
Optimal Bounds for Dominating Set in Graph
Streams
Sanjeev Khanna #

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, US

Christian Konrad #

Department of Computer Science, University of Bristol, UK

Abstract
We resolve the space complexity of one-pass streaming algorithms for Minimum Dominating Set
(MDS) in both insertion-only and insertion-deletion streams (up to poly-logarithmic factors) where
an input graph is revealed by a sequence of edge updates. Recently, streaming algorithms for the
related Set Cover problem have received significant attention. Even though MDS can be viewed as
a special case of Set Cover, it is however harder to solve in the streaming setting since the input
stream consists of individual edges rather than entire vertex-neighborhoods, as is the case in Set
Cover.

We prove the following results (n is the number of vertices of the input graph):
1. In insertion-only streams, we give a one-pass semi-streaming algorithm (meaning Õ(n) space)

with approximation factor Õ(
√

n). We also prove that every one-pass streaming algorithm with
space o(n) has an approximation factor of Ω(n/ log n).
Combined with a result by [Assadi et al., STOC’16] for Set Cover which, translated to MDS,
shows that space Θ̃(n2/α) is necessary and sufficient for computing an α-approximation for every
α = o(

√
n), this completely settles the space requirements for MDS in the insertion-only setting.

2. In insertion-deletion streams, we prove that space Ω(n2/(α log n)) is necessary for every ap-
proximation factor α ≤ Θ(n/ log3 n). Combined with the Set Cover algorithm of [Assadi et
al., STOC’16], which can be adapted to MDS even in the insertion-deletion setting to give an
α-approximation in Õ(n2/α) space, this completely settles the space requirements for MDS in
the insertion-deletion setting.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of computa-
tion → Lower bounds and information complexity; Theory of computation → Graph algorithms
analysis

Keywords and phrases Streaming algorithms, communication complexity, information complexity,
dominating set

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.93

Funding Sanjeev Khanna: Supported in part by NSF awards CCF-1910534, CCF-1926872, and
CCF-2045128.
Christian Konrad: Supported by EPSRC New Investigator Award EP/V010611/1.

1 Introduction

Streaming algorithms for processing large graphs have been studied since more than two
decades [17]. In the most traditional setting, the one-pass insertion-only setting, an algorithm
receives the input graph G = (V, E) with |V | = n as a sequence of its edges in arbitrary
order. The algorithm is required to maintain a memory of size sublinear in the input size and
to output a solution once the entire stream has been processed. A natural and well-studied
extension is the insertion-deletion setting, where previously inserted edges can be deleted
again. In both streaming models, the aim is to determine the space necessary and sufficient
for algorithms to solve a specific task.

© Sanjeev Khanna and Christian Konrad;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 93; pp. 93:1–93:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sanjeev@cis.upenn.edu
mailto:christian.konrad@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
https://doi.org/10.4230/LIPIcs.ITCS.2022.93
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

93:2 Optimal Bounds for Dominating Set in Graph Streams

In this paper, we initiate the study of the Minimum Dominating Set (MDS) problem in
the one-pass streaming model and resolve its space complexity in both the insertion-only
and insertion-deletion settings. A dominating set D ⊆ V in a graph G = (V, E) is a subset
of vertices that dominate or cover all other vertices, i.e., every vertex in V \D is adjacent to
at least one vertex in D. A minimum dominating set is one of smallest size, and the size
of a minimum dominating set in a graph G is known as its domination number, denoted
γ(G). The objective of the MDS problem is to compute a minimum dominating set or an
approximation thereof:

▶ Definition 1 (α-approximation to MDS). A (streaming) algorithm for MDS is an α-
approximation algorithm if, on every input graph G = (V, E), the algorithm outputs a
dominating set D ⊆ V of size at most α · γ(G) and a cover certificate C : V → D, indicating
for every vertex v ∈ V a vertex C(v) ∈ D that covers v, i.e., that is contained in the inclusive
neighborhood of v.

MDS is closely related to the Set Cover problem, which has recently received significant
attention in the streaming setting [13, 9, 14, 5, 16, 18, 3, 7]. In Set Cover, the input consists
of a universe U of size |U| = n and a collection of m sets S = {S1, . . . , Sm} with Si ⊆ U , for
every i. The output is a smallest subset S ′ ⊆ S that covers U , i.e., such that ∪S∈S′S = U .
Similar to MDS, an α-approximate set cover is one of size at most α times the size of a
smallest set cover.

In a non-streaming context, MDS and Set Cover are essentially equivalent since the two
problems can be reduced to each other in linear time. For example, in order to solve MDS
on a graph G = (V, E) with V = {v1 . . . vn} using an algorithm for Set Cover, we create a
Set Cover instance with n input sets S = {S1, . . . , Sn} where, for every 1 ≤ i ≤ n, Si is the
inclusive neighborhood of vi, i.e., Si = Γ[vi]. A set cover in this instance then immediately
yields a dominating set in G of the same size. In the streaming setting, however, the natural
ways in which the inputs are presented in the respective input streams are different, and the
two problems therefore cannot directly be reduced to each other. In Set Cover, all previous
work (with the exception of [18], see Subsection 1.3, further related work) assumes that
entire sets arrive one-by-one in the input stream. In MDS, it is more natural to consider the
aforementioned insertion-only graph stream setting, where edges arrive one-by-one in the
stream. We observe that, from an algorithmic perspective, the edge-arrival setting for MDS
can only be harder since none of the inclusive neighborhoods are visible in the stream at any
one moment. Conversely, lower bounds for streaming Set Cover on instances with Θ(n) sets
carry over to MDS.

Set Cover in the one-pass streaming model is well-understood and exhibits an interesting
phase-transition when the desired approximation factor is α = Θ(

√
n). There are simple

semi-streaming algorithms (i.e., with Õ(n) space) that achieve an approximation factor of
O(
√

n) [14, 9], regardless of the number of sets. But for any approximation factor α = o(
√

n),
it is known that space Θ̃(mn

α) is necessary and sufficient [5]. In other words, while Õ(n) space
is enough for an O(

√
n)-approximation, any algorithm that is tasked with achieving a slightly

better approximation factor of o(
√

n) necessarily requires Ω(m
√

n) space. A natural question
is if MDS also exhibits a similar phase transition at some approximability threshold? And if
so, does it occur at a much higher approximability threshold given that in MDS, elements
in each set arrive separately arbitrarily interspersed with elements of other sets? Finally,
for many graph problems, including Connectivity [1], Cut-sparsifiers and Spectral-sparsifiers
[1, 2, 20, 21], and (∆ + 1)-coloring [4], it is known that the space-approximation tradeoffs
known for insertion-only streams can be extended to insertion-deletion streams at the expense
of only a poly-logarithmic factor larger space. However, notable exceptions to this are the

S. Khanna and C. Konrad 93:3

Maximum Matching and the Minimum Vertex Cover problems where the space needed for
insertion-deletion streams can be shown to be Ω(n) factor larger than the space requirements
for insertion-only setting [22, 6, 12]. Does the space-approximation tradeoff for MDS also
qualitatively change as we go from insertion-only streams to the more general model of
insertion-deletion streams?

In this work, we answer all the above-mentioned questions, obtaining tight space-
approximation tradeoffs for MDS in both insertion-only and in insertion-deletion streams.

1.1 Our Results
Our first main result is that there is an Õ(n) space algorithm for MDS that achieves
Õ(
√

n)-approximation, showing that the semi-streaming approximability threshold for MDS
is essentially the same as that for Set Cover.

▶ Theorem 2. There is a randomized one-pass semi-streaming algorithm for MDS that
achieves Õ(

√
n)-approximation.

Our algorithm can in fact solve Set-Cover instances that are presented in the edge-arrival
model, i.e., as an arbitrary sequence of tuples (u, Si) ∈ U × S, indicating that item u is
contained in set Si, with space Õ(|U|+ |S|) space. Observe that instances with |S| sets may
require space Õ(|U| · |S|) to write down – our algorithm therefore uses up to a factor of
n = |U| less memory than the input instance size. The theorem below summarizes this result.

▶ Theorem 3. There is a randomized one-pass streaming algorithm for Set-Cover in the
edge-arrival model that achieves Õ(

√
n)-approximation using Õ(n + m) space where n = |U|,

and m = |S|.

Once we consider the o(
√

n)-approximation regime, the space-approximation tradeoffs
for MDS can be easily shown to converge to that for Set Cover instances with n sets. On
the one hand, the one-pass Θ̃(mn

α) space streaming algorithm for Set Cover in [5], which we
call the AKL-algorithm (Assadi-Khanna-Li [5]) and expand on in Appendix A, can easily be
applied to MDS with parameter m = n for all values of α, and even works in the insertion-
deletion setting with only a poly-logarithmic increase in the space requirements. On the
other hand, [5] shows a matching Ω(mn

α) space lower bound for insertion-only streams that
holds for α = o(

√
n), and also carries over to MDS with parameter m = Θ(n). These two

result combined show that Θ̃(n2/α) space is necessary and sufficient for MDS in both the
insertion-only and the insertion-deletion settings, for every α = o(

√
n). Thus in the setting

of insertion-only streams, MDS behaves in a similar manner to Set Cover, exhibiting a phase
transition at α = Õ(

√
n).

We further complete the picture for insertion-only streams by observing that if one
tries to go below the regime of semi-streaming space then not much more than a trivial
O(n)-approximation factor is achievable.

▶ Theorem 4. Any constant error one-pass streaming algorithm for MDS in the insertion-only
model with approximation factor o(n/ log n) requires Ω(n) space.

Our second main result is that the landscape of space-approximation trade-offs funda-
mentally changes when we consider MDS in insertion-deletion streams. In particular, in
the semi-streaming space regime, no algorithm can achieve much better than the trivial
O(n)-approximation.

▶ Theorem 5. Every insertion-deletion streaming algorithm for MDS with approximation
factor α, for any α ≤ Θ(n/ log3 n), requires space Õ(n2

α).

ITCS 2022

93:4 Optimal Bounds for Dominating Set in Graph Streams

Table 1 Space/approximation trade-offs for MDS in the one-pass streaming model.

(a) Insertion-only model.

Space Approx. Reference
o(n) Ω̃(n) Theorem 4
Θ̃(n) Õ(

√
n) Theorem 2

Θ̃(n2/α) α = o(
√

n) Assadi et al. [5]

(b) Insertion-deletion model.

Space Approx. Reference
Ω̃(n2/α) α ≤ Θ(n

log3 n
) Theorem 5

Õ(n2/α) α Assadi et al. [5]

Our results, together with Assadi et al.’s results for Set Cover [5] applied to MDS,
completely characterize the space/approximation trade-offs for MDS in both the insertion-
only and the insertion-deletion models, see Table 1.

1.2 Techniques

We now give an overview of the technical ideas underlying our results. We start with an
overview of the algorithm underlying Theorem 2.

Let H = (V, F) be the n-vertex input graph. Instead of working with H directly, we
consider the bipartite incidence graph G = (A, B, E) with A = B = V instead: For every
edge {u, v} ∈ F , we add the edges (u, v) and (v, u) to G, using the notation (a, b) to denote
an edge in the bipartite incidence graph where a ∈ A and b ∈ B. When working with G, the
objective is to select a subset D ⊆ A such that ΓG(D) = B and |D| is minimum.

To motivate our algorithm, it will be instructive to first consider the simplified setting
where each vertex in A arrives with all its incident edges to vertices in B (as in the standard Set
Cover problem). In that case, we can simply maintain a set S ⊆ B of currently undominated
vertices, and whenever a vertex a ∈ A arrives that can dominate at least

√
n vertices in S,

we include it in our solution and remove this vertex along with its neighbors from S. Let
S′ denote the set S upon termination of the algorithm – we include all vertices in S′ in our
dominating set solution. This algorithm can clearly be implemented in Õ(n) space. It is
also easy to see that the algorithm chooses at most

√
n vertices in processing the stream

as inclusion of any vertex in the solutions removes at least
√

n vertices from S. Moreover,
no vertex in any optimal solution could dominate more than

√
n vertices in S′ (or else we

would have included it in our solution). Together, these two observations imply that this is
an O(

√
n)-approximation semi-streaming algorithm.

However, in the setting of MDS, we only see edges arrive in some arbitrary manner. The
challenge then is that using only Õ(1) amount of information per vertex we need to recognize
(i) when inclusion of a vertex in our solution can allow us to dominate many vertices, and
(ii) for each dominated vertex, record the vertex in our solution that dominates it. On the
surface, the first task can be accomplished by just maintaining the degree of each vertex
to currently undominated vertices. The difficulty here is that the degree information alone
does not allow us to differentiate between the scenario where the high degree vertices in A

dominate different subsets of vertices in B and the scenario when they dominate a common
set of vertices in B. In the latter scenario, we should not be including all the high-degree
vertices in our solution. We handle this by setting up a probabilistic process which includes
vertices with high degree with a suitable probability that avoids taking too many vertices
in one go. Vertices with continued high-degree get multiple chances for inclusion with
geometrically increasing probability of inclusion. But how do we recognize which vertices
have been covered by vertices chosen in our solution? We accomplish this by decoupling the
selection process from the covering process. In particular, we start recording which vertices

S. Khanna and C. Konrad 93:5

are covered by a vertex v selected in our solution only after the vertex v has been selected in
our solution. Intuitively, if a vertex is going to cover many vertices, then the probabilistic
selection process ensures that many edges incident on this vertex will arrive after it has been
selected. Together, this ensures that using only Õ(1) amount of information per vertex, the
algorithm is both Õ(

√
n)-competitive with the optimal solution, and is able to maintain a

certificate of coverage for each vertex.
We next describe the ideas underlying proofs of our lower bound results in Theorems 4

and 5. As is typically the case for streaming lower bounds, our lower bounds are proved in
the two-party communication setting, where the edge set of the input graph is partitioned
between Alice and Bob. In the insertion-deletion setting, in addition to his share of input
edges, Bob also holds edge deletions, which form a subset of Alice’s input edges. It will be
helpful to first consider the lower bound for the insertion-only setting (Theorem 4), where we
prove that every one-pass streaming algorithm with space o(n) has an approximation factor
of Ω(n/ log n), and then build on this construction to illustrate the much more involved
Ω(n2/α) space lower bound for α-approximation algorithms in the insertion-deletion setting
(Theorem 5).

Consider the following input graph G = ({vA, vB} ∪ [n], E) on n + 2 vertices, where
every edge is incident to either vA or vB. Alice holds the edges incident to vA and Bob
holds the edges incident to vB . Let ΓG(v) denote the set of vertices adjacent to a vertex v,
and let ΓG[v] = ΓG(v) ∪ {v}. Suppose that these edges are such that ΓG[vA] ∪ ΓG[vB] =
([n] ∪ {vA, vB}) \ {T} with T ∈ [n], i.e., vertices vA and vB cover all but the single vertex T .
The set {vA, vB , T} thus constitutes a dominating set of size 3, and any dominating set D

that constitutes an o(n)-approximate solution therefore needs to be of size 3 · o(n) = o(n).
Moreover, the dominating set D is required to contain vertex T , since T cannot be covered
by vA or vB . However, the task of identifying T is hard – it is easy to obtain an Ω(n) lower
bound on the two-party communication complexity for this task. On the surface, this appears
to immediately yield the desired lower bound for our problem. This argument, however, is
incomplete since the output dominating set D does not allow us to identify T exactly. In
particular, since |D| = o(n) and T ∈ D, we are only able to reduce the possibilities as to the
identity of the element T from an initial set of n possibilities to a set of o(n) possibilities. We
will, however, see that approximately identifying T (for the right notion of approximation) is
essentially as hard (up to constants) as identifying T exactly, which establishes our desired
lower bound. The final step in the argument above follows by utilizing a result of Assadi et al.
[4] on the Set-Union problem where Alice holds a set A ⊆ [n], Bob holds a set B ⊆ [n], and
Alice and Bob are guaranteed that A∪B = [n] \ {T}, for some T ∈ [n]. Assadi et al. proved
that any protocol that sufficiently skews the a priori uniform distribution of T substantially
has communication cost Ω(n).

Our lower bound in the insertion-deletion setting is also based on Set-Union, however,
the ability to incorporate edge deletions into the construction allows us to hide the Set-Union
instance within a larger problem with distinctly higher communication complexity that we
refer to as Embedded-Set-Union. In this problem, Alice holds n subsets A1, . . . , An ⊆ [n],
Bob holds an index I ∈ [n] and set B such that (AI , B) is a Set-Union instance. In addition
to I and B, Bob also knows all but β = Θ(n/(α log n)) elements of the sets Ai, for every
i ̸= I. The objective is to solve the underlying Set-Union instance (AI , B), i.e., approximately
identifying the element T = [n] \ (AI ∪B). As our main lower bound result of this paper, we
prove that ESU has communication complexity Ω(nβ).

Bob’s knowledge about the sets (Ai)i ̸=I is pivotal in our construction. When reducing
ESU to MDS, we create a graph G with vertex neighborhoods AI , B and (Ai)′

i ̸=I , where
A′

i ⊆ Ai is the subset of elements that is not known to Bob, or, in other words, Bob’s

ITCS 2022

93:6 Optimal Bounds for Dominating Set in Graph Streams

knowledge of the sets Ai corresponds to edge deletions in the reduction. These deletions
ensure that the surviving sets (A′

i)i ̸=I are small enough (of size β) so as to cover only few
vertices of G if they are selected into the output dominating set. Observe that γ(G) = 3
(via the sets AI , B and any set that covers T). Similar to the insertion-only setting, the
hardness stems from the fact that the output dominating set D is required to cover T . Since
this can only be achieved via the sets (A′

i)i ̸=I , and only at most 3α of these sets can be
chosen into D since D is an α-approximation, the dominating set algorithm is therefore able
to (approximately) identify T as one of the o(n) elements covered by the selected sets from
(A′

i)i ̸=I . This substantially reduces the possible values for T from n to o(n) and thus solves
ESU.

Proving a lower bound on the communication complexity of ESU is the most technical
contribution of this paper. To this end, we adopt the information complexity framework
and measure the amount of information necessary revealed about Alice’s input A1, . . . , An in
so-called nice protocols for ESU, i.e., protocol consisting of only two messages; one from Alice
to Bob, and a relatively short one from Bob back to Alice that consists of candidate values
for T , a constraint that we need to impose for technical reasons. We first argue that any nice
protocol for ESU can also be used to solve Set-Union, which establishes that any transcript of
a nice protocol for ESU necessarily reveals Ω(n) bits of information about AI , as implied by
the lower bound for Set-Union. Recall that, for every i ̸= I, Bob already knows all but β bits
of Ai. Our aim, therefore, is to show that every nice protocol reveals Ω(β) bits of information
about the part of Ai (i ≠ I) unknown to Bob, which then yields the desired lower bound by
summing up over every i ̸= I. We establish this by a combination of two arguments. First,
using the fact that any nice protocol reveals Ω(n) bits of information about AI , we prove
that any such protocol must also reveal Ω(β) bits of information about a randomly chosen
subset A′

I ⊆ AI of size β. Second, since Alice does not know the index I, we establish that a
randomly chosen subset in any other set Ai, i ̸= I, which we ensure to coincide with the bits
that Bob does not know by appropriately defining the hard input distribution, also needs to
reveal this amount of information, thereby completing the argument.

1.3 Further Related Work
We will now expand on further results on the streaming Set-Cover problem. Set-Cover has
been extensively studied in the semi-streaming model [15], where streaming algorithms are
allowed to use O(n poly log n) space. Saha and Getoor [26] initiated the study of streaming
algorithms for Set-Cover and gave an O(log n)-approximation semi-streaming algorithm that
makes O(log n) passes over the stream. Emek and Rosén [14] were the first to conduct a
thorough study of the one-pass semi-streaming setting and showed that an approximation
factor of Θ(

√
n) can be achieved (even in a weighted version of the problem) and that this is

best possible. Emek and Rosén’s algorithm proved extremely efficient in practice. In a recent
study [7], their algorithm achieved cover sizes that are only 8% larger than those produced
by a non-streaming disk-friendly algorithm [10] while using between 10-73 times less memory.
Chakrabarti and Wirth [9] then extended Emek and Rosén’s results to multiple passes and
showed that an approximation factor of Θ(n1/(p+1)) is achievable and optimal when p passes
over the stream are allowed, for any constant p.

Further works that consider algorithms with substantially more space than semi-streaming
space are known. Assadi [3] showed that O(poly log n) passes α-approximation algorithms
require space Ω(mn

1
α), even if the input stream is in random order. This lower bound is

matched by Har-Peled et al.’s α-approximation algorithm [16], which uses space Õ(mn
1
α)

and performs O(α) passes over the input, which can be in adversarial order (see also the
earlier work [13] for an algorithm that uses slightly more space).

S. Khanna and C. Konrad 93:7

Last, a fractional version of the Set Cover problem has also been studied in the streaming
model. In [18], multi-pass algorithms for this problem based on the multiplicative weights
update method are presented. Interestingly, their algorithm also naturally works in an
edge-arrival setting similar to the edge streaming model consider in this paper. We stress,
however, that their algorithm does not give any results if only few passes are considered, and,
as such, their techniques cannot give non-trivial bounds in the one-pass setting.

1.4 Organization
The rest of this paper is organized as follows. In Section 2, we give a brief overview of the
known tools from communication and information complexity that will be useful in our lower
bound proofs. Then in Section 3, we present our semi-streaming algorithm for MDS, proving
Theorem 2. We present our lower bound results for MDS, namely, proofs of Theorems 4
and 5 in Section 4. Finally, we conclude with a direction for future work in Section 5.

2 Preliminaries

2.1 Communication Complexity
We will now provide the necessary context on communication complexity for proving our
lower bounds (see the excellent monographs [23, 25, 24] for an overview).

In the two-party communication complexity framework, there are two parties, denoted
Alice and Bob, who each hold a part of their joint input (A, B). The objective of Alice and
Bob is to solve a joint problem by communicating as few bits as possible to each other. The
way Alice and Bob interact is specified by a communication protocol Π. Alice and Bob may
use randomization, in which case Alice and Bob have access to a (public) infinite shared
string of random bits RΠ, and also each have access to infinite (private) strings of random
bits. With slight abuse of notation, we denote the transcript of their communication, i.e., the
entirety of all their exchanged messages, also by Π. The cost of a communication protocol Π,
denoted |Π|, is the maximum total number of bits exchanged in an execution of Π. Then, the
randomized ϵ-error communication complexity of problem P, denoted Rϵ(P), is the minimum
cost of an ϵ-error communication protocol for P.

2.2 Inequalities Involving Entropy and Mutual Information
We will use information theory to give lower bounds on the communication complexity of
communication problems. To this end, in this section we give notation and useful inequalities
involving entropy and mutual information. For more details on information theory, we refer
the reader to the monograph by Cover and Thomas [11].

Let A, B, C be jointly distributed random variables according to distribution D. We denote
by HD(A) the entropy of A, and by HD(A | B) the conditional entropy of A conditioned on
B. The mutual information between A and B is denoted by ID(A : B), and the conditional
mutual information of A and B conditioned on C is denoted by ID(A : B | C). If the
distribution D is clear from the context then we may drop the subscript D in the entropy
and mutual information expressions.

We will make use of the following inequalities: (let A, B, C, D be jointly distributed
random variables)
1. If A and B are independent conditioned on CD then I(A : B | CD) = 0 (see Sec. 2 in

[11]).

ITCS 2022

93:8 Optimal Bounds for Dominating Set in Graph Streams

2. If A and C are independent conditioned on D then I(A : B | CD) ≥ I(A : B | D).
(see Prop. B.3. in [4])

3. If D is independent of A, B and C then I(A : B | CD) = I(A : B | C) (see Sec. 2 in
[11]).

4. I(A : B | C) ≤ min{H(A), H(B)} (immediate from def. of mutual information).

2.3 Information Complexity
In order to prove lower bounds on our communication problems, we use the information
complexity framework (see [8] for a great overview). Information complexity approaches
to proving lower bounds on the communication cost of protocols measure the amount of
information necessarily revealed by the transcript of the protocol. This quantity is a natural
lower bound on the communication cost of the protocol, since the amount of information
revealed cannot be larger than the number of bits exchanged.

▶ Definition 6 (Internal and external information cost). Denote by DP a distribution over
inputs (X, Y) for a two-party communication problem P, and let Π be a protocol. Then, the
internal information cost of Π, denoted ICostint

D (Π), and the external information cost of Π,
denoted ICostext

D (Π), are defined as:

ICostint
D (Π) = IDP(X : Π | Y RΠ) + IDP(Y : Π | XRΠ) , and

ICostext
D (Π) = IDP(XY : Π | RΠ) .

The internal (external) information complexity of problem P, denoted ICint
D (P) (resp. ICext

D (P)),
is the minimum internal (resp. external) information cost of any randomized constant error
protocol that solves P.

It is well-known (e.g. [8]) that the information complexity (both internal and external) of
a problem P constitutes a lower bound on the randomized constant-error communication
complexity of P. It is therefore enough to bound the information complexity of a problem
rather than the communication complexity directly.

Last, we will use the fact that external information cost cannot be smaller than internal
information cost:

▶ Lemma 7 (e.g. [8]). Let Π be a two-party communication protocol. Then:

ICostint
D (Π) ≤ ICostext

D (Π) .

3 Semi-streaming Algorithm in the Insertion-only Model

We now give an algorithm for MDS in the one-pass edge-arrival streaming model. Let
H = (V, F) be the n-vertex input graph. Recall that instead of working with H directly, we
consider the bipartite incidence graph G = (A, B, E) with A = B = V instead: for every edge
{u, v} ∈ F , we add the edges (u, v) and (v, u) to G, using the notation (a, b) to denote an
edge in the bipartite incidence graph where a ∈ A and b ∈ B. The objective now is to select
a subset D ⊆ A such that ΓG(D) = B and |D| is minimum. In what follows, we present an
Õ(
√

n)-approximation algorithm for MDS using Õ(|A|+ |B|) = Õ(n) space.
Observe that when going from input graph H to the bipartite incidence graph G in the

streaming model, for every edge {u, v} ∈ F arriving in the stream, the edges (u, v) and (v, u)
are fed into our algorithm. The additional structure, i.e., the knowledge that edge (v, u)
follows edge (u, v), is not exploited by Algorithm 1. In other words, Algorithm 1 also works

S. Khanna and C. Konrad 93:9

as an Õ(
√

n)-approximation algorithm for a general Set Cover instance with n sets and a
universe of size n, and, as we will point out further below, can be extended with minimal
modification to solve Set Cover instances on m sets with approximation factor Õ(

√
n) using

only Õ(m + n) space.

3.1 The Algorithm

Our algorithm maintains sets D0, D1, ..., Dlog n that are all initially empty such that each set
Di will contain only O(

√
n) vertices in expectation, and at most O(

√
n log n) vertices with

high probability. Our dominating set solution will include all vertices in ∪log n
i=0 Di, as well

as any vertices at the end that are not dominated by vertices in ∪log n
i=0 Di. Since

∑log n
i=0 |Di|

is O(
√

n log n), the goal of the algorithm in choosing vertices for inclusion in ∪log n
i=0 Di is

to ensure that the size of the set of undominated vertices that remains at the end is only
O(
√

n log n) times the size of an optimal solution. Towards this end, we ensure that if there
is any vertex in A that could have dominated Ω(

√
n) undominated vertices at the end, it

is necessarily included in ∪log n
i=0 Di. Combined together, these properties imply a solution

that is only O(
√

n log n) as large as the optimal solution in expectation ,and O(
√

n log2 n)
as large as the optimal solution with high probability.

As outlined in Section 1.2, the challenge in achieving the above-mentioned properties in
the semi-streaming regime is that we only have Õ(1) space available per vertex to recognize
that it can dominate many vertices not yet dominated as well as maintain a certificate of
coverage for each dominated vertex. We achieve the former by continually recording degrees
to undominated vertices and including a vertex in the set Di with probability 2i/

√
n if it

has essentially accumulated Θ(
√

n) degree to undominated vertices for i successive iterations.
This probabilistic inclusion process ensures that on the one hand, we do not include too many
vertices that are all dominating the same set of vertices, and yet upon termination of the
algorithm, any vertices that can dominate Ω(

√
n log n) undominated vertices are necessarily

included in ∪log n
i=0 Di – a consequence of the aggressive ramping up of inclusion probabilities.

Finally, the algorithm handles the recording of certificate of coverage in small space by
starting to record the vertices that will be covered by a vertex v included in our solution
only once the vertex v is already included in the solution. The probabilistic inclusion process
ensures that many edges incident on an included vertex v are expected to arrive only after v

has been selected. Altogether, this ensures that using only Õ(1) amount of information per
vertex, the algorithm is both Õ(

√
n)-competitive with the optimal solution, and is able to

maintain a certificate of coverage for each vertex.

3.2 Analysis

It is easy to verify that the space used by the algorithm is Õ(|A|+ |B|) = Õ(n) as we are
only maintaining degrees of vertices in A, recording which vertices in B have been covered,
and storing the subset of A that is included in our solution. In what follows, we show that
the expected size of the solution returned by our algorithm is O(

√
n log n) times the optimal.

We call d(a) the uncovered degree of vertex a. For any vertex b ∈ B and integer i ≥ 0, we
say that an edge e = (a, b) is a level-i edge if at the moment when e arrived in the stream,
i ·n1/2 ≤ d(a) < (i + 1) ·n1/2. Let Xi(b) be a random variable whose value equals the number
of level-i edges incident on a vertex b ∈ B, and let Xi =

∑
b∈B Xi(b) denote the total number

of level-i edges.

ITCS 2022

93:10 Optimal Bounds for Dominating Set in Graph Streams

Algorithm 1 Single-pass Semi-Streaming Algorithm for MDS.
Require: Bipartite input graph G = (A, B, E) with |A| = |B| = n

1: Let D1, D2, . . . , Dlog n ← {}
2: For every a ∈ A: d(a)← 0
3: U ← ∅ {Keep track of dominated nodes (U ⊆ B always holds)}
4: For every b ∈ B : C(b)← ⊥ {Output cover certificate}
5: Let D0 ⊆ A such that every vertex is included in D0 with probability p0 := 1√

n

6: while stream not empty do
7: Let (a, b) be the next edge in the stream
8: if b ∈ U then {ignore edge if incident to already covered B-vertex}
9: Continue with next edge in stream

10: end if
11: {vertex b is not yet covered}
12: d(a)← d(a) + 1
13: if d(a) = i · n1/2 for some integer i ≥ 1 then
14: With probability pi := 2i

√
n

= 2ip0: Di ← Di ∪ {a}
15: end if
16: if a ∈

⋃
i≥0 Di then {b is dominated by a}

17: U ← U ∪ {b}
18: C(b)← a

19: end if
20: end while
21: For every b ∈ B \ U : C(b)← b

22: return Dominating set ∪log n
i=0 Di ∪ (B \ U) and cover certificate C

▶ Lemma 8. For any integer i ≥ 0, we have:

E[Xi] ≤
n3/2

2i
.

Proof. We will show that for any vertex b ∈ B, and i ≥ 0, E[Xi(b)] ≤
√

n
2i . The lemma then

follows by linearity of expectation as

E[Xi] = E

[∑
b∈B

Xi(b)
]

=
∑
b∈B

E[Xi(b)] ≤ n3/2

2i
.

Now to bound E[Xi(b)], we observe that if an edge (a, b) is a level-i edge then it means
that vertex a was sampled with probability 2ip0 (and not included). Let Z be a random
variable that denotes the number of trials needed to see a success when each trial has success
probability 2ip0. Then Xi(b) ⪯ Z, that is, Z stochastically dominates Xi(b) since for any
positive integer K, Pr[Xi(b) = K] ≤ Pr[Z = K]. Note that Xi(b) may be much smaller than
Z as the vertex b stops accumulating level-i edges as soon as all edges incident on vertex b

have arrived even if the Bernoulli process defined above has not seen a success. Now since
the random variable Z is distributed according to geometric distribution, we have

E[Xi(b)] ≤ E[Z] ≤ 1
2ip0

=
√

n

2i
. ◀

S. Khanna and C. Konrad 93:11

▶ Lemma 9. For any integer i ≥ 0, let Ai ⊆ A be the set of vertices a with d(a) ≥ i · n1/2 at
the end of the stream. Then

E[|Ai|] ≤
n

2i−1 .

Proof. For any vertex a ∈ A to be included in the set Ai, the vertex a must receive
√

n

level-(i − 1) edges that are incident on it. But by Lemma 8, we know that the expected
number of level-(i − 1) edges is bounded by n3/2/2i−1. Thus |Ai| ≤ Xi−1/

√
n, and hence

E[Ai] ≤ E[Xi−1]/
√

n ≤ n
2i−1 . ◀

▶ Lemma 10. At the end of the stream, for every integer i ≥ 0, we have E[|Di|] ≤ 2
√

n.

Proof. For any i ≥ 0, the set Di is a subset of Ai obtained by sampling each vertex in Ai

with probability 2ip0. Thus by Lemma 9, we have

E[|Di|] = E[|Ai|] · 2ip0 ≤
n

2i−1 ·
2i

√
n

= 2
√

n . ◀

▶ Lemma 11. D 1
2 log n = A 1

2 log n.

Proof. We have 2 1
2 log n · p0 ≥ 1. Hence, every vertex of A 1

2 log n is included in D 1
2 log n. ◀

▶ Lemma 12. The expected size of the dominating set returned by the algorithm is at most
O(
√

n log n) times the optimal size.

Proof. The solution returned by the algorithm is ∪i≥0Di and the set B \U . We first observe
that E[| ∪i≥0 Di|] ≤ 2

√
n log n by Lemma 10, so the expected size of this component of

the solution is clearly at most O(
√

n log n) times the optimal size (assuming the graph is
non-empty).

Now to compare |B \ U | to optimal solution size, we consider any solution O∗ ⊆ A that
is a minimum dominating set for B \ U . We claim that every vertex a ∈ O∗ covers at most√

n log n vertices in B \ U . Indeed, suppose that this was not the case, and some vertex
a ∈ O∗ covers more than

√
n log n vertices in B \ U . Then, there must be a moment when

a was inserted into A 1
2 log n, and thus also into D 1

2 log n by Lemma 11. However, from this
moment onwards, every uncovered neighbor of a would become covered, a contradiction.
Thus |B \ U | is bounded by |O∗|/(

√
n log n), completing the proof of the lemma. ◀

High probability result. The analysis above shows that the expected size of the dominating
set produced is at most O(

√
n log n) times the optimal size. At the expense of losing another

logarithmic factor, it is easy to slightly modify the algorithm and analysis to instead claim
that the size of the dominating set produced is at most O(

√
n log2 n) times the optimal size

with probability at least 1 − 1/ poly(n). The only change in the algorithm is to set the
parameter p0 = log n√

n
instead of 1√

n
. With this change, the assertion of the Lemma 10 can be

modified to show that for every integer i ≥ 0, we have |Di| = O(
√

n log n) with probability
at least 1 − 1/ poly(n). The remainder of the analysis is essentially identical, and we can
conclude that the size of the dominating set produced is at most O(

√
n log2 n) times the

optimal size with probability at least 1− 1/ poly(n).
We have thus established the following theorem.

▶ Theorem 2 (restated and more formal). Algorithm 1 is a randomized one-pass semi-
streaming algorithm for MDS with expected approximation factor O(

√
n log n). The algorithm

can also give an approximation factor of O(
√

n log2 n) with high probability.

ITCS 2022

93:12 Optimal Bounds for Dominating Set in Graph Streams

Extension to general Set Cover instances. Our algorithm can also solve Set Cover instances
with universe size n and an arbitrary number of sets m with an expected approximation ratio
of O(

√
n log m) and space Õ(n + m). The sole modification needed is to initialize p0 :=

√
n

m

in Line 5. Then, similar to Lemma 11, it can be seen that the algorithm only uses at most
log m levels and thus at most log m dominating sets Di, each of expected size O(

√
n). The

expected approximation factor is therefore bounded by O(
√

n log m), giving us Theorem 3
(as stated in Section 1.1).

4 Lower Bounds

As outlined in the overview presented in Section 1.2, the starting point for our lower bounds for
both insertion-only and insertion-deletion streams is the two-party communication problem
called the Set-Union problem, whose hardness was established by Assadi et al. [4]. Our lower
bound for insertion-deletion streams is based on embedding an instance of Set-Union into a
larger instance such that the embedded instance only gets revealed after deletions, allowing
us to obtain a stronger lower bound. We refer to this new problem as the Embedded-Set-Union
problem (ESU). The rest of the section is organized as follows. In Subsection 4.1, we introduce
the Set-Union problem and state its hardness. In Subsection 4.2, we give our lower bound for
insertion-only streaming algorithms via a reduction to Set-Union. Then, in Subsection 4.3,
we define the Embedded-Set-Union problem, prove its hardness, and establish a connection
between insertion-deletion streaming algorithms for MDS and the ESU problem, which yields
the desired space lower bound.

4.1 The Set-Union Problem
The Set-Union problem is a two-party communication problem where Alice and Bob each
hold subsets S1, S2 ⊆ [n], respectively, with the promise that S1 ∪ S2 = [n] \ {T}, for some
element T ∈ [n]. The objective for Alice and Bob is to sufficiently skew the a priori uniform
distribution of T by communicating with each other, i.e., so that the distribution of T

conditioned on the transcript of the protocol is far from uniform (see further below for
details). While this objective appears to be easier to achieve than identifying T itself, we
will see that the information complexity of Set-Union is Ω(n).

We consider the hard input distribution DSU for Set-Union:

Distribution Dn
SU on variables A, B and T :

1. For each i ∈ [n]: (A[i], B[i]) is chosen uniformly at random from {(1, 1), (1, 0), (0, 1)}.
2. Let T ∈ [n] be a uniform random index.
3. Let A[T] = B[T] = 0.
Alice holds A and Bob holds B.

If we omit the superscript, i.e., we write DSU, then we mean Dn
SU.

Following [4] for the related Set-Intersection problem, we consider the following notion of
solving Set-Union:

▶ Definition 13 ([4]). We say that a protocol ΠSU ϵ-solves Set-Union iff:

EΠSU
∆T V

(
dist(T | ΠSU),U[n]

)
≥ ϵ ,

where ∆T V is the total variation distance, T is the variable in the distribution DSU, and U[n]
is the uniform distribution on n elements.

S. Khanna and C. Konrad 93:13

Observe first that T is uniformly distributed in distribution DSU. The quantity
dist(T | ΠSU) is the distribution of T conditioned on the transcript of the protocol. It
is hence required that a protocol that ϵ-solves Set-Union contains enough information in the
transcript that substantially skews the distribution of T .

We will next discuss the hardness of Set-Union. To this end, we observe that Set-Union
is the complementary problem to Set-Intersection, as defined by Assadi et al. in [4]: In
Set-Intersection, Alice and Bob each hold subsets R1, R2 ⊆ [n], respectively, with the promise
that R1 ∩R2 = {T}, for some T ∈ [n]. They further define the hard input distribution DSI,
which is identical to DSU with every bit flipped. The objective is the same as in Set-Union,
i.e., to ϵ-solve Set-Intersection. Since Alice and Bob can take complements of their sets locally,
any Set-Union instance (S1, S2) can be transformed into a Set-Intersection instance (R1, R2)
by setting R1 = [n] \ S1 and R2 = [n] \ S2, and vice versa. This process also applies to
transforming DSU to DSI. The two problems are therefore equivalent and the hardness of
Set-Intersection proved in [4] carries over to Set-Union.

As proved in [4], we have the following hardness:

▶ Theorem 14 ([4]). Let ΠSU be a protocol that ϵ-solves Set-Union. Then:

ICostint
Dn

SU
(ΠSU) = Ω(ϵ2 · n) .

By the relationship between internal and external information cost (Lemma 7), the following
holds:

ICostext
Dn

SU
(ΠSU) = Ω(ϵ2 · n) .

4.2 Lower Bound for Insertion-only Streams
We will first use the Set-Union problem to show that every one-pass insertion-only streaming
algorithm for MDS with approximation ratio o(n/ log n) can be used to Ω(1)-solve Set-Union.
Consequently, any such algorithm requires space Ω(n). This is achieved via a simple reduction:

▶ Theorem 4 (restated). Any constant error one-pass streaming algorithm for MDS in the
insertion-only model with approximation factor o(n/ log n) requires Ω(n) space.

Proof. Let (A, B, T) be an instance of Set-Union, and let A be a streaming algorithm as in
the statement of the theorem.

Alice and Bob proceed as follows:
1. Alice and Bob construct the input graph G = ([n] ∪ {vA, vB}, EA ∪ EB) as follows:
2. Alice constructs the edge set EA = {(vA, a) : a ∈ A} and runs A on EA (in arbitrary

order). Alice then sends the memory state of A to Bob.
3. Bob constructs the edge set EB = {(vB , b) : b ∈ B} and continues executing A on EB

(in arbitrary order).
4. As a result of A, Bob obtains a dominating set D. Bob then sends the set D′ = D\{vA, vB}

back to Alice.
We denote this protocol by ΠSU.

We will now prove that the transcript Ω(1)-solves the Set-Union instance:
First, observe that γ(G) ≤ 3 since the dominating set {vA, vB , T} is of this size. Next,

since the approximation factor of A is o(n/ log n), the output dominating set D is therefore
of size 3 · o(n/ log n) = o(n/ log n). Since T /∈ A∪B, it is neither covered by vA nor by vB . T

ITCS 2022

93:14 Optimal Bounds for Dominating Set in Graph Streams

is therefore necessarily contained in the set D′, which is part of the transcript. Since D′ ⊆ D,
we have that |D′| = o(n/ log n). Then, since algorithm A fails with constant error, we have:

EΠSU
∆T V

(
dist(T | ΠSU),U[n]

)
≥ Pr[A succeeds] · 1

2

(
(n− o(n/ log n)) 1

n

)
= Ω(1) .

Alice and Bob can therefore Ω(1)-solve the Set-Union instance, which, by Theorem 14,
implies that the information cost and therefore also the communication cost of ΠSU is Ω(n).
Since the message from Bob to Alice, which constitutes the set D′, is of length o(n) (D′ is
of size o(n/ log n) and each element in D′ can be encoded with O(log n) bits), the message
from Alice to Bob, which coincides with the memory state of A, must therefore be of length
Ω(n). ◀

4.3 Lower Bound for Insertion-deletion Streams

We will now prove our lower bound for insertion-deletion streaming algorithms for MDS,
showing that Ω(n2/(α log n)) space is necessary for computing an α-approximate solution,
for any α = O(n/ log3 n). To this end, we first define a hard two-party communication
game Embedded-Set-Union (ESU) in Subsection 4.3.1, which can be seen as the Set-Union
problem embedded in a more complex setting, and prove a lower bound on its communication
complexity in Subsection 4.3.2. Then, in Subsection 4.3.3, we will show that a streaming
algorithm for MDS can be used to solve ESU, which then establishes the desired lower bound.

4.3.1 The Embedded-Set-Union Problem (ESU)

The Embedded-Set-Union problem (ESU) is parametrized by an integer β ≥ C log2 n, for some
large enough constant C, and defined as follows. Alice holds n vectors A1, . . . , An ∈ {0, 1}n,
Bob holds an index I ∈ [n], a vector B ∈ {0, 1}n, index sets J1, . . . Jn ⊆ [n] with |Ji| = n−β,
for every i ̸= I and JI = {}, and also knows the entries Ai[Ji], for every i. Alice and Bob
are guaranteed that sets (AI , B) constitute a valid Set-Union instance, i.e., (AI , B) ∼ DSU.
The objective for Alice and Bob is to ϵ-solve the Set-Union instance (AI , B), and we say that
a protocol ϵ-solves ESU if it ϵ-solves the instance (AI , B).

Next, we define a hard input distribution Dβ
ESU that will be used for lower bounding the

communication complexity of ESU.

Distribution Dβ
ESU is defined on variables I, T, A1, . . . An, J1, . . . , Jn, and B:

1. Let I ∈ [n] be a uniform random index.
2. Let (AI , B, T) ∼ DSU(A, B, T).
3. For each i ̸= I : Let Ai ∼ DSU(A).
4. Let JI = {} and for i ̸= I: Let Ji ⊆ [n] be a random subset of size n− β.
Alice holds sets A1, . . . , An and Bob knows Ai[Ji], for every i, the set B, and the index
I.

We will denote by A′
i := Ai − Ai[Ji] the set obtained by removing the elements in Ai[Ji]

from Ai. In the following, we will require a lower bound on the size of every set A′
i that we

will give now:

▶ Lemma 15. Consider an input sampled from Dβ
ESU. Then, with high probability, every set

A′
i with i ̸= I, is of size at most β.

S. Khanna and C. Konrad 93:15

Proof. Since Ji is a uniform random subset of [n] of size n − β, A′
i is a vector with β

entries where every bit is “1” with probability 2/3, since every entry in Ai is set to be 1
with probability 2/3. Hence, A′

i contains 2/3 · β “1” entries in expectation, and at most β

“1” entries with high probability (which follows from Chernoff bounds using the fact that
β ≥ C · log n, for a large enough C). Applying the union bound over all i ∈ [n] \ I, this
bound holds for all indices i ∈ [n] \ {I}. ◀

In the following, we will work with particular protocols for Set-Union and ESU that we
call nice protocols:

▶ Definition 16 ((p, t)-Nice Protocols). Let C0 > 0 be a small constant and n0 a large integer
such that ICostext

Dn
SU

(ΠSU) ≥ C0 · n, for every n ≥ n0, for every protocol ΠSU that 1
4 -solves

Set-Union. We say that a communication protocol Π for Set-Union or ESU is (p, t)-nice if:

1. It consists of two messages; first a message Π1 from Alice to Bob, and next a message Π2

from Bob to Alice; and
2. For every n ≥ n0, with probability at least p, the message Π2 is an encoding of a subset

S ⊆ [n] with |S| ≤ C0 · n/(t log n) and T ∈ S. Furthermore, the encoding of S, i.e., the
message Π2, is of length at most |Π2| ≤ C0 ·n/((t− 2) log n) bits (which is easy to achieve
since every element u ∈ S can be encoded with ⌈log n⌉ bits).

Observe that a (p, t)-nice protocol is also (p′, t′)-nice if p ≥ p′ and t ≥ t′. For brevity, we
say that a protocol is nice if it is (2/3, 3)-nice.

We will show now that nice-protocols 1
4 -solve Set-Union (or ESU).

▶ Lemma 17. Let Π be a nice protocol for Set-Union (or ESU). Then, for large enough n, Π
1
4 -solves Set-Union (or ESU).

Proof. Let C0 and n0 be as in Definition 16. Since Π is a nice protocol, with probability
at least 2/3, its second message Π2 from Bob to Alice encodes a set S ⊆ [n] with |S| ≤
C0 · n/(3 log n) such that T ∈ S. The transcript of Π, in particular, the set S thus reduces
the possible values of T to |S| = o(n). We thus obtain:

EΠ ∆T V

(
dist(T | Π),U[n]

)
≥ 2

3 ·
1
2

(
(n− |S|) · 1

n

)
= 1

3(1− o(1)) = 1
3 − o(1) . ◀

4.3.2 Communication Complexity of ESU
Before giving our lower bound proof, we need to establish an important property of nice
protocols for Set-Union.

▶ Lemma 18. Let ΠSU be a nice protocol for SU, and let Π1
SU denote the message sent from

Alice to Bob. Then:

IDSU
(A : Π1

SU | RΠSU
) = Ω(n) .

Proof. Let C0 and n0 be as in Definition 16 and assume that n ≥ n0. Then, by Lemma 17,
since ΠSU is a nice protocol, it 1

4 -solves Set-Union. Recalling the definition of the constant
C0, we have ICostext

Dn
SU

(ΠSU) ≥ C0 · n.
We denote by Π2

SU the message sent from Bob to Alice, and, for brevity of notation, we
denote by R the public random string RΠSU

. Then:

ITCS 2022

93:16 Optimal Bounds for Dominating Set in Graph Streams

C0 · n ≤ ICostext
DSU

(ΠSU) = IDSU
(AB : ΠSU | R)

= IDSU
(AB : Π1

SUΠ2
SU | R)

= IDSU
(AB : Π1

SU| R) + IDSU
(AB : Π2

SU | Π1
SUR)

≤ IDSU
(A : Π1

SU| R) + IDSU
(B : Π1

SU | AR) + |Π2
SU| (*)

= IDSU
(A : Π1

SU| R) + 0 + |Π2
SU| (**)

≤ IDSU
(A : Π1

SU| R) + 1
2C0 · n ,

where (*) follows since mutual information between two random variables is bounded from
above by the minimum entropies of the two involved random variables (Prop. 4 in Sec. 2.2),
and (**) follows since B and Π1

SU are independent conditioned on A and R (Prop. 1 in
Sec. 2.2). The result follows. ◀

Next, we show that a similar statement also holds for the subvectors of Alice’s input A.

▶ Lemma 19. Let ΠSU be a (2/3 + ϵ, 300)-nice protocol for Set-Union, for any ϵ > 0. Let
J ⊆ [n] be a uniform random subset of indices of size k, for any k ≤ n− C ′ log2 n (for some
large enough C ′), and denote by J := [n] \ J . Furthermore, denote by Π1

SU the message sent
from Alice to Bob. Then:

IDn
SU

(A[J] : Π1
SU | A[J]RΠSU

) = Ω(|J |) .

Proof. Let (A′, B′, T ′) ∼ D|J|
SU be an instance of length |J |. Alice and Bob use the (2/3 +

ϵ, 300)-nice protocol ΠSU designed for input lengths n to solve this instance of length |J |.
They create the instance (A, B) of length n as follows:
1. Alice and Bob set A′ and B′ at positions A[J] and B[J], respectively.
2. Alice and Bob use public randomness to sample all positions A[j] with j ∈ J : For every

index j ∈ J , they set A[j] = 1 with probability 2/3 and A[j] = 0 with probability 1/3.
3. Bob uses private randomness to set the bits B[j], for j ∈ J , as follows: If A[j] = 0 then

Bob sets B[j] = 1, and if A[j] = 1 then Bob sets B[j] = 1 with probability 1/2 and
B[j] = 0 with probability 1/2. Observe that, for every j ∈ J , the pairs (A[j], B[j]) are
then uniformly distributed in {(1, 1), (1, 0), (0, 1)}.

Then, Alice sends the first message Π1
SU of protocol ΠSU to Bob (on instance (A, B)). Bob

then computes the second message Π2
SU of protocol ΠSU and determines the set S ⊆ [n]

encoded by Π2
SU. However, rather than sending Π2

SU back to Alice, Bob computes the subset
S′ = S∩J and sends this subset S′ back to Alice in a suitable encoding. We call the resulting
protocol Π|J|

SU.
We will first argue that the protocol Π|J|

SU is (2/3, 3)-nice (or simply nice). To this end,
we will bound the size of S′, i.e., the set of elements sent from Bob back to Alice in Π|J|

SU.
Denote by S the set encoded in Π2

SU. Then, since ΠSU is (2/3 + ϵ, 300)-nice, with probability
at least 2/3 + ϵ, |S| ≤ C0 · n/(300 log n) and T ∈ S. Recall that S′ = S ∩ J . Then, since J is
a random subset of [n], by Chernoff bounds, we have

|S′| ≤ 100 · C0 · n
300 log n

· |J |
n

= C0 · |J |
3 log n

,

S. Khanna and C. Konrad 93:17

with probability at least 1− 1
n (using the fact that |J | ≥ C ′ log2 n, for some large enough

C ′), and T ∈ S′. Using a union bound on the error probabilities 1/3− ϵ and 1/ poly n, the
protocol Π|J|

SU is thus (2/3, 3)-nice (for large enough n).
Next, we will relate the information cost of ΠSU to ΠJ

SU. Observe that the public
randomness R

Π|J|
SU

used in Π|J|
SU is R

Π|J|
SU

= A[J], J, RΠSU
, where RΠSU

is the public randomness

used by protocol ΠSU. Observe further that, since J is a random subset, this construction
establishes exactly the distribution Dn

SU. Denote by (Π|J|
SU)1 the message sent from Alice to

Bob in Π|J|
SU. Then, since Π|J|

SU is (2/3, 3)-nice, we can apply Lemma 18 and obtain:

Ω(|J |) = I
D|J|

SU
(A′ : (Π|J|

SU)1 | R
Π|J|

SU
)

= IDn
SU

(A[J] : Π1
SU | A[J]JRΠSU

)

= IDn
SU

(A[J] : Π1
SU | A[J]RΠSU

) ,

where the last step uses the fact that J is independent of all other variables in the mutual
information term (Prop. 3 in Sec. 2.2). ◀

Equipped with Lemma 19, we are now ready to give our lower bound on the communication
complexity of ESU.

▶ Theorem 20. Every (2/3 + ϵ, 300)-nice protocol for ESU requires a first message from
Alice to Bob of size Ω(nβ) bits.

Proof. Let ΠESU be a (2/3 + ϵ, 300)-nice protocol for ESU. We will first show that ΠESU can
be used to solve Set-Union, as follows:
1. Let (A, B, T) ∼ DSU be an instance of Set-Union.
2. Alice and Bob use public randomness to sample a uniform random index I ∈ [n].
3. Alice sets AI = A.
4. For every i ̸= I:

Using public randomness, Alice and Bob sample Ji ⊆ [n] of size n− β and Ai[Ji] (each
bit in Ai[Ji] is 1 with probability 2/3, otherwise 0). Then, using private randomness,
Alice samples the remaining positions of Ai, namely, Ai[Ji].

Next, they run the protocol ΠESU, which solves ESU and thus also Set-Union. We denote the
resulting protocol by ΠSU. Observe that since ΠESU is (2/3 + ϵ, 300)-nice, the protocol ΠSU
is also (2/3 + ϵ, 300)-nice.

Let JI ⊆ [n] be a random subset of size β and let JI = [n]− JI . Then, using Lemma 19,
we obtain (recall that β ≥ C log2 n, for some large enough C, we can thus invoke Lemma 19):

Ω(β) = IDSU
(A[JI] : Π1

SU | A[JI]RΠSU
)

= IDESU
(AI [JI] : Π1

ESU | IA[JI]A[J−I]RΠESU
)

= IDESU
(AI [JI] : Π1

ESU | IA[J]RΠESU
) ,

where we used the notation A[J−I] = A1[J1], . . . , AI−1[JI−1], AI+1[JI+1], . . . , An[Jn], and
A[J] = A1[J1], . . . , An[Jn], and the fact that the public randomness RΠSU

consists of I,
A[J−I], and RΠESU

.
Next, we expand the previous expression as follows:

ITCS 2022

93:18 Optimal Bounds for Dominating Set in Graph Streams

Ω(β)

= IDESU
(AI [JI] : Π1

ESU | IA[J]RΠESU
)

= 1
n

·
n∑

i=1

IDESU
(Ai[Ji] : Π1

ESU | IA[J]RΠESU
, I = i)

= 1
n

·
n∑

i=1

IDESU
(Ai[Ji] : Π1

ESU | A[J]RΠESU
) Prop. 3 in Sec. 2.2 applied

to I (and event I = i)

≤ 1
n

·
n∑

i=1

IDESU
(Ai[Ji] : Π1

ESU | A[J]RΠESU
, A1[J1], . . . , Ai−1[Ji−1]) Prop. 2 in Sec. 2.2

= 1
n

IDESU
(A[J] : Π1

ESU | A[J]RΠESU
)

≤ 1
n

IDESU
(A : Π1

ESU | RΠESU
) .

Since IDESU
(A : Π1

ESU | RΠESU
) ≤ HDESU

(Π1
ESU) ≤ |Π1

ESU|, the result follows. ◀

4.3.3 Lower Bound for Insertion-deletion Streaming Algorithms for MDS
We will now argue that one-pass insertion-deletion streaming algorithms for MDS can be
used to obtain a (p, t)-nice protocol for ESU, for suitable parameters p and t. This reduction
then reveals that every such algorithm requires space Ω(n2/(α log n)), which constitutes our
main lower bound result.

▶ Theorem 5 (restated and slightly more formal). Every one-pass 1/4-error streaming algorithm
in the insertion-deletion model for MDS with approximation factor α ≤ Cn/ log3 n, for some
small enough C, requires space Ω(n2/(α log n)).

Proof. Let A be an algorithm as in the statement of the theorem. We consider the ESU
problem with parameter β = C ′ n

α⌈log n⌉ , for a sufficiently small constant C ′ whose value
we determine later. Recall that the definition of ESU requires β ≥ C log2 n, for some large
enough constant C, which, together with β = C ′ n

α⌈log n⌉ implies that α ≤ C ′′ n
log3 n

, for some
constant C ′′. This theorem thus holds for approximation factors α ≤ C ′′ n

log3 n
.

Let (A1, . . . , An, I, B, J1, . . . , Jn) ∼ Dβ
ESU be an input to ESU. Then:

1. Alice and Bob construct a graph G on vertex set V = {A1, . . . , An, B} ∪ [n], where
A1, . . . , An, B is turned into a clique. Denote by EC the edges of this clique. Alice runs
algorithm A on the edges in EC (in arbitrary order).

2. Alice constructs the edge set EA = {(Ai, j) : i ∈ [n] and j ∈ Ai}. Alice runs algorithm
A on these edges (in arbitrary order) and then sends the resulting memory state to Bob.

3. Bob constructs the edge set EB = {(B, j) : j ∈ B} and continues the execution of A on
the edges in EB (in arbitrary order).

4. Bob next constructs the following set of edge deletions: ED = {(Ai, j) : i ∈ [n] and j ∈
Ai[Ji]}. Bob continues the execution of A on ED (in arbitrary order) with every edge
interpreted as an edge deletion.

5. Bob then examines the dominating set D and the cover certificate C output by A. Denote
by F all elements in [n] that are not covered by the sets AI , B. Bob sends F back to
Alice.

S. Khanna and C. Konrad 93:19

We denote this protocol by ΠESU and claim that ΠESU is (3/4, 300)-nice. Indeed, first
observe that γ(G) ≤ 3 since {A′

I , B, {T}} is a dominating set of this size. Next, observe that
T ∈ F , i.e., T is necessarily covered by a set other than the sets A′

I and B since (A′
I , B, T)

constitutes a Set-Union instance. By Lemma 15, the degree of every vertex in V \ {A′
I , B} is

at most β w.h.p. Hence, these vertices cover at most |D| · β different elements, which implies
|F | ≤ |D| · β. Since D constitutes an α-approximation, we have |D| ≤ 3 · α. Thus there are
at most |F | ≤ 3 · α · β ≤ 3C′n

⌈log n⌉ values that variable T could take on. We then select C ′ such
that 3C′n

⌈log n⌉ ≤
C0n

3 log n , where C0 is as in Definition 16. Finally, since the success probability of
A is at least 3/4, and |F | ≤ |D| · β holds with high probability, we obtain that ΠESU is nice.

Now by Theorem 20, the first message sent in protocol ΠESU must be of size Ω(nβ) =
Ω(n2/(α log n)). Since this message coincides with the space requirements of A, the result
follows. ◀

5 Conclusions

Our results resolve the space requirements of streaming algorithms for MDS in both the
insertion-only and the insertion-deletion models up to poly-logarithmic factors. We showed
that, similar to Set Cover, MDS undergoes a phase transition at an approximation factor of
Θ̃(
√

n), where space Õ(n) is sufficient for computing an Õ(
√

n)-approximation, but space
Ω(n
√

n) is needed for obtaining a o(
√

n)-approximation. We also showed that no such
transition occurs in the insertion-deletion model, where space Θ̃(n2/α) is necessary and
sufficient for computing an α-approximation. We conclude with a discussion of two natural
questions suggested by our work.

First, while our lower bound in the insertion-only model does not require an algorithm to
output a cover certificate, the cover certificate is pivotal to the lower bound by Assadi et al.
for Set-Cover [5] as well as our lower bound for MDS in the insertion-deletion model. Can we
prove similar lower bounds for algorithms that are not required to output a cover certificate?

Second, as observed in Section 3, our insertion-only streaming algorithm naturally extends
to arbitrary Set-Cover instances in the edge-arrival model, and gives Õ(

√
n)-approximation

with space Õ(m + n) where m denotes the number of sets and n denotes the number of
elements in the set cover instance. In the set-arrival model, i.e., when entire sets arrive
one-by-one, a similar approximation factor can be achieved using only Õ(n) space, without
any dependency on m [14, 9]. This suggests the following natural question: is it possible to
avoid the space dependency on m in the edge-arrival model? In a follow-up work, subsequent
to this submission, we have made progress on this question by showing that the space used
must necessarily have a dependence on m. Specifically, we have been able to show that
Ω̃(m + n) space is necessary for achieving an Õ(

√
n)-approximation.

References

1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
459–467. SIAM, 2012. doi:10.1137/1.9781611973099.40.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dynamic graph
streams. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques - 16th International Workshop, APPROX 2013, and 17th International Workshop,

ITCS 2022

https://doi.org/10.1137/1.9781611973099.40

93:20 Optimal Bounds for Dominating Set in Graph Streams

RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, volume 8096 of Lecture
Notes in Computer Science, pages 1–10. Springer, 2013. doi:10.1007/978-3-642-40328-6_1.

3 Sepehr Assadi. Tight space-approximation tradeoff for the multi-pass streaming set cover
problem. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors, Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 321–335. ACM, 2017. doi:10.1145/
3034786.3056116.

4 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pages 265–276, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3313276.3316361.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming com-
plexity of the set cover problem. In Daniel Wichs and Yishay Mansour, editors, Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 698–711. ACM, 2016. doi:10.1145/2897518.2897576.

6 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016. doi:10.1137/1.9781611974331.ch93.

7 Michael Barlow, Christian Konrad, and Charana Nandasena. Streaming set cover in practice.
In Martin Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11,
2021, pages 181–192. SIAM, 2021. doi:10.1137/1.9781611976472.14.

8 Mark Braverman. Interactive information complexity. SIAM Rev., 59(4):803–846, 2017.
doi:10.1137/17M1139254.

9 Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass complexity of
semi-streaming set cover. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 1365–1373. SIAM, 2016. doi:10.1137/1.9781611974331.ch94.

10 Graham Cormode, Howard J. Karloff, and Anthony Wirth. Set cover algorithms for very large
datasets. In Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-
Thompson, and Aijun An, editors, Proceedings of the 19th ACM Conference on Information
and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010,
pages 479–488. ACM, 2010. doi:10.1145/1871437.1871501.

11 Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
URL: http://www.elementsofinformationtheory.com/.

12 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover
in dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.30.

13 Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. On streaming and
communication complexity of the set cover problem. In Fabian Kuhn, editor, Distributed
Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings, volume 8784 of Lecture Notes in Computer Science, pages 484–498. Springer,
2014. doi:10.1007/978-3-662-45174-8_33.

14 Yuval Emek and Adi Rosén. Semi-streaming set cover. ACM Trans. Algorithms, 13(1):6:1–6:22,
2016. doi:10.1145/2957322.

15 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

https://doi.org/10.1007/978-3-642-40328-6_1
https://doi.org/10.1145/3034786.3056116
https://doi.org/10.1145/3034786.3056116
https://doi.org/10.1145/3313276.3316361
https://doi.org/10.1145/2897518.2897576
https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.1137/1.9781611976472.14
https://doi.org/10.1137/17M1139254
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1145/1871437.1871501
http://www.elementsofinformationtheory.com/
https://doi.org/10.4230/LIPIcs.CCC.2020.30
https://doi.org/10.1007/978-3-662-45174-8_33
https://doi.org/10.1145/2957322
https://doi.org/10.1016/j.tcs.2005.09.013

S. Khanna and C. Konrad 93:21

16 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds for
the streaming set cover problem. In Tova Milo and Wang-Chiew Tan, editors, Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 371–383. ACM, 2016.
doi:10.1145/2902251.2902287.

17 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. In James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms,
Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-22, 1998,
volume 50 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 107–118. DIMACS/AMS, 1998. doi:10.1090/dimacs/050/05.

18 Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan R. Ullman, Ali Vakilian, and Anak
Yodpinyanee. Fractional set cover in the streaming model. In Klaus Jansen, José D. P. Rolim,
David Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August
16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.12.

19 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Maurizio Lenzerini and Thomas Schwentick,
editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 49–58. ACM, 2011.
doi:10.1145/1989284.1989289.

20 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456–477, 2017.
doi:10.1137/141002281.

21 Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri,
Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic
streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1814–1833.
SIAM, 2020. doi:10.1137/1.9781611975994.111.

22 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages
840–852. Springer, 2015. doi:10.1007/978-3-662-48350-3_70.

23 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

24 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020. doi:10.1017/9781108671644.

25 Tim Roughgarden. Communication complexity (for algorithm designers). Foundations and
Trends® in Theoretical Computer Science, 11(3–4):217–404, 2016. doi:10.1561/0400000076.

26 Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application
to multi-topic blog-watch. In Proceedings of the SIAM International Conference on Data
Mining, SDM 2009, April 30 - May 2, 2009, Sparks, Nevada, USA, pages 697–708. SIAM,
2009. doi:10.1137/1.9781611972795.60.

A The AKL-Algorithm

For completeness, we now discuss the AKL-algorithm [5] applied to MDS in data streams.
We will first present the algorithm applied to insertion-only streams and then introduce the
modifications necessary for it to be run in insertion-deletion streams.

Let G = (V, E) be the input graph to MDS, and let α ≥ 1 be the desired approximation
guarantee. The AKL-algorithm in insertion-only streams proceeds as follows:

ITCS 2022

https://doi.org/10.1145/2902251.2902287
https://doi.org/10.1090/dimacs/050/05
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.12
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1137/141002281
https://doi.org/10.1137/1.9781611975994.111
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.1017/9781108671644
https://doi.org/10.1561/0400000076
https://doi.org/10.1137/1.9781611972795.60

93:22 Optimal Bounds for Dominating Set in Graph Streams

1. Preprocessing: Arbitrarily partition V into sets V = {V1, V2, . . . , V⌈n/α⌉} such that
|Vi| ≤ α, for every i.

2. While processing the input edge stream: For every vertex v ∈ V and every vertex
group Vj ∈ V , store a single edge that connects v to an arbitrary vertex in Vj . Denote by
S the set of edges stored.

3. Postprocessing:
a. Using edge set S, construct the split graph G′ = (V ∪ V, E′) where V is turned into a

clique, and there is an edge between v ∈ V and Vj ∈ V if S contains an edge (v, u), for
any u ∈ Vj . Compute a minimum dominating set D′ in G′ with the property that no
vertex in V is selected (in exponential time).

b. Define the output dominating set D as follows: For each vertex group Vj ∈ D′, add all
vertices in Vj to D.

Analysis. The space requirements of the algorithm are dominated by the edges S retained
by the algorithm. Since, for each vertex v ∈ V , we store at most ⌈n/α⌉ incident edges, and
we account space O(log n) per edge, the total space used by the algorithm is O(n · n

α · log n) =
O(n2

α log n).
To see that the algorithm indeed has an approximation factor of α, we will argue that

|D′| = γ(G′) ≤ γ(G). This then implies the result since, by construction, |D| ≤ α · |D′| and
thus |D| ≤ α · γ(G).

To see that γ(G′) ≤ γ(G) holds, consider the split graph G′′ = (V1 ∪ V2, E′′), where
V1 and V2 are copies of V , V1 is turned into a clique and (v1, v2) ∈ E′′ iff v1 and v2 are
neighbors in G. Then it is not hard to see that γ(G) = γ(G′′) (a dominating set Q in G is
also a dominating set in G′′ if Q is regarded as a subset of V1, and vice versa). Next, observe
that G′ can be obtained from G′′ by contracting the V2 vertices into the vertex groups V.
Since the domination number of a graph cannot increase when contracting vertices, we have
γ(G′) ≤ γ(G′′) = γ(G).

Last, we need to argue that set D is indeed a dominating set in G. Recall that, by
construction, D′ is a dominating set in G′. Consider a vertex v ∈ V and a vertex group
Vj ∈ V ∩D′ that dominates v in G′. This implies that there exists a vertex in Vj that is
adjacent to v in G. Since we added all vertices of Vj to D, vertex v is thus also dominated
by a vertex in D in graph G.

We have thus established the following theorem:

▶ Theorem 21. For every 1 ≤ α ≤ n, there is a deterministic one-pass α-approximation
streaming algorithm in the insertion-only model with space O(n2

α log n).

Extension to Insertion-deletion Streams. In order to implement the AKL-algorithm in
the insertion-deletion model, we need to solve the following task: For every v ∈ V and vertex
group Vj ∈ V, we need to store an arbitrary edge that connects v to a vertex in Vj (if there
is one). This can be achieved by l0-sampling: An l0-sampler in insertion-deletion streams is
an algorithm that returns a uniform random element with non-zero frequency, which, applied
to insertion-deletion graph streams, is thus able to return a uniform random edge of the
input graph. By restricting the scope of the l0-sampler to edges between vertex v ∈ V and
vertex group Vj ∈ V, l0-sampling allows us to sample a uniform random edge connecting v

to (a vertex in) Vj .
The l0-samplers of Jowhari et al. [19] require space O(log2 n log 1

δ), where δ is the success
probability of the sampler. Since we need to run an l0-sampler for every pair (v, Vj) ∈ V ×V ,
which amounts to Θ(n2/α) samplers, we choose δ = Θ(1

n2) in order to obtain an algorithm

S. Khanna and C. Konrad 93:23

that succeeds with high probability. The total space requirements of the algorithm are
dominated by the space required by the l0-samplers, which amount to

O(n2

α
) ·O(log2 n log 1

δ
) = O(n2

α
log3 n) .

We thus established the following theorem:

▶ Theorem 22. For every 1 ≤ α ≤ n, there is a randomized one-pass α-approximation
streaming algorithm in the insertion-deletion model with space O(n2

α log3 n) that succeeds
with high probability.

ITCS 2022

	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Further Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Communication Complexity
	2.2 Inequalities Involving Entropy and Mutual Information
	2.3 Information Complexity

	3 Semi-streaming Algorithm in the Insertion-only Model
	3.1 The Algorithm
	3.2 Analysis

	4 Lower Bounds
	4.1 The Set-Union Problem
	4.2 Lower Bound for Insertion-only Streams
	4.3 Lower Bound for Insertion-deletion Streams
	4.3.1 The Embedded-Set-Union Problem (ESU)
	4.3.2 Communication Complexity of ESU
	4.3.3 Lower Bound for Insertion-deletion Streaming Algorithms for MDS

	5 Conclusions
	A The AKL-Algorithm

