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Abstract
We initiate the study of the Maximal Matching problem in bounded-deletion graph streams. In this
setting, a graph G is revealed as an arbitrary sequence of edge insertions and deletions, where the
number of insertions is unrestricted but the number of deletions is guaranteed to be at most K, for
some given parameter K. The single-pass streaming space complexity of this problem is known to
be Θ(n2) when K is unrestricted, where n is the number of vertices of the input graph. In this
work, we present new randomized and deterministic algorithms and matching lower bound results
that together give a tight understanding (up to poly-log factors) of how the space complexity of
Maximal Matching evolves as a function of the parameter K: The randomized space complexity of
this problem is Θ̃(n ·

√
K), while the deterministic space complexity is Θ̃(n · K). We further show

that if we relax the maximal matching requirement to an α-approximation to Maximum Matching, for
any constant α > 2, then the space complexity for both, deterministic and randomized algorithms,
strikingly changes to Θ̃(n + K).

A key conceptual contribution of our work that underlies all our algorithmic results is the
introduction of the hierarchical maximal matching data structure, which computes a hierarchy of L

maximal matchings on the substream of edge insertions, for an integer L. This deterministic data
structure allows recovering a Maximal Matching even in the presence of up to L − 1 edge deletions,
which immediately yields an optimal deterministic algorithm with space Õ(n · K). To reduce the
space to Õ(n ·

√
K), we compute only

√
K levels of our hierarchical matching data structure and

utilize a randomized linear sketch, i.e., our matching repair data structure, to repair any damage
due to edge deletions. Using our repair data structure, we show that the level that is least affected
by deletions can be repaired back to be globally maximal. The repair data structure is computed
independently of the hierarchical maximal matching data structure and stores information for
vertices at different scales with a gradually smaller set of vertices storing more and more information
about their incident edges. The repair process then makes progress either by rematching a vertex to
a previously unmatched vertex, or by strategically matching it to another matched vertex whose
current mate is in a better position to find a new mate in that we have stored more information
about its incident edges.

Our lower bound result for randomized algorithms is obtained by establishing a lower bound for a
generalization of the well-known Augmented-Index problem in the one-way two-party communication
setting that we refer to as Embedded-Augmented-Index, and then showing that an instance of
Embedded-Augmented-Index reduces to computing a maximal matching in bounded-deletion streams.
To obtain our lower bound for deterministic algorithms, we utilize a compression argument to show
that a deterministic algorithm with space o(n · K) would yield a scheme to compress a suitable class
of graphs below the information-theoretic threshold.
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1 Introduction

In the streaming model of computation, an algorithm is tasked with computing the solution
to a given problem by performing a single pass over the input data while maintaining a
memory of sublinear size in the input.

Graph Streams. Streaming algorithms have been studied for more than 25 years [3], and,
since early on, significant attention has been devoted to the study of graph problems in this
setting [18, 15]. The dominant model is the insertion-only model, where the input stream
consists of a sequence of edges that make up a graph. In 2012, Ahn et al. [1] initiated the
study of graph problems in the insertion-deletion setting, where the input stream consists of
a sequence of edge insertions and deletions so that previously inserted edges can be deleted
again. Subsequent research has revealed that some problems are equally difficult to solve in
both the insertion-only and the insertion-deletion models in that algorithms require roughly
the same amount of space, e.g., Connectivity [1] and Maximum Independent Set [16], while
others are significantly harder to solve in the context of deletions, e.g., Maximal Matching,
Maximum Matching, and Minimum Vertex Cover [4, 14].

Handling deletions requires a very different algorithmic toolkit than when deletions
are not allowed, in particular, randomization is crucial even for solving seemingly trivial
problems. For example, in insertion-deletion streams, deterministic algorithms for outputting
a single edge of the input graph require space Ω(n2), where n is the number of vertices in the
input graph, while this problem can be solved via ℓ0-sampling [19, 12] and poly-logarithmic
space when randomization is allowed. The predominant algorithmic technique for designing
insertion-deletion streaming algorithms are linear sketches, which are perfectly suited to the
insertion-deletion model since they can naturally handle an arbitrary (unbounded) number
of deletions (and insertions). It is even known that, under some conditions, linear sketches
are universal for the class of insertion-deletion streaming algorithms in that the behavior of
any such algorithm can be replicated by one that solely relies on the computation of linear
sketches [25, 2] (see also [20] that further investigates said conditions). It is therefore not
surprising that most previous work on streaming algorithms either considers the insertion-
only setting with no deletions at all, or the insertion-deletion setting that allows for an
unbounded/arbitrary number of deletions.

Bounded-deletion Graph Streams. In this work, we take a more refined view and consider
graph problems in bounded-deletion streams. In this setting, the input stream consists of an
unrestricted number of edge insertions and at most K edge deletions, for some integer K that
is known to the algorithm. We are interested in how the space requirements of streaming
algorithms change as a function of K.
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Bounded-deletion, and, similarly, bounded-length, streams have been considered at least
since the work of Cormode et al. [13] in 2017 (see, e.g., [13, 9, 20, 28, 1, 26, 7, 17, 27, 11]), who
exploited a bound on the input stream length for the design of a sampling-based algorithm
for estimating the size of a largest matching in bounded-arboricity graphs. Besides this work,
bounded-deletion graph streams appear also in Kallaugher and Price [20], who gave a graph
problem for which linear sketching is exponentially harder than bounded-deletion streaming,
and Chou et al. [11], who studied CSPs in this context, which in some cases can also be
represented as graph problems.

The bounded-deletion setting is well-motivated from a practical perspective. In all
growing data sets, deletions are naturally less frequent than insertions since otherwise
the data set would not grow in size. Regarding massive graphs, in social networks, new
connections/friendships between entities are established much more often than deleted, and
significantly more new hyperlinks are introduced into the web graph than deleted.

The Maximal Matching Problem. In this work, we study the Maximal Matching problem
through the lens of bounded-deletion streams. A matching in a graph is a subset of non-
adjacent edges, and a maximal matching is one that is inclusion-wise maximal, i.e., it cannot
be extended by adding an edge outside the matching to it. Specifically, our goal is to
understand the function f(n, K) that describes the streaming space complexity of computing
a maximal matching in an n-vertex graph as a function of the bound K on the number of
deletions. We will, however, also consider approximation algorithms to Maximum Matching,
where the goal is to compute a matching of size at least α · |M∗|, with approximation factor
0 < α ≤ 1 and M∗ being a largest matching. It is well-known that a maximal matching
constitutes a 1

2 -approximation to Maximum Matching.

The single-pass streaming space complexity of Maximal Matching is well-understood in
both insertion-only and insertion-deletion streams with unrestricted deletions. In insertion-
only streams, the simple Greedy matching algorithm, which greedily inserts every incoming
edge into an initially empty matching if possible and constitutes the main building block
of most streaming algorithms for matchings (e.g. [15, 22, 8, 5, 23, 24]), yields an O(n log n)
space algorithm for Maximal Matching, and this is also tight. In insertion-deletion streams,
Dark and Konrad [14] showed an Ω(n2) space lower bound for computing a Maximal Matching,
strengthening a previous lower bound of n2−o(1) [4] (see also [21]). In other words, there
is essentially no better algorithm than storing the entire graph. The lower bound of Dark
and Konrad requires Θ(n2) deletions in the input stream. When the number of deletions
is restricted to be K ∈ [n2], the Dark and Konrad lower bound can be restated as showing
that, for any O(1)-approximation to Maximum Matching, Ω(K) space is necessary.

Summarizing the previous discussion, we know that f(n, 0) = Θ̃(n), and that f(n, n2) =
Θ(n2), but for arbitrary K ∈ [n2], known results only tell us that f(n, K) = Ω(n + K).
On the algorithmic side, even when K is just O(n), no results are known for computing a
maximal matching that utilize o(n2) space (i.e. do better than storing the entire graph). Our
current state of knowledge, for instance, gives us the inequalities Ω(n) ≤ f(n, n) ≤ O(n2),
leaving a huge gap between the upper and lower bounds. This raises a natural question:
Does the required space f(n, K) abruptly transitions to Ω(n2) when K is just O(n), or is
there an algorithm that achieves a space complexity that smoothly interpolates between the
Õ(n) space for insertion-only streams and Ω(n2) space for unrestricted deletion streams? We
show that, indeed, the space complexity smoothly interpolates between the two extremes.

ICALP 2025
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1.1 Our Results

We resolve the space complexity of bounded-deletion streaming algorithms for Maximal
Matching and show that f(n, K) = Θ̃(n ·

√
K). We obtain our result by designing a new

space-efficient algorithm for bounded deletion streams, as well as by establishing a stronger
new lower bound.

▶ Theorem 1. There is a single-pass randomized Õ(n ·
√

K) space streaming algorithm that,
with high probability, outputs a maximal matching in any dynamic graph stream with at most
K deletions.

▶ Theorem 2. Any possibly randomized single-pass streaming algorithm that outputs a
maximal matching with probability at least 2/3 in dynamic graph streams with at most K

deletions requires Ω(n ·
√

K) space.

It is worth noting that Theorem 1 implies that, up to poly-log factors, the Θ(n2) deletions
used in the lower bound by Dark and Konrad are necessary in order to obtain an Ω(n2) space
lower bound for Maximal Matching. Together these results show that the streaming space
complexity of maximal matching increases smoothly as a function of the number of deletions,
and there is no abrupt phase transition. On one extreme, when the number of deletions is
O(1), that is, when the deletions change the graph negligibly, the space complexity of Θ̃(n)
is essentially the same as the space needed to store a maximal matching in an insertion-only
stream. But then as the number of deletions reaches Ω(n2), that is, when deletions can alter
almost the entire graph, the space complexity rises to Θ̃(n2), essentially the same as storing
the entire graph.

We also observe that our work is the first that establishes a complete characterization
of the space complexity of streaming algorithms for a graph problem as a function of the
number of edge deletions K.

We show that randomization is crucial to achieving the space complexity given in
Theorem 1, as deterministic algorithms for maximal matching require Θ(n ·K) space.

▶ Theorem 3. There is a deterministic single-pass streaming algorithm that uses Õ(n ·K)
space and outputs a maximal matching in any dynamic graph stream with at most K deletions.
Moreover, any deterministic algorithm for Maximal Matching requires Ω(n ·K) space.

Finally, we show that, unlike in unrestricted dynamic graph streams, in the bounded-
deletion model, the space complexity of Maximal Matching behaves fundamentally differently
to the space complexity of computing an O(1)-approximation to Maximum Matching. Let
gc(n, K) be the streaming space complexity of computing a c-approximation to Maximum
Matching in an n-vertex graph when the number of deletions is bounded by K. Then we know
that for any constant c > 2, gc(n, 0) = Θ̃(n) = f(n, 0), and that gc(n, n2) = Θ(n2) = f(n, n2).
Furthermore, for arbitrary K ∈ [n2], we know that gc(n, K) = Ω(n + K). We show that
in a sharp contrast to the Maximal Matching problem, there is an algorithm that achieves
the space complexity of Õ(n + K), that is, gc(n, K) = Θ̃(n + K), and this is achieved by a
deterministic algorithm.

▶ Theorem 4. For any ϵ > 0, there is a deterministic single-pass streaming algorithm that
uses O((n + K/ϵ) · log n) space and outputs a (2 + ϵ)-approximation to Maximum Matching in
any dynamic graph stream with at most K deletions.
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1.2 Techniques
Bounded-deletions Maximal Matching Algorithm. We start by motivating and explaining
the main ideas underlying our main algorithmic result, namely, Theorem 1. We start by
observing that in absence of any deletions, one can simply store a maximal matching to
solve the problem. On the other hand, when deletions are unbounded, we can simply store
Θ̃(n2) ℓ0-samplers to solve the problem by recreating the surviving graph. Our algorithmic
approach below is based on a new data structure, called hierarchical maximal matching,
which in conjunction with a hierarchical approach for storing ℓ0-samplers, allows us to design
an algorithm whose space complexity smoothly interpolates between these two extremes.

Let I denote the edges inserted during the stream, and let D denote the edges deleted
in the stream. Observe that I and D may be multisets since an edge can be inserted,
subsequently deleted, and then reinserted again, and so on. Together, these sets define the
graph G(V, E) revealed by the dynamic stream where E = I \D.

Our algorithm has two phases where in the first phase, we build a hierarchical collection of
maximal matchings using only edges in I along with a data structure D for matching repair
to account for deletions. In the second phase, we recover a maximal matching by starting
with the least damaged maximal matching in our hierarchical collection, and repairing it
using the edges stored in the data structure D. We now explain this approach in more detail.

Suppose that we create a sequence of hierarchical maximal matchings, say, M1, M2, ..., ML,
using only the edges inserted in the stream (that is, the multiset I), ignoring all deletions.
Specifically, we start by initializing M1, M2, ..., ML to be ∅. Now, whenever an edge, say
(x, y), is inserted, we first try adding it to matching M1. If one of x or y is already matched,
then we try adding this edge (x, y) to M2, and continue in this manner. If we are unsuccessful
all the way up to ML, then we simply discard this edge. It is clear that this hierarchical
collection can be implemented as a streaming algorithm using only Õ(n · L) space, since
each matching can have only O(n) edges. Now suppose there is an index ℓ ∈ [L] such that
none of the edges in Mℓ are deleted, that is, Mℓ ∩D = ∅. Then we can recover a maximal
matching M in the graph G(V, E) as follows. We initialize M = Mℓ, and then greedily add
edges in (M1 ∪M2 ∪ ...Mℓ−1) \D to M so that M is a maximal matching w.r.t. edges in
(M1 ∪M2 ∪ · · · ∪Mℓ) \D. We now claim that M must be maximal in G(V, E). Suppose not,
then there is an edge (u, v) ∈ E, such that neither u nor v are matched in M . But then the
edge (u, v) must not be present in any of (M1 ∪M2 ∪ · · · ∪Mℓ) \D. This means that when
the edge (u, v) arrived in the stream, at least one of u or v must have been matched in Mℓ.
This now is a contradiction to our assumption, Mℓ ∩D = ∅, and hence it cannot be that
both u and v are unmatched in M . Thus M is maximal with respect to E = I \D.

Of course, the only way to ensure that there exists some index ℓ ∈ [L] such that none
of the edges in Mℓ are deleted is to set L = Ω(K), and doing so immediately yields our
deterministic algorithm that uses space Õ(n ·K). To obtain an Õ(n ·

√
K) space algorithm,

we instead set L =
√

K, and observe that this ensures that there exists an index ℓ ∈ [L] such
that at most

√
K edges in Mℓ are deleted. The second phase of the algorithm now starts

on the task of repairing Mℓ to be a maximal matching. Suppose an edge (u, w) is deleted
from Mℓ. We would like to see if the edges in E \ (M1 ∪M2 ∪ ...Mℓ) can match u and/or
w again. Let us focus on vertex u. Our data structure D will store Θ(log3 n) ℓ0-samplers
for each vertex x ∈ V , with each sampler sampling uniformly at random from the incident
edges on x. We open these ℓ0-samplers for u, and if we find an edge (u, v) such that the
vertex v is unmatched, we add it to Mℓ. Otherwise, there are two possibilities: (a) the degree
of u is O(log2 n) and we have recovered all incident edges on u, or (b) the degree of u is
Ω(log2 n), and we recover at least Ω(log2 n) distinct neighbors of u, all of whom are matched
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in Mℓ. In case (a), we are immediately in good shape because we have recovered all edges
incident on u, and we can use them to match u at the end if one of the neighbors of vertex u

remains unmatched. The more interesting situation is case (b) where on the one hand, the
recovered information is not sufficient to repair u. On the other hand, we cannot rule out
the possibility that u could have been matched, if only we had allocated more space in D to
recover additional edges incident on u. We next describe how we eliminate this uncertainty.

We create a collection V1, V2, ..., VR of subsets of V where the set Vi is a random subset of
V of size n/ logi n, and R = Θ(log n/ log log n). For each vertex w ∈ Vi, our data structure
D stores Θ(logi+3 n) ℓ0-samplers. It is worth noting that while we are storing more and
more ℓ0-samplers per vertex as i increases, the total space used by vertices in Vi remains
Õ(n) as the size of Vi shrinks proportionately. We now return to repairing vertex u that
ended in case (b) above: we recovered a set N(u) of Ω(log2 n) neighbors of u, such that each
vertex in N(u) is currently matched. Since every vertex is contained in V1 with probability
1/ log n, it follows that, with high probability, there must be a vertex v1 ∈ N(u) such that
v1’s mate in Mℓ, say u1, belongs to V1. We now add the edge (u, v1) to Mℓ, thereby matching
vertex u, but now creating a new unmatched vertex, namely, u1. It may seem as if we have
not made any progress and the vertices u and u1 have simply traded places. But in fact
we have made some progress. Since u1 ∈ V1, compared to vertex u, our data structure D
stores Θ(log n) times more information about edges incident on u1, better positioning us
to find a mate for u1. We now repeat the above process for vertex u1, either successfully
matching it to an unmatched vertex, or recovering all incident edges on u1, or finding a
matched vertex v2 ∈ N(u1) such that v2’s mate in Mℓ, say u2, belongs to V2. The repair
successfully terminates if either of the first two events occurs. Otherwise, we now add the
edge (u1, v2) to Mℓ, thereby matching vertex u1, but now creating a new unmatched vertex
in Mℓ, namely, u2. We then continue this process from u2. The repair process is guaranteed
to successfully terminate when we reach VR since for each vertex in the final set VR, our data
structure D stores Θ(n log n) ℓ0-samplers each, enough to recover their entire neighborhoods.

To summarize, using Õ(n) space, the data structure D provides a mechanism to repair
an unmatched vertex u in Mℓ due to edge deletions. Since Mℓ can have up to

√
K edge

deletions, to repair all of them, the data structure D independently replicates the above
strategy O(

√
K) times to repair all deletions in Mℓ. The overall space used by the algorithm

is thus Õ(n ·
√

K) for storing the edges in the hierarchical matching, and another Õ(n ·
√

K)
space for the repair data structure D, giving us the desired space bound of Õ(n ·

√
K).

Finally, it is worth underlining that the computations of the hierarchical matching and
the matching repair data structures are independent. Furthermore, the matching repair
data structure is computed by a linear sketching algorithm, as it is usual in the insertion-
deletion setting, and the hierarchical matching data structure is computed by a (non-linear)
deterministic sketch, i.e., a Greedy algorithm, as is it typical in the insertion-only setting.

Space Lower Bound for Bounded-deletions Maximal Matching. We now explain the ideas
behind our main lower bound result, established in Theorem 2. Our lower bound is best
understood as an extension of the tight Ω(n2/α3) space lower bound by Dark and Konrad
[14] for one-pass insertion-deletion streaming algorithms that compute an α-approximation
to Maximum Matching1. We will denote this lower bound as the DK20 lower bound in the
following. Due to the well-known fact that any maximal matching is at least half the size
of a largest matching, DK20 immediately yields an Ω(n2) space lower bound for Maximal
Matching.

1 [6] gives an algorithm that achieves this space bound up to constant factors, see also [21, 4, 10].
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In the following, we will treat the DK20 lower bound as if it was established for Maximal
Matching. DK20 is proved in the one-way two-party communication setting. In this setting,
the first party, denoted Alice, holds the edge set E of a bipartite graph G = (A, B, E),
and the second party, denoted Bob, holds edge deletions D ⊆ E. Alice sends a message
to Bob, and, upon receipt, Bob is required to output a maximal matching in the graph
G′ = (A, B, E \D), i.e., Alice’s input graph with Bob’s deletions applied. Since Alice and
Bob can simulate the execution of an insertion-deletion streaming algorithm for Maximal
Matching on their input, by forwarding the memory state of the algorithm from Alice to Bob
in form of a message, a lower bound on the size of the message used in the communication
setting therefore also constitutes a lower bound on the memory required by such algorithms.

In DK20, Alice holds a bipartite random graph G = (A, B, E) with |A| = |B| = n so
that every edge is inserted into the graph with probability 1

2 . Bob holds subsets A′ ⊆ A

and B′ ⊆ B, with |A′| = |B′| = 4
5 n, and inserts deletions into the vertex-induced subgraph

G[A′ ∪ B′] such that, after the deletions are applied, the remaining edges in G[A′ ∪ B′]
form a large matching M . It is proved that recovering a constant fraction of the edges
of M – a task that a protocol for Maximal Matching necessarily must achieve – requires
space Ω(n2). On a technical level, DK20 give a sophisticated reduction to the well-known
one-way two-party Augmented-Index communication problem. In Augmented-Index, Alice
holds a bitstring X ∈ {0, 1}n, and Bob holds a index J ∈ [n] as well as the suffix X[J + 1, n].
Alice sends a message to Bob who is tasked with reporting the bit X[J ]. It is well-known
that solving Augmented-Index with probability bounded away from 1

2 requires a message of
size Ω(n). In DK20, the reduction is such that the bits X of an Augmented-Index instance
correspond to edges in the random graph with the property that, with constant probability,
the bit X[J ] corresponds to an edge in the matching M . This construction is such that the
mapping between X[J ] and the edges in M is random and, most importantly, unknown to
the underlying protocol. Hence, a protocol that reports a constant fraction of the edges of M

will therefore report the edge that corresponds to bit X[J ] with constant probability, which
then solves Augmented-Index.

Bob holds Θ(n2) deletions in the DK20 construction. In order to decrease the number of
deletions to K, we proceed as follows. In our lower bound construction, Alice holds a graph
G = G1 ∪̇ G2 ∪̇ . . . ∪̇ Gs, which is a vertex-disjoint union of s graphs (Gi)1≤i≤s. Each
graph Gi has

√
K vertices and constitutes a scaled-down version of Alice’s input graph in

the DK20 construction, namely a bipartite random graph with edge probability 1
2 . Bob holds

an index I ∈ {1, . . . , s}, which identifies one of the graphs GI . Furthermore, Bob holds the
counterpart to Bob’s input in the DK20 construction to graph GI , i.e., edge deletions that
apply to GI . Bob leaves all the other graphs Gj , with j ̸= I, untouched.

We establish a direct sum argument to show that this problem requires a large message
size. The key insight is that, since Alice does not know the index I, the message sent from
Alice to Bob must contain sufficient information so that Bob can output a maximal matching
no matter from which graph Gi Bob has deleted some edges. In other words, Alice and Bob
must be able to solve s independent copies of the DK20 lower bound instance. Since each
graph Gi has

√
K vertices, DK20 implies that Ω(K) bits are required for solving one copy.

Hence, overall, space Ω(K · s) is required. Last, to make sure that the final graph has n

vertices, we need to set s = Θ( n√
K

), which delivers the claimed Ω(n ·
√

K) space lower bound.
To implement this approach, we first define a generalization of Augmented-Index denoted

Embedded-Augmented-Index, where Alice holds s binary strings X1, . . . , Xs ∈ {0, 1}t, Bob
holds two indices I ∈ [s] and J ∈ [t] as well as the suffix XI [J + 1, t], and the objective for
Bob is to output the bit XI [J ]. Using by now standard information-theoretic arguments, we

ICALP 2025
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show that this problem requires Ω(t · s) bits of communication. Next, following the proof
outline of DK20, we show that a bounded-deletion streaming algorithm can be used to solve
Embedded-Augmented-Index, which completes the proof.

Lower Bound for Deterministic Algorithms for Bounded-Deletion Maximal Matching.
Our lower bound for deterministic algorithms works with a family of bipartite graphs
G = (A, B, E) that have the property that, even when any K edges D ⊆ E are deleted from
G, then still every maximal matching in G−D matches all A-vertices. The family of graphs
GK(n) is obtained as follows. Given the deletion budget K, define HK to be the family of
bipartite graphs H = (A, B, E) with |A| = K, |B| = 3K, and the degree of every A-vertex
is 2K. Then, GK(n) is the family of graphs consisting of the disjoint union of any n/(4K)
graphs from HK .

Similar to our lower bound for randomized algorithms, we prove our lower bound in the
one-way two-party communication setting. Alice holds a graph G ∈ GK(n) as input, and
Bob holds up to K edge deletions D ⊆ E(G). We now claim that a protocol π for Maximal
Matching that outputs a maximal matching in the graph G−D allows Bob to learn K + 1
incident edges on every A-vertex. Once this claim is established, we finalize the proof by
observing that, if the message from Alice to Bob was of size o(n ·K), then π also constitutes
an encoding of these overall n(K+1)

4 edges‘using only o(n ·K) bits. This in turn can be used
to encode the graph class GK(n) with fewer bits than dictated by the information-theoretic
threshold - a contradiction.

To see that Bob can learn K + 1 edges incident on every A-vertex in input graph
G ∈ GK(n), Bob proceeds as follows. Let a ∈ A be any vertex and π the message received
from Alice. Bob then completes the protocol without introducing any deletions, recovering a
maximal matching M1 that, as discussed above, necessarily matches the vertex a. Let e1 be
the edge incident on a in M . Next, Bob completes another run of the protocol starting with
message π and feeding the edge e1 as edge deletion into the protocol. In doing so, Bob obtains
another maximal matching M2 that necessarily matches a, thereby recovering a second edge
e2 incident on a. Repeating this process, Bob learns more and more edges incident on a,
feeding these edges as deletions into the protocol in the next simulation. Overall, Bob can
repeat this process K times, thereby exhausting the deletion budget, which allows him to
learn K + 1 edges incident on a. Finally, this process can be repeated for every a ∈ A, which
completes the argument.

Bounded-deletion (2 + o(1))-Approximate Matching Algorithm. We now briefly describe
the main idea behind the algorithmic result stated in Theorem 4. Once again, similar to
Theorem 1, our algorithm utilizes the hierarchical matching data structure, but with some
crucial modifications.

Specifically, this time we implement a budgeted version of the hierarchical matching data
structure on the insertions part of the stream, where instead of having a fixed number of
levels, we now have an overall budget B on the total number of edges stored in the hierarchical
matching data structure. The data structure maintains a lexicographic maximality property
whereby an edge insertion that may cause the number of stored edges to exceed the budget B

triggers removal of an edge from the current last level of the data structure. The number of
levels in the data structure forms a bitonic sequence over time, in that, it may keep increasing
as long as the space budget B has not been reached, but once that happens, the number of
levels steadily decreases as enforcing the lexicographic property can trigger many deletions
from the last levels of the hierarchical matching as the remainder of the insertion stream is
processed.
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An immediate consequence of this lexicographic property is that if upon termination, we
have a sequence of hierarchical matchings, say, M1, M2, ..., ML, then M1, M2, ..., ML−1 must
necessarily constitute a (L− 1)-level hierarchical maximal matching data structure. We also
separately store all deletions that appear in the stream. Now by setting our budget B to be
Θ̃(n + K), we can show that when we apply deletions, one of the (L− 1) maximal matchings,
say Mi, necessarily loses at most an o(1)-fraction of its edges. We can then extend Mi to be
an “almost” maximal matching M in the overall stream, by greedily inserting surviving edges
in M1, M2, ..., Mi−1 into it. Here the “almost” refers to the fact that unlike the maximal
matching algorithm of Theorem 1, we do not need to repair the missing o(1)-fraction edges in
Mi to ensure maximality. The final matching M is easily shown to be a (2+o(1))-approximate
matching, giving us the desired result.

1.3 Outline
In Section 2, we give notation and the definition of bounded-deletion graph streams. We
then present our bounded-deletion algorithm for Maximal Matching in Section 3, and give our
matching lower bound in Section 4. Due to space restrictions, we postpone the presentation
of our results on deterministic algorithms to the full version of this paper. We conclude with
some directions for future research in Section 5.

2 Preliminaries

Notation. For an integer k we write [k] := {1, 2, . . . , k}. For a graph G = (V, E), we denote
by N(v) the neighborhood of a vertex v ∈ V .

Bounded-deletion Graph Streams. Given an integer K, in the bounded-deletion graph
stream setting, the input stream consists of a sequence of edge insertions and at most K edge
deletions, which together make up the edge set of a graph G = (V, E). An edge deletion can
only occur if the edge was previously inserted. Observe that it is possible that an edge is
introduced, subsequently deleted, and then introduced again, and so on. We assume that
every prefix of the input stream describes a simple graph, i.e., a previously inserted edge
can only be inserted again if it was deleted in the meantime. Observe, however, that the
substream of edge insertions I may constitute a multiset, and, when regarded as a graph,
then I yields a multigraph. The same holds for the substream of edge deletions D. In the
following, we will write E = I \D to denote the edges of the final graph described by the
input stream. We will see that our algorithm considers the substream of edge insertions and
deals with edge multiplicities in a rather natural way.

We also assume that the parameter K is known in advance. This is a necessary assumption
since, if K was not known, any algorithm that uses space o(n2) could not produce a maximal
matching in case K = Θ(n2), as demonstrated by the Dark and Konrad lower bound [14].
As it is standard, for simplicity, we also assume that algorithms know the vertex set V of the
graph described by the input stream in advance.

Our algorithm makes use of ℓ0-sampling. Given an insertion-deletion stream that describes
a vector on m-coordinates, ℓ0-sampling refers to the process of sampling a uniform random
non-zero coordinate of this vector. We will use the ℓ0-samplers of Jowhari et al. [19]:

▶ Theorem 5 (Jowhari et al. [19]). There exists a ℓ0-sampler that uses O(log2 m log(1/δ))
bits of space and outputs a uniform random non-zero coordinate i ∈ [m] with probability at
least 1− δ.
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Observe that an edge stream of an n-vertex graph describes a Θ(n2)-dimensional vector.
ℓ0-sampling on a graph stream therefore produces a uniform random edge of the input graph
with space O(log2 n · log(1/δ)). We will use ℓ0-sampling to sample uniform random edges
incident to a given vertex v ∈ V , by feeding only edge insertions and deletions incident on v

into the sampler.

3 An Õ(n
√

K) Space Algorithm for Maximal Matching

3.1 Description of the Algorithm
We start by briefly summarizing the main steps of our algorithm. We refer the reader to the
detailed overview in Section 1.2 for further intuition underlying the steps of our algorithm.

Let G = (V, E) be the underlying graph that is revealed as a sequence I of edge insertions
and a sequence D of deletions, that is, E = I \D. In the first phase, our algorithm builds a
sequence of hierarchical matchings, say, M1, M2, ..., ML, using only I, the edges inserted in
the stream, ignoring all deletions, where L =

√
K. Since there are at most K deletions, there

exists an index ℓ ∈ [L] such that at most
√

K edges in Mℓ are deleted in the set D. The
second phase of the algorithm is then focused on restoring the maximality of the matching
Mℓ after the deletions are applied.

This is achieved as follows. We create a collection V0, V1, V2, . . . , VR of subsets of V where
the set Vi is a random subset of V of size n/ logi n, and R = Θ(log n/ log log n). For each
vertex w ∈ Vi, our data structure D stores Θ(logi+3 n) ℓ0-samplers, sampling uniformly at
random from the edges incident on w. Now suppose vertex u used to be matched in Mℓ via
an edge (u, v), and this edge is deleted by D, then the repair process starts by opening the
ℓ0-samplers of u. This results in one of the following three events with high probability:

(i) either u can be matched to a previously unmatched vertex, or
(ii) u recovers all its incident edges in G, or
(iii) u can be matched to an already matched vertex v1 whose current partner u1 is in set

V1.
Events (i) and (ii) are clearly (successful) termination events for u’s repair as we have either
re-matched u, or we have all incident edges on u available for us to try to rematch u – we,
however, only do this after the repair process of all vertices has terminated. In case (iii),
the repair process now continues from u1, exploiting the fact that our data structure stores
more ℓ0-samplers for each vertex in V1. We will once again encounter one of the above three
events, and in case of the third event, we will once again repair u1 by unmatching one of
its neighbors, and continue repair from a vertex, say u2 ∈ V2. The process is guaranteed to
terminate successfully when it reaches a vertex in VR since we store enough ℓ0-samplers to
recover the entire neighborhood of each vertex in VR. Finally, the algorithm replicates the
data structure Θ(

√
K) times to ensure the repair of every vertex in Mℓ that is affected by

deletions in D.
Our main algorithm is depicted as Algorithm 2, and it uses the Hierarchical-Greedy()

algorithm, which is stated as Algorithm 1, as a subroutine.
We now give some more implementation details of our main algorithm that are not

covered by the pseudo-code.
In Line 9 in the listing of Algorithm 2, we apply the deletions D to the matchings of the

hierarchical matching. While this is straightforward if the substream I of edge insertions
does not contain any multiedges, some care needs to be taken if I does contain multiedges.
We apply the deletions in order as they arrived in the stream and bottom-up, i.e., we first
apply deletions to M1, then M2, and so on. This is to ensure that deletions are matched to
the relevant insertions.
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Algorithm 1 Hierarchical-Greedy(L).
Require: Input stream of edge insertions (multi-edges allowed), integer parameter L ≥ 1

1: M1, M2, . . . , ML ← ∅
2: while stream not empty do
3: Let e be the next edge in the stream
4: Let ℓ ≥ 1 be the smallest integer such that Mℓ ∪{e} is a matching, if no such matching

exists then let ℓ = −1
5: if ℓ ̸= −1 then
6: Mℓ ←Mℓ ∪ {e}
7: end if
8: end while
9: return (M1, M2, . . . , ML)

In Line 18 of our main algorithm, Algorithm 2, we evaluate whether the entire neighbor-
hood of a vertex is contained in a set of ℓ0-samplers. This condition can, for example, be
checked by comparing the number of different incident edges produced by the ℓ0-samplers to
the degree of the vertex. Observe that, in insertion-deletion streams, the degree of a vertex
can easily be computed by using a counter in O(log n) space.

3.2 Analysis
Before analyzing our algorithm, we point out that the description of the algorithm uses
large constants C, C ′ with C > C ′ that are appropriately chosen. We will see that the
analysis only imposes weak constraints on C and C ′ and that such constants are easy to pick.
We also assume that all our ℓ0-samplers succeed. Since we run the ℓ0-samplers with error
parameter δ = 1

n4 , and there are less than n2 such samplers, by the union bound, this is a
high probability event.

The first key ingredient of our analysis is the fact that, in the absence of deletions, every
matching Mℓ, 1 ≤ ℓ ≤ L, produced by Hierarchical-Greedy() can easily be extended to a
globally maximal matching by greedily adding edges of the matchings M1, . . . , Mℓ−1 to it if
possible. The next lemma captures this idea and combines it with a key insight that allows us
to fix edge deletions: We do not need to immediately rematch vertices incident to a deleted
edge as long as we know their entire neighborhoods. This lemma is key for establishing our
algorithm’s correctness.

▶ Lemma 6. Let G = (V, E) be a graph where E = I \D such that I is a multiset of edge
insertions and D ⊆ I is a multiset of edge deletions. Let (M1, M2, . . . , ML) be the output
of Hierarchical-Greedy(L), i.e., a sequence of hierarchical matchings constructed using the
edges in I, processed in an arbitrary order. Let F ⊆ E be a subset of edges. Then, for any
ℓ ∈ [L], let M be any matching such that, for every vertex v matched in Mℓ, either (i) v is
also matched in M , or (ii) the entire neighborhood of v is known, i.e., N(v) ⊆ F . Then M

can be extended to become a maximal matching of the graph G by simply greedily adding to it
edges in F ∪ ((M1 ∪M2 ∪ ...Mℓ−1) \D) if possible.

Proof. We prove this lemma by contradiction. To this end, assume that there exists an edge
(u, v) ∈ E \M such that M ∪ {(u, v)} is a matching.

We first argue by contradiction that V (Mℓ) ∩ {u, v} = ∅. Indeed, suppose that this was
not the case and, w.l.o.g., assume that u ∈ V (Mℓ). By the statement of the lemma, then
either u is matched in M or the entire neighborhood of u is known, i.e., N(u) ⊆ F , which
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Algorithm 2 Bounded-deletion Streaming Algorithm for Maximal Matching.
Require: Stream of edge insertions and at most K edge deletions making up a graph

G = (V, E); large constants C, C ′ with C > C ′ suitably chosen
1: R← log(n)+log(C′)

log log n − 2 {Number of vertex levels}
2: Let V0 = V , and for i ∈ [R], let Vi ⊆ V be a random subset of size C · n

logi(n)

3: Input Stream Processing: Run in parallel
4: 1. (M1, . . . , M√

K)← Hierarchical-Greedy(
√

K) on substream of edge insertions
5: 2. Store all edge deletions observed in the stream in variable D

6: 3. For each i ∈ [R] ∪ {0} and every v ∈ Vi, run 2 ·
√

K logi+3(n) ℓ0-samplers on the
substream of edges incident on v; each sampler uses failure parameter δ = 1

n4

7: Notation: For any i ∈ [R] ∪ {0}, v ∈ Vi, and j ∈ [
√

K] denote by Ni,j(v) the jth
1

2·
√

K
-fraction of v’s level i ℓ0-samplers

8: Post-processing:
9: Let (M ′

1, M ′
2, . . . , M ′

L) be the matchings (M1, M2, . . . , ML) with the deletions D applied

10: Let ℓ be such that |Mℓ \M ′
ℓ| ≤

√
K, and let V (Mℓ \M ′

ℓ) = {u1, u2, . . . }
11: M ←M ′

ℓ {repair M back to a maximal matching}
12: for j ← 1 . . . |V (Mℓ \M ′

ℓ)| do {fix uj}
13: if uj ∈ V (M) then
14: continue {uj was matched while fixing some ub with b < j}
15: end if
16: u← uj

17: for i = 0 . . . R do {Iterate through the vertex levels}
18: if Ni,j(u) contains entire neighborhood of u then
19: continue {u will be dealt with in Line 28}
20: else if Ni,j(u) contains a vertex v that is not matched in M then
21: M ←M ∪ {(u, v)}
22: else
23: Let v ∈ Ni,j(u) be such that its mate u′ in M is such that u′ ∈ Vi+1 (Lemma 7

shows that such a vertex exists w.h.p.)
24: M ← (M − (u′, v)) ∪ {(u, v)}
25: u← u′

26: end if
27: end for
28: Greedily attempt to add all edges in M ′

1, . . . , M ′
ℓ−1 as well as all edges recovered by

the ℓ0-samplers to M if possible
29: end for
30: return M

implies that (u, v) ∈ F . In the first case, we immediately arrive at a contradiction since the
edge (u, v) could not be added to M since u is already matched. In the second case, observe
that we attempted to greedily add the edges of F to M , in particular, we already attempted
to add the edge (u, v) to M , which also yields a contradiction.

Assume therefore that V (Mℓ) ∩ {u, v} = ∅. This, however, implies that, when the edge
(u, v) arrived in the stream, it was not included in Mℓ despite both endpoints being free
in Mℓ. Suppose the edge (u, v) occurs β times in the stream I. It must then be the case
that all β copies of this edge in I must have been added to one or more of the matchings
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M1, . . . , Mℓ−1. On the other hand, since edge (u, v) ∈ E \M , it means that the numbers of
times (u, v) is deleted in D is strictly less than β. So at least one copy of the edge (u, v) in
M1, . . . , Mℓ−1 remains undeleted, after we remove edges in D. Since we attempted to add
the surviving edges of M1, . . . , Mℓ−1 to M , we also arrive at a contradiction.

It follows then that the matching M is indeed maximal in G. ◀

The second key ingredient of our analysis is a progress lemma that shows that the fixing
process yields the desired result. In more detail, we show that, in iteration i of the loop
in Line 17, when fixing any vertex uj ∈ (V (Mℓ) ∩ Vi) that is currently unmatched but was
matched in Mℓ, then we either (i) recover all of uj ’s neighbors, (ii) we are able to match uj

directly to a yet unmatched vertex, or (iii) we can match uj to an already matched vertex v

such that v’s mate u′ in the current matching is contained in level i + 1, i.e., u′ ∈ Vi+1.

▶ Lemma 7 (Progress Lemma). Let M be any matching in G = (V, E), where G is the final
graph described by the input stream, and let u ∈ Vi \ V (M) be an unmatched vertex contained
in level i. Then, for any j, with high probability, at least one of the following assertions is
true:
1. Ni,j(u) contains the entire neighborhood of u;
2. Ni,j(u) contains a vertex v such that M ∪ {(u, v)} is a matching;
3. Ni,j(u) contains a vertex v that is matched in M to a vertex u′ such that u′ ∈ Vi+1.

Proof. We first recall that Ni,j(u) consists of logi+3(n) ℓ0-samplers.
Suppose that Items 1 and 2 are false. Since Item 1 is false, the degree of u cannot be

too small since otherwise the ℓ0-samplers would have picked up every single edge incident to
u. We prove in Lemma 8 that, w.h.p., the degree of u is at least logi+2(n)/C ′. Then, since
Item 2 is false, all vertices produced by the ℓ0-samplers in Ni,j(u) are matched in M . Denote
by U their mates in M . Then, |U | ≥ logi+2(n)/C ′. Then, the probability that none of the
vertices in U are contained in Vi+1 is:(

n−|U |
|Vi+1|

)(
n

|Vi+1|
) ≤ (

1− |Vi+1|
n

)|U |

≤ exp(−|Vi+1| · |U |/n) = exp(− C

C ′ log n) ≤ 1
n5 ,

where we used Lemma 9 stated in the appendix, then used the inequality 1 + x ≤ exp(x),
and then assumed that C and C ′ are picked such that C

C′ is large enough. Hence, such a
vertex exists with high probability, which completes the proof. ◀

▶ Lemma 8. Let v ∈ Vi be any vertex. Then, if deg(v) ≤ logi+2(n)/C ′ then N(v) ⊆ Ni,j(v),
for every j, with high probability.

Proof. First, observe that Ni,j(v) consists of logi+3(n) ℓ0-samplers for each vertex v ∈ Vi.
Let u ∈ N(v) be a vertex. Then, assuming that none of the ℓ0-samplers fail, the probability
that the outcome of an ℓ0-sampler for v is u is at least 1

deg(v) ≥
C′

logi+2(n) . Since all samplers
operate independently, the probability that none of the samplers produce u is at most:(

1− C ′

logi+2 n

)logi+3 n

≤ exp
(
− C ′

logi+2 n
· logi+3 n

)
= exp (−C ′ log n) ≤ 1

n10 ,

using the inequality 1 + x ≤ exp(x) and by picking a sufficiently large value for C ′. By a
union bound over the vertices in N(v), we obtain that all vertices in N(v) are contained in
the ℓ0-samplers with high probability. Last, by a union bound over all values of j, the result
follows. ◀
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We observe that the previous lemma implies the important property that, for every vertex
v ∈ VR with R = log(n)+log(C′)

log log n − 2 as in the algorithm, i.e., a vertex contained in the last
level R, the entire neighborhood of v is contained in NR,j(v) since logR+2(n)/C ′ ≥ n .

We are now ready to prove our main result, i.e., Theorem 1.

▶ Theorem 1. Algorithm 2 is a Õ(n ·
√

K) space streaming algorithm for Maximal Matching,
where K is an upper bound on the number of deletions in the stream, and succeeds with high
probability.

Proof. We first address the space complexity and then establish correctness.

Space Complexity. The algorithm stores the
√

K matchings M1, . . . , M√
K , which requires

space Õ(n
√

K). In addition, the algorithm stores various ℓ0-samplers. The number of these
samplers is bounded by

R∑
i=0
|Vi| · 2

√
K logi+3(n) ≤

R∑
i=0

C · n

logi n
· 2
√

K logi+3(n) = n ·
√

K · log3 n ·R = Õ(n
√

K) ,

and, since each ℓ0-sampler uses space Õ(1), the space bound follows.

Correctness. To establish correctness, we will argue that after the loop in Line 12, which
ends in Line 27, but before Line 28 is executed, the matching M together with the set
of ℓ0-samplers fulfill the premises of Lemma 6. Invoking the lemma then establishes that
executing Line 28 turns M into a globally maximal matching, which completes the proof.

To argue that M fulfills the premises of Lemma 6 after Line 27 (but before Line 28), we
need to ensure that, for every vertex u ∈ V (Mℓ), either u is matched in M or the entire
neighborhood of u is contained in our set of ℓ0-samplers. In the following, we say that a
vertex u ∈ V (Mℓ) fulfills property P if it is either matched in M or its entire neighborhood
is contained in our ℓ0-samplers.

Observe that when entering the loop in Line 12, the vertices V (Mℓ \M ′
ℓ) are exactly

those vertices that violate property P . We will now argue that each iteration of this for-loop
fixes one of these vertices and, in particular, it does not introduce any new vertices that may
violate this property. This then completes the proof.

Consider thus the iteration j that fixes vertex uj . First, it may happen that uj was
matched when fixing a vertex uj′ , for some j′ < j. This is checked in Line 13, and if this
happens then we are done. Otherwise, we enter the loop in Line 17. The vertex u is initialized
as the vertex uj that we attempt to fix. The loop satisfies the invariant that, in iteration
i, we are guaranteed that u ∈ Vi. This is clearly the case for the first iteration i = 0 since
V0 = V . To see that this holds throughout, we will argue that an iteration of the loop always
establishes property P for the current vertex u. Fixing vertex u may however come at the
cost of introducing a new violation of property P for a previously matched vertex u′. This
vertex u′, however, is then necessarily contained in the vertex set Vi+1. Since at the end of
the loop, we set u← u′, we therefore see that in the subsequent iteration i + 1, the vertex u

is now contained in Vi+1, as desired.
Now, to see that u is always fixed, we invoke our progress lemma, Lemma 7, which states

that either the entire neighborhood of u is contained in our ℓ0-samplers (case 1) or u is
rematched (cases 2 and 3), which implies that u now satisfies property P . Case 3 matches u

to a previously matched vertex v whose mate u′ becomes unmatched. However, as proved in
Lemma 7, u′ is then necessarily contained in Vi+1.
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Last, to see that in the final iteration of the loop in Line 17, no new vertex that violates
property P is introduced, we observe that the last level VR is such that the entire neighborhood
of every vertex in VR is stored in the ℓ0-samplers NR,j(u), for every j, which is a consequence
of Lemma 8.

Thus, overall, we have established that each iteration of the main for loop fixes a vertex
and does not introduce any new vertices that violate property P . Lemma 6 thus establishes
that Line 28 turns M into a globally maximal matching, which establishes that the output
matching is maximal and completes the proof. ◀

4 Space Lower Bound for Maximal Matching

In this section, we give our space lower bound for bounded-deletion streaming algorithms for
Maximal Matching. To this end, in Subsection 4.1 we define the Embedded-Augmented-Index
problem, an extension of the Augmented-Index problem, and lower-bound its communication
complexity. Then, in Subsection 4.2, we show that a bounded-deletion streaming algorithm
for Maximal Matching can be used to solve Embedded-Augmented-Index, which yields our
main lower bound result.

4.1 The Embedded-Augmented-Index Problem
The Embedded-Augmented-Indexs,t problem is a one-way two-party communication problem
and is parametrized by two integers s and t. Alice holds s bitstrings X := X1, . . . , Xs ∈ {0, 1}t.
Bob holds two indices I ∈ [s] and J ∈ [t] as well as the suffix XI [J + 1, . . . , t]. Alice sends
a single message to Bob, and, upon receipt, Bob needs to output the bit XI [J ]. Protocols
can be randomized and need to be correct on every input with probability at least 1

2 + ϵ, for
some small constant ϵ > 0.

Let µ denote the uniform input distribution, where all variables (X, I, J) are chosen
uniformly at random from their domains.

We now prove that the communication complexity of Embedded-Augmented-Indexs,t is
Ω(s · t) (proof provided in the full version of this paper).

▶ Theorem 9. Every randomized communication protocol for Embedded-Augmented-Indexs,t

that is correct with probability 1
2 + ϵ, for any ϵ > 0, requires a message of size at least

(1−H2(1
2 − ϵ)) · s · t ,

where H2(.) denotes the binary entropy function.

4.2 From Embedded-Augmented-Index to Maximal Matching
In this section, we will prove that every randomized bounded-deletion streaming algorithm
for Maximal Matching requires space Ω(n

√
K). The proof closely follows [14], adapted to

Embedded-Augmented-Index as the underlying hard communication problem and somewhat
simplified since we only require a lower bound for small constant factor approximations as
they are provided by a Maximal Matching algorithm.

▶ Theorem 2. Every bounded-deletion streaming algorithm that computes a Maximal Matching
with probability at least 2

3 requires space Ω(n
√

K).
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Proof. We will give a reduction to Embedded-Augmented-Indexs,t. For integers s, t whose
values we will determine later, let X = X1, . . . , Xs ∈ {0, 1}t, I ∈ [s], and J ∈ [t] be an
Embedded-Augmented-Indexs,t instance, and let A be a bounded-deletion streaming algorithm
for Maximal Matching that outputs a maximal matching with probability 2

3 on every instance.
We assume that, if A fails, then it still outputs a matching, but it may not be maximal.

Alice. Given X, Alice constructs the bipartite graph G = G1 ∪̇ G2 ∪̇ . . . ∪̇ Gs, which is
the disjoint union of the graphs (Gi)1≤i≤s. We now describe the construction of graph Gi,
for any 1 ≤ i ≤ s. The vertex set Ai ∪Bi of Gi is such that |Ai| = |Bi| = 10 ·

√
t. The edge

set Ei of Gi is best described via its bipartite incidence matrix Mi. To obtain Mi, we first
construct the matrix M̃i, which has the same dimensions as Mi. The construction process is
as follows:
1. The top-left square sub-matrix of M̃i with side length

√
t is filled with the entries of Xi

from left-to-right and top-to-bottom.
2. All other entries of M̃i are filled with uniform random bits obtained via public randomness.
3. Alice and Bob sample a random binary square matrix Yi with side length 10

√
t such that

each entry is 1 with probability 1
2 . They compute the entry-wise XOR between M̃i and

Yi. Let M̃ ′
i denote the resulting matrix.

4. Alice and Bob sample random permutations σi, πi : [10
√

t]→ [10
√

t] from public random-
ness. The matrix Mi is obtained from M̃ ′

i by permuting the rows and columns with the
permutations σi and πi, respectively.

Alice then runs algorithm A on the edges of G, presented to A in random order.

Bob. Recall that Bob holds the indices I ∈ [s] and J ∈ [t] as well as the suffix XI [J +1, . . . , t].
Bob introduces edge deletions, but only into the graph GI . To this end, consider the matrix
M̃I , and let a, b be such that the entry M̃I [a, b] corresponds to the bit XI [J ]. Then, observe
that Bob knows all entries of the submatrix M̃ ′

I(a, b) with top-left corner at position (a, b)
and bottom-right corner being the bottom-right corner of M̃ ′

I except the top-left entry
M̃ ′

I(a, b)[a, b], either because the bits XI [J + 1, t] (XORed with entries of YI) correspond to
these entries or the entries were constructed entirely from public randomness. Denote by

I = {(i, j) | a ≤ i ≤ 10
√

t, b ≤ j ≤ 10
√

t and i− a ̸= j − b}

the entries of M̃ ′
I that constitute off-diagonal entries in the submatrix M̃ ′

I(a, b). Then, for
each index (i, j) ∈ I, if MI [σ(i), π(j)] = 1 then Bob feeds an edge deletion that turns this
entry to 0 into the algorithm A, i.e., MI [σ(i), π(j)] = 0 after the deletion. All deletions are
fed into A in random order.

Bob then obtains the output matching OUT produced by algorithm A.

Analysis. We denote by OUTi ⊆ OUT the subset of edges that are contained in graph Gi.
We assume from now on that the algorithm A does not fail. Then, we claim that, with

high probability, |OUTI | ≥ 1
4 · 9
√

t− o(
√

t). Indeed, observe that none of the diagonal entries
in M̃ ′

I(a, b) are subsequently deleted, and the edges corresponding to the 1-entries of this
diagonal form a matching. Observe that both dimensions of M̃ ′

I(a, b) are at least 9
√

t. By
concentration bounds, with high probability, there are at least 1

2 · 9
√

t− o(
√

t) 1-entries. The
claim then follows from the observation that MI is obtained from M̃ ′

I by permuting the rows
and columns, which are operations that preserve the matching size, and by the fact that a
maximal matching is at least half the size of a maximum matching.

Hence, with probability 2/3−o(1), the algorithm A succeeds and |OUTI | ≥ 1
4 ·9
√

t−o(
√

t)
holds. We assume that these events hold from now on.
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We say that the entry XI [J ] materializes as an edge in graph GI if M̃ ′
I [a, b] = 1. Recall

that M̃ ′
I [a, b] = M̃I [a, b] XOR YI [a, b], where YI [a, b] is a uniform random bit. Hence, XI [J ]

materializes as an edge with probability 1/2.
We will now argue that, if the edge corresponding to XI [J ] materializes, then it is

also contained in OUTI with constant probability. Indeed, due to the symmetry of the
construction that is achieved by the applications of the random permutations σi and πi

and the XOR computations with YI , each of the diagonal entries of M̃ ′
I(a, b) with value

1 are reported in the matching OUTI with equal probability. Hence, conditioned on the
entry XI [J ] materializing as an edge in GI , the algorithm A succeeding, and the event
|OUTI | ≥ 9

4
√

t− o(t), this edge is contained in OUTI with probability at least

|OUTI | − 2
√

t

10
√

t
≥

9
4
√

t− o(
√

t)− 2
√

t

10
√

t
≥ 1

40 − o(1) ,

since OUTI contains at least |OUTI | − 2
√

t diagonal entries from the matrix M̃ ′
I(a, b), and

any matching in GI is of size at most 10
√

t.
Hence, the probability that the edge corresponding to XI [J ] materializes and is reported in

OUTI is at least 1
80−o(1) conditioned on A succeeding and on the event |OUTI | ≥ 9

4
√

t−o(t).
If the edge is not observed in OUTI then the algorithm reports either 0 or 1 as a guess for
XI [J ], each with probability 1

2 .
Using the following definition of p:

p = Pr[A succeeds and |OUTI | ≥
9
4
√

t− o(t) and XI [J ] materializes as an edge

and is reported in OUTI ] ≥ (2
3 − o(1)) · ( 1

80 − o(1)) = 1
120 − o(1) ,

we can bound the overall success probability of this strategy as follows:

Pr[XI [J ] recovered correctly] ≥ p + (1− p) · 1
2

= 1
120 + 119

120 ·
1
2 − o(1) = 1

2 + 1
240 − o(1) .

By Theorem 9, A therefore requires space Ω(s · t). Lastly, to ensure that at most K

deletions are introduced, we set t = K, and to ensure that the input graph has n vertices, we
set s = n

2·10
√

t
. The lower bound thus gives Ω(s · t) = Ω( n√

K
·K) = Ω(n ·

√
K), as desired. ◀

5 Conclusion

In this work, we initiated the study of Maximal Matching in bounded-deletion streams. We
settled the space complexity of both randomized and deterministic algorithms up to poly log
factors by given algorithms as well as lower bounds, where the randomized space complexity
is Θ̃(n ·

√
K), and the deterministic space complexity is Θ̃(n ·K). Our results constitute the

first trade-off results between space complexity and the number of deletions for a fundamental
graph problem.

We hope that our work will spark work on other fundamental graph problems in the
bounded-deletion stream setting, especially when the presence of deletions seems to signi-
ficantly increase the space complexity of the streaming algorithm. Two natural and closely
related problems for future investigation are approximate Maximum Matching and approx-
imate Minimum Vertex Cover, where a refined understanding of space complexity in terms

ICALP 2025
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of the deletion parameter K will reveal how the space complexity changes as we gradually
move from insertion-only to unrestricted deletions streams. Another problem that will be
interesting to study through the lens of bounded deletions is the problem of building low
stretch graph spanners. Similar to Maximum Matching and Minimum Vertex Cover, there
is a polynomial-factor separation in the space needed to build a low stretch spanner in an
insertion-only stream, and in dynamic streams with unrestricted deletions.

Finally, we believe that our algorithmic approach of building a complementary pair of
sketches, one that is non-linear, focusing on the insertions, and another one that is non-
uniform and linear, focusing on the dynamic component of the stream, will also prove useful
for other graph problems.
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A Technical Lemma

▶ Lemma 9. Let a, b, n be integers such that a < n and b ≤ n − a. Then, the following
inequality holds:(

n−a
b

)(
n
b

) ≤
(

1− b

n

)a

.

Proof. We compute as follows:(
n−a

b

)(
n
b

) = (n− a)! · (n− b)!
(n− a− b)! · n! = (n− b) · (n− b− 1) · . . . · (n− a− b + 1)

n · (n− 1) · . . . · (n− a + 1)

≤
(

n− b

n

)a

=
(

1− b

n

)a

,

where we used the inequality n−b−j
n−j ≤

n−b
n , for every 0 ≤ j ≤ a. ◀
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