots.

Now to prove invariant (I2), we will bound the number of ele-

ments in (𝑆 ∩𝑈 (𝑖−1)) that appear in Γ as this is an upper bound on

the set of missed edges incident on set 𝑆 . By the same argument as

in the proof of (I1), we have |Γ1 | ≤ 1.01

√
𝑛 with probability 1− 1

𝑚20
,

and we will prove that the number of elements in (𝑆 ∩ 𝑈 (𝑖−1))
that appear in Γ2 is 𝑂 (

√
𝑛 log

3𝑚). These two properties together

complete the proof.

We now bound |Γ2 |. We have

𝐸 [|Γ2 |] ≤
(

2

√
𝑛
+ 4

√
𝑛
+ ... + 2

𝑖

√
𝑛

)
· |𝑆 | ≤

(
2
𝑖+1
√
𝑛

)
· |𝑆 | ,

where each
2
𝑟
√
𝑛
corresponds to the fraction of the stream observed

by algorithmA(𝑟) . Note that we also have the lower bound 𝐸 [|Γ2 |] ≥
2
𝑖
√
𝑛
· |𝑆 | ≥ 𝐶′2𝑖 log

3𝑚. Hence, by Lemma 2, with probability at least

1 − 1/𝑚20
, the total number of edges incident on 𝑆 that appear

during the execution of A(1) , ...,A(𝑖) is at most 1.01 · 2
𝑖+1
√
𝑛
· |𝑆 |.

We now note that every unobserved element in the set 𝑆 is

equally likely to appear in any unobserved slot. Thus, the expected

number of elements in (𝑆 ∩𝑈 (𝑖−1)) that appear in the unobserved

slots Γ2 can be bounded from above by

1.01

2
𝑖+1
√
𝑛
· |𝑆 | · |𝑆 ∩𝑈

(𝑖) |
|𝑆 | = 1.01

2
𝑖+1
√
𝑛
· |𝑆 ∩𝑈 (𝑖) | .

By Invariant (I1), with probability at least 1 − 1/𝑚4
, we know

that |𝑆 ∩𝑈 (𝑖−1) | ≤ (𝑛/2𝑖−1) log
9𝑚. Thus with probability at least

1 − 1/𝑚4
, the expected number of elements in (𝑆 ∩ 𝑈 (𝑖−1)) that

137

PODS ’23, June 18–23, 2023, Seattle, WA, USA Sanjeev Khanna, Christian Konrad, & Cezar-Mihail Alexandru

appear in Γ2 is at most

1.01

2
𝑖+1
√
𝑛
· |𝑆 ∩𝑈 (𝑖) | ≤ 1.01

2
𝑖+1
√
𝑛
· (𝑛/2𝑖−1) log

9𝑚 ≤ 5

√
𝑛 log

9𝑚 .

Finally, using Chernoff bounds for negatively correlated random

variables, we conclude that with probability at least 1 − 1/𝑚3
, the

number of elements in (𝑆 ∩ 𝑈 (𝑖)) that appear in Γ2 is at most

10

√
𝑛 log

9𝑚.

It now follows that with probability at least 1 − 1/𝑚3
, the total

number of elements in (𝑆 ∩𝑈 (𝑖)) that appear during the execution
of A(1) , ...,A(𝑖) in slots Γ = Γ1 ∪ Γ2, is 𝑂 (

√
𝑛 log

9𝑚), completing

the proof of the invariant (I2). □

A.3 Proof of Invariant (I3)

Before presenting the proof of Invariant (I3), we require some

technical lemmas, which rely on the notion of forward-edges:

Definition 1. We say that, at a given position in the stream,

an element 𝑢 ∈ U is forward-incident to a set 𝑆 if the edge (𝑆,𝑢)
appears in the remainder of the stream. We then also say that (𝑆,𝑢)
is a forward-edge.

Our first lemma states that if a set is special in epoch 𝑗 of algo-

rithm A(𝑖) , then the set was also special in epoch 𝑗 − 1 of A(𝑖) . This
monotonicity property is a consequence of the gradually increasing

thresholds 𝑗 · log
6𝑚. If a set is special in epoch 𝑗 , i.e., it has seen

𝑗 · log
6𝑚 incident edges towards uncovered elements, then it is

extremely unlikely that it has seen less than (𝑗 − 1) log
6𝑚 incident

edges towards uncovered elements in epoch 𝑗 − 1.

Lemma 5. For every set 𝑆 , every algorithm A(𝑖) , and every epoch

𝑗 ≥ 2, with probability 1 − 1

𝑚10
, if set 𝑆 is chosen for sampling in

epoch 𝑗 of A(𝑖) , then the set 𝑆 was also chosen for sampling in epoch

(𝑗 − 1) of A(𝑖) .

Proof. Fix any set 𝑆 , any algorithm A(𝑖) , and any epoch 𝑗 ≥ 2.

Now consider the moment at the beginning of epoch (𝑗 − 1) of
algorithm A(𝑖) and let 𝑆 ′ ⊆ 𝑆 denote the yet unmarked forward-

incident elements of 𝑆 , i.e., the elements 𝑢 ∈ 𝑆 that are not yet

marked such that (𝑆,𝑢) is a forward-edge.
We will prove that if |𝑆 ′ | ≤ (𝑗−

1

2
) ·𝑛·log

7𝑚

2
𝑖 then 𝑆 would not be

sampled in epoch 𝑗 with high probability, and on the other hand,

if |𝑆 ′ | ≥ (𝑗−
1

2
) ·𝑛·log

7𝑚

2
𝑖 then 𝑆 would be sampled in epoch (𝑗 − 1)

with high probability. Hence, no matter what the exact size of |𝑆 ′ |
is, the event that 𝑆 would be sampled in epoch 𝑗 but not sampled

in epoch 𝑗 − 1 can only happen with vanishingly small probability.

Suppose thus that |𝑆 ′ | ≤ (𝑗−
1

2
) ·𝑛·log

7𝑚

2
𝑖 . As argued in Inequal-

ity 1, when algorithm A(𝐾) finishes, then at most a
1

log
3𝑚

fraction

of the stream has been processed. Let 𝑁 ′ denote the length of the

stream that has not yet been processed. Then, 𝑁 ′ ≥ 𝑁 · (1− 1

log
3𝑚
).

Observe further that ℓ𝑖 ≤ 𝑁 ′√
𝑛
holds for all 1 ≤ 𝑖 ≤ 𝐾 . Then, by

Lemma 2, at most

ℓ𝑖

𝑁 ′
·
(𝑗 − 1

2
) · 𝑛 · log

7𝑚

2
𝑖 · (1 − 1√

𝑛
)
+ log(𝑚) ·

√√√
ℓ𝑖

𝑁 ′
·
(𝑗 − 1

2
) · 𝑛 · log

7𝑚

2
𝑖 · (1 − 1√

𝑛
)

=
(𝑗 − 1

2
) log

6𝑚

(1 − 1

log
3𝑚
) · (1 − 1√

𝑛
)
+ log(𝑚) ·

√√√ (𝑗 − 1

2
) log

6𝑚

(1 − 1

log
3𝑚
) · (1 − 1√

𝑛
)

≤ (𝑗 − 1

3

) log
6𝑚 + log𝑚

√︂
(𝑗 − 1

3

) log
6𝑚

≤ (𝑗 − 1

3

) log
6𝑚 + log𝑚

√︃
log

7𝑚 ≤ (𝑗 − 1

3

) log
6𝑚 + log

4.5𝑚

elements of 𝑆 ′ would appear in the subepoch 𝑗 dedicated to pro-

cessing 𝑆 with probability 1 − 1

𝑚20
, and the set would therefore not

be sampled (since the threshold in the algorithm is 𝑗 · log
6𝑚).

Suppose now that |𝑆 ′ | ≥ (𝑗−
1

2
) ·𝑛·log

7𝑚

2
𝑖 . Similar to the reasoning

above, by Lemma 2, at least

ℓ𝑖

𝑁 ′
·
(𝑗 − 1

2
) · 𝑛 · log

7 (𝑚) (1 − 1√
𝑛
)

2
𝑖

− log(𝑚) ·

√︄
ℓ𝑖

𝑁 ′
·
(𝑗 − 1

2
) · 𝑛 · log

7 (𝑚) (1 − 1√
𝑛
)

2
𝑖

≥ (𝑗 − 2

3

) log
6𝑚 − log𝑚

√︂
(𝑗 − 2

3

) log
6𝑚

≥ (𝑗 − 2

3

) log
6𝑚 − log

4.5𝑚 ≥ (𝑗 − 1) log
6𝑚

elements of 𝑆 ′ would appear in subepoch 𝑗 − 1 with probability

1 − 1

𝑚20
and the set would therefore be sampled.

Taking a union bound over the error probabilities incurred for

all sets, algorithms A(𝑖) , and epochs, the result follows. □

Next, we take the perspective of an unmarked element. We show

that every unmarked element is forward-incident to atmost 1.1 𝑚

2
𝑗
√
𝑛

elements at the end of epoch 𝑗 with high probability. This implies

that, the higher the epoch, elements can contribute less and less to

increasing the counters of sets. Consequently, the number of special

sets decreases from epoch to epoch. This is proved in Lemmas 6 and

8. In Lemma 7, we argue that uncovered elements are not marked

with high probability. This property is used in the proof of (I1).

Since the reasoning follows from the proof of Lemmas 6, we give

the lemma here.

Lemma 6. For any algorithm A(𝑖) and any epoch 𝑗 ≥ 0, with

probability at least 1 − 𝑗+1
𝑚8

, at the end of epoch 𝑗 of algorithm A(𝑖) ,
every not yet marked as covered element is forward-incident to at

most 1.1 𝑚

2
𝑗
√
𝑛
special sets of epoch 𝑗 .

Proof. We consider the initial sampling of sets with probabil-

ity 𝑝0 as epoch 0 of any of the algorithms A(𝑖) (i.e., all algorithms

A(1) ,A(2) , . . . have the same epoch 0). Denote by Sol(0) the sampled

sets. After the initial sampling, the number of occurrences of all ele-

ments in a substream of length𝐶

√
𝑛𝑁 log𝑚
𝑚 are computed. Consider

an element of degree at least 1.1 𝑚√
𝑛
. Then, by Lemma 2, the element

appears at least 0.99 · 1.1 𝑚√
𝑛
· 𝐶
√
𝑛𝑁 log𝑚

𝑚 ·𝑁 = 0.99 · 1.1𝐶 log𝑚 =

138

Set Cover in the One-pass Edge-arrival Streaming Model PODS ’23, June 18–23, 2023, Seattle, WA, USA

1.089𝐶 log𝑚 times in this sample with probability 1 − 1

𝑚20
. With a

similar reasoning, an element of degree at most 1.07
𝑚√
𝑛
appears at

most 1.01 · 1.07𝐶 log𝑚 = 1.0807𝐶 log𝑚 times in this sample with

probability 1 − 1

𝑚20
. We will therefore mark as covered every ele-

ment that appears at least 1.085𝐶 log𝑚 times in this sample. This

guarantees that all elements with degree at least 1.1 𝑚√
𝑛
are marked

while all elements with degree at most 0.7 𝑚√
𝑛
remain unmarked.

This proves the statement for 𝑗 = 0.

Next, consider the state of A(𝑖) after epoch 𝑗 and suppose that

the lemma holds for this epoch. Let 𝑄 𝑗 denote the set of special

elements from epoch 𝑗 . Let 𝑢 ∈ U be any element that is not yet

marked as covered, and let fd(𝑢,𝑄 𝑗) denote the forward-degree of
𝑢 to 𝑄 𝑗 , i.e., the number of forward-edges between 𝑢 and 𝑄 𝑗 . Then,

by the induction hypothesis, fd(𝑢,𝑄 𝑗) ≤ 1.1 𝑚

2
𝑗
√
𝑛
with probability

1 − 𝑗+1
𝑚8

.

Our algorithm in epoch 𝑗 subsamples the sets in 𝑄 𝑗 each with

probability 𝑞 𝑗 = min{ 2
𝑗

𝑛 , 1} and stores the sampled sets in variable

�̃� ′ (which becomes variable �̃� in epoch 𝑗 + 1). We denote the sub-

sampled set by �̃� 𝑗 . The algorithm then tracks all edges of epoch

𝑗 + 1 between �̃� 𝑗 and the yet unmarked vertices.

We will now bound the number of edges tracked in epoch 𝑗 + 1.

By Lemma 2, the number of forward-edges between an element 𝑢

and 𝑄 𝑗 in epoch 𝑗 is 𝑂 (ℓ𝑖
𝑁
fd(𝑢,𝑄 𝑗) log𝑚) with probability at least

1 − 1

𝑚20
, and, by a Chernoff bound, with probability 1 − 1

𝑚𝐶
2

, for

any large constant 𝐶2, there are

𝑂 (ℓ𝑖
𝑁
fd(𝑢,𝑄 𝑗) log𝑚 · 𝑞 𝑗 log𝑚) = Õ(2

𝑖

√
𝑛 log𝑛

· fd(𝑢,𝑄 𝑗) ·
2
𝑗

𝑛
)

= Õ(fd(𝑢,𝑄 𝑗) ·
2
𝑗

𝑛
) ,

forward-edges between𝑢 and �̃� 𝑗 in epoch 𝑗+1 (using the inequality

2
𝑖 ≤
√
𝑛). By the induction hypothesis, we know that fd(𝑢,𝑄 𝑗) ≤

1.1 𝑚

2
𝑗
√
𝑛
for any element. Hence, the total number of tracked edges

is: ∑︁
𝑢∈U

�̃� (fd(𝑢,𝑄 𝑗) ·
2
𝑗

𝑛
) = 𝑛 · �̃� (𝑚

2
𝑗
√
𝑛
· 2

𝑗

𝑛
) = �̃� (𝑚√

𝑛
) .

We can thus track all these elements with space �̃� (𝑚√
𝑛
).

Next, we claim that the sampling allows us to distinguish be-

tween uncovered elements 𝑢 ∈ U with forward-degree fd(𝑢,𝑄 𝑗) ≥
1.1 𝑚

2
𝑗+1√𝑛 and those elements 𝑣 with forward-degree fd(𝑣,𝑄 𝑗) ≤

1.07
𝑚

2
𝑗+1√𝑛 . Indeed, consider an element 𝑢 with forward-degree at

least 1.1 𝑚

2
𝑗+1√𝑛 . Then, by a Chernoff bound, with probability at

least 1 − 1

𝑚20
, the forward-degree between 𝑢 and �̃� 𝑗 is fd(𝑢, �̃� 𝑗) ≥

1.099
𝑚

2
𝑗+1√𝑛 ·

2
𝑗

𝑛 = 1.099
𝑚

2𝑛1.5 . Then, by Lemma 2, with probability

at least 1 − 1

𝑚20
, there will be at least

0.99 · 1.099

𝑚

2𝑛1.5
· 2

𝑖

√
𝑛 log𝑚

= 0.99 · 1.099

𝑚2
𝑖−1

𝑛2
log𝑚

forward-edges in epoch 𝑗 (we assumed here that𝑚 is large enough,

e.g.,𝑚 = Ω(𝑛2
log

3𝑚), to get concentration, which allows us to

apply Lemma 2). By a similar reasoning, for an element 𝑣 with

fd(𝑣,𝑄 𝑗) ≤ 1.07
𝑚

2
𝑗+1√𝑛 , there will be at most

1.01 · 1.071

𝑚2
𝑖−1

𝑛2
log𝑚

forward-edges in epoch 𝑗 between 𝑣 and �̃� 𝑗 .We can thus distinguish

the two cases and mark as covered all elements that appear at least

1.085 · 𝑚2
𝑖−1

𝑛2
log𝑚

times (observe that 1.01 ·1.071 < 1.085 < 0.99 ·1.099).

The argument is then completed by the fact that the special

elements in epoch 𝑗 + 1 are a subset of those in epoch 𝑗 . Last,

bounding the error probabilities in the induction step with a union

bound, including the error of
𝑗+1
𝑚8

from the induction hypothesis,

we see that the statement holds with probability 1 − 𝑗+2
𝑚8

. □

Lemma 7. With probability 1 − 1

𝑚18
, an element 𝑢 ∈ 𝑈 (𝑖) is not

marked when algorithm A(𝑖) terminates.

Proof. The only possibility for an element 𝑢 ∈ U (𝑖) to be

marked is if 𝑢 is marked in Line 31 but none of the special sets

that contain 𝑢 are added to Sol. The analysis of the previous lemma

reveals that if 𝑢 is marked then 𝑢 was incident to at least 1.01 ·
1.07

𝑚

2
𝑗+1√𝑛 special sets, and each special set is added to Sol with

probability 𝑝 𝑗 = 𝐶 · 2
𝑗
√
𝑛

𝑚 log𝑚. By Chernoff bounds, the probability

that none of these sets are added to Sol is at most
1

𝑚30
. The result

follows. □

Lemma 8. For any 𝑖, 𝑗 , there are at most 1.1 · 𝑚
2
𝑗 special sets in

epoch 𝑗 of algorithm A(𝑖) with probability 1 − 1

𝑚5
.

Proof. Consider the state of the algorithm at the end of epoch

𝑗 − 1. Then, by Lemma 6, every unmarked element 𝑢 has a forward-

degree to the set of special elements 𝑄 𝑗 in epoch 𝑗 of at most

1.1 𝑚

2
𝑗
√
𝑛
with probability 1 − 1

𝑚6
. By Lemma 2, for each element,

with probability 1 − 1

𝑚20
, at most

1.01 · 1.1 𝑚

2
𝑗
√
𝑛
· 2

𝑖

√
𝑛 log𝑚

≤ 1.01 · 1.1 𝑚

2
𝑗
√
𝑛 log𝑚

≤ 𝑚

2 · 2𝑗
√
𝑛

of these forward-edges appear in epoch 𝑗 . Observe that, any of

these edges (𝑢, 𝑆) appears in the subepoch of epoch 𝑗 that processes

𝑆 with probability
1√
𝑛
. Hence, by concentration bounds, only 2 ·

𝑚

2·2𝑗
√
𝑛
· 1√

𝑛
= 𝑚

2
𝑗𝑛

of these edges contribute to increasing the

counters. Since there are 𝑛 elements, the sum of the counters can

reach at most
𝑚
2
𝑗 , and since a set becomes special once a counter

reaches 𝑗 · log
6𝑚 ≥ 1, the result follows. □

Lemma 9 (Invariant (I3)). With probability at least 1 − 1/𝑚3
,

the total number of sets added to Sol during the execution of A(𝑖) is
𝑂 (
√
𝑛 log

2𝑚).

Proof. By Lemma 8, for any 𝑖, 𝑗 , there are 𝑂 (𝑚
2
𝑗) special sets in

epoch 𝑗 of algorithm A(𝑖) with probability 1 − 1

𝑚5
, and by a union

bound, this statement holds for all 𝑖, 𝑗 with probability 1 − 1

𝑚3
.

Since each of these sets is added to the solution with probability

𝑝𝑖 = 𝐶 · 2
𝑖
√
𝑛 log𝑚
𝑚 , by a Chernoff bound, at most 𝑂 (

√
𝑛 log𝑚) sets

are added. Hence, overall𝑂 (
√
𝑛 log

2𝑚) sets are added in algorithm

A(𝑖) . □

139

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Further Related Work
	1.4 Outline

	2 Preliminaries
	3 Lower Bound for Adversarial Order Streams
	4 Algorithm for Random Order Streams
	4.1 Algorithm
	4.2 Analysis
	4.3 Concentration Result
	4.4 Proof of Invariant (I1)

	5 Algorithm for Adversarial Order Streams
	6 Conclusions
	Acknowledgments
	References
	A Random Order Algorithm
	A.1 Proof of Concentration Result: Lemma 2
	A.2 Proof of Invariant (I2)
	A.3 Proof of Invariant (I3)

