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Abstract

Rank aggregation from pairwise preferences has
widespread applications in recommendation sys-
tems and information retrieval. Given the enor-
mous economic and societal impact of these ap-
plications, and the consequent incentives for mali-
cious players to manipulate ranking outcomes in
their favor, making rank aggregation algorithms
robust to adversarial manipulations in data is a cru-
cial challenge. In this paper, we initiate the study
of robustness in rank aggregation under the popu-
lar Bradley-Terry-Luce (BTL) model for pairwise
comparisons. We consider a setting where pair-
wise comparisons are initially generated accord-
ing to a BTL model, but a fraction of these com-
parisons are corrupted adversarially prior to being
reported to us. We consider a strong contamina-
tion model, where an adversary having complete
knowledge of the initial truthful data and the true
BTL weights, can corrupt this data by inserting,
deleting, or changing data points. The goal is to
recover the true BTL weights given this corrupted
data. We characterize the extent of corruption
under which the true BTL weights are uniquely
identifiable. We also provide a novel algorithm
that provably filters out the adversarial corruption
from data under reasonable conditions on data
generation and corruption. We support our the-
ory with experiments on both synthetic as well
as real data, showing the resilience of our algo-
rithm to a substantial degree of corruption and the
vulnerability of existing approaches to even small
amounts of corruption.
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1. Introduction
The problem of rank aggregation from pairwise compar-
isons, where the goal is to aggregate pairwise preferences
between items into rankings/scores for each item, has a
wide range of applications in the areas of recommendation
systems and information retrieval (Dwork et al., 2001; Ne-
gahban et al., 2017; Maystre & Grossglauser, 2015; Agar-
wal et al., 2018; Hendrickx et al., 2019; Wauthier et al.,
2013; Ailon et al., 2008; Gleich & Lim, 2011; Guiver &
Snelson, 2009; Volkovs & Zemel, 2012). In these large
scale web-applications for recommendation and retrieval,
one obtains pairwise preferences from different users either
explicitly through survey questions or implicitly through
clicks, ratings, reviews etc. and aggregates these preferences
to score/rank items/products for these users.

The massive economic and societal impact of these applica-
tions has also meant that some players are trying to boost the
ranking/scores of their products by resorting to malicious
practices such as creating fake user accounts, manufactur-
ing fake reviews and ratings, click-fraud etc. Hence, it has
become increasingly important to guard against these ma-
licious players by designing ranking algorithms that are
robust to adversarial corruption in data.

In order to address this challenge, we initiate the study of
robustness in rank aggregation under the Bradley-Terry-
Luce (BTL) model (Bradley & Terry, 1952; Luce, 1959),
which is arguably the most popular parametric model for
rank aggregation using pairwise comparisons. We describe
the exact setting below.

1.1. Problem Formulation

Given a set of n items, the BTL model associates a pos-
itive weight/score w∗i with each item i ∈ [n], and pos-
tulates that item i wins in a pairwise comparison against
item j with probability p∗ij = w∗i /(w

∗
i + w∗j ). Since this

model is invariant under multiplicative scaling, for unique-
ness, it is assumed that w∗ ∈ ∆n, the open n-simplex,
where w∗ is the vector of the aforementioned BTL weights.
In our framework, nature first draws a comparison graph
G∗ = (V,E∗) which is an undirected graph with vertex
set V = [n] and edge set E∗ = {({ui, vi}, p̂uivi)}

m∗

i=1
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consisting of m∗ edges, where the label p̂uv1 on edge
(u, v) ∈ E∗ corresponds to the fraction of times i beats
j out of L pairwise comparisons drawn according to the
underlying BTL model with (unknown) weights w∗, for
a parameter L ∈ N. We consider a powerful contami-
nation model where an adversary having complete knowl-
edge of the truthful graph G∗ = (V,E∗), as well as true
weights w∗, can subsequently contaminate some fraction
of E∗ by adding spurious new edges with arbitrary labels,
deleting and corrupting existing edges/labels. As a result,
we receive as input a comparison graph G = (V,E) with
edge set E = {({ui, vi}, puivi)}

m
i=1 consisting of a subset

Eu = E∗ ∩E of uncorrupted edges from the initial truthful
data, where for each ({u, v}, puv) ∈ Eu, the reported prob-
ability value puv is equal to the uncorrupted probability p̂uv .
The remaining subset Ea = E \Eu consists of either newly
introduced edges, or edges already existing in E∗ whose
labels were corrupted by the adversary. In either case, no
assumptions can be made on the reported probability values
puv for edges ({u, v}, puv) ∈ Ea. The set E∗ \E is the set
of edges deleted by the adversary.

In this adversarial contamination model, our work addresses
the following fundamental questions:

• For an arbitrary truthful comparison graph G∗ =
(V,E∗), what is the extent of adversarial corruption that
can be tolerated up to which the true BTL parameters are
uniquely identifiable?

• Are there structural properties of G∗ = (V,E∗) that
allow tolerance to high degrees of adversarial corruption?

• Do there exist efficient algorithms to estimate the true BTL
parameters (with low error) given pairwise comparison
data with a non-trivial fraction of adversarial corruption?

Notation. Given any subset of edges E′ and cut (S, V \ S),
we use E′(S, V \ S) to refer to the set of edges in E′ that
cross the cut (S, V \ S). In the event that S is a singleton
vertex u ∈ V , we use E′(u) := E′({u}, V \ {u}) to refer
to the set of edges in E′ incident on u. Given any subset of
edges E′ and a vertex u ∈ V , we use δE′(u) to refer to the
set of neighbors of u in the graph G′ = (V,E′).

1.2. Overview of Results

We naturally consider structural identifiability of the true
BTL weights within our contamination model, i.e. unique
identifiability of w∗ when the uncorrupted labels p̂uv for all
(u, v) ∈ Eu are exactly equal to the true pairwise probabili-
ties p∗uv , a setting corresponding to the limit L→∞.

We first present a candidate hard example of an adversarial

1Since the probability p̂uv can be inferred from the probability
p̂vu, we will assume that there is fixed ordering over items, if
u < v then the label corresponds to p̂uv corresponding to pair
{u, v} otherwise it corresponds to p̂vu.
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Figure 1. An instance of Example 1, with S = {1, 2}, α = 3/5,
and w∗ = (7, 14, 14, 14, 21)/70; By corrupting just the edges
crossing the cut (dotted line), the resulting graph is entirely consis-
tent with w(α,S) = (14, 28, 8, 8, 12)/70. Note how the items with
some of the lowest scores have the highest scores post corruption.

corruption, which not just demonstrates the kind of carefully
crafted corruptions that make this setting challenging, but
also helps form a basis for our identifiability results later.

Example 1 (Single Cut Corruption). Given the truthful
comparison graphG∗ = (V,E∗), and true weights w∗ with
p̂uv = p∗uv, ∀(u, v) ∈ E∗ , fix an arbitrary cut (S, V \ S).
Let w∗S :=

∑
u∈S w

∗
u be the total weight of all vertices in

S. We create new weights w(α,S), where for every vertex
u ∈ S, we scale up its weight as w(α,S)

u = αw∗u/w
∗
S , and

for every vertex v ∈ V \ S, we scale down its weight as
w

(α,S)
v = (1 − α)w∗v/(1 − w∗S), where w∗S < α < 1 is

any arbitrary scaling factor. Note that the relative weights
within S and V \ S are unaffected by this change. If the
adversary corrupts only the edgesE∗(S, V \S) crossing the
cut (S, V \ S) to be consistent with the new weights w(α,S),
leaving all other edges untouched, then the resulting graph
is entirely consistent with w(α,S). (See Figure 1)

This example shows a coordinated corruption where the ad-
versary only needs to corrupt the edges in a single cut in the
graph to make the entire comparison graph consistent with
completely different BTL weights, leaving behind no evi-
dence of corruption. This also has an intuitive interpretation:
The set S consists of items of interest to the adversary, and
V \S consists of the rest of the items. By only corrupting the
comparison data between the items of interest and the rest
of the items, the adversary manipulates the relative ranking
between items of interest and the rest of the items, leaving
the internal ranking within both these sets unchanged.

This example provides the key intuition behind the condition
which we prove is both necessary and sufficient for unique
identifiability of the true weights w∗.

Theorem 1 (Informal). Given an arbitrary, connected, cor-
rupted input comparison graph G = (V,E), the true
weights are uniquely identifiable in the limit L → ∞ if
and only if every cut in G has strictly more uncorrupted
edges than corrupted edges crossing the cut.

The above theorem is essentially a majority condition for
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unique identifiability. In some sense, this demonstrates that
Example 1 is a canonical type of corruption that must be
guarded against. This also shows that in comparison graphs
with sparse cuts, even small amounts of carefully crafted
corruptions can make the true weights unidentifiable.

This motivates the study of Erdős-Rényi comparison graphs,
a well-studied family of graphs in ranking, as they are
known to have dense cuts. In the following Theorem, we
show that if the initial truthful comparison graph is drawn
according to the Erdős-Rényi model, then the global cut-
based condition for identifiability reduces to a local bound
on the fraction of corrupted edges incident on any vertex.

Theorem 2 (Informal). When the initial truthful compar-
ison graph G∗ is an Erdős-Rényi graph, with high proba-
bility, the true weights are uniquely identifiable in the limit
L → ∞ if the fraction of corrupted edges per vertex is at
most 1

4 − ε, and conversely are not uniquely identifiable if
the fraction of corrupted edges per vertex exceeds 1

4 + ε,
where ε is any arbitrarily small positive constant.

The above theorem shows that a corruption rate of 1/4-th
per vertex is a sharp threshold for unique identifiability.
The proof follows by exploiting the structural regularities
imposed by the Erdős-Rényi model, which imply that a
corruption rate of at most 1/4− ε per vertex is sufficient to
guarantee the majority condition described in Theorem 1 for
every cut in the graph, and contrarily, if the corruption rate
per vertex exceeds 1/4 + ε, then there exists a cut which
violates the majority condition. Due to the randomness in
the graph model, these claims hold with high probability.

Although these theorems characterize conditions for unique
identifiability, they do not imply an efficient algorithmic
procedure for recovering the true weights from a corrupted
comparison graph. Our final contribution is an efficient
algorithm with provable recovery guarantees when the initial
truthful comparison graph is an Erdős-Rényi graph.

Theorem 3 (Informal). When the initial truthful compar-
ison graph is an Erdős-Rényi graph and the fraction of
corrupted edges per vertex is at most O( log d

logn ) where d is
the average degree in the graph, there exists an algorithm
that recovers the true weights exactly in the limit L→∞,
and approximately (with low error) in case of finite L.

Our efficient recovery algorithm can provably tolerate an
inverse logarithmic corruption rate O(log log n/ log n) in
sparse graphs with O(n log n) edges, and a constant cor-
ruption rate in slightly denser graphs with O(n1+ε) edges
for any constant 0 < ε ≤ 1. Under this corruption rate
of O(log d/ log n), our recovery error in terms of L in this
adversarial setting matches the best known error rate for
Erdős-Rényi in the non-robust setting (Agarwal et al., 2018).

At the heart of this result lies a filtering algorithm that re-
moves every edge with significant deviation from the true

pairwise probability. This algorithm is based on the key idea
that the ratios of pairwise probabilities puv/pvu correspond
to ratios of weightswu/wv , and if the product of these ratios
over some cycle significantly deviates from 1, then there
must have been at least one significantly corrupted edge on
that cycle. Hence, this inconsistency in a cycle can be used
as a certificate of corruption for corrupted edges in the cycle.
The algorithm solves a linear program (LP) with a hitting set
constraint for all inconsistent cycles and rounds the solution
identify the significantly corrupted edges in these cycles.

A key structural property of Erdős-Rényi graph that makes
this approach feasible is the existence of short certificates
of corruption for every significantly corrupted edge in the
input graph. The main challenge here is proving that every
significantly corrupted edge would be pruned, and simulta-
neously, sufficiently many uncorrupted edges would survive
to allow weight recovery after rounding the fractional solu-
tion, which is non-trivial to prove. To this end, we prove
an adversarially robust structural property of Erdős-Rényi
graphs, that guarantees that if some significantly corrupted
edge survived the filtering, then some short certificate of
corruption for that edge must have also survived the filter-
ing, which would imply a violated constraint. Due to this
coupling between corruptions and corresponding certificates
of corruption, the corruption rate that can be provably han-
dled by the linear program is inherently tied to the lengths
of these certificates. Due to this, the corruption rates that
our algorithm can provably recover from increases as the
density of the underlying comparison graph increases, as
denser graphs admit shorter certificates.

1.3. Related Work

The general problem of rank aggregation using pairwise
comparisons under the BTL model has been well-studied,
and there are several consistent algorithms for recovering
the BTL parameters (Hunter, 2004; Negahban et al., 2017;
Hendrickx et al., 2019). Moreover, there are also consistent
algorithms for rank aggregation using multiway compar-
isons under the MNL model (Maystre & Grossglauser, 2015;
Agarwal et al., 2018), which is a generalization of the BTL
model. However, these algorithms were not designed with
robustness in mind, and as a consequence, have recovery
guarantees only when the comparison data is drawn stochas-
tically from the underlying model; unbiased noise due to
sampling is benign compared to the arbitrary adversarial
corruption we allow.

Another related line of work is parameter recovery under a
mixture of BTL models using pairwise comparisons, where
the goal is to recover parameters of all the components along
with the mixture weights (Oh & Shah, 2014; Chierichetti
et al., 2018; Suh et al., 2017; Zhao & Xia, 2019). However,
these mixture models crucially differ from our adversarial
contamination model as the pairwise probability on any edge
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in these models is a convex combination of the pairwise
probabilities defined by the individual BTL components,
whereas in our model the pairwise probability on an edge
is either consistent with the underlying true BTL model,
or is arbitrary. Hence, the identifiability and recoverability
results for these models do not apply to our setting. There
has been some effort in addressing adversarial mixtures
(Suh et al., 2017), but their model is in fact a mixture of 2
specific BTL models: the true BTL model and its inverse.
As a consequence, their mixture model is incomparable to
our adversarial contamination model.

An adversarial corruption model similar to ours has been
studied in the computer vision literature (Goldstein et al.,
2016; Hand et al., 2018) for a problem of recovering loca-
tions of objects given direction (unit) vectors between pairs
of locations. Although our problem is very different than
theirs, it is worth noting that their recovery results assume an
extremely dense Erdős-Rényi comparison graph over loca-
tions, whereas our recovery results hold for even very sparse
Erdős-Rényi comparison graphs. Moreover, our corruption
model is somewhat stronger than theirs as the adversary in
their model can only corrupt existing data points, while the
adversary in our model can even add or delete data points.

Concurrent to our work, (Lerman & Shi, 2019) studied the
problem of robust group synchronization, which asks to
recover ground truth group elements given measurements
consisting of noisy pairwise group ratios, some of which
may be adversarially corrupted. The results of (Lerman &
Shi, 2019) specifically aim to estimate the corruption level
on every pairwise measurement, which is a variant of the
recovery objective. Although we present our work in the
context of ranking from pairwise comparisons, it is straight-
forward to see that our results are applicable to this more
general problem as well. Our algorithmic ideas, and conse-
quently, our recovery guarantees differ significantly. Their
proposed algorithm is applicable to a specific family of com-
parison graphs and has provable guarantees only under a
weak sufficiency condition on the amount of corruption in
the input graph: for every edge in the graph, there is at least
one cycle of length at most k (a fixed constant) involving
that edge where the rest of the cycle edges are uncorrupted
and the number of such good cycles is at least a 3/4 fraction
of the total number of cycles of length at most k involving
that edge. On the other hand, our algorithm is designed
for the family of Erdős-Rényi comparison graphs, and has
much stronger guarantees in this regime: it can tolerate a
O(log log n/ log n) fraction of corruption per vertex in the
sparse regime and can tolerate a constant fraction of cor-
ruption per vertex in the dense regime. The former regime
cannot be handled at all by their approach, and in the latter
regime, there is no clear bound on the fraction of corruption
per vertex required to satisfy the weak sufficiency condi-
tion under which their approach has provable guarantees.

In addition to our algorithmic results, we also provide an
exact necessary and sufficient condition under which recov-
ery is fundamentally possible for arbitrary contaminated
comparison graphs, which is not addressed in their work.

Our proposed framework is very closely related to robust
estimation theory in classical statistics, in particular, the
ε−contamination model of Huber (Huber, 1965; 1992) and
its generalizations (Diakonikolas et al., 2017). A canonical
problem in this literature is robust estimation of parameters
of a Gaussian distribution under a corruption model where
an ε fraction of the truthful Gaussian samples are arbitrarily
corrupted by an omniscient adversary. Until recently, all
known algorithms for this problem had an inherent tradeoff
between computational tractability and the quality of the
recovered estimates, and it was a long standing open prob-
lem of whether it was possible to have a computationally
efficient estimator that also had information theoretically
optimal error guarantees. This was resolved in Diakonikolas
et al. (2017). Also, see Chen et al. (2016); Diakonikolas
et al. (2019; 2018) for other interesting results.

2. A Cut-Based Characterization for
Identifiability in General Graphs

In this section, we study unique identifiability in the limit
that the number of samples per pair L goes to infinity, i.e.
the setting where uncorrupted edge labels are exactly equal
to the true pairwise probabilities under BTL. We show that
the true weights are uniquely identifiable if and only if the
comparison graph induced by the input data satisfies a cut-
based majority condition.
Theorem 1. Given any arbitrary comparison graph G =
(V,E) as input, it is possible to uniquely identify the true
weights w∗ in the limit L→∞, if and only if for every cut
(S, V \ S)

|Eu(S, V \ S)| > |Ea(S, V \ S)| ,

where Eu ⊆ E is the set of uncorrupted edges, and Ea =
E \ Eu is the set of adversarially corrupted edges.

The above theorem exactly characterizes the extent of adver-
sarial corruption that one can recover from in any corrupted
comparison graph G based on a cut-majority condition. The
above theorem also provides a verification algorithm which,
given a comparison graph G and a candidate solution w,
can identify whether w is the true weight vector. Before
discussing this verification algorithm, we will first give a
basic notion of an edge being consistent with a solution w.
Definition 1 (Consistent-Edge). Given an input comparison
graph G = (V,E), we say that an edge (u, v) ∈ E is
consistent with a solution w, and vice-versa, if and only if
puv = wu/(wu + wv).

Note that any uncorrupted edge is always consistent with the
true weights w∗. Given that the cut-majority condition is
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satisfied for G, the following simple corollary to Theorem 1
gives a way to verify whether a solution w is correct or not.

Corollary 1. If a input comparison graph G = (V,E)
satisfies the recoverability condition in Theorem 1 then in
the limit L→∞, w∗ is the unique solution that, for every
cut (S, V \ S), is consistent with a strict majority of the
edges crossing the cut.

Although, this characterization works for all graphs, it might
be computationally infeasible to check all possible cuts in
order to verify if a solution is correct.

A key implication of this theorem is that the structure of
the comparison graph induced by pairwise comparison data
plays a crucial role in determining tolerance to corruption.
While it is clear to see that true weights are unidentifiable if
a majority of the edges incident on any vertex get corrupted,
even restricting the fraction of corrupted edges incident on
any vertex is not enough to guarantee unique identifiability.

Figure 2. Sparse cuts across dense subgraphs can easily be ex-
ploited, even by a limited budget adversary.

Figure 2 demonstrates why: An adversary merely needs
to corrupt a majority of the edges crossing a sparse cut to
obfuscate the true weights. In an extreme case, where the
true comparison graph is a regular graph consisting of dense
subgraphs with Ω(n2) edges separated by a sparse cut with
O(n) edges, even restricting the fraction of corrupted edges
incident on any vertex to as low asO(1/n) cannot guarantee
identifiability, which is a trivial bound as Ω(1/n) is needed
to allow even one corrupted edge in the comparison graph.

3. Results for Erdős-Rényi Comparison
Graphs

From the discussion in the previous section, we can con-
clude that for a comparison graph to be resilient to cor-
ruption, the number of edges crossing any cut should be
comparable to the number of edges on one side of the cut
(the smaller side), also known as edge expansion. A natural
candidate for graphs having this property are Erdős-Rényi
graphs, which are random graphs that have constant edge ex-
pansion with high probability. Given a parameter p ∈ [0, 1],
an Erdős-Rényi graph Gn,p is a random graph over n ver-
tices where each edge (u, v) is sampled independently with
probability p. These graphs have been widely studied in var-
ious domains, including ranking from pairwise comparisons
(Chen & Suh, 2015; Jang et al., 2016; Chen et al., 2017).

These graphs have another very interesting property: the
global cut-majority condition for unique identifiability of

the true weights effectively reduces to a much simpler lo-
cal vertex-majority condition. This is attractive for several
reasons, the foremost being that verifying this condition is
extremely efficient, making it usable in practice. Before
elaborating on these observations, we will first formalize
the contamination model for Erdős-Rényi graphs.

3.1. Adversarial Contamination Model

Given a parameter p ≥ (k log n)/n for any k larger than
some sufficiently large constant, the comparison graph
G∗ = (V,E∗) generated by nature is a random Gn,p graph.

Given a corruption rate parameter γ > 0, the adversary can
introduce arbitrary contaminations into the realized compar-
ison graph G∗, resulting in a corrupted comparison graph
G = (V,E), albeit subject to the constraint

|Er(u) ∪ Ea(u)| ≤ γ|E∗(u)|, ∀u ∈ V (1)

where for any vertex u ∈ V , E∗(u) is the initial set of
uncorrupted edges incident on u in G∗, Ea(u) := {(u, v) ∈
E : puv 6= p̂uv} is the set of corrupted edges incident on u
in G, and Er(u) := E∗(u) \ E(u) is the set of edges that
were incident on u in G∗ but were later deleted in G.

This condition effectively limits the adversary to contam-
inating at most a γ fraction of the incident edges on any
vertex in the graph. Observe that this condition further im-
plies that at most a γ fraction of the edges incident on any
vertex in the corrupted graph can have spurious labels, i.e.
|Ea(u)| ≤ γ|E(u)|, which we will crucially use later.

3.2. A Sharp Threshold Condition for Identifiability

Given the contamination model from above, we show that
there is a sharp threshold on the per-vertex corruption rate
for unique identifiability of the true weights; if the corrup-
tion rate γ is smaller than this threshold, then w∗ is uniquely
identifiable with high probability for any choice of adversar-
ial corruption. Contrarily, if the corruption rate γ is larger
than this threshold, then with high probability, there exists a
choice of corruption such that the w∗ is unidentifiable. The
proof of this claim crucially exploits the following strong
edge expansion property of Erdős-Rényi graphs.

Fact 1. Given any arbitrarily small constant ε > 0, there
exists a sufficiently large constant k, such that given a graph
G = (V,E) ∼ Gn,p with parameter p ≥ (k log n)/n, we
have for every cut (S, V \ S)

(1− ε) |S||V \S|p < |E(S, V \S)| < (1 + ε) |S||V \S|p

This claim holds with probability at least 1− 1/poly(n).

This fact roughly guarantees that with high probability, the
number of edges crossing any cut in an Erdős-Rényi graph
will not deviate from its expected value by a large amount.
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Theorem 2. Given any arbitrarily small constant ε > 0,
there exists a sufficiently large constant k, such that given
a input comparison graph G = (V,E) conforming to the
contamination model in Section 3.1 with Erdős-Rényi graph
parameter p ≥ (k log n)/n, if the corruption rate γ ≤ 1

4−ε,
then with probability at least 1−1/poly(n), the cut-majority
condition described in Theorem 1 is satisfied for every cut in
G, and as a consequence, the true weights w∗ are uniquely
identifiable as the number of samples per pair L → ∞.
Conversely, if the corruption rate γ ≥ 1

4 + ε, then with
probability at least 1− 1/poly(n), there exists a choice of
adversarial corruption such that the cut-majority condition
described in Theorem 1 is violated for at least one cut in G,
rendering the true weights unidentifiable, even as L→∞
Given that the vertex-majority condition holds, the follow-
ing simple corollary to the above lemma shows that there is a
linear time algorithm to verify whether a candidate solution
w is in fact correct solution w∗.
Corollary 2. In the setting of Theorem 2, if γ ≤ 1/4 − ε,
then w∗ is the unique solution such that for every vertex
v ∈ V , at least 3/4 + ε fraction of its incident edges in G
are consistent with w∗, where consistency of an edge with a
solution is defined in Definition 1.

Hence, a candidate solution w is the true solution w∗ if and
only if for every vertex v ∈ V , at least 3/4+ε fraction of its
incident edges are consistent with w. Note that unlike the
cut-majority condition where a simple majority is enough,
here we necessarily need a majority of a little over 3/4, as
even incorrect weights can achieve close to 3/4 majority.
Note that checking this condition just requires knowledge
of a lower bound on ε, and not the exact value of γ.

Although this vertex-majority condition makes verification
of a candidate set of weights easy, it does not directly imply
a polynomial time algorithm for recovering the true weights.
In the next section we will design such a recovery algorithm.

3.3. An Algorithm for Weight Recovery

The following theorem gives the main result of this section.
Theorem 3. Given an input comparison graph G = (V,E)
conforming to the contamination model in Section 3.1 with
Erdős-Rényi graph parameter p ≥ (k log n)/n for any
k larger than some sufficiently large constant, true BTL
weights w∗, and number of samples per pair L; if the
corruption rate per vertex γ ≤ log(np)/(125 log n), then
there is an efficient algorithm that, with probability at least
1− 1/poly(n), recovers an estimate w ∈ ∆n such that

||w∗ −w||1 ≤ cb2 log b
√

log n/L ,

for an absolute constant c, where b is an upper bound on
the skew in item quality maxi,j∈[n] w

∗
i /w

∗
j .

The corruption rate that can be tolerated by our recovery
algorithm varies depending on the density of the under-

lying comparison graph. When the initial graph is very
sparse, i.e. when the average degree is O(log n), then our
algorithm can tolerate a corruption rate of approximately
(log log n)/ log n, which is lower than the theoretical limit
of identifiability described in Theorem 2. However, for
slightly denser graphs, i.e. when the average degree is
O(nε) for any constant 0 < ε ≤ 1, then our algorithm can
handle a constant corruption rate.

To contrast the above guarantee with the results in the usual
non-adversarial BTL setting, in (Negahban et al., 2017;
Agarwal et al., 2018) the recovery error is O(

√
log n/L),

and hence, L = ω(log(n)) is enough to ensure consistency.
It is surprising to see that our result matches this bound ex-
actly (up to constants), implying there is no additional statis-
tical cost for achieving consistency even under completely
adversarial corruptions in the input pairwise comparison
data when the corruption rate is O(log(np)/ log n).

In the case where we receive exact pairwise probabilities for
every uncorrupted edge in the input, i.e. L→∞, we have

Corollary 3. Let G = (V,E) be any input comparison
graph conforming to the contamination model in Section 3.1
with Erdős-Rényi graph parameter p ≥ (k log n)/n for any
k larger than some sufficiently large constant, and true BTL
weights w∗, where for every uncorrupted edge (u, v) ∈ Eu,
we have puv = p∗uv; if the corruption rate per vertex γ ≤
log(np)/(125 log n), there exists an efficient algorithm that
with probability at least 1− 1/poly(n) recovers w∗ exactly.

3.3.1. ALGORITHM

Our algorithm is based on solving a linear programming
relaxation, and rounding the solution to remove all edges
that deviate significantly from the true probability values.
In the process, we might remove some uncorrupted edges
as well, but the graph would still remain connected with
high probability which will be enough to obtain a consistent
estimate ŵ of the true weights. When we are given the true
pairwise probabilities for all uncorrupted edges, then our
algorithm in fact removes all corrupted edges from the input,
and subsequently returns the true weights w∗.

Before describing our algorithm, we will formalize the no-
tions of significant deviation from the true probability value,
and approximate consistency within a cycle.

Definition 2 (Significant Deviation). Given an input com-
parison graph G = (V,E) with pairwise probabilities
{puv}(u,v)∈E , conforming to the contamination model in
Section 3.1 with Erdős-Rényi graph parameter p, number of
comparisons per edge L, and true BTL weights w∗; we use
EA ⊂ E to refer to the set of edges that deviate significantly
from their true probability value, where

EA :=

{
(u, v) ∈ E : |puv − p∗uv| > 4

(
4 +

log n

log(np)

)
εL

}
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where εL = (1 + b)
√

log n/L.

From Hoeffding’s inequality, we have with probability at
least 1−1/poly(n), that |puv−p∗uv| ≤ εL/(1+b) for every
uncorrupted edge (u, v) ∈ Eu, due to which no uncorrupted
edge would be included in this setEA. Thus,EA ⊆ Ea with
EA = Ea when εL = 0, i.e. puv = p∗uv for all (u, v) ∈ Eu.

Definition 3 (Approximate Consistency). Given an input
comparison graph G = (V,E) with pairwise probabilities
{puv}(u,v)∈E , conforming to the contamination model in
Section 3.1, with number of comparisons per edge L; given
a simple cycle C = (v1, · · · , vl, v1) of length l in G, we
call C approximately consistent if

1− (2l − 1)εL
1 + εL

≤
l∏
i=1

pvcivci+1

pvci+1
vci

≤ 1 + εL
1− (2l − 1)εL

,

and inconsistent otherwise.

The underlying intuition becomes clear when εL = 0, i.e.
we receive exact probabilities for every uncorrupted edge
in the input. For any pair of vertices (u, v), we have that
puv/pvu = wu/wv if the pairwise probabilities were de-
fined according to the BTL model with weights w. In this
case, a simple cycle being consistent intuitively means that
there exists some set of BTL weights consistent with the
pairwise probabilities on all the edges in the simple cycle.
While, a consistent cycle does not guarantee every edge
in the cycle is uncorrupted as the adversary can introduce
self-consistent corruptions, every inconsistent cycle must
necessarily contain at least one corrupted edge. The con-
straints in our LP essentially capture this condition. For
finite L, we need to allow some slack due to noise from
sampling, due to which we have the slightly weaker guar-
antee that every inconsistent cycle must necessarily contain
some edge that deviates significantly from its true probabil-
ity value (i.e. from EA).

Linear Program. We formulate a LP (Figure 3) with de-
cision variables x(e) for each edge e ∈ E, which indicate
whether an edge is corrupted; a higher mass on x(e) intu-
itively corresponds to a higher confidence of the LP solution
in e being a corrupted edge. The LP has two types of con-
straints: Firstly, for each inconsistent cycle of length at most
4 + log n/ log(np), we have a constraint requiring the total
mass of all edges in the cycle be at least 1, reflecting the fact
that each inconsistent cycle contains at least one corrupted
edge. Secondly, for each vertex u ∈ V , we have a constraint
requiring the total mass of all edges incident on u be at
most2 a γLP = log(np)/125 log n fraction of the degree of
u, reflecting the fact that the number of corrupted edges
incident on any vertex are bounded.

2The LP is oblivious to the exact corruption rate γ, and will
work for any γ ≤ γLP, which is an upper bound on the corruption
rate that the LP can provably recover from.

Minimize
∑
e∈E

x(e)

Subject to
∑
e∈C

x(e) ≥ 1 ∀C ∈ C∑
e∈E(u)

x(e) ≤ γLP|E(u)| ∀u ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Figure 3. The LP for identifying corrupted edges; C is the set of
inconsistent cycles in G of length at most 4+ logn/ log(np); γLP

= log(np)/(125 logn) is the maximum tolerable corruption rate.

Lemma 1.The LP in Fig 3 is solvable inO(n2+o(1)d6) time
where d is the average degree in the input graph.

The proof leverages the Multiplicative Weight Update
method (Plotkin et al., 1995) for approximately solving
Linear Programs. We defer a detailed proof to the appendix.
Observation 1. A solution that assigns x(e) = 1 to every
edge e ∈ Ea, the set of adversarially corrupted edges, and
x(e) = 0 to every edge e ∈ Eu, the set of uncorrupted
edges is a feasible solution to the above LP.

The proof follows by showing that no cycle consisting of
only uncorrupted edges can be inconsistent. Thus, every
inconsistent cycle must contain at least one corrupted edge,
due to which every inconsistent cycle constraint is satisfied.
Furthermore, the constraint for each vertex is satisfied due
to the corruption condition in Equation 1. This shows that
the feasible set of the above linear program is not empty.
Observation 2. For any edge (u, v) ∈ EA, any path from
u to v consisting of edges only from Eu of length at most
4 + log n/ log(np) will induce an inconsistent cycle.

Threshold Pruning. Given any feasible solution x to the
above LP, let Elpr := {e ∈ E : x(e) ≥ log(np)/(5 log n)}
be the set of edges with large x(e) values. We subsequently
delete all edges from Elpr from the input, producing a
cleaned comparison graph G̃ = (V, Ẽ = E \ Elpr).

The key idea is to show that for every edge with signifi-
cant corruption (u, v) ∈ EA, there exists a short path from
u to v consisting of only uncorrupted edges, which along
with (u, v) would induce an inconsistent cycle (Obs 2), and
hence, would be captured by our LP as a constraint. The
harder challenge is in showing that every such edge in EA
would be removed by our threshold pruning scheme. The
proof of this essentially involves showing that the residual
comparison graph G̃ still contains short paths consisting
of only uncorrupted edges between every pair of vertices
(which automatically implies connectedness), and thus, if
some edge with significant corruption (u, v) ∈ EA survived,
this would induce an inconsistent cycle. Furthermore, since
G̃ consists of only edges with small x(e) values, this in-
consistent cycle must have cumulative mass less than 1,
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Algorithm 1 Adversarially Robust Recovery
1: Input: items [n], graph G = (V,E), parameters p and εL.
2: x← Solution of LP in Figure 3.
3: ∀(u, v) ∈ E, x̂(u, v)← 1[x(u, v) ≥ log(np)/(5 logn)].
4: If x̂(u, v) = 1 then delete data point corresponding to (u, v)
5: Return the output of Accelerated Spectral Ranking (Agarwal

et al., 2018) algorithm on this pruned dataset.

implying a violated constraint, contradicting the assumption
that we were given a feasible solution to the LP.

Lemma 2. In the setting of Theorem 3, with probability at
least 1− 1/poly(n), we have that the residual graph G̃ is
connected, and furthermore, contains no edges from EA.

Since the residual graph G̃ = (V, Ẽ) is free from edges
that deviate significantly from their true probability value,
the next step is to use an algorithm for recovery in the
usual non-adversarial setting on G̃. We use the Accelerated
Spectral Ranking (ASR) algorithm (Agarwal et al., 2018),
which defines a lazy random walk over G̃ with probability
of transition P̃uv from vertex u to vertex v given by

P̃uv =


1

d̃u
pvu if u 6= v, (u, v) ∈ Ẽ,

1

d̃u

∑
v∈δẼ(u) puv if u = v,

0 otherwise.

where d̃u is the degree |δẼ(u)| of vertex u in the graph G̃ =

(V, Ẽ). Let P̃ := [P̃uv] be the corresponding transition
probability matrix, with transition probabilities as defined
above. The solution w̃ returned by the ASR algorithm is a
linear transformation w̃ = D̃−1π, where π = P̃>π is the
stationary distribution of this Markov chain, and D̃ is the
diagonal matrix of degrees D̃uu = d̃u.

The recovery guarantees for the ASR algorithm (and other
existing algorithms) are only known in a setting where the
estimates of pairwise probabilities are unbiased, which is
not the case here as the residual graph may contain edges
with biased probabilities. Nevertheless we show that the
analysis of this algorithm can be extended to allow for biased
pairwise probabilities satisfying a uniform deviation bound.

Lemma 3. In the setting of Theorem 3, let w∗ be the set of
true BTL weights, and let w be the estimate returned by the
ASR algorithm with input G̃ = (V, Ẽ). Then we have that

||w −w∗||1 ≤ (Cb log b)εL

where C is an absolute constant.

This, along with Lemma 1 gives us the claim of Theorem 3.

4. Experiments
In this section, we validate our theoretical guarantees with
experiments on both synthetic and real data. In the interest

of space, we show just one type of experiment here, where
we compare the performance of our algorithm against ex-
isting non-robust algorithms when the input data has been
contaminated according to the single cut corruption method
as described in Example 1. We encourage the interested
reader to refer to the Appendix for an additional type of
experiment, where the contamination in the input data is
semi-random in nature. The results obtained in that case are
fairly similar to the ones reported in this section.

4.1. Synthetic Data

We fix n = 50, and generate a set of uniformly at ran-
dom weights w∗ normalized to sum to 1. We generate an
Erdős-Rényi random comparison graph G∗ ∼ Gn,p with
parameter p = (2 log n)/n. We choose a uniformly at ran-
dom partition (S, V \S) of n/2 vertices each, and construct
the adversarial vector w(α,S) as described in Example 1, for
a fixed value of the scaling factor α set to 0.02. For every
vertex u ∈ S, we pick a uniformly at random 2γ fraction3

of its incident edges crossing the cut (u, V \ S) to corrupt.
We generate two datasets: (1) For every uncorrupted edge
(u, v), we report the exact pairwise probability p∗uv accord-
ing to w∗, and for every corrupted edge (u, v), we report the
exact pairwise probability p(α,S)uv according to w(α,S), and
(2) For every uncorrupted edge (u, v), we generate a random
sample Xuv ∼ Binomial(L, p∗uv) and report puv = Xuv/L,
pvu = 1 − puv, and for every corrupted edge (u, v), we
generate a random sample Yuv ∼ Binomial(L, p(α,S)uv ) and
report puv = Yuv/L, pvu = 1 − puv. In our experiments,
we set L = log n/ε2, where ε = 5% is the chosen accuracy
parameter. We test all algorithms on both datasets.

4.2. Real Data

Experimentation with real datasets is challenging, primarily
due to scarcity of datasets that are structurally robust to
contamination. The datasets (GIF,Youtube) studied in
(Agarwal et al., 2018; Maystre & Grossglauser, 2015) are
found to be particularly vulnerable to manipulation; they
contain cuts where corrupting just one edge is sufficient
to completely fail the cut-majority condition (Thm 1) re-
quired for identifiability of the true weights. We circumvent
this topology-dependent limitation by identifying datasets
(Sushi,Irish) that come with full rankings. For these
datasets, we extract pairwise comparisons from the com-
plete orderings, giving us empirically observed pairwise
probabilities puv for every pair of items (u, v) in the dataset
(effectively inducing a complete comparison graph). An-
other difficulty with real data is that the true weights w∗ are
undefined. We resolve this issue by passing the datasets to
a standard algorithm for parameter estimation in the BTL
model (we choose the algorithm of (Agarwal et al., 2018)),

3since we corrupt only the cut edges, this is an effective corrup-
tion rate of γ
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Figure 4. (Synthetic data) L1 error in the recovered weights vs
corruption rate γ

and treating the returned estimates for each dataset as their
corresponding ground truth weights.

For each real dataset, we create an artificially contaminated
dataset as follows: given the complete comparison graph
(Sushi n = 16, Irish n = 12) and the assumed ground
truth weights w∗, we first generate a Erdős-Rényi random
comparison graph G∗ ∼ Gn,p with parameter p = 0.3 by
subsampling edges from the complete comparison graph.
We choose a uniformly at random partition (S, V \S) of n/2
vertices each, and construct the adversarial vector w(α,S)

as described in Example 1, for a fixed value of the scal-
ing factor α set to 0.02. For every vertex u ∈ S, we pick
γ|E∗(u)| vertices in V \ S uniformly at random, and insert
corrupted edges between u and each of these vertices. For
every uncorrupted edge (u, v), we report the empirically
observed pairwise probability puv , and for every corrupted
edge (u, v), we report the pairwise probability p(α,S)uv accord-
ing to the adversarial vector w(α,S). We use this resulting
contaminated comparison graph as input to all algorithms.

4.3. Algorithm Details

We implement our algorithm 1 in Python, and use the default
LP solver in the cvxpy package to solve the LP described
in Figure 3. We compare the performance of our algorithm
against two standard algorithms for parameter estimation
in the BTL model: Hunters minorization-maximization al-
gorithm (Hunter, 2004) (abbr. HMM), and Accelerated
Spectral Ranking (Agarwal et al., 2018) (abbr. ASR).

4.4. Experimental Results

In our experiments, we vary γ in the range 5%-25% in
increments of 2.5%, and plot the average L1 error in the
returned weight vectors across 50 random trials. The results
observed for synthetic data essentially verify our theoreti-
cal guarantees: the error in the estimates returned by our
algorithm does not depend on the corruption rate up until
the corruption rate becomes too large, after which a few cor-
rupted edges pass through our filtering subroutine, whereas
for existing algorithms, the error monotonically increases
with increasing corruption rate. The results obtained for
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Figure 5. (Real data) L1 error in the recovered weights vs corrup-
tion rate γ

real data provide compelling evidence for the practical ap-
plicability of our approach. Despite the possibility that the
observed pairwise preference probabilities in practice might
not adhere to the BTL model, our filtering subroutine is still
able to identify and eliminate corrupted comparisons, while
retaining enough of the uncorrupted comparisons to return
weight estimates that are very close to the estimates that
would have been received given purely uncontaminated data.
This strongly contrasts the performance of the existing non-
robust algorithms, which return significantly erroneous esti-
mates even for small corruption rates. The results are also
promising as they seem to suggest the applicability of our
linear programming based pruning approach for corruption
rates well beyond what we were able to prove theoretical
guarantees for.

5. Conclusion and Discussion
We initiate the study of robustness in rank aggregation under
the BTL model by introducing a powerful adversarial con-
tamination model. Within this model, we characterize the
exact necessary and sufficient condition for structural iden-
tifiability of the true BTL weights in arbitrary comparison
graphs. For the family of Erdős-Rényi comparison graphs,
we prove a simpler necessary and sufficient condition for
identifiability. We also design a linear-programming based
recovery algorithm for Erdős-Rényi graphs, which for sparse
graphs, has nearly a quadratic runtime, and can tolerate a
corruption rate of O(log log n/ log n). For denser graphs, it
can tolerate a constant corruption rate albeit with a worse
runtime. Our work motivates several open problems. Firstly,
can we have an efficient recovery algorithm for sparse Erdős-
Rényi comparison graphs that improves upon the corruption
rate tolerable by our algorithm. Even more generally, can
we have a polynomial time recovery algorithm for arbitrary
comparison graphs that satisfy the sufficient condition for
identifiability, or are there intractability barriers precluding
either of these possibilities. Aside from these algorithmic
questions, this paper also opens the possibility of consid-
ering more restricted contamination models such as ones
with oblivious or semi-random adversaries, which could
potentially allow us to handle even higher corruption rates.
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A. Appendix
A.1. Additional Experiments

In addition to the experiments mentioned in the main paper,
we experiment with another type adversarial corruption,
where given a corruption rate γ, the adversary generates a
set of BTL weights wa, and an Erdős-Rényi random graph
Ga = (V,Ea) ∼ Gn,γp, where p is the Erdős-Rényi graph
parameter of the initial truthful comparison graph G∗ drawn
by nature. For every edge (u, v) ∈ Ea, the adversary reports
true label consistent with wa. The input received by our
algorithm is G = G∗ ∪ Ga (if an edge (u, v) is present
in both E, Ea, we assume that we receive the label from
the uncorrupted graph instead). This is an example of a
semi-random adversary. We test all algorithms in this more
restricted contamination model.

A.1.1. SYNTHETIC DATA

We fix n = 50, and generate two sets of uniformly at ran-
dom weights w∗,wa, both normalized to sum to 1. Given
a corruption rate γ, we generate two Erdős-Rényi random
comparison graphs G∗ ∼ Gn,p, and Ga ∼ Gn,γp with
parameter p = (2 log n)/n. We generate two datasets:
(1) For every uncorrupted edge (u, v) ∈ G∗, we report
the exact pairwise probability p∗uv according to w∗, and
for every corrupted edge (u, v) ∈ Ga, we report the ex-
act pairwise probability pauv according to wa, and (2) For
every uncorrupted edge (u, v), we generate a random sam-
ple Xuv ∼ Binomial(L, p∗uv) and report puv = Xuv/L,
pvu = 1 − puv, and for every corrupted edge (u, v), we
generate a random sample Yuv ∼ Binomial(L, pauv) and
report puv = Yuv/L, pvu = 1 − puv. In our experiments,
we set L = log n/ε2, where ε = 5% is a chosen accuracy
parameter. We test all algorithms on both datasets.

A.1.2. REAL DATA

For each real dataset (Sushi n = 16, Irish n = 12), we
create an artificially contaminated dataset as follows: we
first generate an adversarial weight vector wa by drawing
weights uniformly at random, normalizing it to sum to 1.
Given a corruption rate γ, we generate two Erdős-Rényi
random comparison graphs G∗ ∼ Gn,p, and Ga ∼ Gn,γp
with parameter p = 0.3. For each uncorrupted edge (u, v) ∈
G∗, we report the empirically observed pairwise probability
puv, and for every corrupted edge (u, v) ∈ Ga, we report
the pairwise probability pauv according to the adversarial
vector wa. We use this resulting contaminated comparison
graph as input to all algorithms.

A.1.3. EXPERIMENTAL RESULTS

In our experiments, we vary γ in the range 5%-25% in
increments of 2.5%, and plot the average L1 error in the
returned weight vectors across 50 random trials.

The results again demonstrate the vast difference in perfor-
mance between our algorithm and the existing non-robust
algorithms for parameter recovery in the BTL model, even
in this weaker model where the adversary adds random
edges into the truthful comparison graph and labels them
consistently with his chosen set of BTL weights without cor-
rupting any of the existing edges. For the synthetic data case,
given exact pairwise probabilities, our algorithm almost ex-
actly recovers the true BTL parameters, even at substantial
corruption rates. Given sampled probabilities, our algorithm
significantly outperforms the existing non-robust algorithms.
This vast difference in performance is also evident in real
datasets, further supporting the practical viability of our
proposed algorithm.
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Figure 7. (Real Data) L1 error in the recovered weights vs corrup-
tion rate γ in the semi-random contamination model described in
Section A.1

A.2. Proof of Theorem 1

Theorem 1. Given any arbitrary comparison graph G =
(V,E) as input, it is possible to uniquely identify the true
weights w∗ in the limit L→∞, if and only if for every cut
(S, V \ S)

|Eu(S, V \ S)| > |Ea(S, V \ S)| ,

where Eu ⊆ E is the set of uncorrupted edges, and Ea =
E \ Eu is the set of adversarially corrupted edges.

Proof. In the limit L → ∞, we have that p̂uv = p∗uv for
every edge in the initial truthful graph G∗ = (V,E∗). To
prove that it is necessary for this condition to hold in order to
be able to identify the true weights w∗, consider the follow-
ing construction: given an uncorrupted graph G∗ = (V,E∗)
together with pairwise probabilities {puv = p∗uv}(u,v)∈E∗ ,
and true set of weights w∗, fix any cut (S, V \ S). Let
E∗(S, V \ S) be the set of edges crossing this cut in G∗.
Consider an arbitrary disjoint partition E1, E2 of the edges
E∗(S, V \ S) such that E∗(S, V \ S) = E1 ∪ E2. The
adversary constructs an obfuscating set of weights w(α,S)

such that for any item u ∈ S, w(α,S)
u = αw∗u/w

∗
S , and for

any v ∈ V \ S, w(α,S)
v = (1 − α)w∗v/(1 − w∗S), where

w∗S :=
∑
v∈S w

∗
v , and α 6= w∗S is any scaling factor in

(0, 1). The adversary then picks Ea = E1, Eu = E2 or
Ea = E2, Eu = E1 uniformly at random, and for ev-
ery edge (u, v) ∈ Ea, corrupts the pairwise probability
puv = w

(α,S)
u /

(
w

(α,S)
u + w

(α,S)
v

)
to be consistent with the

obfuscating weights w(α,S). By construction of w(α,S), one
can verify that for every edge (u, v) ∈ E∗ where u, v ∈ S or
u, v ∈ V \S, the pairwise probability puv is consistent with
both w∗ and w(α,S). Thus, every edge (u, v) ∈ E∗ \ Ea
is consistent with w∗ and every edge (u, v) ∈ E∗ \ Eu is
consistent with w(α,S). Clearly, in the absence of the this
condition it is impossible for any algorithm to distinguish
Eu from Ea.

To prove that this condition is also sufficient in order to be

able to identify the set of uncorrupted edges, suppose for the
sake of contradiction, there is some graph G = (V,E) for
which there are two sets of weights w,w∗ ∈ ∆n,w 6= w∗

such that for every cut (S, V \ S), a majority of the edges
crossing this cut are consistent with both w,w∗. We first
claim that the two sets of weights w,w∗ induce equivalence
classes on vertices. Formally, we say that vertices u, v ∈ V
belong to the same equivalence class with respect to w,w∗

if wu/wv = w∗u/w
∗
v . One can verify that this satisfies sym-

metry, and transitivity. Intuitively, this says that the two sets
of weights are in agreement with each other with respect to
the relative qualities of vertices within the same equivalence
class, and are in disagreement with each other with respect
to the relative qualities of vertices across equivalence classes.
The idea is to show that while edges that connect vertices
within an equivalence class can be consistent with both
w,w∗, the edges connecting vertices from different equiv-
alence classes can only be consistent with one of w,w∗.
Thus, any cut separating different equivalence classes will
act as a certificate of difference between w,w∗, and hence,
a majority of the edges crossing such a cut can be consistent
with only one of these sets. Since w 6= w∗, this partitions
V into at least two equivalence classes V1, V2. Consider any
equivalence class, say V1 and consider the cut (V1, V \ V1).
For any edge (u, v) ∈ E(V1, V \ V1), we claim that puv is
consistent with either w or w∗, but not both. This is easy
to see because if puv = w∗u/(w

∗
u + w∗v) = wu/(wu + wv)

then w∗u/w
∗
v = wu/wv, and u, v would belong to the same

equivalence class. Thus, the edges E(V1, V \ V1) are dis-
jointly partitioned into those consistent with w and those
consistent with w∗, and clearly, only one of them can have
majority, which is a contradiction.

A.3. Proof of Fact 1

Fact 1. Given an arbitrarily small constant ε > 0, there
exists a sufficiently large constant k, such that given a graph
G = (V,E) ∼ Gn,p with parameter p ≥ (k log n)/n, we
have for every cut (S, V \ S)

(1− ε) |S||V \S|p < |E(S, V \S)| < (1 + ε) |S||V \S|p

This claim holds with probability at least 1− 1/poly(n).

Proof. Given any cut (S, V \ S) in G, where s = |S|, the
number of edges crossing the cut |E(S, V \ S)| is the sum
of s(n− s) independent bernoulli random variables, each
with parameter p. The expected number of such edges is
Es,p = s(n− s)p. Thus, by the union bound followed by
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the Chernoff bound, we have that

Pr (∃S : |E(S, V \ S)| ≤ (1− ε)Es,p)

≤
n/2∑
s=1

(
n

s

)
exp

(
−ε2Es,p

2

)

≤
n/2∑
s=1

exp

(
s log

en

s
− ε2sk log n

4

)
≤ 1

n
ε2k
4 −2

where the second inequality follows from the fact that p =
(k log n)/n and s ≤ n/2.

Similarly,

Pr (∃S : |E(S, V \ S)| ≥ (1 + ε)Es,p)

≤
n/2∑
s=1

(
n

s

)
exp

(
−ε2Es,p

3

)

≤
n/2∑
s=1

exp

(
s log

en

s
− ε2sk log n

6

)
≤ 1

n
ε2k
6 −2

where the second inequality follows from the fact that p =
(k log n)/n and s ≤ n/2.

By a union bound over the above events, the claim of
Fact 1 holds with probability at least 1 − 2/n

ε2k
6 −2 =

1− 1/poly(n) since ε is a constant.

A.4. Proof of Theorem 2

Theorem 2. Given any arbitrarily small constant ε > 0,
there exists a sufficiently large constant k, such that given
a input comparison graph G = (V,E) conforming to the
contamination model in Section 3.1 with Erdős-Rényi graph
parameter p ≥ (k log n)/n, if the corruption rate γ ≤ 1

4−ε,
then with probability at least 1−1/poly(n), the cut-majority
condition described in Theorem 1 is satisfied for every cut in
G, and as a consequence, the true weights w∗ are uniquely
identifiable as the number of samples per pair L → ∞.
Conversely, if the corruption rate γ ≥ 1

4 + ε, then with
probability at least 1− 1/poly(n), there exists a choice of
adversarial corruption such that the cut-majority condition
described in Theorem 1 is violated for at least one cut in G,
rendering the true weights unidentifiable, even as L→∞

Proof. We will start by proving the sufficient condition for
recoverability using the cut-majority condition discussed
in Lemma 1. Given the arbitrarily small constant ε > 0,
from Fact 1, we know that there exists a sufficiently large
constant k such that given a graph G∗ = (V,E∗) ∼ Gn,p

with parameter p ≥ (k log n)/n, with probability at least
1 − 1/poly(n), the number of edges crossing any cut in
G∗ is within (1 ± ε) of its expected value. Let G∗ be the
underlying uncorrupted graph satisfying this condition. This
also implies that the degree of every vertex in G∗ is upper
bounded by (1 + ε)np. Thus, the total number of edges
incident on any vertex that the adversary can add, delete or
modify (in total) in G is upper bounded by (1/4 − ε)(1 +
ε)np < (1−3ε)np/4. Now fix any cut (S, V \S) inG∗ such
that |S| := s ≤ n/2. We have that the total number of edges
crossing the cut is at least (1− ε)s(n−s)p ≥ (1− ε)snp/2.
Furthermore, the total amount of corruption, i.e. addition of
spurious edges, deletion, or modification of existing edges
in total that the adversary can introduce into this cut in G is
upper bounded by (1− 3ε)snp/4, which is strictly less than
half of the total number of edges crossing this cut in G∗.
Thus, at least half of the original uncorrupted edges crossing
the cut in G∗, survive in G, while at most half this number
gets either added, deleted or modified in total. Thus the cut
majority condition in Lemma 1 holds for the cut (S, V \ S),
and this is true for every cut in G, which proves the former
claim of Theorem 2.

We will now prove the latter part of the lemma which shows
a necessary condition for recoverability. Given the arbitrar-
ily small constant ε > 0, let ε′ = ε/3. From the proof of
Fact 1, we know that given a graph G∗ = (V,E∗) ∼ Gn,p
with parameter p ≥ (k log n)/n, with probability at least
1 − 2/n

ε′2k
6 −2, the number of edges crossing any cut in

G∗ is within (1 ± ε′) of its expected value. Let G∗ be
the underlying uncorrupted graph satisfying this condition.
Fix a uniformly at random cut (S, V \ S) in G∗ such
that |S| := s = n/2. Using Chernoff bounds, we can
claim that with high probability, for every vertex u ∈ S,
|E∗(u, V \ S)| ≤ (1 + ε′)np/2. This is true because for
every vertex u ∈ S, the number of edges |E∗(u, V \ S)|
is the sum of n/2 independent Bernoulli random variables,
each with parameter p. Thus,

Pr(∃u ∈ S : |E∗(u, V \ S)| ≥ (1 + ε′)
np

2
)

≤
∑
u∈S

exp(−ε′2np/6)

≤ n

2
exp(−ε′2k log n/6)

≤ 1

2n
ε′2k
6 −1

The adversary corrupts this cut in the following manner.
Given the true set of weights w∗, he constructs an obfus-
cating set of weights w(α,S) such that for any u ∈ S,
w

(α,S)
u = αw∗u/w

∗
S and for any v ∈ V \ S, w(α,S)

v =
(1−α)w∗v/(1−w∗S), where w∗S :=

∑
v∈S w

∗
v , and α 6= w∗S

is any scaling factor in (0, 1). Now for every vertex
u ∈ S, the adversary chooses a uniformly at random set of
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(1/2+ε′/2)|E∗(u, V \S)| neighbours of u from V \S, and
corrupts the probabilities on each of these edges to be consis-
tent with w(α,S). From the above claim, we know that every
vertex u ∈ S has at most (1 + ε′)np/2 neighbours in V \ S
inG∗, and has |E∗(v)| ≥ (1−ε′)np. Thus, we have that the
total fraction of corrupted edges per vertex u ∈ S is at most
(1+ε′)2/(4(1−ε)) = 1/4+(3ε′+ε′2)/(4(1−ε′)) < 1/4+ε
(by choice of ε′). Furthermore, in the corrupted graph G,
for every vertex u ∈ S, a majority of its neighbours in
V \ S are connected through a corrupted edge, and hence,
a majority of the edges crossing the cut (S, V \ S) are cor-
rupted, failing the cut-majority condition. The only thing
left to show is there is no vertex v ∈ V \ S that has more
than (1/4 + ε)|E∗(v)| corrupted edges incident upon it.
Since each vertex u ∈ S independently selects a set of
uniformly at random (1 + ε′)/2 fraction of its incident cut
edges to corrupt, for every vertex v ∈ V \ S, each of its
incident edges from a vertex u ∈ S is corrupted indepen-
dently with probability (1 + ε′)/2. Thus, the number of
corrupted edges |Ea(v)| incident on any vertex v ∈ V \ S
is the sum of n/2 independent Bernoulli random variables,
each with parameter (1 + ε′)p/2. Thus, the expected num-
ber of corrupted edges incident on any vertex v ∈ V \ S is
Ea(v) = (1 + ε′)np/4. Thus, by Chernoff bounds,

Pr(∃v ∈ V \ S : |Ea(v)| ≥ (1 + ε′)Ea(v))

≤
∑

v∈V \S

exp(−ε′2Ea(v)

3
)

≤ n

2
exp

(
−ε2(1 + ε′)

k log n

12

)
≤ 1

2n
ε′2(1+ε′)k

12 −1

Thus, in the corrupted graph G, every vertex v ∈ V \ S
has at most (1 + ε′)2np/4 corrupted edges incident on it.
Furthermore, from Fact 1, we have that every vertex v ∈
V \ S has at least (1 − ε′)np edges incident on it in G∗,
giving a corruption rate of at most (1 + ε′)2/(4(1− ε′)) =
1/4 + (3ε′ + ε′2)/(4(1 − ε′)) < 1/4 − ε by choice of ε′.
By a union bound over the above events, the latter claim of
Theorem 2 holds with probability at least 1− 3/n

ε′2k
12 −2 =

1− 1/poly(n) since ε′ = ε/3, and ε is a constant.

A.5. Proof of Lemma 2

Lemma 2. In the setting of Theorem 3, with probability at
least 1− 1/poly(n), we have that the residual graph G̃ is
connected, and furthermore, contains no edges from EA.

To prove this Lemma, we first introduce the following sup-
porting Lemmas.

Lemma 4. Given a graph G = (V,E) ∼ Gn,p with param-

eter p = (k log n)/n for any k larger than some sufficiently
large constant, let E′ ⊆ E be an arbitrarily chosen set of
edges such that for every vertex u ∈ V , |E′(u)| ≤ np/20.
Then with probability at least 1− 1/poly(n), there exists a
path inG′ = (V,E\E′) of length at most 3+log n/ log(np)
between every pair of vertices u, v ∈ V .

The above lemma shows that the expansion properties of
the Erdős-Rényi graphs hold in a robust sense. The astute
reader will recognize that this claim seems stronger than
what we need, considering that the adversarial corruption
rate was bounded by O(log(np)/ log n). However, this is
claim is necessary, because there are in fact two sources of
edge deletion, the first being the adversary, and the second
being the threshold pruning step of our algorithm, which can
delete an arbitrary constant fraction of the incident edges on
every vertex. The following Lemma shows this.

Lemma 5. Let G = (V,E) be any input comparison graph
conforming to the contamination model in Section 3.1, and x
be any feasible solution to the LP defined in Figure 3. Then
for any vertex u ∈ V , we have |{Elpr ∪ Ea ∪ Er}(u)| ≤
np/20 with probability at least 1− 1/poly(n).

These two Lemmas will be crucial in proving Lemma 2.

Proof. (of Lemma 2) Given a feasible solution x to the LP,
let G̃ = (V, Ẽ) be the residual subgraph that survives the
threshold pruning step. By a direct application of Lem-
mas 5, 4, we can conclude that in the surviving graph G̃,
with probability at least 1 − 1/poly(n), there will exist a
path of length at most 3 + log n/ log(np) between every
pair of vertices u, v ∈ V consisting of edges only from
E \ {Elpr ∪ Ea ∪ Er} = Eu \ Elpr. Suppose that the sur-
viving set of edges Ẽ contains some significantly corrupted
edge e = (u, v) ∈ EA. From the above claim, we know
that there is a path of length at most 3 + log n/ log(np)
consisting of edges only from Eu, and from Observation 2,
this would create an inconsistent cycle C of length at most
4+log n/ log(np). Furthermore, since this cycle consists of
edges that survived our rounding scheme, we know that for
all edges on this cycle, x(e) < log(np)/(5 log n), which
implies that

∑
e∈C x(e) < 1. However, this is a contradic-

tion to the claim that x was a feasible solution to the LP as
C ∈ C.

A.6. Proof of Lemma 4

Lemma 4. Given a graph G = (V,E) ∼ Gn,p with param-
eter p = (k log n)/n for any k larger than some sufficiently
large constant, let E′ ⊆ E be an arbitrarily chosen set of
edges such that for every vertex u ∈ V , |E′(u)| ≤ np/20.
Then with probability at least 1− 1/poly(n), there exists a
path inG′ = (V,E\E′) of length at most 3+log n/ log(np)
between every pair of vertices u, v ∈ V .
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Proof. We shall prove this Lemma by first showing that the
graph G has vertex expansion of at least np/4 for every
vertex set S of size s ≤ 1/p. Given any vertex set S of
size 1 ≤ s ≤ 1/p, and any vertex v ∈ V \ S, we have
Pr(v ∈ δE(S)) ≥ 1− e−sp. Thus, we have E(|δE(S)|) ≥
(n− s)(1− e−sp). Given any vertex set S of size s ≤ 1/p,
the size of the vertex neighbourhood |δE(S)| is the sum of
n − s independent Bernoulli random variables, each with
parameter at least (1 − e−sp). Thus, by a union bound
followed by Chernoff bounds

Pr(∃S, s ≤ 1/p : |δE(S)| ≤ 1

2
(n− s)(1− e−sp))

≤
1/p∑
s=1

(
n

s

)
exp

(
− (n− s)(1− e−sp)

8

)

≤
1/p∑
s=1

exp

(
s log

en

s
− (n− s)(1− e−sp)

8

)

≤
1/p∑
s=1

exp

(
s log

en

s
−

(n− s)(sp− (sp)2

2 )

8

)

≤
1/p∑
s=1

exp
(
s log

en

s
− snp

8

(
1− sp

2
− s

n

))

≤
1/p∑
s=1

exp

(
s log

en

s
− sk log n

8

(
1

2
− 1

k log n

))
≤ 1

np
n2+

1
8 logn−

k
16

where the second to last inequality follows from the fact
that s ≤ 1/p. Thus, for every vertex set S such that 1 ≤
s ≤ 1/p, with high probability, the size of the vertex neigh-
bourhood |δE(S)| ≥ E(|δE(S)|)/2. We claim that given
any vertex set S of size 1 ≤ s ≤ 1/p, E(|δE(S)|) ≥ snp/2.
To see this, consider

E(|δE(S)|) ≥ (n− s)(1− e−sp)

E(|δE(A)|)− snp

2
≥ n

((
1− sp

np

)
(1− esp)− sp

2

)
Letting sp = x, and f(x) = (1− x/np)(1− e−x)− x/2,
we have f ′′(x) ≤ 0, which implies that f(x) is concave in
x and achieves minimum value at one of the boundaries of
its domain [0, 1]. It can easily be verified that this value is
positive at both of these points for sufficiently large k, n,
proving the claim. Thus, from the above proof, we can infer
that with high probability, the vertex neighbourhood |δE(S)|
of any S where 1 ≤ s ≤ 1/p is at least E(|δE(S)|)/2 which
is at least snp/4. However, we also have that E′(v) ≤
np/20, due to which E′(S, V \ S) ≤ snp/20. Thus, we
can conclude that |δE\E′(S)| ≥ snp/4−snp/20 ≥ snp/5.

Next, we shall prove that for any vertex set S of size 1/p ≤
s ≤ 8/p, the size of the vertex neighbourhood |δE(S)| of

S is at least nsp/20 + n/20. Consider any vertex set S of
size 1/p ≤ s ≤ 8/p. Recall from our previous argument
that the size of the vertex neighbourhood |δE(S)| is the
sum of n− s independent Bernoulli random variables, each
with parameter at least (1 − e−sp), due to which we have
E(|δE(S)|) ≥ (n − s)(1 − e−sp). Thus, by Hoeffding’s
Inequality, we have

Pr
(
|δE(S)| ≤ n(sp+ 1)

20

)
≤ exp

(
−2(n− s)(1− e−sp)

(
1− e−sp − 2(sp+ 1)

20(1− s/n)

))
≤ exp

(
−39n

20
(1− e−sp)

(
1− e−sp − 4

39
(sp+ 1)

))
where the final inequality follows from the fact that (1 −
s/n) ≥ (1−8/np) ≥ 39/40 for np ≥ 320. Letting sp = x,
and f(x) = (1− e−x)(1− e−x − 4(x+ 1)/39), we have
that f ′′(x) < 0 in the range [1, 8], and hence, achieves
minimum value at one of the boundaries [1, 8]. Thus, we
have f(x) ≥ min{f(1), f(8)} = f(8). Thus, we have

Pr
(
|δE(S)| ≤ n(sp+ 1)

20

)
≤ exp

(
−39f(8)n

20

)
Thus, by a union bound,

Pr
(
∃S, 1

p
≤ s ≤ 8

p
: |δE(S)| ≤ n(sp+ 1)

20

)

≤
8/p∑
s=1/p

(
n

s

)
exp

(
−39f(8)n

20

)

≤
8/p∑
s=1/p

exp

(
s log

en

s
− 39f(8)n

20

)

≤
8/p∑
s=1/p

exp

(
−n
(

39f(8)

20
− s

n
log

en

s

))

≤ 7

p
exp

(
−n
(

39f(8)

20
− 8

np
log

enp

8

))
≤ 7

p
exp

(
−n
(

39f(8)

20
− log 40e

40

))
≤ 7n

320
exp

(
− n

32

)
Where the second to last inequality follows from the fact
that (s/n) log(en/s) is a concave increasing function in the
argument s/n, and achieves maximum at the right boundary
s/n = 8/np, and the final inequality follows from the fact
that np ≥ 320. Thus, we have that with high probability,
|δE(S)| of S is at least snp/20 + n/20. However, we also
have that E′(v) ≤ np/20, due to which E′(S, V \ S) ≤
snp/20. Thus, we can conclude that |δE\E′(S)| ≥ n/20.
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Finally, we shall prove that for any vertex set S of size
8/p < s ≤ n/10, the size of the vertex neighbourhood
δE\E′(S) of S is at least n/10. As before, due to the
constraint E′(v) ≤ np/20, we have that E′(S, V \ S) ≤
snp/20 for any vertex set S of size s. We shall first
prove that with high probability, given any vertex set S
of size 8/p < s ≤ n/10, then for any subset of vertices
S0 ⊂ V \ S of size 4n/10, the total number of edges be-
tween S and S0 is |E(S, S0)| ≥ snp/20. Given any vertex
sets S, S0 ⊂ V \ S, |S0| = 4n/10, the total number of
edges |E(S, S0)| is the sum of 4sn/10 Bernoulli random
variables, each with parameter p. Thus, its expected value
is 4snp/10. Thus, by a union bound, followed by Chernoff
Bounds, we have

Pr
(
∃S, S0 : |E(S, S0)| ≤ snp

20

)
≤

n/10∑
s=8/p

(
n

s

)(
n− s
4n/10

)
exp

(
−
(

7

8

)2
4snp

20

)

≤
n/10∑
s=8/p

exp

(
−49snp

320
+

4n

10
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10e

4

(
1− s

n

)
+ s log

en

s

)

≤
n/10∑
s=8/p

exp

(
−n
(

49sp

320
− 4

10
log

10e

4
− 1

10
log 10e

))
Where the final inequality follows from the fact that
(s/n) log(en/s) is a concave increasing function in the ar-
gument s/n, and achieves maximum at the right boundary
s/n = 1/10. Substituting sp ≥ 8, we get

n/10∑
s=8/p

exp

(
− n

40

(
49− 16 log

10e

4
− 4 log 10e

))
≤ 24n

320
exp

(
−n

8

)
where the final inequality follows from the fact that np ≥
320. This implies that with high probability, given any set S
of size 8/p ≤ s ≤ n/10, any set of 4n/10 vertices from the
remaining n − s vertices must have atleast snp/20 edges
going into it from S. This implies two things: (1) The
number of vertices that are not in the vertex neighbourhood
δE(S) of S is at most 4n/10. The reason why this is true is
because if the number of vertices that are not in the vertex
neighbourhood of S exceeds 4n/10, then this set would be
an example of a set with fewer than snp/20 edges going
into it from S (it would in fact have 0 edges going into it).
(2) To disconnect any set of 4n/10 vertices from the vertex
neighbourhood of S, the entire edge deletion budget must be
consumed. This implies that |δE\E′(S)| ≥ n− s− 8n/10.
However, n− s ≥ 9n/10, and thus, |δE\E′(S)| ≥ n/10.

Now consider the graph G′ = (V,E \E′). For every vertex
u ∈ V , let δdE\E′(u) be the set of vertices within distance

d of u in the graph G′. From the above proof, we have
that with high probability, δDE\E′(u) ≥ n/10 where D =

2 + log n/ log(np). This follows by performing a BFS
starting from u in G′, and applying the vertex expansion
condition to the BFS tree with depth 1 ≤ d ≤ D. For a
fixed pair of vertices (u, v), if v was not already in δDE\E′(u),
then we have that the number of edges |E(δDE\E′(u), v)| is
the sum of at least n/10 independent Bernoulli random
variables, each with parameter p, due to which its expected
value is at least np/10. In order to disconnect vertex v from
δDE\E′(u), we would need all edges E(δDE\E′(u), v) ⊆ E′,
and due to constraint |E′(v)| ≤ np/20, this would only be
possible if |E(δDE\E′(u), v)| ≤ np/20. Thus, by a union
bound followed by Chernoff Bounds, we have

Pr(∃u, v : |E(δDE\E′(u), v)| ≤ np

20
)

≤ n2 exp

(
−
(

1

2

)2
np

20

)

≤ n2 exp

(
−k log n

80

)
≤ n2− k

80

By a union bound over all the above events, we can conclude
that for np = k log n ≥ 320 with probability

≥ 1− 1

320

(
n2+

1
8 logn−

k
16 +

7n

e
n
32

+
24n

e
n
8

+ 320n2−
k
80

)
= 1− 1

poly(n)
,

every pair of vertices are connected withinG′ = (V,E \E′)
with a path of length at most 3 + log n/ log(np).

A.7. Proof of Lemma 5

Lemma 5. Let G = (V,E) be any input comparison graph
conforming to the contamination model in Section 3.1, and x
be any feasible solution to the LP defined in Figure 3. Then
for any vertex u ∈ V , we have |{Elpr ∪ Ea ∪ Er}(u)| ≤
np/20 with probability at least 1− 1/poly(n).

Proof. For any fixed arbitrarily small constant 0 < ε ≤
1/30, let the initial comparison graph G∗ = (V,E∗) ∼
Gn,p satisfy the condition specified by Fact 1, and let
G = (V,E) the subsequent adversarially contaminated
graph conforming to the contamination model specified
in Section 3.1 that is received as input to our algorithm. The
subsequent results follow deterministically, assuming G∗

satisfies the condition specified by Fact 1, which itself holds
with probability at least 1− 1/poly(n).

Recall that E is the set of all edges returned by the ad-
versary, out of which Eu ⊆ E∗ is the set of uncorrupted
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edges from the original comparison graph, Ea is the set
of edges that were either introduced to G by the adver-
sary or already existed in E∗, but were subsequently cor-
rupted by the adversary, and Er = E∗ \ {Eu ∪ Ea} is
the set of edges from E∗ deleted by the adversary. Re-
call that, given any solution x to the LP in Figure 3, we
delete any edge e such that x(e) ≥ log(np)/(5 log n). Ob-
serve that per vertex u, we have |Elpr(u)| ≤ |E(u)|/25.
This is straightforward to prove, because if this were to
be untrue for some vertex v ∈ V , then the constraint∑
e∈E(v) x(e) ≤ γLP|E(v)| would be violated. By assump-

tion about G∗, we have |E∗(u)| ≤ (1 + ε)np and subse-
quently, by Eq. (1), we have |E(u)| ≤ (1 + ε)(1 + γ)np.
By the same constraint on the corruption rate, we have for
any vertex u, |{Ea ∪ Er}(u)| ≤ γ(1 + ε)np. Thus, we
have |{Elpr ∪ Ea ∪ Er}(u)| ≤ (1 + ε)(1 + γ)np/25 +
γ(1 + ε)np ≤ (1 + ε)(1 + γ + 25γ)np/25 < np/20 for
ε ≤ 1/30. Thus, for every vertex u, the algorithm and the
adversary combined can discard or corrupt at most np/20
edges incident on u in E∗.

A.8. Proof of Lemma 1

Lemma 1. The LP in Fig 3 is solvable in O(n2+o(1)d6)
time where d is the average degree in the input graph.

Proof. For any fixed arbitrarily small constant 0 < ε ≤
1/30, let the initial comparison graph G∗ = (V,E∗) ∼
Gn,p satisfy the condition specified by Fact 1, and let
G = (V,E) the subsequent adversarially contaminated
graph conforming to the contamination model specified
in Section 3.1 that is received as input to our algorithm. The
subsequent results follow deterministically, assuming G∗

satisfies the condition specified by Fact 1, which itself holds
with probability at least 1− 1/poly(n).

We begin by showing that the total number of decision
variables and constraints is small. Since the inconsistent
cycle constraints dominate the rest of the constraints, we
begin by proving that the total number of cycles in G of
length at most 4 + log n/ log(np) is just quadratic. From
our assumption about G∗, the degree of every vertex in
G∗ is bounded by (1 + ε)np. Furthermore, the adversary
can add at most a γ fraction of the realized edges as new
adversarially corrupted edges, giving us an upper bound of
(1 + ε)(1 + γ)np on the degree of every vertex in G. Thus,
the number of cycles of length at most 4 + log n/ log(np)
that any vertex participates in is bounded by

4+logn/ log(np)∑
l=1

((1 + ε)(1 + γ)np)l

≤
(

4 +
log n

log(np)

)
e1+4εn1+

4+ε
log(np) (np)4

= O(n1+o(1)(np)4)

where the second inequality follows from the bound γ ≤
log(np)/ log n. Thus, the total number of cycles of length
at most 4+log n/ log(np) is bounded byO(n2+o(1)(np)4),
and thus, the total number of constraints is bounded by
O(n2+o(1)(np)4), and the total number of decision vari-
ables is bounded by O(n(np)). The latter claim follows
directly from our assumption about G∗.

Next, we utilize the fact that the Multiplicative Weight Up-
date framework for approximately solving Linear Programs
is extremely efficient. Our problem is further simplified by
the fact that we do not need to solve the entire minimization
problem. In fact, the latter steps in our proposed algorithm
provably work given any feasible solution to the Linear Pro-
gram described in Figure 3, which is one of the reasons
why the MWU method becomes a compelling approach.
Given a system of linear constraints A>x ≥ b, x ∈ C for
some convex domain C, along with an oracle that takes as
input a single constraint α>x ≥ β and either (1) returns
an x∗ ∈ C that satisfies the constraint α>x∗ ≥ β, or (2)
correctly determines that the constraint is infeasible for all
x ∈ C, the MWU method either returns an x′ ∈ C such that
A>x′ ≥ b− δ, or correctly determines that the system is
infeasible within at most O((ρ2 logm)/δ2) calls to the said
oracle. Here, m is the number of constraints in the system,
δ > 0 is the desired approximation factor, and ρ is a quan-
tity known as the width of the Linear Program. Thus, the
overall running time of this approach is O(Rρ2 logm/δ2),
where R is the runtime of a single call to the said oracle.
We will refer the interested reader to (Plotkin et al., 1995)
for a comprehensive study of this framework.

In our proposed LP, we are interested in finding an x in
the domain [0, 1]|E| such that A>x ≥ b, where A>, b
is a compact way of representing our constraints. To be
precise, the matrix A> has |E| columns, where |E| is the
number of edges in G, and |C|+ n rows, with the first |C|
rows corresponding to the inconsistent cycle constraints,
and the subsequent n rows corresponding to the vertex
constraints. Furthermore, since this feasible set is prov-
ably non-empty, such an x always exists. For our prob-
lem, the oracle is very simple: given a single constraint
α>x ≥ β, the constraint is always satisfiable if β ≤ 0,
as the all 0 vector x = 0|E| satisfies it. If on the other
hand, β > 0, then the constraint is satisfiable if and only
if the total sum of the positive entries within α exceeds β,
i.e.

∑
i∈[|E|] αi1(αi > 0) ≥ β. In this case, the solution
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x = 1(α > 0) satisfies the constraint. In all other cases, the
constraint is unsatisfiable. As one can observe, this oracle
is very efficient, and runs in time O(|E|). Furthermore,
constructing the meta-constraint that would be given to the
oracle in a single call takes time O(nnz(A>)), the number
of non-zero entries in our constraint matrix A>. This is easy
to bound, as the number of non-zero variables in a single
inconsistent cycle constraint is at most 4 + log n/ log(np),
and there are at most O(n2+o(1)(np)4) such constraints.
Furthermore, there are exactly n vertex constraints, each
having O(np) non-zero variables. This gives a bound
nnz(A>) = (4 + log n/ log(np))O(n2+o(1)(np)4) +
nO(np) = O(n2+o(1)(np)4). Thus, the runtime R of a
single call to our oracle is O(n2+o(1)(np)4).

The key factor in the running time of the MWU method
is the width ρ of the Linear Program, which is defined
as the maximum absolute slack in any constraint in our
convex domain C. Specifically, given a system of con-
straints A>x ≥ b, x ∈ C for some convex domain C,
ρ = max{1,maxi∈[m],x∈C |A>i x − bi|}. In our problem,
in the case of inconsistent cycle constraints, we have that
A>i consists of 0s except for at most 4 + log n/ log(np)
locations that have 1s, and bi = 1. The since x ∈ [0, 1]|E|,
we have |A>i x − bi| ≤ 3 + log n/ log(np). In the case
of vertex constraints, for any vertex v ∈ V , we have that
A>i consists of 0s except for |E(v)| locations that have
−1s, and bi = −γLP|E(v)|, where |E(v)| is the number of
edges incident on vertex v. Since x ∈ [0, 1]|E|, we have
|A>i x− bi| ≤ max{γLP|E(v)|, (1−γLP)|E(v)|} ≤ O(np)
from Fact 1. Thus, we have ρ2 ≤ O((np)2).

The only concern left is that this approach would only return
a δ-approximately feasible solution. However, this is also
easy to handle. We simply set δ to some small constant,
say 1/100, and slightly lower our rounding threshold by
a 1 − δ factor, i.e. round all edges with value x(e) ≥
(1 − δ) log(np)/(5 log n). It is straightforward to verify
that this slight adjustment would not affect the correctness
of our algorithm; our rounding scheme would still delete
every corrupted edge, without discarding too many edges
per vertex.

From the above discussion, we can conclude that the MWU
method will find a feasible fractional solution to our Linear
Program in time O(n2+o(1)(np)6), which is just quadratic
in the sparse data regime.

A.9. Proof of Observation 1

Observation 1. A solution that assigns x(e) = 1 to every
edge e ∈ Ea, the set of adversarially corrupted edges, and
x(e) = 0 to every edge e ∈ Eu, the set of uncorrupted
edges is a feasible solution to the above LP.

Proof. Note that for b ≥ maxi,j∈[n] w
∗
i /w

∗
j , an additive

error of at most εL/(1 + b) corresponds to a multiplicative
error of at most εL, i.e. for every pair (u, v) ∈ Eu, |puv −
p∗uv| ≤ εL/(1 + b) ⇒ (1− εL)p∗uv ≤ puv ≤ (1 + εL)p∗uv,
and the same holds for (v, u).

We shall prove this observation by showing that no cycle of
length at most 4 + log n/ log(np) and consisting of edges
only from Eu can be inconsistent. To prove this claim,
consider any cycle C = (vc1 , . . . vcl , vcl+1

= vc1) of length
l, where ∀1 ≤ i ≤ l, (vci , vci+1

) ∈ Eu. We have

l∏
i=1

pvcivci+1

pvci+1
vci

≤
(

1 + εL
1− εL

)l l∏
i=1

p∗vcivci+1

p∗vci+1
vci

=

(
1 +

2εL
1− εL

)l l∏
i=1

w∗vci
w∗vci+1

≤ 1 +
2lεL

1− (2l − 1)εL

=
1 + εL

1− (2l − 1)εL

Where the first inequality follows from the assumption that
∀1 ≤ i ≤ l, (vci , vci+1

) ∈ Eu, and the final inequality
follows from the bound (1 + x)r ≤ 1 + rx/(1− (r − 1)x)
for x ∈ [−1, 1/(r − 1)).

Similarly, we have

l∏
i=1

pvcivci+1

1− pvcivci+1

≥
(

1− εL
1 + εL

)l l∏
i=1

p∗vcivci+1

p∗vci+1
vci

=

(
1− 2εL

1 + εL

)l l∏
i=1

w∗vci
w∗vci+1

≥ 1− 2lεL
1 + εL

≥ 1− (2l − 1)εL
1 + εL

Where the first inequality follows from the assumption that
∀1 ≤ i ≤ l, (vci , vci+1

) ∈ Eu, and the final inequality
follows from the bound (1 − x)l ≥ 1 − lx for x ∈ [0, 1].
Thus, every inconsistent cycle must contain at least 1 edge
from Ea, and hence the assignment x(e) = 0∀e ∈ U and
x(e) = 1∀e ∈ Ea is a feasible assignment.

A.10. Proof of Observation 2

Observation 2. For any edge (u, v) ∈ EA, any path from
u to v consisting of edges only from Eu of length at most
4 + log n/ log(np) will induce an inconsistent cycle.

Proof. Let lm = 4 + log n/ log(np). To prove this ob-
servation for any edge (u, v) ∈ EA, consider any cycle
C = (vc1 , vc2 , vc3 , . . . , vcl , vcl+1

= vc1) of length l ≤ lm
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such that vc1 = u, vc2 = v, and for all 2 ≤ i ≤
l, (vci , vci+1) ∈ Eu.

Case 1: Suppose (puv − p∗uv) > 2(2lm − 1)εL

l∏
i=1

pvcivci+1

pvci+1vci

=
puv
pvu

l∏
i=2

pvcivci+1

pvci+1vci

>
(1 + 2(2lm − 1)εL)p∗uv
(1− 2(2lm − 1)εL)p∗vu

l∏
i=2

(1− εL)p∗vcivci+1

(1 + εL)p∗vci+1
vci

≥ 1 + 2(2lm − 1)εL
1− 2(2lm − 1)εL

(
1− εL
1 + εL

)l(
1 + εL
1− εL

)
≥
(

1 + 2(2lm − 1)εL
1− 2(2lm − 1)εL

)(
1− (2l − 1)εL

1− εL

)
≥ 1 + 2(2lm − 1)εL

(1− (2lm − 1)εL)2

(
1− (2l − 1)εL

1− εL

)
≥ 1 + 2(2lm − 1)εL

1− εL
1

1− (2lm − 1)εL

≥ 1 + εL
1− (2l − 1)εL

where the first inequality follows from the assumption of
Case 1, and that for all 2 ≤ i ≤ l, (vci , vci+1

) ∈ Eu due to
which for all 2 ≤ i ≤ l, pvcivci+1

≥ (1− εL)p∗vcivci+1
and

pvci+1
vci
≤ (1 + εL)p∗vci+1

vci
. The third inequality follows

from the bound (1− x)l ≥ 1− lx for x ∈ [0, 1]. The final
three inequalities follow from the fact that (1−x)2 > 1−2x,
and lm ≥ l.

Case 2: Suppose (p∗uv − puv) > 2(2lm − 1)εL

l∏
i=1

pvcivci+1

pvci+1vci

=
puv
pvu

l∏
i=2

pvcivci+1

pvci+1vci

<
(1− 2(2lm − 1)εL)p∗uv
(1 + 2(2lm − 1)εL)p∗vu

l∏
i=2

(1 + εL)p∗vcivci+1

(1− εL)p∗vci+1
vci

≤ 1− 2(2lm − 1)εL
1 + 2(2lm − 1)εL

(
1 + εL
1− εL

)l−1(
1− εL
1 + εL

)
≤
(

1− 2(2lm − 1)εL
1 + 2(2lm − 1)εL

)(
1− εL

1− (2l − 1)εL

)
≤ 1− εL

1 + 2(2lm − 1)εL
(1− (2lm − 1)εL)

≤ 1− (2l − 1)εL
1 + εL

where the first inequality follows from the assumption of
Case 2, and that for all 2 ≤ i ≤ l, (vci , vci+1) ∈ Eu due
to which for all 2 ≤ i ≤ l, pvcivci+1

≤ (1 + εL)p∗vcivci+1

and pvci+1
vci
≥ (1 − εL)p∗vci+1

vci
. The third inequality

follows from the bound (1 + x)r ≤ 1 + rx/(1− (r − 1)x)
for x ∈ [−1, 1/(r − 1)).The final three inequalities follow
from the fact that (1− x)2 > 1− 2x, and lm ≥ l.

In either case, we can observe that cycle C is inconsistent,
proving the claim.

A.11. Proof of Lemma 3

Lemma 3. In the setting of Theorem 3, let w∗ be the set of
true BTL weights, and let w be the estimate returned by the
ASR algorithm with input G̃ = (V, Ẽ). Then we have that

||w −w∗||1 ≤ (Cb log b)εL

where b is an upper bound on maxi,j∈[n] w
∗
i /w

∗
j . This claim

holds with probability at least 1− 1/poly(n).

For any fixed arbitrarily small constant 0 < ε ≤ 1/30, let
the initial comparison graph G∗ = (V,E∗) ∼ Gn,p satisfy
the condition specified by Fact 1, and let G = (V,E) the
subsequent adversarially contaminated graph conforming
to the contamination model specified in Section 3.1 that is
received as input to our algorithm. The subsequent results
follow deterministically, assumingG∗ satisfies the condition
specified by Fact 1, which itself holds with probability at
least 1− 1/poly(n).

Before proving this lemma, we shall first set up some nota-
tion. As stated earlier in the main paper, given comparison
graph G̃ = (V, Ẽ), the ASR algorithm defines a lazy ran-
dom walk over G̃ with probability of transition P̃uv from
vertex u to vertex v given by

P̃uv =


1

d̃u
pvu if u 6= v, (u, v) ∈ Ẽ,

1

d̃u

∑
v∈δẼ(u) puv if u = v,

0 otherwise.

(2)

where d̃u is the degree |δẼ(u)| of vertex u in the graph
G̃ = (V, Ẽ). Let P̃ = [P̃uv] be the transition probability
matrix of the corresponding Markov chain. The estimate
w returned by the ASR algorithm is a linear transformation
w = D̃−1π, where π = P̃>π the stationary distribution of
this Markov chain, and D̃ is the diagonal matrix of degrees
D̃uu = d̃u.

Furthermore, given comparison graph G̃ = (V, Ẽ), and true
BTL weights w∗, we define the true random walk over G̃
with probability of transition P̃ ∗uv from vertex u to vertex v
given by

P̃ ∗uv =


1

d̃u
p∗vu if u 6= v, (u, v) ∈ Ẽ,

1

d̃u

∑
v∈δẼ(u) p

∗
uv if u = v,

0 otherwise.

(3)

Let P̃∗ = [P̃ ∗uv] be the transition probability matrix of
the corresponding true Markov chain. One can verify that
given P̃∗, one can recover the true BTL weights w∗ from
a linear transformation of the stationary distribution of P̃∗.
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Specifically, we have w∗ = D̃−1π∗, where π∗ = P̃∗
>
π∗

is the stationary distribution of this true Markov Chain.

The key result within (Agarwal et al., 2018) essentially
relates the deviation between the estimated weights w and
the true weights w∗ to the deviation between the transition
probability matrix P̃ constructed from input data, and the
true transition probability matrix P̃∗, where P̃, and P̃∗ are
as defined in Equations 2, 3, respectively. From Theorems
2,3 and Lemma 6 from (Agarwal et al., 2018), we have

Theorem 4. Given the true BTL weights w∗, and given a P̃
and corresponding P̃∗ defined according to Equations 2, 3,
respectively, let w = D̃−1π, where π = P̃>π the station-
ary distribution of P̃. Then we have that

||w −w∗||TV ≤
C

µ(P̃∗)
bδ log (bδ) ||P̃− P̃∗||∞

where C is an absolute constant, b is an upper bound on
maxi,j∈[n] w

∗
i /w

∗
j , δ = maxu,v∈V d̃u/d̃v, and µ(P̃∗) :=

1− λ2(P̃∗) is the spectral gap of the Markov Chain defined
by P̃∗

We shall first prove a bound on ||P̃− P̃∗||∞.

Lemma 6. Consider the setting of Theorem 3. Let P̃ and
P̃∗ be as defined in Equation 2, and Equation 3. Then we
have that

||P̃− P̃∗||∞ ≤ (1 + 1/15 + 31/120)εL

Proof. By definition of the infinity norm, we have

||P̃− P̃∗||∞ = max
u∈[n]

∑
v∈[n]

|P̃uv − P̃ ∗uv|

≤ max
u∈[n]

1

d̃u

∑
v∈δẼ(u)

(|puv − p∗uv|+ |pvu − p∗vu|)

Consider any fixed u ∈ [n]. From the proof of Lemma 5,
we know that for every vertex u ∈ V , we have that for every
vertex u ∈ V , d̃u ≥ (1− 1/25)du, where du = |δE(u)| is
the degree of u in G = (V,E). Furthermore, from Equa-
tion 1, we have that |δEa(u)| ≤ γdu. For this vertex u,
let δẼ∩Ea(u) be the set of neighbours of u in G̃ that are
connected through a corrupted edge, and let δẼ∩Eu(u) be

the set of neighbours of u in G̃ that are connected through
an uncorrupted edge. From Lemma 2, we have that for
any edge (u, v) ∈ Ẽ ∩ Ea, |puv − p∗uv| ≤ 4lmεL, where

lm = 4 + log n/ log(np). Thus, we have that

1

d̃u

∑
v∈δẼ(u)

(|puv − p∗uv|+ |pvu − p∗vu|)

=
1

d̃u

 ∑
v∈δẼ∩Eu (u)

(|puv − p∗uv|+ |pvu − p∗vu|)


+

1

d̃u

 ∑
v∈δẼ∩Ea (u)

(|puv − p∗uv|+ |pvu − p∗vu|)


≤ 1

d̃u

 ∑
v∈δẼ∩Eu (u)

εL(puv + pvu) +
∑

v∈δẼ∩Ea (u)

8lmεL


≤ 25

24du

((
1− γ − 1

25

)
duεL + 8γdulmεL

)
≤ εL

(
1 +

1

15
+

31

120

log(np)

log n

)
Where the final upper bound follows by substituting lm =
4 + log n/ log(np), and γ ≤ log(np)/(125 log n). Clearly,
np ≤ n, and this proves the lemma.

We shall next prove that δ = maxu,v∈V d̃u/d̃v is bounded
by a constant. From our assumption about G∗, and Equa-
tion 1, we have that (1−ε)(1−γ)np ≤ |E(u)| ≤ (1+ε)(1+
γ)np for every vertex u ∈ V . From Lemma 5, we have
that for any vertex u ∈ V , |Ẽ(u)| = |E(u) \ Elpr(u)| ≥
24|E(u)|/25. The threshold pruning step only deletes edges,
due to which for any vertex u ∈ V , |Ẽ(u)| ≤ |E(u)|. Thus,
we have

δ ≤ 25(1 + ε)(1 + γ)np

24(1− ε)(1− γ)np
≤ C

for some constant C.

To prove a bound on the spectral gap µ(P̃∗), we shall lever-
age Lemma 7 of ASR, which, for the case of pairwise com-
parison data gives that

µ(P̃∗) ≥ ξ

b

where b is an upper bound on maxi,j∈[n] w
∗
i /w

∗
j , and ξ :=

1− λ2(L) is the spectral gap of the Laplacian L, which is
the unweighted random walk on the graph G̃. Formally, it
is defined as L := D̃−1Ã, where Ã is the adjacency matrix
of G̃. We shall prove that the spectral gap ξ of the Laplacian
L is lower bounded by a constant

Lemma 7. Let G̃ = (V, Ẽ) be the subgraph that survives
the threshold pruning step, and let L = D̃−1Ã be its Lapla-
cian, where D̃ is the diagonal matrix where each diagonal
entry corresponds to the degree of the corresponding vertex
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in G̃, and Ã is the adjacency matrix of G̃. Then we have
that the spectral gap ξ = 1− λ2(L)

ξ ≥ C

where C is some constant. This statement holds with proba-
bility at least 1− 1/poly(n)

Proof. Let m̃ = |Ẽ|, and let ν be the stationary state of L.
By definition of the Laplacian, we have for all (u, v) ∈ Ẽ,
νuLuv = 1/2m̃, which follows from the fact that for all
u ∈ V, πu = d̃u/2m̃. Thus, for any cut (S, V \ S) where
s = |S| ≤ n/2, we have the conductance of the cut

Φ(S) =

∑
u∈S,v∈V \S νuLuv∑

u∈S νu
=
|Ẽ(S, V \ S)|∑

u∈S d̃u

Let Elpr ⊂ E be the subset of edges deleted by our thresh-
old pruning step, and let Elpr(S) ⊆ Elpr be the set of edges
in Elpr for which at least one of the end points was in S.
Thus, we have

Φ(S) =
|Ẽ(S, V \ S)|∑

u∈S d̃u

≥ |E(S, V \ S)| − |Elpr(S)|
(
∑
u∈S |E(u)|)− |Elpr(S)|

≥ 25

24

|E(S, V \ S)|∑
u∈S |E(u)|

− 1

24

Where the final inequality follows from the fact that for
any vertex i ∈ V , the rounding scheme can delete at most
E(u)/25 edges from E(u).

From our assumption about G∗, we have that |E∗(S, V \
S)| ≥ (1 − ε)s(n − s)p, and for every vertex u ∈ V ,
|E∗(u)| ≤ (1 + ε)np. Due to Equation 1, we have

|E(S, V \ S)| ≥ |E∗(S, V \ S)| − γ

(∑
u∈S
|E∗(u)|

)

From the same bound, we have for any vertex u ∈ V ,

|E(u)| ≤ (1 + γ)|E∗(u)|

Thus, we have

Φ(S) ≥ 25

24

|E∗(S, V \ S)| −
∑
u∈S γ|E∗(u)|∑

u∈S(1 + γ)|E∗(u)|
− 1

24

≥ 25

24(1 + γ)

|E∗(S, V \ S)|∑
u∈S |E∗(u)|

− γ

1 + γ
− 1

24

≥ 25

24

(1− ε)(n− s)
(1 + ε)(1 + γ)n

− γ

1 + γ
− 1

24

We have that γ ≤ log(np)/(125 log n) ≤ 1/125, and s ≤
n/2. Thus, after bounding the constants, we have

Φ(S) >
31

60

(1− ε)
(1 + ε)

− 3

60

By assumption, ε ≤ 1/30, we have

Φ(S) >
29

60
− 3

60
>

13

30

which is a constant.

Combining all of these results, we have the claim of
Lemma 3

||ŵ −w∗||TV ≤ (Cb log b)εL

A.12. Concentration Inequalities

Theorem 5 (Chernoff Bounds for Bernoulli Random Vari-
ables). Suppose X1, . . . , Xn are i.i.d Bernoulli Random
Variables, each with parameter p, then for any 0 ≤ δ ≤ 1,
we have

Pr

(
n∑
i=1

Xi ≤ (1− δ)np

)
≤ exp

(
−δ

2np

2

)
,

and

Pr

(
n∑
i=1

Xi ≥ (1 + δ)np

)
≤ exp

(
−δ

2np

3

)
.

Theorem 6 (Hoeffding’s Inequality for Bernoulli Random
Variables). Suppose X1, . . . , Xn are i.i.d Bernoulli random
variables, each with parameter p, then for any δ ≥ 0, we
have

Pr

(∣∣∣∣∣
n∑
i=1

Xi − np

∣∣∣∣∣ ≥ nδ
)
≤ 2 exp

(
−2nδ2

)
.


