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Abstract
We present improved approximation algorithms for some problems in the related areas of Capacitated
Network Design and Flexible Graph Connectivity.

In the Cap-k-ECSS problem, we are given a graph G = (V, E) whose edges have non-negative
costs and positive integer capacities, and the goal is to find a minimum-cost edge-set F such that every
non-trivial cut of the graph G′ = (V, F ) has capacity at least k. Let n = |V | and let umin (respectively,
umax) denote the minimum (respectively, maximum) capacity of an edge; assume that umax ≤ k. We
present an O(log(k/umin))-approximation algorithm for the Cap-k-ECSS problem, asymptotically
improving upon the previous best approximation ratio of min(O(log n), k, 2umax, 6 · ⌈k/umin⌉)
whenever log(k/umin) = o(log n) and umax is sufficiently large.

In the (p, q)-Flexible Graph Connectivity problem, denoted (p, q)-FGC, the input is a graph
G = (V, E) where E is partitioned into safe and unsafe edges, and the goal is to find a minimum-cost
edge-set F such that the subgraph G′ = (V, F ) remains p-edge connected upon removal of any q

unsafe edges from F . We present an 8-approximation algorithm for the (1, q)-FGC problem that
improves upon the previous best approximation ratio of (q + 1).

Both of our results are obtained by using natural LP relaxations strengthened with the knapsack-
cover inequalities, and then, during the rounding process, utilizing a recent O(1)-approximation
algorithm for the Cover Small Cuts problem. In the latter problem, the goal is to find a minimum-cost
set of links such that each non-trivial cut of capacity less than a specified value is covered by a
link. We also show that the problem of covering small cuts inherently arises in another variant of
(p, q)-FGC. Specifically, we give Cook reductions that preserve approximation ratios within O(1)
factors between the (2, q)-FGC problem and the 2-Cover Small Cuts problem; in the latter problem,
each small cut needs to be covered by two links.
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1 Introduction

Given a graph G = (V, E) whose edges have both costs and capacities, a fundamental
task in network design is to find a spanning subgraph of minimum cost that satisfies some
specified connectivity requirements. In this paper, we present results on two well-studied
problems in the area of approximation algorithms pertaining to the design of networks with
edge-connectivity requirements.

When all edges have the same capacity, a seminal result by Jain [14] provides a 2-
approximation algorithm for the survivable network design problem (SNDP); see section 1.4.3
for further discussion.

In the more general setting, where edges have non-uniform capacities, the problem,
referred to as capacitated network design, becomes more challenging. Our focus is on
designing approximation algorithms for the special case called the Cap-k-ECSS problem
where we are given a graph G = (V, E) with a non-negative cost and a positive integer
capacity for each edge, and the algorithmic goal is to find a minimum-cost spanning subgraph
such that every non-trivial cut has capacity k or more. Let n = |V | and let umin (respectively,
umax) denote the minimum (respectively, maximum) capacity of an edge; assume that
umax ≤ k. One of the earliest approximation algorithms for the Cap-k-ECSS problem is
due to Goemans et al. [9], and it achieves an approximation ratio of min{2k, |E|}. The best
approximation ratio known is min(O(log n), k, 2umax, 6 · ⌈k/umin⌉), due to Goemans et al. [9],
Chakrabarty et al. [7], Boyd et al. [5], and Bansal [3]. Moreover, there are no known hardness
results that rule out the possibility of better asymptotic approximation ratios.

Another line of research called flexible graph connectivity (abbreviated as FGC), has
emerged recently, motivated by natural questions in network design in the setting of robust
optimization. Adjiashvili, Hommelsheim and Mühlenthaler [1] proposed an FGC model that
distinguishes between safe (never-failing) and unsafe (failure-prone) edges. The algorithmic
goal is to choose a set of edges of minimum cost that satisfies a (global) edge-connectivity
requirement, while tolerating failures of up to a specified number of unsafe edges. A basic
problem in this setting is the (1, q)-FGC problem where the goal is to ensure that the network
remains connected even after the failure of up to q unsafe edges. We mention that the
(1, q)-FGC problem can be modeled as a special case of the Cap-k-ECSS problem.

In the rest of the introduction section, we first discuss related work, and then we formalize
the problems studied in this paper. After that, we give an overview of the main tools and
techniques underlying our results, followed by our results and discussion on two of our
algorithms.

We may use abbreviations for some standard terms, e.g., we may use “(1, q)-FGC” as
an abbreviation for “the (1, q)-FGC problem”. For each of the minimization problems (in
network design or flexible graph connectivity), we use opt to denote the optimal value (i.e.,
the minimum cost of an integer solution), and LPopt to denote the optimal value of an LP
relaxation. The context will resolve potential ambiguities.

1.1 Related Work
As mentioned above, research on approximation algorithms for Cap-k-ECSS was initiated
by Goemans et al. [9]. Carr et al. [6], in a seminal paper, introduced a key algorithmic tool
for capacitated network design based on the Knapsack-Cover Inequalities (KCI); we discuss
KCI in more detail in section 1.4.1. More than a decade later, Chakrabarty et al. [7] used
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KCI to design an O(log n) approximation algorithm for Cap-k-ECSS. Boyd et al. [5] gave a
min{k, 2umax}-approximation algorithm for Cap-k-ECSS, and Bansal [3], based on previous
work by Bansal et al. [4] and Williamson et al. [21], gave a (6 · ⌈k/umin⌉)-approximation
algorithm for Cap-k-ECSS.

The model of flexible graph connectivity originated from research in the area of robust
optimization. Adjiashvili, Stiller and Zenklusen [2] introduced their model of bulk-robust
combinatorial optimization, and designed some approximation algorithms. Later, Adjiashvili,
Hommelsheim and Mühlenthaler [1] introduced the FGC model. Boyd et al. [5] introduced
a generalization called the (p, q)-FGC model. Boyd et al. [5] presented a 4-approximation
algorithm for (p, 1)-FGC based on the primal-dual method of Williamson, Goemans, Mihail &
Vazirani (WGMV) [21], and a (q +1)-approximation algorithm for (1, q)-FGC; moreover, they
gave an O(q log n)-approximation algorithm for (p, q)-FGC. Subsequently, several interesting
results and approximation algorithms have been presented; we summarize some of these recent
papers in chronological order. Chekuri and Jain [8] give O(p)-approximation algorithms
for, respectively, (p, 2), (p, 3) and (2p, 4)-FGC, and an O(q)-approximation algorithm for
(2, q)-FGC. Bansal et al. [4], among other results, give an O(1)-approximation algorithm
for (p, 2)-FGC; moreover, they give a 16-approximation algorithm for a related problem
called Cover Small Cuts. Nutov [17] improves the approximation ratio for Cover Small Cuts
from 16 to 10. Bansal [3], and later Nutov [18], give a 6-approximation algorithm for
Cover Small Cuts; also, see [20]. Bansal [3] gives an O(1)-approximation algorithm for
(p, 3)-FGC. Hyatt-Denesik et al. [12], among other results, give approximation algorithms
for unit-cost FGC problems with edge-connectivity requirements as well as for unit-cost
FGC problems with vertex connectivity requirements. Hommelsheim et al. [11] study a
model related to a generalization of FGC called the (p, q)-Steiner-Connectivity Preservation
problem. Ibrahimpur & Vegh [13] give an O(log n)-approximation algorithm for (p, q)-FGC.

1.2 Capacitated Network Design and the Cap-k-ECSS problem
The Cap-k-ECSS problem is as follows: Given an undirected graph G = (V, E) with edge
costs c ∈ QE

≥0 and edge capacities u ∈ ZE
≥0, find a minimum-cost edge-set F ⊆ E such that

the capacity of any cut in (V, F ) is at least k. Let umin (respectively, umax) denote the
minimum (respectively, maximum) capacity of an edge in E, and assume (w.l.o.g.) that
umax ≤ k.

For a graph G = (V, E) and a set of nodes S ⊆ V , the cut of S, denoted by δ(S), refers
to the set of edges that have exactly one end-node in S. Whenever we use the term “cut
δ(S)” we mean that S is a subset of V (G). We call a cut δ(S) non-trivial if S is a nonempty,
proper subset of V , that is, if ∅ ≠ S ⊊ V .

The following integer program formulates the Cap-k-ECSS problem. It can be viewed as
the natural “cut covering” formulation of the problem. It has a binary variable xe for each
edge e, with the meaning that an edge e is picked iff xe = 1, and, for each non-trivial cut, it
has a constraint stating that the capacity of the picked edges in the cut is ≥ k.

min
∑
e∈E

cexe (IP: CapkECSS)

s.t.
∑

e∈E∩δ(S)

uexe ≥ k ∀ ∅ ⊊ S ⊊ V

xe ∈ {0, 1} ∀ e ∈ E

The LP (linear programming) relaxation of the above integer program is obtained by replacing
xe ∈ {0, 1} by 0 ≤ xe ≤ 1, ∀e ∈ E. The following well-known example shows that the LP
relaxation has an integrality ratio of Ω(k); similar examples are given in [6, 7].

ICALP 2025
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▶ Example 1. The graph G consists of two nodes u, v, and a pair of parallel edges e1, e2
between the two nodes. Edge e1 has cost zero and capacity k − 1, and edge e2 has cost one
and capacity k. A feasible solution of the integer program has cost one since the edge e2
must be chosen in any feasible solution. On the other hand, a feasible solution x to the LP
relaxation of cost 1/k is given by xe1 = 1, xe2 = 1/k. Hence, the integrality ratio of the
LP relaxation is k for this example. Thus, we face an obstruction for the task of designing
any approximation algorithm that achieves approximation ratio o(k) by rounding this LP
relaxation.

1.3 Flexible Graph Connectivity and the (p, q)-FGC problem
Adjiashvili, Hommelsheim and Mühlenthaler [1] introduced the model of Flexible Graph
Connectivity that we denote by FGC as a way to model network design problems where
edges have non-uniform reliability. Boyd, Cheriyan, Haddadan and Ibrahimpur [5] introduced
a generalization of FGC, called the (p, q)-Flexible Graph Connectivity problem, denoted
(p, q)-FGC, where p is an integer denoting the connectivity requirement, and q is an integer
denoting the robustness requirement. An instance of (p, q)-FGC consists of an undirected
graph G = (V, E), where E is partitioned into a set of safe edges S (edges that never fail)
and a set of unsafe edges U (edges that may fail), and nonnegative edge-costs c ∈ QE

≥0. A
subset F ⊆ E of edges is feasible for the (p, q)-FGC problem if for any set F ′ consisting of
at most q unsafe edges, the subgraph (V, F −F ′) remains p-edge connected. The objective is
to find a feasible solution F that minimizes c(F ) =

∑
e∈F ce.

The following linear program gives a lower bound on the optimal value for (p, q)-FGC.
Such LP relaxations are discussed in [5] and [8, Section 2]. To motivate the LP relaxation,
consider an auxiliary capacitated graph that has the same set of nodes and the same set of
edges as the graph of the (p, q)-FGC instance. Assign a capacity of (p + q) to each safe edge
and a capacity of p to each unsafe edge. Let k = p(p + q) and view the capacitated graph as
an instance of the Cap-k-ECSS problem. In general, observe that a feasible solution of the
(p, q)-FGC instance corresponds to a feasible solution of the Cap-k-ECSS instance, but not
vice-versa. (When either p = 1 or q = 1, then a feasible solution of the Cap-k-ECSS instance
corresponds to a feasible solution of the (p, q)-FGC instance.) Each edge e ∈ S ∪ U has a
variable xe.

min
∑

e∈S∪U

cexe (1)

s.t.
∑

e∈S∩δ(S)

(p + q) xe +
∑

e∈U∩δ(S)

(p) xe ≥ p(p + q) ∀ ∅ ⊊ S ⊊ V (2)

0 ≤ xe ≤ 1 ∀e ∈ S ∪ U (3)

Unfortunately, similarly to the LP relaxation for Cap-k-ECSS, the above LP relaxation has
a large integrality ratio, even for the special case of (1, q)-FGC. Example 1 can be modified
such that for p = 1 and q > 0, the above LP relaxation has integrality ratio (q + 1).

1.4 Techniques and Tools
In this subsection, we describe three of the known tools that we apply together to obtain
our main results. Each of these tools has been used on its own (without the other tools) to
obtain improvements in the approximation ratio of the Cap-k-ECSS problem, but, in our
opinion, by combining these tools in the right way, we obtain striking improvements in the
approximation ratios for the Cap-k-ECSS problem and the (1, q)-FGC problem.
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The first tool is the algorithmic use of the Knapsack-Cover Inequalities (KCI) for strength-
ening the LP relaxation of (IP: CapkECSS). This tool was introduced by Carr, Fleischer,
Leung & Phillips [6]. The second tool is an O(1) approximation algorithm for the so-
called Cover Small Cuts problem. This tool was introduced by Bansal, Cheriyan, Grout &
Ibrahimpur [4]. The third tool is Jain’s iterative rounding method, [14].

1.4.1 Knapsack-Cover Inequalities (KCI) for Capacitated Network
Design

Our approximation algorithms for both Cap-k-ECSS and (1, q)-FGC use the LP relaxations
highlighted above as the starting point. However, to eliminate the integrality gap, we will
strengthen these relaxations using knapsack-cover inequalities. We focus here on illustrating
this tool for the Cap-k-ECSS problem, strengthening (IP: CapkECSS).

For any non-trivial cut δ(S) and a subset of the edges A ⊆ E, the following is a valid
inequality for all integer solutions of (IP: CapkECSS).∑

e∈E∩δ(S)−A

ue(A, S)xe ≥ D(A, S),

where D(A, S) = max{0, k −
∑

e∈δ(S)∩A ue} and ue(A, S) = min{ue, D(A, S)}. (By plug-
ging in A = ∅, we get the constraint

∑
e∈E∩δ(S) uexe ≥ k, which is a constraint of

(IP: CapkECSS).) Intuitively, the added knapsack-cover inequalities for a cut δ(S) and
edge-set A ensure that if a high-capacity edge is being used to cover δ(S) and, moreover, δ(S)
is covered by some of the edges in A, then the capacity of the high-capacity edge is reduced to
the remaining requirement, namely, k−u(A∩δ(S)). These inequalities “cut off” poor solutions
x of the original LP relaxation (i.e., the one without KCI) such that some high-capacity edge
f has a small fractional value for xf (i.e., 0 < xf ≪ 1). In particular, for Example 1 (at the
end of section 1.2), consider the knapsack-cover inequality for the cut δ(S) where S = {u} and
A = {e1}. We have D(A, S) = max{0, k−(k−1)} = 1 and ue2(A, S) = min{ue2 , D(A, S)} =
min{k, 1} = 1, hence, this inequality is

∑
e∈δ(S)−A ue(A, S) xe ≥ D(A, S) which is xe2 ≥ 1.

Clearly, the fractional solution xe1 = 1, xe2 = 1/k is “cut off” by this inequality.
We add these inequalities to (IP: CapkECSS) to obtain the following LP relaxation of

the Cap-k-ECSS problem.

min
∑
e∈E

cexe (KCLP: CapkECSS)

s.t.
∑

e∈E∩δ(S)−A

ue(A, S)xe ≥ D(A, S) ∀ ∅ ⊊ S ⊊ V, A ⊆ E

0 ≤ xe ≤ 1 ∀ e ∈ E

Observe that this LP has a number of constraints that is exponential in the size of the
input instance (of Cap-k-ECSS). Moreover, we do not know of any polynomial-time separation
oracle for the entire set of knapsack-cover inequalities. Nevertheless, by following the cut-
and-round approach employed by Carr, Fleischer, Leung & Phillips [6], one can round this
LP in polynomial time to an approximately optimal integer solution via the ellipsoid method
by designing efficient subroutines. See sections 2, 3, for details.

Recently, Ibrahimpur & Vegh [13] have presented a polynomial-time separation subroutine
for the knapsack-cover inequalities for the (p, q)-FGC problem.

ICALP 2025
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1.4.2 The Cover Small Cuts problem
We follow the notation from [4, Section 1.3]. In an instance of the Cover Small Cuts problem,
we are given an undirected capacitated graph G = (V, E) with edge-capacities u ∈ QE

≥0,
a set of links L ⊆

(
V
2
)

with costs c ∈ QL
≥0, and a threshold λ ∈ Q≥0. A subset F ⊆ L of

links is said to cover a node-set S if there exists a link e ∈ F with exactly one end-node
in S. The objective is to find a minimum-cost F ⊆ L that covers each non-empty S ⊊ V

with u(δE(S)) < λ. Let C = {∅ ≠ S ⊊ V : u(δE(S)) < λ}. Then we have the following
covering LP relaxation of the problem.

min
∑
f∈L

cf xf (LP: Cover Small Cuts)

subject to:
∑

f∈L∩δ(S)

xf ≥ 1 ∀ S ∈ C

0 ≤ xf ≤ 1 ∀ f ∈ L

The following result is due to Bansal, [3]; also, see Nutov [18].

▶ Proposition 2. Given an instance of Cover Small Cuts, the WGMV primal-dual algorithm,
[21], finds a feasible solution of cost ≤ 6 LPopt in polynomial time, where LPopt denotes the
optimal value of (LP: Cover Small Cuts).

In the 2-Cover Small Cuts problem, the inputs are the same as above, namely, G =
(V, E), u, L, c, λ. A subset F ⊆ L of links is said to two-cover a node-set S if |F ∩ δ(S)| ≥ 2,
that is, if there exist a pair of (distinct) links e, e′ ∈ F such that each of e and e′ has exactly
one end-node in S. The objective is to find a minimum-cost F ⊆ L that two-covers each
non-empty S ⊊ V with u(δE(S)) < λ.

1.4.3 The f -connectivity problem and Jain’s iterative rounding
algorithm

In the context of approximation algorithms, several connectivity augmentation problems can
be formulated in a general framework called f -connectivity. In this problem, we are given an
undirected graph G = (V, E) on n nodes with nonnegative costs c ∈ QE

≥0 on the edges and a
requirement function f : 2V → Z≥0 on subsets of nodes. The algorithmic goal is to find an
edge-set J ⊆ E with minimum cost c(J) :=

∑
e∈J ce such that for all cuts δ(S), S ⊆ V , we

have |δ(S) ∩ J | ≥ f(S). A function f is called weakly supermodular if f(V ) = 0, and for all
A, B ⊆ V , either f(A)+f(B) ≤ f(A−B)+f(B−A), or f(A)+f(B) ≤ f(A∩B)+f(A∪B).

Assuming that the function f is weakly supermodular, integral, and has a positive value
for some S ⊂ V , Jain [14] presented a 2-approximation algorithm for the f -connectivity
problem.

We will apply Jain’s result (or its extension) in most of our algorithms.

1.5 Our results
Our first result is an O(log k/umin) approximation algorithm for the Cap-k-ECSS prob-
lem. Thus, we asymptotically improve upon the previous best approximation ratio of
min(O(log n), k, 2umax, 6 · ⌈k/umin⌉) whenever log(k/umin) = o(log n) and umax is suffi-
ciently large.
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▶ Theorem 3. There is a polynomial-time algorithm that, given an instance of Cap-k-
ECSS, computes a vector x∗ of cost at most opt that possibly satisfies only a subset of the
constraints of (KCLP: CapkECSS), and rounds it to a feasible integer solution of cost at
most O(log(k/umin)) · opt.

Before sketching our approximation algorithm for general instances of Cap-k-ECSS, let
us focus on the special case of two capacities 1 and k. Let E(1) be the set of unit-capacity
edges, and let E(k) be the set of edges of capacity k. For expository reasons (and glossing
over some critical points), let us assume that we can find, in polynomial time, an optimal
solution x∗ of (KCLP: CapkECSS), the LP with KCI. Thus, we have c(x∗) = LPopt, where
c(x∗) =

∑
e cexe is the cost of x∗. Let E

(1)
high = {e ∈ E(1) : x∗

e ≥ 1/2}; this is the set of
unit-capacity edges that are assigned values of 1/2 or more by the LP solution x∗. Let
E

(1)
low = E(1) − E

(1)
high (the set of unit-capacity edges with x∗-values less than 1/2). We call a

non-trivial cut δ(S) a small cut if

|E(1)
high ∩ δ(S)| +

∑
e∈E

(1)
low

∩δ(S)

2x∗
e < k; (definition of small cut)

in other words, a non-trivial cut is defined to be small if the fractional capacity contributed
by the unit-capacity edges is less than the requirement of k even after rounding up edges in
E

(1)
high to have x-value one and scaling up the x-value of each edge in E

(1)
low by factor 2. We

construct an instance of Cover Small Cuts with small cuts as defined above, and we define the
link-set of this instance to be E(k). To handle the small cuts, we apply the knapsack-cover
inequalities to show that the solution x∗ restricted to edges of capacity k and scaled up
by a factor of 2 (i.e., 2x∗

E(k)) constitutes a feasible solution to the LP relaxation of the
Cover Small Cuts instance. This is the critical point where our algorithm and analysis relies
on the knapsack-cover inequalities. We can thus pick a set E

(k)
picked of edges of capacity k by

applying the 6-approximation algorithm of [3, 4, 21] to this instance of the Cover Small Cuts
problem; note that the cost of E

(k)
picked is at most 6 times the cost of 2x∗

E(k) . After this
step, we contract the connected components formed by the edges in E

(k)
picked, and get a new

instance that does not have any small cuts. Since there are no small cuts, every non-trivial
cut δ(S) satisfies the inequality |E(1)

high ∩ δ(S)| +
∑

e∈E
(1)
low

∩δ(S) 2x∗
e ≥ k. Therefore, we get

a feasible solution for the LP relaxation of the f -connectivity problem where f(S) = k for
every non-empty set S ⊊ V , by picking all edges in E

(1)
high and scaling up x∗ restricted to

E
(1)
low by a factor of 2. Since f is weakly supermodular, we can apply Jain’s iterative rounding

method [14] to solve this f -connectivity problem and obtain a 2-approximate solution, giving
us an integral solution whose cost is at most 4 times the cost of x∗ restricted to unit-capacity
edges. Thus, we get an integral solution whose total cost is at most 6 · 2 · LPopt.

Let us recap the new algorithmic lever we deployed above. We partitioned the edges
according to their capacities into the set of low-capacity edges and the set of high-capacity
edges; let Ebig denote the latter set. Then we defined an instance of Cover Small Cuts whose
small cuts were defined using the low-capacity edges and rounding up (and/or scaling up)
the fractional capacity contribution uex∗

e of each of these edges e; moreover, we defined
the links (of the Cover Small Cuts instance) to be the high-capacity edges. The small cuts
identified above are precisely the cuts where the LP solution x∗ has not invested sufficient
fractional capacity in the low-capacity edges to cover the cuts. For these cuts, the knapsack-
cover inequalities ensured that x∗ restricted to the high-capacity edges and scaled up by
a small constant, say, η, (i.e., ηx∗

Ebig ) forms a feasible solution to the LP relaxation of the
Cover Small Cuts instance. Based on this, we applied the 6-approximation algorithm of
[3, 4, 21] to find a set of high-capacity edges of cost ≤ 6 ηc(x∗

Ebig ) that covers all the small
cuts.

ICALP 2025
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Now, let us sketch an extension of the above method that gives an O(log k)-approximation
algorithm for Cap-k-ECSS. As above, let us assume that we can find, in polynomial time, an
optimal solution x∗ of (KCLP: CapkECSS), the LP with KCI. Thus, we have c(x∗) = LPopt.
Throughout the execution of the algorithm, we maintain a set of edges Ecur acting as our
current solution. We begin with Ecur = {e ∈ E : x∗

e ≥ 1/2}. Define T = ⌈log k⌉ and for
j = 1, 2, . . . , T , define Ej = {e ∈ E : x∗

e < 1/2 and ue ≤ 2j}. Ideally, we wish to apply T

iterations, and, in each iteration, we wish to apply the above algorithmic lever O(1) times.
In more detail, in the ith-iteration, we could take the edges of capacity ≤ 2T −i to be the
low-capacity edges and the edges of capacity > 2T −i to be the high-capacity edges; that is,
ET −i is the set of low-capacity edges and E −ET −i is the set of high-capacity edges. Then,
we could define an instance of Cover Small Cuts where we could define the small-cuts to be
the non-trivial cuts δ(S) such that (

∑
e∈Ecur∩δ(S) ue) + (

∑
e∈ET −i∩δ(S) 2uex∗

e) < k, and we
could take the link-set (for the Cover Small Cuts instance) to be the set of high-capacity
edges, E − ET −i. Although we can apply the algorithmic lever and find an integral cover
of the small cuts using the edges in E − ET −i such that the cost of the integral cover is
O(1)c(x∗

E−ET −i
), we run into a difficulty. The capacity of an edge in E − ET −i could be as

small as Θ(2T −i), hence, by adding just one of these edges to a small cut δ(S) we cannot
guarantee that the capacity of δ(S) is augmented to become ≥ k. Thus, our algorithm and
analysis, presented in section 3, have further steps; a deeper analysis is required to show that
our algorithm finds an integral solution of cost O(log k) · LPopt. Moreover, we improve the
approximation ratio from O(log k) to O(log(k/umin)).

Recall that the (1, q)-FGC problem can be formulated as a special case of Cap-k-ECSS
with two capacities (the unsafe edges have unit capacity and the safe edges have capacity
k = (q + 1)). Clearly, the O(1)-approximation algorithm sketched above applies to the
(1, q)-FGC problem. Our next result improves the approximation ratio to 8, thus improving
on the previous best (q + 1)-approximation algorithm for (1, q)-FGC, [5].

▶ Theorem 4. There is a polynomial-time algorithm that, given an instance of (1, q)-FGC,
computes a vector x∗ of cost at most opt that possibly satisfies only a subset of the constraints
of (KCLP:(1, q)-FGC), and rounds it to a feasible integer solution of cost at most 8 opt.

Moreover, we present O(1)-approximate reductions between the (2, q)-FGC problem and
the 2-Cover Small Cuts problem. The following two results summarize the two reductions;
the details are omitted due to space constraints; see the arXiv version of this paper.

▶ Theorem 5. Suppose an LP relative ρ-approximation algorithm for 2-Cover Small Cuts
that runs in polynomial time is available. Then there is an algorithm for (2, q)-FGC that
runs in polynomial time and returns a feasible (integer) solution of cost ≤ (4(ρ + 1) + 8) opt.

▶ Theorem 6. Suppose a ρ′-approximation algorithm for (2, q)-FGC that runs in poly-
nomial time is available. Then there is an algorithm for 2-Cover Small Cuts that runs in
polynomial time and returns a feasible (integer) solution of cost ≤ (ρ′ + 2) opt.

1.6 Organization of the Paper
For the sake of readability and accessibility, we present our 8-approximation algorithm for
(1, q)-FGC in the next section, and we defer the presentation of our improved approximation
algorithm for Cap-k-ECSS to section 3. Due to space constraints, our remaining results are
omitted but are presented in the arXiv version of this paper.
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2 An 8-Approximation Algorithm for (1, q)-FGC

This section presents a 8-approximation algorithm for the (1, q)-FGC problem. For the
convenience of the reader, the presentation in this section is independent of the rest of the
paper. For a graph G = (V, E) and S ⊆ V , the cut δ(S) refers to the set of edges that have
exactly one end-node in S; δ(S) is called a non-trivial cut if ∅ ≠ S ⊊ V . (Whenever we use
the term “cut δ(S)” we mean that S is a subset of V (G).) We use the term small cut to
mean a non-trivial cut δ(S) with capacity below a specified threshold-value, say, λ.

Our starting point is the natural LP relaxation that follows from taking a capacitated
network design view of the problem where each unsafe edge e ∈ U has capacity ue = 1,
and each safe edge e ∈ S has capacity ue = (q + 1). The natural LP relaxation then seeks
to minimize the total cost of edges subject to the constraint that ∀ ∅ ⊊ S ⊊ V , we have∑

e∈S∩δ(S)(q + 1)xe +
∑

e∈U∩δ(S) xe ≥ (q + 1).
It is easy to see that any feasible solution to this LP with zero/one values is a valid

solution to a given instance of (1, q)-FGC, and vice versa. However, it is also easy to show
that this LP has integrality ratio (q+1) by adapting Example 1 given at the end of section 1.2.

To get around this obstruction, we strengthen the LP relaxation of (1, q)-FGC using
the knapsack-cover inequalities to obtain the following stronger LP. Intuitively, the added
knapsack-cover inequalities for a cut δ(S) ensure that if a safe edge is being used to cover
δ(S) and, moreover, δ(S) is partly covered by unsafe edges, say, by ℓ of them, then the
capacity of the safe edge is reduced to (q + 1)− ℓ.

min
∑
e∈E

cexe (KCLP:(1, q)-FGC)

s.t.
∑

e∈S∩δ(S)

(q + 1)xe +
∑

e∈U∩δ(S)

xe ≥ (q + 1) ∀ ∅ ⊊ S ⊊ V

∑
e∈E∩δ(S)−A

ue(A, S)xe ≥ D(A, S) ∀ ∅ ⊊ S ⊊ V, A ⊆ E

0 ≤ xe ≤ 1 ∀ e ∈ E,

where D(A, S) = max{0, (q + 1)−
∑
{ue | e ∈ A∩ δ(S)}}, and ue(A, S) = min{ue, D(A, S)}.

We mentioned above that Ibrahimpur & Vegh [13] have presented a polynomial-time separa-
tion subroutine for the knapsack-cover inequalities for the (p, q)-FGC problem. Instead of
using their method, we follow the algorithmic scheme of [6, 7], because we will use a similar
algorithmic scheme in section 3 (to the best of our knowledge, there is no polynomial-time
separation subroutine for the knapsack-cover inequalities in section 3). Our plan is to identify
a subset of unsafe edges A and a collection of sets C (in polynomial time) such that, as long
as the knapsack-cover inequalities hold for A and all S ∈ C, we will be able to execute our
rounding algorithm. Using this, we will design a polynomial-time approximation algorithm
for (1, q)-FGC.

In this section, let α denote the best approximation ratio known for the Cover Small Cuts
problem. We will design an (α + 2)-approximation algorithm for the (1, q)-FGC problem. As
of now, we have (α + 2) = 8, since α = 6, due to [3, 4, 21]; also see [18].

Let LPopt denote the optimal value of (KCLP:(1, q)-FGC), the LP with the knapsack-
cover inequalities. Using binary search for LPopt together with the ellipsoid algorithm and
our polynomial-time subroutines, we will find a vector x∗ with cost c(x∗) =

∑
e cexe such

that c(x∗) ≤ LPopt and x∗ satisfies the constraints of (KCLP:(1, q)-FGC) specified in the
next lemma (though x∗ could violate other constraints of (KCLP:(1, q)-FGC)). Then, we
will “round” x∗ to an integer solution of cost ≤ (α + 2)c(x∗). Thus, we will find an integer

ICALP 2025



20:10 Approximation Algorithms for Capacitated Network Design

solution of cost ≤ (α + 2)LPopt (even though we will not compute the precise value of LPopt).
We discuss our overall algorithm and the outer loop of binary search at the end of this
section.

▶ Lemma 7. There is a polynomial-time algorithm that given a vector x∗ (that is a candidate
solution of (KCLP:(1, q)-FGC)) and a value z either finds a violated constraint of the LP or
else verifies that c(x∗) ≤ z and, moreover, x∗ satisfies the following two properties:
(P1)

∑
e∈S∩δ(S)(q + 1)x∗

e +
∑

e∈U∩δ(S) x∗
e ≥ (q + 1) ∀ ∅ ̸= S ⊊ V .

(P2) Let A = {e ∈ U | x∗
e ≥

2
(α + 2)}. For any non-empty S ⊊ V , if

∑
e∈S∩δ(S)(q + 1)x∗

e +∑
e∈U∩δ(S) x∗

e ≤ 2(q + 1), then
∑

e∈E∩δ(S)−A

ue(A, S)xe ≥ D(A, S).

Proof. Essentially, we will describe a polynomial-time separation oracle that identifies any
violations of properties (P1) and (P2). Given a vector x∗, we first check that

∑
e∈E cex∗

e ≤ z.
If not, we return this as a violated constraint. Otherwise, let Ĝ = (V̂ , Ê) be the capacitated
graph where V̂ = V, Ê = E, and each edge e ∈ Ê is assigned a capacity of uex∗

e. We can now
check that the capacity of a minimum-cut of Ĝ is at least (q + 1) using a polynomial-time
global minimum-cut algorithm [19]. If not, we return a global minimum cut in Ĝ as a violated
constraint. Otherwise, we know that (P1) is satisfied, and we proceed to verify (P2) with
respect to the set A = {e ∈ U | x∗

e ≥
2

(α + 2)}.

By Karger’s result [15], there are at most O(n4) cuts of capacity at most 2(q + 1) (i.e., at
most twice the capacity of a minimum cut), and, moreover, we can enumerate all such cuts
of Ĝ in polynomial time [16]. By iterating over each of the O(n4) cuts, we can now verify, in
polynomial time, that the knapsack-cover inequalities are satisfied w.r.t. the set A. If not,
we have found a violated constraint. ◀

The next corollary follows from the above lemma and the well-known fact that the
ellipsoid algorithm terminates after nO(1) iterations of feasibility verification [10]. The outer
loop of our algorithm runs a binary search for LPopt (see the discussion at the end of this
section).

▶ Corollary 8. There is a polynomial-time algorithm that computes a vector x∗ of cost
c(x∗) ≤ LPopt such that x∗ satisfies properties (P1) and (P2); possibly, x∗ violates some of
the other constraints of (KCLP:(1, q)-FGC).

The Rounding Algorithm. Given a value z and a vector x∗ of cost c(x∗) ≤ z that satisfies
properties (P1) and (P2) (see Lemma 7), Algorithm 1, presented below, rounds it to an
integer solution of cost at most (α + 2)z. Below, we describe the main idea of our rounding
scheme.

Recall that our LP relaxation assigns capacity ue = 1 for each unsafe edge e ∈ U and
capacity ue = (q + 1) to each safe edge e ∈ S. We call a non-trivial cut δ(S) a small
cut if |U1 ∩ δ(S)| +

∑
e∈U2∩δ(S)

(α+2)
2 x∗

e < (q + 1) where U1 = {e ∈ U : x∗
e ≥

2
(α + 2)},

and U2 = U − U1. To handle the presence of small cuts, we first construct an instance
of Cover Small Cuts with the specified small cuts and with link-set the set of safe edges;
then, via Lemma 9, we show that the vector x∗ restricted to safe edges and scaled up
by a factor of (α + 2)

α
(i.e., (α+2)

α x∗
S) constitutes a feasible solution to the LP relaxation

of the Cover Small Cuts instance. We can thus pick a set S1 of safe edges by applying
the α-approximation algorithm to the Cover Small Cuts instance; note that the cost of
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S1 is at most α times the cost of (α+2)
α x∗

S. After this step, we contract the connected
components formed by the edges in S1, and get a new instance that does not have any
small cuts. Since there are no small cuts, every non-trivial cut δ(S) satisfies the inequality

|U1 ∩ δ(S)| +
∑

e∈U2∩δ(S)

(α + 2)
2 x∗

e ≥ (q + 1). Therefore, we get a feasible solution for the LP

relaxation of the f -connectivity problem where f(S) = q + 1 for every non-empty set S ⊊ V ,
by picking all edges in U1 and scaling up x∗ restricted to U2 by a factor of (α + 2)/2. Since
f is weakly supermodular, we can apply Jain’s iterative rounding method [14] to solve this
f -connectivity problem and obtain a 2-approximate solution, giving us an integral solution
whose cost is at most (α + 2) times the cost of x∗

U (see Lemma 10). Thus, we get an integral
solution whose total cost of safe and unsafe edges is at most (α + 2) times LPopt.

Algorithm 1 (α + 2)-approximate solution to (1, q)-FGC.

Require: Graph G = (V, E) where E is partitioned into S
⋃
U, with edge costs {ce}e∈E .

A solution x∗ to (KCLP:(1, q)-FGC) as promised by Lemma 7.
1. U1 ← {e ∈ U : x∗

e ≥
2

(α + 2)}, and U2 ← U− U1.

2. (a) Apply the approximation algorithm for Cover Small Cuts on the instance with
G′ = (V, E′ = U), where each edge of U1 is given unit capacity, each edge e ∈ U2 is

given capacity (α + 2)
2 x∗

e, and with link set S. Define the threshold λ (for small cuts)
to be (q + 1). Thus, we have:

|U1 ∩ δ(S)| +
∑

e∈U2∩δ(S)

(α + 2)
2 x∗

e < (q + 1) (definition of small cuts)

(b) Let the output of the call in step (a) be denoted S1.
3. Construct a graph G′′ = (V,U2) where each edge e ∈ U2 has cost ce. Define the

requirement of a non-trivial cut δ(S) to be

f(S) = max{0, (q + 1)− ((q + 1)|δ(S) ∩ S1|+ |δ(S) ∩ U1|)}.

This function f is weakly supermodular, so a 2-approximate solution for this instance of
f -connectivity can be computed using Jain’s iterative rounding method [14].

4. Return the union of the set of unsafe edges picked by the previous step (via the iterative
rounding algorithm) and S1 ∪ U1.

The next two lemmas formalize the key properties of the solution x∗ that are used in the
rounding scheme above, allowing us to show that it returns a feasible integral solution of
cost at most (α + 2)c(x∗).

▶ Lemma 9. In step 2 of Algorithm 1, a feasible fractional solution to the Cover Small Cuts
instance is given by x̂e = min{1,

(α + 2)
α

x∗
e} for e ∈ S.

Proof. Consider any small cut δ(S). We will establish the lemma by considering two cases.
First, consider the case that

∑
e∈S∩δ(S)(q + 1)x∗

e +
∑

e∈U∩δ(S) x∗
e > 2(q + 1). Since δ(S)

is a small cut, we have∑
e∈U1∩δ(S)

x∗
e +

∑
e∈U2∩δ(S)

x∗
e ≤ |U1 ∩ δ(S)| +

∑
e∈U2∩δ(S)

(α + 2)
2 x∗

e < (q + 1).

Since
∑

e∈S∩δ(S)(q + 1)x∗
e +

∑
e∈U∩δ(S) x∗

e > 2(q + 1), it follows that
∑

e∈S∩δ(S)(q + 1)x∗
e ≥

(q + 1), hence,
∑

e∈S∩δ(S) x∗
e ≥ 1. Thus,

∑
e∈S∩δ(S) x̂e ≥ 1.
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Now suppose that
∑

e∈S∩δ(S)(q + 1)x∗
e +

∑
e∈U∩δ(S) x∗

e ≤ 2(q + 1). Then, by (P2), the
cut δ(S) satisfies the knapsack-cover inequality w.r.t. the set A = U1:∑

e∈S∩δ(S)

ue(A, S)xe +
∑

e∈U2∩δ(S)

ue(A, S)xe ≥ D(A, S),

where D(A, S) = max{0, (q + 1)−
∑
{ue | e ∈ A ∩ δ(S)}} = max{0, (q + 1)− |U1 ∩ δ(S)|},

and ue(A, S) = min{ue, D(A, S)}.

Moreover, since δ(S) is a small cut, we have |U1 ∩ δ(S)|+
∑

e∈U2∩δ(S)

(α + 2)
2 x∗

e < (q + 1).

We rewrite this inequality as
∑

e∈U2∩δ(S)

(α + 2)
2 ue(A, S)x∗

e < D(A, S), which is the same

as
∑

e∈U2∩δ(S)

ue(A, S)x∗
e <

2
(α + 2)D(A, S). Thus, by the knapsack-cover inequality, we

have
∑

e∈S∩δ(S)

ue(A, S)x∗
e ≥

α

(α + 2)D(A, S). By definition, ue(A, S) ≤ D(A, S), hence, we

have
∑

e∈S∩δ(S)

(α + 2)
α

D(A, S)x∗
e ≥ D(A, S). Therefore,

∑
e∈S∩δ(S) x̂e ≥ 1, completing the

proof. ◀

▶ Lemma 10. In step 3 of Algorithm 1, a feasible fractional solution to the f-connectivity
problem is given by x′

e = (α + 2)
2 x∗

e for e ∈ U2.

Proof. By way of contradiction, suppose that the claim does not hold. Then for some
non-trivial cut δ(S), we have (q + 1)|S1 ∩ δ(S)|+ |U1 ∩ δ(S)|+

∑
e∈U2∩δ(S)

(α + 2)
2 x∗

e < (q + 1).

This implies that the cut δ(S) is a small cut in step 2 of Algorithm 1. Hence, step 2 ensures
(via Cover Small Cuts) that |S1 ∩ δ(S)| ≥ 1 and so (q + 1)|S1 ∩ δ(S)| ≥ (q + 1). This is a
contradiction. ◀

The output of Algorithm 1 is feasible for the (1, q)-FGC problem by Lemmas 9, 10.

The cost of the edges in U1 is ≤ (α + 2)
2

∑
e∈U1

cex∗
e since x∗

e ≥
2

(α + 2) for each edge e in

U1. Additionally, the cost of the edges in S1 is ≤ (α + 2)
∑

e∈S1
cex∗

e by Lemma 9 and our
definition of α. Lastly, the cost of the edges returned by Jain’s iterative rounding algorithm
(in step 3 of Algorithm 1) is at most

∑
e∈U2

(2)((α+2)/2)cex∗
e = (α+2)

∑
e∈U2

cex∗
e, by Lemma 10.

Therefore, the cost of the solution returned by Algorithm 1 is at most (α + 2)c(x∗).
The outer loop of our algorithm runs a binary search for LPopt, but note that we are not

using a “true” polynomial-time separation subroutine. Given a vector x∗ (a candidate solution
to (KCLP:(1, q)-FGC)), our subroutine either finds that x∗ violates one of the constraints
specified in Lemma 7 or else it rounds x∗ to an integer solution of cost ≤ (α + 2)c(x∗),
where c(x∗) =

∑
e cex∗

e. The binary search for LPopt starts with the interval [0, c(E)], where
c(E) =

∑
e ce. Assume that the instance has a feasible integer solution, let opt denote the

cost of an optimal integer solution, and assume that 0 < opt ≤ c(E).
In an arbitrary iteration, the binary search calls the ellipsoid algorithm with the additional

constraint
∑

e cexe ≤ z, where the current interval is [ℓc, hc] and z = ℓc+hc
2 . (The binary

search maintains the invariant: LPopt > ℓc and there exists an integer solution of cost
≤ (α + 2)hc.) The ellipsoid algorithm calls our subroutine one or more times, and either
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(1) reports that the LP (with the additional constraint) is infeasible or else (2) it finds
a vector x∗ with c(x∗) ≤ z and an integer solution of cost ≤ (α + 2)c(x∗). The binary
search continues as usual, that is, in case (1) it replaces the current interval [ℓc, hc] by the
upper half-interval [ ℓc+hc

2 , hc], and in case (2) it replaces the current interval by the lower
half-interval [ℓc,

ℓc+hc
2 ]. The binary search terminates when the current interval [ℓfinal, hfinal] is

sufficiently small. Clearly, the LP with the additional constraint
∑

e cexe ≤ ℓfinal is infeasible,
and the algorithm found an integer solution of cost ≤ (α + 2)hfinal. Hence, LPopt > ℓfinal and
the last integer solution found by the algorithm has cost ≤ (α + 2)(LPopt + (hfinal− ℓfinal)).

▶ Theorem 4. There is a polynomial-time algorithm that, given an instance of (1, q)-FGC,
computes a vector x∗ of cost at most opt that possibly satisfies only a subset of the constraints
of (KCLP:(1, q)-FGC), and rounds it to a feasible integer solution of cost at most 8 opt.

3 An O(log k
umin

)-Approximation Algorithm for Cap-k-ECSS

In this section, we present an O(log(k/umin))-approximation algorithm for Cap-k-ECSS
that runs in polynomial time assuming k/umin ≤ |V (G)| = n. Note that when k/umin > n,
then the previously known approximation algorithm of [7] for Cap-k-ECSS achieves an
approximation ratio of O(log n) ≤ O(log (k/umin)).

Let us recall a few terms & notation from previous sections. For a graph G = (V, E) and
S ⊆ V , the cut δ(S) refers to the set of edges that have exactly one end-node in S; δ(S)
is called a non-trivial cut if ∅ ̸= S ⊊ V . (Whenever we use the term “cut δ(S)” we mean
that S is a subset of V (G).) We use the term small cut to mean a non-trivial cut δ(S) with
capacity below a specified threshold-value, say, λ.

Let LPopt denote the optimal value of (KCLP: CapkECSS), the LP with the knapsack-
cover inequalities. Similarly to section 2, we use binary search for LPopt together
with the ellipsoid algorithm and our polynomial-time subroutines to find a vector x∗

with cost c(x∗) =
∑

e cexe such that c(x∗) ≤ LPopt and x∗ satisfies the constraints of
(KCLP: CapkECSS) specified in the proof of Lemma 11 (though x∗ could violate other
constraints of (KCLP: CapkECSS)). Then, we will round x∗ to an integer solution of cost
≤ O(log(k/umin))c(x∗). Thus, we will find an integer solution of cost ≤ O(log(k/umin))LPopt,
even though we will not compute the precise value of LPopt. At the end of this section, the
proof of Lemma 11 discusses our overall algorithm in more detail.

Assumption. In what follows, assume that the vector x∗ satisfies all the constraints of
(KCLP: CapkECSS). In section 3.6 below, we explain that we can easily remove this
assumption.

Throughout the execution of the rounding algorithm, we will maintain a set of edges
Ecur acting as our current solution. We begin with Ecur = {e ∈ E : x∗

e ≥ 1/2}. Define
T = ⌈log k⌉ and for j = 1, 2, . . . , T , define Ej = {e ∈ E : x∗

e < 1/2 and ue ≤ 2j}; thus, the
edge-sets ET − ET −1, ET −1 − ET −2, . . . , E3 − E2, E2 − E1, E1 form a partition of the edges
in E − Ecur into T buckets based on the capacities; let us call the set ET −i+1 − ET −i the
i-th bucket (and E1 is the T -th bucket). See Figure 1 for an illustration.

Our algorithm will have T iterations and each iteration (except for the first and the
last) will have two phases. During phase 1 of iteration i, we will round some of the edges
in the i-th bucket, i.e., some of the edges in the set ET −i+1 − ET −i. Note that an edge
e in the i-th bucket has capacity 2T −i < ue ≤ 2T −i+1. Informally speaking, in phase 1,
we want to augment cuts of very small capacity with edges of capacity ≈ 2T −i, and, in
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0 21 22 2T −1 2T...

E1
E2

ET

ET −1

E2 − E1 ET −1 − ET −2 ET − ET −1

Figure 1 Illustration of buckets. Note that T = ⌈log k⌉.

general, we need Θ(k/2T −i) rounds of augmentation to achieve capacity k; thus, phase 1 has
Θ(k/2T −i) sub-iterations. During phase 2 of iteration i, we will round some of the edges in
E − (ET −i ∪ Ecur).

Next, we present pseudo-code for the rounding algorithm, followed by explanation and
analysis of the main steps.

Algorithm 2 O(log(k/umin))-approximate solution to Cap-k-ECSS.

Require: Graph G = (V, E) with capacities {ue}e∈E and costs {ce}e∈E . A vector x∗

satisfying some constraints of (KCLP: CapkECSS), set Ecur = {e ∈ E : x∗
e ≥ 1/2}, and

sets Ej ⊆ E, j = 1, . . . , ⌈log k⌉ as defined above.
1. Iteration 1:

(a) Let C = {∅ ≠ S ⊊ V :
∑

e∈Ecur∩δ(S) ue +
∑

e∈ET −1∩δ(S) 2uex∗
e < k}.

(b) Apply the approximation algorithm for Cover Small Cuts to select edges from
E − ET −1 − Ecur to cover the cuts in C. Add the selected edges to Ecur.

(c) Repeat (a), (b) once.
2. For i = 2, . . . , T − 1, Iteration i:

(a) For ℓ = 1, . . . , ⌊(k − 2T −i+1)/2T −i⌋:
(i) Let C = {∅ ≠ S ⊊ V :

∑
e∈Ecur∩δ(S) ue +

∑
e∈ET −i∩δ(S) 2uex∗

e < ℓ 2T −i}.
(ii) Apply the approximation algorithm for Cover Small Cuts to select edges from

ET −i+1 − ET −i − Ecur to cover the cuts in C. Add the selected edges to Ecur.
(b) Let C = {∅ ≠ S ⊊ V :

∑
e∈Ecur∩δ(S) ue +

∑
e∈ET −i∩δ(S) 2uex∗

e < k}.
(c) Apply the approximation algorithm for Cover Small Cuts to selected edges from

E − ET −i − Ecur to cover the cuts in C. Add the selected edges to Ecur.
(d) Repeat (b), (c) two additional times.

3. Iteration T :
(a) At this point, we have that

∑
e∈Ecur∩δ(S) ue +

∑
e∈E1∩δ(S) 2uex∗

e ≥ k for all
S ⊊ V, S ̸= ∅. Apply Jain’s iterative rounding method to round the (x variables of
the) edges in E1 to an integer solution E∗

1 , such that Ecur ∪E∗
1 is a feasible solution

to Cap-k-ECSS.
4. Return Ecur ∪ E∗

1 .

For every non-trivial cut δ(S), we will maintain the following invariants for all iterations
i = 2, . . . , (T − 1) (i.e., except the first and the last iteration):
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(1) At the beginning of iteration i, Ecur ∩ ET −i+1 = ∅ and∑
e∈Ecur∩δ(S)

ue +
∑

e∈ET −i+1∩δ(S)

2 uex∗
e ≥ k.

We note that iteration 1 ensures that this invariant holds at the start of iteration 2.
(2) At the end of phase 1 of iteration i,∑

e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2 uex∗
e ≥ k − 2T −i+1 − 2T −i.

(3) At the end of iteration i, which is also the end of phase 2 of iteration i, Ecur ∩ET −i = ∅,
and ∑

e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2 uex∗
e ≥ k.

Observe that invariant (3) for iteration i is the same as invariant (1) for iteration i + 1.

3.1 Iteration 1
In this iteration, we consider the family of small cuts δ(S) where∑

e∈Ecur∩δ(S)

ue +
∑

e∈ET −1∩δ(S)

2 uex∗
e < k (definition of small cuts)

We will cover these cuts using edges in E−ET −1−Ecur. Consider any one of these small cuts
δ(S). Since δ(S) is a small cut, we have

∑
e∈ET −1∩δ(S) 2 uex∗

e < k − (
∑

e∈Ecur∩δ(S) ue) =
k − u(Ecur ∩ δ(S)), hence, we have

∑
e∈ET −1∩δ(S) uex∗

e < (k − u(Ecur ∩ δ(S)))/2. Consider
the knapsack-cover inequality for one of these small cuts δ(S) and the set A = Ecur,∑

e∈E∩δ(S)−A ue(A, S) xe ≥ D(A, S), where D(A, S) = (k − u(Ecur ∩ δ(S))) and ue(A, S) =
min{ue, D(A, S)}. By the above inequality and the knapsack-cover inequality, each of
these small cuts δ(S) satisfies the inequality

∑
e∈(E−ET −1−Ecur)∩δ(S) min{ue, D(A, S)}x∗

e >

D(A, S)/2, which implies the inequality
∑

e∈(E−ET −1−Ecur)∩δ(S) D(A, S)x∗
e > D(A, S)/2.

Thus 2 x∗
E−ET −1−Ecur

is feasible for the Cover Small Cuts problem implying that we incur
a cost of at most 6 · 2 · c(x∗

ET −ET −1
) here. We run the 6-approximation algorithm for

Cover Small Cuts, [3, 4, 21], and use the edge-set returned by that algorithm to augment
Ecur. We repeat one more time, i.e., we again consider all cuts δ(S) where

∑
e∈Ecur∩δ(S) ue +∑

e∈ET −1∩δ(S) 2uex∗
e < k and cover these cuts using edges in E −ET −1 −Ecur, incurring a

further cost of 6 · 2 · c(x∗
E−ET −1

). Now, we will have necessarily satisfied invariant (3) at the
end of this iteration. To see this, observe that if some cut violated this invariant, then this
cut participated as a small cut in both instances of Cover Small Cuts considered in this step.
This means we would have added at least two edges that cover this cut, each of capacity at
least k/2, ensuring that invariant (3) holds.

3.2 Iteration i Phase 1 (Step 2 (a) in Algorithm 2)
We are starting with invariant (1) at the beginning of this iteration (as this corresponds to the
invariant (3) that holds at the end of the previous iteration). Hence we have Ecur∩ET −i+1 = ∅
and

∑
e∈Ecur

ue +
∑

e∈ET −i+1
2uex∗

e ≥ k. We will run multiple sub-iterations within this
phase. The first sub-iteration is described below.
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Consider the family of small cuts δ(S) where
∑

e∈Ecur∩δ(S) ue +
∑

e∈ET −i∩δ(S) 2uex∗
e <

2T −i. We will cover these cuts using edges in ET −i+1 −ET −i −Ecur. For these small cuts
δ(S), we have ∑

e∈(ET −i+1−ET −i−Ecur)∩δ(S)

2uex∗
e ≥ k − 2T −i

(
this inequality is obtained by subtracting the inequality defining the small cuts from the

inequality of invariant (1), namely,
∑

e∈Ecur∩δ(S) ue +
∑

e∈ET −i+1∩δ(S) 2 uex∗
e ≥ k

)
. Observe

that
∑

e∈(ET −i+1−ET −i−Ecur)∩δ(S) 2x∗
e ≥ (k−2T −i)/2T −i+1, because ue ≤ 2T −i+1 for all edges

in ET −i+1. Thus, 2x∗
ET −i+1−ET −i−Ecur

·2T −i+1/(k−2T −i) is feasible for the Cover Small Cuts
problem. We run the 6-approximation algorithm for Cover Small Cuts, [3, 4, 21], and use the
edge-set returned by that algorithm to augment Ecur. After this, there are no non-trivial
cuts δ(S) with

∑
e∈Ecur∩δ(S) ue +

∑
e∈ET −i∩δ(S) 2uex∗

e < 2T −i since we would have covered
any such cut by an edge from ET −i+1 −ET −i −Ecur, and all these edges have capacity at
least 2T −i. Next, we shift the threshold in the definition for small cuts to 2 · 2T −i, and then
to 3 · 2T −i, . . . , all the way until ℓ̂ · 2T −i where ℓ̂ = ⌊(k − 2T −i+1)/2T −i⌋. This would imply
that ℓ̂ · 2T −i ≥ k − 2T −i+1 − 2T −i. We describe these sub-iterations in more detail now.

For ℓ = 1, 2, . . . , ℓ̂, consider the family of small cuts δ(S) where∑
e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2uex∗
e < ℓ · 2T −i. (definition of small cuts)

Since invariant (1) is true (and we have only increased the LHS of invariant (1) during
the phase), we have

∑
e∈(ET −i+1−ET −i−Ecur)∩δ(S)

2uex∗
e ≥ k − ℓ · 2T −i. Since ue ≤ 2T −i+1 for

all edges in ET −i+1, we have
∑

e∈(ET −i+1−ET −i−Ecur)∩δ(S)

2x∗
e ≥ (k − ℓ · 2T −i)/2T −i+1. Thus,

2x∗
ET −i+1−ET −i−Ecur

· 2T −i+1/(k − ℓ · 2T −i) is feasible for our instance of Cover Small Cuts.
We run the 6-approximation algorithm for Cover Small Cuts, [3, 4, 21], and use the edge-set
returned by that algorithm to augment Ecur. Then, we move on to the next sub-iteration.
At the end of the last sub-iteration (with ℓ = ℓ̂), we have∑

e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2uex∗
e ≥ (ℓ̂)2T −i ≥ k − 2T −i+1 − 2T −i,

and so invariant (2) is maintained. Let us analyze the cost we incurred in this phase.
The cost we incur is at most 6·2·c(x∗

ET −i+1−ET −i
)2T −i+1( 1

k−2T −i + 1
k−2·2T −i +· · ·+ 1

k−ℓ̂2T −i
).

We bound this last sum as follows. Note that ℓ̂2T −i ≤ k− 2T −i+1 and so k− ℓ̂2T −i ≥ 2T −i+1

1
k − 2T −i

+ 1
k − 2 · 2T −i

+ · · · + 1
k − ℓ̂2T −i

= 1
k − ℓ̂2T −i

+ 1
k − ℓ̂2T −i + 2T −i

+ 1
k − ℓ̂2T −i + 2 · 2T −i

+ · · · 1
k − ℓ̂2T −i + (ℓ̂ − 1) · 2T −i

≤ 1
2T −i+1 +

ℓ̂−1∑
ℓ=1

1
k − ℓ̂2T −i + 2T −iℓ

≤ 1
2T −i+1 +

∫ ℓ̂−1

0

1
k − ℓ̂2T −i + 2T −iℓ

d(ℓ)

= 1
2T −i+1 + 1

2T −i

(
log(k − 2T −i) − log(k − ℓ̂2T −i)

)
≤ 1

2T −i+1 + 1
2T −i

(
log(k) − log(2T −i+1)

)
(using the inequality k − ℓ̂2T −i ≥ 2T −i+1)

= O

(
log(k/2T −i+1)

2T −i

)
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Thus, the cost incurred in this phase is
≤ 6 · 2(2T −i+1/2T −i)O(log(k/2T −i+1))c(x∗

ET −i+1−ET −i
).

3.3 Iteration i Phase 2 (Step 2 (b)-(d) in Algorithm 2)

We are beginning with invariant (2), which is valid at the end of phase 1, and thus for all
non-trivial cuts δ(S), we have

∑
e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2uex∗
e ≥ k − 2T −i+1 − 2T −i. We

will add more edges from E −ET −i −Ecur to these cuts, if needed, to increase the capacity
to k. Note that all edges in E − ET −i − Ecur have capacity at least 2T −i and so at most
three more edges need to be added. To do so, we employ the method we used in iteration 1.

Consider the family of small cuts δ(S) where
∑

e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2uex∗
e < k.

Then, by the knapsack-cover inequalities, 2 x∗
E−ET −i−Ecur

is feasible for the Cover Small Cuts
instance. Indeed for each of these small cuts δ(S), we have

∑
e∈ET −i∩δ(S) uex∗

e < (k −∑
e∈Ecur∩δ(S) ue)/2 = (k − u(Ecur ∩ δ(S)))/2. The knapsack-cover inequality then implies

that
∑

e∈(E−ET −i−Ecur)∩δ(S) D(A, S)x∗
e > D(A, S)/2, where A = Ecur and D(A, S) =

k − u(Ecur ∩ δ(S)). We run the 6-approximation algorithm for Cover Small Cuts, [3, 4, 21],
and use the edge-set returned by that algorithm to augment Ecur. This incurs a cost
of at most 6 · 2 · c(x∗). We repeat three times, adding the approximate solution of the
Cover Small Cuts instance to Ecur and incur a cost of at most 3 · 6 · 2 · c(x∗). At the end of
this phase, for every non-trivial cut δ(S), we have

∑
e∈Ecur∩δ(S)

ue +
∑

e∈ET −i∩δ(S)

2uex∗
e ≥ k.

This is precisely invariant (3) and we have completed this phase.

3.4 Iteration T

At the beginning of the last iteration, by invariant (1), we have for any non-trivial cut δ(S):∑
e∈Ecur∩δ(S)

ue +
∑

e∈E1∩δ(S)

2uex∗
e ≥ k.

Now, we apply Jain’s iterative rounding method to round the edges in E1, incurring a cost
of at most (2 max{ue : e ∈ E1}) · c(x∗

E1
) = 4c(x∗

E1
).

3.5 Total Cost

We calculate the total cost incurred separately for each iteration. In iteration 1, we incur a
cost of O(1) · c(x∗); this includes the term

∑
{e∈E : x∗

e≥1/2} 2cex∗
e (due to the initial Ecur). In

phase 1 of iterations i = 2, . . . , T − 1, we incur a total cost of

O(1) ·
T −1∑
i=2

log(k/2T −i+1)c(x∗
ET −i+1−ET −i

) ≤ O(log k)c(x∗).

In phase 2 of iterations i = 2, . . . , T − 1, we incur a cost of
∑T −1

i=2 O(1) · c(x∗) ≤ O(T )c(x∗) ≤
O(log k)c(x∗). Finally the cost incurred in iteration T is O(1) · c(x∗). Thus the total cost
incurred is O(log k)c(x∗).

Observe that if the minimum capacity umin over all edges in E is greater than 2, then
the algorithm stops at an earlier iteration. In fact, it stops at an iteration ifinal where
2T −ifinal < umin ≤ 2T −ifinal+1. Since T = ⌈log k⌉, we obtain that ifinal = O(log(k/umin)). In
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such a scenario, the total cost incurred in phase 1 of iterations i = 2, . . . , ifinal, is

O(1) ·
ifinal∑
i=2

log(k/2T −i+1)c(x∗
ET −i+1−ET −i

)

≤ O(1) ·
ifinal∑
i=2

log(k/umin)c(x∗
ET −i+1−ET −i

) (since umin ≤ 2T −ifinal+1)

≤ O(log(k/umin))c(x∗).

Similarly the total cost incurred in phase 2 of iterations i = 2, . . . , ifinal is
∑ifinal

i=2 O(1) · c(x∗) ≤
O(ifinal)c(x∗) ≤ O(log(k/umin))c(x∗). Thus the overall cost is O(log(k/umin))c(x∗).

3.6 Solving the LP Relaxation
Clearly, our rounding algorithm runs in polynomial time, provided an optimal (and fea-
sible) solution x∗ to (KCLP: CapkECSS) is given. As in section 2, we would like solve
(KCLP: CapkECSS) using the ellipsoid method, but, unfortunately, we do not know of any
polynomial-time separation oracle for the entire set of knapsack-cover inequalities. Instead,
we will iteratively (in polynomial time) identify a subset of edges A and a collection of sets C

such that, as long as the knapsack-cover inequalities hold for A and all S ∈ C, we will be
able to execute our rounding algorithm.

▶ Lemma 11. There is a polynomial-time algorithm that, given a vector x∗ (that is a candidate
solution of (KCLP: CapkECSS)) and a value z, either finds a violated constraint of the LP or
else verifies that c(x∗) ≤ z and, moreover, for every iteration i, i = 1, . . . , (T −1), x∗ satisfies
the property that 2x∗

E−ET −i−Ecur
is feasible for the LP relaxations of the Cover Small Cuts

instances created in steps 1(b) and 2(c) of Algorithm 2.

Proof. Given a candidate vector x∗ and a candidate objective value z, we first check that∑
e∈E cex∗

e ≤ z (see the discussion on binary search at the end of section 2). If not, we return
this as a violated constraint. Otherwise, let Ĝ = (V̂ , Ê) be the capacitated graph where
V̂ = V, Ê = E, and each edge e ∈ Ê is assigned a capacity of uex∗

e. We can now check that
the capacity of a minimum cut in Ĝ is at least k using a polynomial-time global minimum-cut
algorithm [19]. If not, we return a global minimum cut in Ĝ as a violated constraint.

By Karger’s result [15], we know that there are at most O(n4) cuts of capacity at most
2k (i.e., at most twice the capacity of a minimum cut), and, moreover, we can enumerate all
such cuts of Ĝ in polynomial time [16]. By iterating over each of the O(n4) cuts, we can
then verify in polynomial time that the knapsack-cover inequalities are satisfied w.r.t. the
set A = Ecur in each of the steps 1(b) and 2(c) for cuts whose capacity is at most 2k. If
not, we have found a violated constraint. It remains then to handle the case when we are at
step 1(b) or 2(c), and we have a small cut δ(S) such that

∑
e∈δ(S) uex∗

e > 2k.

In this case, we note that in step 1(b), by the definition of small cuts, we have∑
e∈Ecur∩δ(S) ue +

∑
e∈ET −1∩δ(S) 2uex∗

e < k. But then since the total capacity of this
cut is at least 2k, it follows that

∑
e∈(E−ET −1−Ecur)∩δ(S) uex∗

e > k. Since ue ≤ k for ev-
ery edge e ∈ E, it follows that

∑
e∈(E−ET −1−Ecur)∩δ(S) x∗

e > 1. Thus 2 x∗
E−ET −1−Ecur

is
feasible on this cut for the Cover Small Cuts instance. A similar argument can be used
to show that in step 2(c), if we have a small cut δ(S) with

∑
e∈δ(S) uex∗

e > 2k, then
2 x∗

E−ET −i−Ecur
is feasible for the Cover Small Cuts instance. Specifically, by the definition

of small cuts, we have
∑

e∈Ecur∩δ(S) ue +
∑

e∈ET −i∩δ(S) 2uex∗
e < k. As the total capacity is

at least 2k, it follows that
∑

e∈(E−ET −i−Ecur)∩δ(S) uex∗
e > k, and since ue ≤ k for every edge

e ∈ E,
∑

e∈(E−ET −i−Ecur)∩δ(S) x∗
e > 1. Thus 2x∗

E−ET −i−Ecur
is feasible on this cut for the

Cover Small Cuts instance.
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Finally, if at any step of the rounding algorithm, we identify a violated constraint, then
we restart the rounding algorithm from the very beginning. It is worth highlighting that the
verification of knapsack-cover inequalities identified in steps 1(b) and 2(c) of the algorithm,
is always done with respect to the solution x∗ given by the Ellipsoid algorithm (without any
modification). As the rounding progresses, the only thing that changes is the definition of the
set A = Ecur with respect to which we verify the knapsack-cover inequalities. So whenever a
violated constraint is identified, it contributes to the iteration count of the ellipsoid algorithm.
Since the ellipsoid algorithm terminates after nO(1) iterations of feasibility verification [10],
it must be the case that after at most nO(1) re-starts of the rounding process, we arrive at a
solution x∗ to (KCLP: CapkECSS) of value at most LPopt such that the solution satisfies
the property that 2x∗

E−ET −i−Ecur
is feasible for the Cover Small Cuts instances created in

steps 1(b) and 2(c). ◀

▶ Remark 12. We mention that the analysis of phase 1 of iteration i (i = 2, . . . , (T − 1)) (i.e.,
step 2(a) of iteration i) does not use the knapsack-cover inequalities, hence, Lemma 11 does
not address step 2(a).

▶ Theorem 3. There is a polynomial-time algorithm that, given an instance of Cap-k-
ECSS, computes a vector x∗ of cost at most opt that possibly satisfies only a subset of the
constraints of (KCLP: CapkECSS), and rounds it to a feasible integer solution of cost at
most O(log(k/umin)) · opt.
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