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—— Abstract

We study the problem of constructing hypergraph cut sparsifiers in the streaming model where

a hypergraph on n vertices is revealed either via an arbitrary sequence of hyperedge insertions
alone (insertion-only streaming model) or via an arbitrary sequence of hyperedge insertions and
deletions (dynamic streaming model). For any € € (0,1), a (1 £ €) hypergraph cut-sparsifier of a
hypergraph H is a reweighted subgraph H’ whose cut values approximate those of H to within a
(1 £ ¢) factor. Prior work shows that in the static setting, one can construct a (1 + €) hypergraph
cut-sparsifier using O(nr/€®) bits of space [Chen-Khanna-Nagda FOCS 2020], and in the setting of
dynamic streams using O(nrlogm/e?) bits of space [Khanna-Putterman-Sudan FOCS 2024]; here
the O notation hides terms that are polylogarithmic in n, and we use m to denote the total number
of hyperedges in the hypergraph. Up until now, the best known space complexity for insertion-only
streams has been the same as that for the dynamic streams. This naturally poses the question of
understanding the complexity of hypergraph sparsification in insertion-only streams.

Perhaps surprisingly, in this work we show that in insertion-only streams, a (1 £ €) cut-sparsifier
can be computed in O(nr/€?) bits of space, matching the complexity of the static setting. As a
consequence, this also establishes an Q(logm) factor separation between the space complexity of
hypergraph cut sparsification in insertion-only streams and dynamic streams, as the latter is provably
known to require Q(nrlogm) bits of space. To better explain this gap, we then show a more general
result: namely, if the stream has at most k hyperedge deletions then O(nr log k/ 62) bits of space
suffice for hypergraph cut sparsification. Thus the space complexity smoothly interpolates between
the insertion-only regime (k = 0) and the fully dynamic regime (k = m). Our algorithmic results
are driven by a key technical insight: once sufficiently many hyperedges have been inserted into
the stream (relative to the number of allowed deletions), we can significantly reduce the underlying
hypergraph by size by irrevocably contracting large subsets of vertices.

Finally, we complement this result with an essentially matching lower bound of Q(nrlog(k/n))
bits, thus providing essentially a tight characterization of the space complexity for hypergraph
cut-sparsification across a spectrum of streaming models.?
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1 Introduction

In this work, we continue the line of study on designing hypergraph cut sparsifiers in the
streaming model.

Recall that a hypergraph, denoted by H = (V, E), is given by a set of hyperedges E where
each hyperedge e € F is an arbitrary subset of the vertices e C V. In the streaming model,
the hyperedges are revealed in a sequence of steps, where each step consists of either an
insertion of a new hyperedge, or the deletion of an existing hyperedge from the hypergraph.
At the end of the stream, our goal is to return a sparsifier of the resulting hypergraph.
Recall that for a hypergraph H, and € € (0,1), a (1 & ¢) hypergraph cut-sparsifier of H is a
re-weighted sub-hypergraph H such that for every cut S CV,

cut 4 (S5) € (1 £e)cuty(S).

Here, cuty(S) denotes the total weight of hyperedges that cross from S to S (i.e., the set
of hyperedges {e € E:enS # O AenS # 0}). Cuts in hypergraphs capture a variety
of applications, ranging from scientific computing on sparse matrices [3], to clustering and
machine learning [18, 19], and to modeling transistors and other circuitry elements in circuit
design [2, 14]. In each of these applications, the ability to sparsify the hypergraph while
still preserving cut-sizes is a key building block, as these dramatically decrease the memory
footprint (and complexity) of the networks being optimized. In fact, while an arbitrary
hypergraph may have as many as 2" distinct hyperedges, the work of Chen, Khanna, and
Nagda [5] showed that (1 &+ €) hypergraph cut-sparsifiers can be constructed using only
O(n/€%) re-weighted hyperedges, a potentially exponential size saving in the bit complexity
of the object.

This dramatic reduction in the complexity of the hypergraph while still preserving key
properties has also prompted a line of research into the feasibility of sparsifying hypergraphs
in the streaming model of computation. Here, the hyperedges are presented one at a time,
with each hyperedge either being inserted into or deleted from the hypergraph constructed
so far. In the streaming model, the goal is to compute some function of the hypergraph (in
our case, to construct a sparsifier of the hypergraph) after the final update in the stream
has arrived, while using as few bits of memory as possible in each intermediate step of
processing the stream. As mentioned above, computing sparsifiers of a hypergraph in a
stream is valuable as it immediately yields itself to streaming algorithms for any problem
that relies only on a sparsifier (for instance, computing cut sizes, flows, many clustering
objectives, and more), and as such has seen study in several papers [6, 5, 12].

Most recently, the work of Khanna, Putterman, and Sudan [12] studied the space
complexity of of hypergraph cut-sparsification in the setting of dynamic streams where
a hypergraph is revealed via an arbitrary sequence of hyperedge insertions and deletions.
They showed an upper bound of O(nrlog(m)/e2)? bits for computing (1 + €) sparsifiers in
dynamic streams, and also established a nearly-matching lower bound of Q(nrlog(m)) bits,

2 Here 5() hides polylog(-) factors. Importantly, in hypergraphs m may be as large as 2", and thus
log(m) can potentially be as large n. Hence O(-) does not hide factors of log(m).
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where n is the number of vertices, r is the maximum size of any hyperedge, and m is the

number of hyperedges. In particular, because dynamic streaming is a strictly harder setting

than insertion-only streams, this also implies an 6(nr log(m)/e?) bit upper bound for the
complexity of constructing hypergraph cut-sparsifiers in the insertion-only model.

For comparison, in the static setting (i.e., when the algorithm has unrestricted random-
access to the underlying hypergraph), it is known that hypergraph sparsifiers require Q(nr)
bits to represent [10, 9], and moreover, can be constructed in 6(717“/ €2) bits of space. Thus,
one interpretation of the work of [12] is that hypergraph sparsifiers can be constructed in
dynamic streams at the cost of only a log(m) times increase in the space complexity (ignoring
polylog(n) factors), as compared to the static setting. However, this highlights two natural
questions:

1. What is the space complexity of constructing hypergraph sparsifiers in insertion-only
streams? Is the complexity essentially same as in the static setting, or can it be as large
as the dynamic setting?

2. More generally, how does the space complexity of hypergraph sparsification change as a
function of the number of hyperedge deletions? Does it smoothly interpolate between the
space complexity needed for insertion-only stream (no deletions) and the dynamic setting
(unrestricted number of deletions)?

1.1 Qur Contributions

As our first contribution, we provide an answer to the first question above regarding the
complexity of constructing sparsifiers in insertion-only streams:

» Theorem 1. There is an insertion-only streaming algorithm requiring 5(77,7"/62) bits of
space which creates a (1 £ €) cut-sparsifier for a hypergraph on n vertices and hyperedges of
arity < r, with probability 1 — 1/poly(n).

Specifically, this improves over the prior state of the art algorithms for constructing
hypergraph sparsifiers in insertion-only streams by a factor of log(m) where m denotes an
upper bound on the number of hyperedges. This implies that (perhaps surprisingly) the
complexity of the insertion-only setting mirrors that of the static sparsification setting, and
thus there is also a strict separation between the space complexity of the insertion-only and
dynamic streaming settings, as the latter is known to require Q(nrlogm) bits of space [12].

Because of this large separation, it is natural to ask if there is some other parameter
which governs the space complexity of sparsifying hypergraphs in streams. As our second
contribution, we show that this is indeed the case: if we parameterize the dynamic streaming
setting by the maximum number of allowed hyperedge deletions, then the space complexity
smoothly interpolates between the insertion-only setting and the unrestricted dynamic setting:

» Theorem 2. For k > 1, there is a k-bounded deletion streaming algorithm requiring

O(nrlog(k)/€?)? bits of space which creates a (1 =+ €) cut-sparsifier for a hypergraph on n
vertices and hyperedges of arity < r, with probability 1 — 1/poly(n).

When m is the maximum number of hyperedges in the stream, then the number of
deletions is effectively bounded by m. Thus, the dynamic streaming setting is effectively
the case when k = m, and the above theorem captures the space complexity in this setting.

3 Technically, when k = 1, the term should be max(1,log(k)).
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Likewise, as the number of deletions decreases and approaches 0, the setting approaches the
insertion-only setting, and the above theorem explains exactly the space savings that are
achieved.

Finally, building off of the prior work of Jayaram and Woodruff [8] in the bounded-deletion
streaming model, we show that this space complexity is essentially optimal:

» Theorem 3. Any streaming algorithm for k-bounded deletion streams, which for hypergraphs
on n vertices, of arity r < n/2 + 1, produces a (1 £ €) cut-sparsifier for € < 1, must use
Q(nrlog(k/n)) bits of space.

In summary, this provides a complete picture of the space complexity of producing
hypergraph sparsifiers in the streaming setting: as the number of deletions & increases from
0 to m, the space complexity grows by a factor of log(k) over the space complexity of the
static sparsification regime, leading to a smooth phase transition in the space complexity of
these algorithms. In the following subsection, we explain more of the techniques that go into
these results.

1.2 Technical Overview
1.2.1 Importance Sampling for Hypergraph Cut Sparsification

To start, let us recap how we create hypergraph sparsifiers in the static setting. After an
extensive line of works studying hypergraph sparsification [13, 17, 5, 10, 9, 7, 15, 11], the
work of Quanrud [16] provided the simplest lens through which one can build hypergraph
sparsifiers. Roughly speaking, given a hypergraph H = (V, E), each hyperedge e¢ € E is
assigned a value A which is called its strength. The strength of a hyperedge is intuitively a
measure of the (un)importance of a hyperedge; the smaller the strength of the hyperedge e,
this means e is crossing smaller cuts in the hypergraph, and so we are more likely to need
to keep e, while if the strength is larger, then there are many other hyperedges which cross
the same cuts as e, and thus it is not as necessary for us to keep e. [16] showed that for
a specific definition of strength, sampling each hyperedge (independently) at rate roughly
pe > log(n)/(e?Ae) (ignoring constant factors), and assigning weight 1/p. to the surviving
hyperedges then yields a (1 & €) sparsifier with high probability.

In fact, this procedure lends itself to a simple iterative algorithm for designing sparsifiers:
starting with the original hypergraph H, we recover all of the hyperedges in H whose strength
is smaller than A ~ log(n)/€?, and denote these hyperedges by T Then, it must necessarily
be the case that all hyperedges in H — T} have large strength, and so we can afford to
sample these hyperedges at rate 1/2 (denote this sampled hypergraph by H (1)). By the same
analysis as above, it turns out that we can show that 7V U2- H(") will be a (1 =+ ¢) sparsifier
of H with high probability. Now, it remains only to re-sparsify H), which we can do by
repeating the same procedure. Thus, after log(m) levels of this procedure (where m is the
starting number of hyperedges), we can recover a sparsifier of our original hypergraph.

1.2.2 Formal Definitions of Strength

However, to continue our discussion, we will require the formal definition of strength, as well
as some auxiliary facts about strength in hypergraphs. The key notion that [16] introduces
to measure strength in hypergraphs is the notion of k-cuts in hypergraphs (and here we adopt
the language used by [12]):
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» Definition 4. For any k € [2..n], a k-cut in a hypergraph is defined by a k-partition of
the vertices, say, Vi,...Vi. The un-normalized size of a k-cut in an unweighted hypergraph
is the number of hyperedges that are not completely contained in any single V; (we refer to
these as the crossing hyperedges), denoted by E[Vi,...Vy].

The normalized size of a k-cut in a hypergraph is its un-normalized size divided by k — 1.
We will often use ®(H) to denote the minimum normalized k-cut, defined formally as follows:

®(H) = min min M
k€[2..n] V1,U--UVyp=V k—1
Note that when we generically refer to a k-cut, this refers any choice of k € [2..n]. That
is, we are not restricting ourselves to a single choice of k, but instead allowing ourselves to
range over any partition of the vertex set into any number of parts.
The work of [16] established the following result regarding normalized and un-normalized
k-cuts:

» Theorem 5 ([16]). Let H be a hypergraph, with associated minimum normalized k-cut size
®(H). Then for any t € ZF, and k € [2..n], there are at most n°®®) un-normalized k-cuts of
size <t-P(H).

A direct consequence of the above is that in order to preserve all k-cuts (again, simultan-

eously for every k € [2,...n]) in a hypergraph H to a factor (1 £ ¢€), it suffices to sample

each hyperedge at rate p > gﬁ%g; , and re-weight each sampled hyperedge by 1/p.

Similar to Benczir and Karger’s [4] approach for creating 5(n/ €2) size graph sparsifiers,
Quanrud [16] next uses this notion to define k-cut strengths for each hyperedge. To do
this, we fix a minimum normalized k-cut, with Vq, V5, ..., Vi denoting the partition of the
vertices created by this cut. For any hyperedge crossing this minimum normalized k-cut,
we define its strength to be exactly ®(H). For the remaining hyperedges (i.e, those which
are completely contained within the components V7, ... V), their strengths are determined
recursively (within their respective induced subgraphs) using the same scheme. This allows
Quanrud [16] to calculate sampling rates of hyperedges, which when sampled, approximately
preserve the size of every k-cut (for all k € [2,n]). Note that just as in the graph setting, the
reciprocal sum of strengths is bounded, which allows for convenient bounds on the number
of low strength hyperedges:

> Claim 6. [16] Let H = (V, E) be a hypergraph on n vertices. Then,

> =t

ecE )\e

However, the power of the strength definition extends beyond just identifying sampling
rates of hyperedges, and can also be used to identify sets of vertices which can be contracted
away. In particular, we can define the notion of the strength of a component, as we do below:

» Definition 7. For a subset of vertices S C V', we say that the strength of S in H is
As = minge (s Ae- That is, when we look at the induced subgraph from looking at S, As is
the minimum strength of any edge in this induced subgraph.

We will take advantage of the following fact when working with these “contracted” versions
of hypergraphs:

> Claim 8 ([12]). Let H be a hypergraph, and let V4,. ..V} be a set of connected components
of strength > k. Then, the hyperedges of strength < x in H are exactly those hyperedges of
strength < x in H/(V4,...Vy), where we use H/(V1,... V) to denote the hypergraph where
Vi, ...V have each been contracted to their own super-vertices.

108:5
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This final claim will be very important for our algorithm. In particular, it implies that
once certain components have become sufficiently strongly connected, we no longer have to
worry about recovering low-strength hyperedges within the components, and can instead
focus only on recovering hyperedges that cross between such components. However, before
diving more into the details of this approach, we provide a more detailed re-cap of how prior
work [12] recovers low-strength hyperedges generically.

1.2.3 The Work of Khanna, Putterman, and Sudan [12]

With this formal notion of strength now in hand, we can formally present the algorithm
discussed in the previous subsection for sparsification (essentially the framework of [4, 1, 6,
12]):

Algorithm 1 SimpleSparsification(H, €).

1 Let Hy = H, let C be a sufficiently large constant.

2 for i =0,1,...log(m) do

3 Let F; be all hyperedges in H; of strength < 2Clog(n)/e?.
4 Store Fj.

5 Let H;11 be hyperedges in (H; — F;) sampled at rate 1/2.
6 end

7 return U;2¢ - F;.

This approach is exactly what was used by [12] when designing their hypergraph sparsifiers
for dynamic streams.

Indeed, their primary contribution was a linear sketch which can be used to exactly
recover these low-strength hyperedges at each level of the algorithm. Recall that a linear
sketch is simply a set of linear measurements of the hypergraph H and thus is directly
implementable as a dynamic streaming algorithm on hypergraphs, as both insertions and
deletions can be modeled as linear updates. Formally, when a hypergraph on n vertices is
viewed as a vector in {0, 1}2n, then a linear measurement of size s is obtained by mutliplying
a (possibly random) s x 2" matrix with this vector. Inserting a hyperedge is simply a +1
update in the coordinate corresponding to the hyperedge, and a deletion is simply a —1.

With this established, we can now summarize the space complexity resulting from the
linear sketching implementation of [12]:

1. At each of the log(m) levels of sampling in the above algorithm, the linear sketch
Section 1.2.1 can be used to recover the low strength edges. This is accomplished by
storing log(m) independent copies of a sketch for recovering low-strength hyperedges (one
copy at each level).

2. Within each individual sketch (at a fixed level of the sampling process), there is a specific
linear sketch stored for the neighborhood of the n vertices.

3. Each such vertex neighborhood sketch requires space O(r/€2) bits.

In total then, this yields a linear sketch (and hence a dynamic streaming algorithm) which
stores O(log(m) - n - r/€2) bits. Once this sketch has been stored, the algorithm can simply
iteratively recover the low strength edges at each of the log(m) levels of sampling, thereby
recovering a sparsifier of the original hypergraph.



S. Khanna, A. Putterman, and M. Sudan

1.2.4 Optimizing the Complexity in Insertion-only Streams

At first glance, it may seem that none of these parameters from the work of [12] can be
optimized in the insertion-only setting: indeed, there are m hyperedges in the hypergraph
initially, and thus any iterative procedure will require Q(log(m)) levels before exhausting
the hypergraph if the sampling rate is 1/2. Likewise, the n vertices are fixed, and the linear
sketch designed by [12] requires storing the linear sketches for each vertex. Lastly, the
complexity of the sketches for each vertex cannot hope to be improved, as simply recovering
a single hyperedge yields Q(r) bits of information. Thus, it may seem that one cannot build
on top of this framework while achieving a space complexity that beats O(nrlog(m)) bits of
space.

However, our first theorem shows that by cleverly merging and contracting vertices as
hyperedges are inserted, we can in fact improve the space complexity. Perhaps counterintuit-
ively, our optimization actually comes from decreasing the number of vertices (the parameter
n above).

To illustrate, let us consider a sequence of hyperedge insertions, and let us suppose that at
some point in time, a large polynomial number of hyperedges have been inserted (say, some
n'092 hyperedges). As one might expect, if so many hyperedges have been inserted, there will
naturally emerge certain components in the hypergraph which are very strongly connected.
More formally, if we revisit Claim 6, we can observe that the number of hyperedges of
strength < n'0%0 1001 " Thig implies that among the n'°°? hyperedges
which have been inserted, the vast majority are high strength hyperedges, and thus also
define many high strength components.

, must be less than n

As a consequence, after these hyperedges are inserted, there will be components C' C V for
which all of the hyperedges in the component C' are high-strength hyperedges, and therefore
do not need to be recovered in order to perform sampling by Claim 8. Algorithmically,
because we are dealing with an insertion-only stream, once such a component C' becomes a
high-strength component, it will forever remain a high-strength component, and thus, as per
Claim 8, we can effectively contract this component away.

Thus, our algorithmic plan is principled: we will estimate the strength of components
as hyperedges are inserted (separately for each level of the log(m) levels of sampling in
the hypergraph), and whenever a component gets sufficiently large strength, we érrevocably
contract the component away to a single super-vertex. We do this for the hypergraphs at
each of the log(m) levels of sampling. Thus, there are two key points that must be shown:
1. We must show that contracting these vertices saves space in our sketch.

2. We must show that we can estimate the strength in 5(m”) bits of space in the (insertion-
only) streaming setting.

In what follows, we explain how we achieve both of these goals.

1.2.5 Saving Space by Contracting Vertices

First, we show that we can save space by contracting vertices. Let us consider the top
level of sampling in the hypergraph. As mentioned above, as hyperedges are inserted, there
will naturally become certain strongly connected components. So, let us denote one such
component by C. Now, once this component is strong, it remains strong, and so we can be
sure that we do not need to recover any hyperedges within the component, as per Claim 8.
So, instead of storing the individual linear sketches S, for the vertices v € C, we instead
add the sketches together, yielding So = ), .~ S,. Note that this operation is not reversible,
and we are in fact losing information about the hypergraph when we perform this addition.

108:7
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However, this is the same reason that we will save some space: indeed, if there are k strong
components, we end up storing only the linear sketches of [12] for the k super-vertices, leading
to a total space usage of O(kr/e2) bits in a single level, as opposed to the O(nr/€2) bits in
[12] (note there is no log(m) here as we are only looking at the top level of sampling for
now).

Unfortunately, this analysis alone is not sufficient for us to claim any space savings.
Indeed, it is possible that (for instance) in the top level of sampling, there are no strong
components. It follows then that we cannot add together any linear sketches, and must
instead pay 6(nr/ €2) at this level of sampling. However, this is where we now use a key
bound on the number of low-strength edges Claim 6 [16]. If there are no components of
strength say, greater than n'°%, then there must be fewer than n'%" hyperedges remaining.
It follows then that instead of storing this sketch of size O(nr/€2) bits at each of the log(m)
levels of sampling, we must only store it at log(n!°°!) = O(log(n)) levels of sampling, thereby
replacing this log(m) factor with a log(n) factor.

This argument as we have presented it though is far from general and must be extrapolated
to work on all instances. In particular, it is possible that at different levels of sampling, the
strong components are different, and thus there is no single set of strong components that
we can look at. To address this, we make the observation that the strong components form a
laminar family. That is to say, the strong components at the i 4+ 1st level of sampling are a
refinement of the strong components at the ith level of sampling. Thus, across all log(m)
levels of sampling, the number of distinct strong components that appear is bounded by O(n).
Likewise, because any component of strength > n'%% is merged away, by the same logic
as above, each strong component must have < n'%! incident hyperedges (i.e., hyperedges
which touch this component, as well as some other component). Thus, each component that
appears will only have a non-empty neighborhood for O(log(n)) levels of sampling (after
which point we do not need to store anything - as the sketch of an empty neighborhood is
empty).

In summary then, for each of the O(n) strong component that appears, we store the
sketch from [12] of size O(r/€?) for O(log(n)) different levels of sampling. This then yields
the desired complexity of O(nr/e?) bits of space for the final algorithm.

1.2.6 Identifying Strong Components

Finally, we show that we can approximately find the strong components in the hypergraph
in an insertion-only stream. Fortunately, the foundation for this algorithm was presented in
[12]: let us consider again the hypergraph at the top level of sampling, which we denote by
H. Simultaneously, we consider an auxiliary hypergraph H which is the result of sampling
the hyperedges of H at rate 1/n'0%.

As shown in [12], it turns out the connected components in H exactly correspond to
the strong components in H. Thus, in the insertion-only streaming model, this admits an
exceedingly simple implementation: as hyperedges arrive, we sample them at rate 1/n'000,
and keep track of the components. Then, whenever a new component is formed, we simply
add together the corresponding linear sketches as discussed in the previous section (i.e.,
merging those vertices together). Note that storing the set of connected components can
be done in O(n) bits of space, and thus across log(m) levels of sampling, requires only

O(nlog(m)) bits. Because m < n”, this then yields the desired space complexity. These
ideas then suffice for the insertion-only implementation.
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1.2.7 Generalizing to Bounded-Deletions and Remarks

The key observation for generalizing the bounded deletion setting is that once a component

has strength k +n'%%0 then after any sequence of k deletions, the strength of the component

remains at least n'000.

1000

Thus, instead of adding samplers together after the components

reach strength n'"°" we instead add samplers together once the strength reaches k + n

Observe then that the log(k) term is a natural artifact: each strong component can have a

non-empty neighborhood of incident hyperedges for log(k 4 n) levels of sampling, as opposed

to simply O(log(n)) levels of sampling, and this yields the final complexity.
We now finish with some remarks:

1. The primary work-horse of [12] is a linear sketch known as an {p-sampler, and it is
tempting to simply try to replace the {y-samplers via linear sketching in their paper
with an fp-sampler specifically for insertion-only streams, thereby saving space. However,
such a replacement would necessitate an entirely new analysis: even though the stream
itself may not have deletions, the process of recovering hyperedges, merging vertices
together, and more all rely on the ability to linearly add together ¢y-samplers (which
causes deletions). While the aforementioned approach may work, it would not build on
the existing framework. The same goes for the bounded deletion setting, where it is
tempting to use {p-samplers defined for bounded-deletion streams (as discussed in [8]).

2. There are several subtleties that arise in the analysis regarding the estimation of strong
components, as this will never be an exact decomposition of the graph. We instead provide
upper and lower bounds on the strength of the components and remaining hyperedges,
and use this to facilitate our analysis. We defer a more complete description to the
technical sections below.

3. Likewise, in the bounded-deletion setting, there is considerable difficulty in optimizing the
dependence on k to not be log? (k). Roughly speaking, this is because the k dependence
tries to show up in both (1) the number of levels of sampling in which a strong component
has a non-empty neighborhood (a log(k) factor as described above) and (2) the support
size of the fp-samplers that are needed when using the sketch of [12] (another factor of
log(k)). We use a more refined analysis along with a second round of component merging
to bypass this other factor of log(k).

4. The lower bound follows from the augmented index problem along with an argument
from [8] on bounding the complexity of this problem in the bounded-deletion setting. We
defer a proof to the full version of the paper.
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