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Abstract
The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure
has been extensively studied and has many applications. In a seminal work, Benczúr and Karger
(1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0, 1),
there is a near-linear time algorithm that outputs a weighted subgraph G′ of G of size Õ(n/ε2)
such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G′. The graph G′

is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained
a similar result for the more general problem of hypergraph cut sparsifiers. However, all known
sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m

denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a
natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n,
independent of the number of edges. We resolve this question in the affirmative, giving the first
sublinear time algorithm for this problem, given appropriate query access to the hypergraph.

Specifically, we design an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a
hypergraph H(V, E) in polynomial time in n, independent of the number of hyperedges, when given
access to the hypergraph using the following two queries:
1. given any cut (S, S̄), return the size |δE(S)| (cut value queries); and
2. given any cut (S, S̄), return a uniformly at random edge crossing the cut (cut edge sample

queries).
Our algorithm outputs a sparsifier with Õ(n/ε2) edges, which is essentially optimal. We then
extend our results to show that cut value and cut edge sample queries can also be used to construct
hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges.

We complement the algorithmic results above by showing that any algorithm that has access to
only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is
polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge
sample queries with a pair neighbor sample query that for any pair of vertices, returns a random
edge incident on them. In contrast, we show that having access only to cut value queries and queries
that return a random edge incident on a given single vertex, is not sufficient.
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1 Introduction

In many applications, the underlying graphs are too large to fit in the main memory, and
one typically builds a compressed representation that preserves relevant properties of the
graph. Cuts in graphs are a fundamental object of study, and play a central role in the study
of graph algorithms. Consequently, the problem of sparsifying a graph while approximately
preserving its cut structure has been extensively studied (see, for instance, [17, 6, 18, 25, 1, 2,
13, 5, 3, 21, 15, 4, 16], and references therein). A cut-preserving sparsifier not only reduces
the space requirement for any computation, but it can also reduce the time complexity
of solving many fundamental cut, flow, and matching problems as one can now run the
algorithms on the sparsifier which may contain far fewer edges. In a seminal work, Benczúr
and Karger [6] showed that given any n-vertex undirected weighted graph G and a parameter
ε ∈ (0, 1), there is a near-linear time algorithm that outputs a weighted subgraph G′ of G of
size Õ(n/ε2) such that the weight of every cut in G is preserved to within a multiplicative
(1 ± ε)-factor in G′. The graph G′ is referred to as the (1 ± ε)-approximate cut sparsifier
of G.

In this work, we consider the problem of cut sparsification for hypergraphs. A hypergraph
H(V, E) consists of a vertex set V and a set E of hyperedges where each edge e ∈ E is a subset
of vertices. The rank of a hypergraph is the size of the largest edge in the hypergraph, that
is, maxe∈E |e|. Hypergraphs are a natural generalization of graphs and many applications
require estimating cuts in hypergraphs (see, for instance, [8, 9, 14, 26]). Note that unlike
graphs, an n-vertex hypergraph may contain exponentially many (in n) hyperedges. It is thus
natural to ask if cut-preserving sparsifiers in the spirit of graph sparsifiers can also be created
for hypergraphs as this would allow algorithmic applications to work with hypergraphs whose
size is polynomially bounded in n.

Kogan and Krauthgamer [19] initiated a study of this basic question and showed that given
any weighted hypergraph H, there is an O(mn2) time algorithm to find a (1±ε)-approximate
cut sparsifier of H of size Õ(nr

ε2 ) where r denotes the rank of the hypergraph. Similar to
the case of graphs, the size of a hypergraph sparsifier refers to the number of edges in the
sparsifier. Since r can be as large as n, in general, this gives a hypergraph cut sparsifier
of size Õ(n2/ε2), which is a factor of n larger than the Benczúr-Karger bound for graphs.
Chekuri and Xu [10] designed a more efficient algorithm for building a hypergraph sparsifier.
They gave a near-linear time algorithm in the total representation size (sum of the sizes of
all hyperedges) to construct a hypergraph sparsifier of size Õ(nr2/ε2) in hypergraphs of rank
r, thus speeding up the run-time obtained in the work of Kogan and Krauthgamer [19] by at
least a factor of n, but at the expense of an increased sparsifier size. Until recently, it was an
open question if the Benczúr-Karger bound is also achievable on hypergraphs, that is, do
there exist hypergraph sparsifiers with Õ(n/ε2) edges. In a very recent work [11], we were
able to resolve this question in the affirmative by giving a Õ(mn + n10/ε7) time algorithm
for creating hypergraph sparsifiers of size Õ(n/ε2).

All known results for creating poly(n) size hypergraph sparsifiers have at least one thing
in common – the running time of these algorithms has at least a linear dependence on both
n and m. All known algorithms are essentially based on sampling edges in proportion to
their importance, and they primarily differ in how the importance of an edge is defined and
computed. A linear dependence on n is unavoidable since the hypergraph size itself is Ω(n).
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However, since the number of hyperedges can be exponential in n, even a linear dependence
on m means that the running time of a sparsification algorithm can be exponentially large in
n in the worst-case. This motivates the following natural question: is there an algorithm for
building a hypergraph sparsifier that runs in time that is polynomial in n? In other words,
is there a sublinear time algorithm for creating hypergraph sparsifiers?

In order to tackle this question, we need to first define our model for accessing the input
hypergraph H = (V, E). The most basic requirement is to have the ability to efficiently
evaluate the size or weight of any cut in a given hypergraph. We assume here access to a cut
value oracle, denoted as Ovalue, which takes as input a cut C = (S, S̄), returns the size of the
cut |δH(S)|. This is akin to the standard assumption in submodular function minimization,
namely, the algorithm has an oracle access to the value of the submodular function on any
set S since the cut function is a submodular function. However, as it turns out, it is easy to
show that the access to a cut value oracle is provably not sufficient to construct a sparsifier,
regardless of the time allowed as this oracle can not differentiate between hypergraphs where
all edges have size 2 from hypergraphs where all edges have size 31. So we also need a
mechanism for accessing edges of the underlying graph. We thus introduce a second oracle,
referred to as the cut edge oracle, denoted as Oedge, which takes as input a cut C = (S, S̄),
returns a random edge crossing the cut. Given access to both these oracles, we are indeed
able to solve the problem of hypergraph sparsification in polynomial time in n.

▶ Theorem 1. Suppose we are given an unweighted hypergraph H = (V, E) that can be
accessed using the oracles Ovalue and Oedge. Then for any 0 < ε < 1, a (1 ± ε)-approximate
sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time, independent of the
number of hyperedges.

At a high-level, graph and hypergraph sparsification algorithms work by estimating the
importance of each edge in preserving cut sizes, and then sampling edges with probability
proportional to their importance and assigning them an appropriately scaled weight. The
main technical challenge in proving the above theorem is that the cut value oracle on the
original graph cannot be used to estimate cut sizes in the vertex-induced subgraphs of the
original graph – a step that is implicit in determining importance of edges in preserving the
cut structure. This issue does not arise in normal graphs where each edge contains 2 vertices,
and the cut value oracle on the original graph indeed suffices to recover cut values in any
induced subgraph. But once we consider hypergraphs with even edges of size 3, it is easy to
show that the cut value oracle on the original graph can not distinguish between induced
subgraphs that have minimum cut value 0 and induced subgraphs where the minimum cut
value is polynomially large. We refer the reader to Section 3 for a more detailed discussion of
this. We get around this issue by introducing for any subset of vertices X, a weaker notion of
pseudo cut size for approximating cut sizes in the subgraph induced by X. The new cut size
function remains submodular, and we show that it suffices to approximate the importance
of each edge to within a factor n of its true importance. We then use the Oedge oracle to
sample edges in accordance with their approximate importance. The resulting sparsifier H ′

has poly(n) edges which we further sparsify to Õ(n/ε2) edges in poly(n) time by applying
the result of [11] to H ′.

1 For instance, the cut value oracle can not distinguish between a copy of K4 and the hypergraph that
contains all possible hyperedges of size 3 on 4 vertices. Note that this does not rule out the possibility
of efficiently constructing a data structure/sketch that can be used to answer cut queries. Our focus in
this paper, however, is on constructing sparsifiers, namely, sparse subgraphs of the original graph that
preserve all cuts.
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We complement the algorithmic result above by showing that just like the oracle Ovalue
alone is not sufficient to achieve the result above, the oracle Oedge alone is also not sufficient
to create a poly(n) size hypergraph sparsifier in poly(n) time.

▶ Theorem 2. There is no polynomial time randomized algorithm that can use Oedge queries
alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with
probability better than o(1).

One may wonder if the oracle Oedge can be replaced with another access oracle that is
used in sublinear algorithms for standard graphs, namely, ability to access the ith neighbor
of a vertex v for any integer i that is at most the degree of v. It is easy to see that this
is essentially same as the ability to access a random edge incident on a vertex v. We can
generalize this idea to the setting of hypergraphs as follows. A neighbor query oracle in a
hypergraph takes as input a set S ⊆ V , and returns a random edge that contains all vertices
in S if there is such an edge, and returns NIL if there is no edge. We say that a neighbor
query is a single vertex neighbor query if |S| = 1, and it is a vertex pair neighbor query if
|S| = 2. We denote the oracles that answer a single vertex neighbor query and a vertex pair
neighbor query as O1

nbr and O2
nbr respectively. We next show that the oracle Oedge can be

replaced with the oracle O2
nbr, to obtain an alternate poly(n) time implementation of the

result in Theorem 1.

▶ Theorem 3. Given an unweighted hypergraph H = (V, E), suppose the algorithm can
access the hypergraph using Ovalue and O2

nbr, then for any 0 < ε < 1, a (1 ± ε)-approximate
sparsifier with Õ(n/ε2) hyperedges can be constructed in O(n10/ε7) time in n, independent
of the number of hyperedges.

In contrast to the result above, we show any algorithm that has access only to oracles
Ovalue and O1

nbr, requires exponentially many queries in the worst-case to construct a poly(n)
size sparsifier.

▶ Theorem 4. There is no polynomial time randomized algorithm that can use Ovalue and
O1

nbr queries alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph
H with probability better than o(1).

Hypergraph Spectral Sparsification. We also consider the problem of hypergraph spectral
sparsification, a notion that strengthens cut sparsification. A (1 ± ε)-approximate spectral
sparsifier of a graph G(V, E) is a weighted graph G′(V, E′) such that for every vector x ∈ Rn,
we have

|xT LG′ x − xT LG x| ≤ ε(xT LG x),

where LG and LG′ denote the Laplacian matrices of G and G′, respectively. To see that the
notion of spectral sparsifier only strengthens the notion of a cut sparsifier, observe that the
cut sparsification requirement for any cut (S, S̄) is captured by the definition above when we
choose x to be the 0/1-indicator vector of the set S. Batson, Spielman, and Srivastava [5]
gave a polynomial-time algorithm that for every graph G, gives a weighted graph G′ with
O(n/ε2) edges such that G′ is a (1 ± ε)-approximate spectral sparsifier of G. Subsequently,
Lee and Sun [21] gave an O(m/εO(1)) time algorithm to construct a spectral graph sparsifier
with O(n/ε2) edges.
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The notion of spectral sparsification can be extended to hypergraphs [22, 27] as follows.
The Laplacian LH of a hypergraph H is a function Rn → Rn, such that for any n-dimensional
vector x, we have

xT LH(x) =
∑
e∈E

w(e) max
u,v∈e

(x(u) − x(v))2.

Given a weighted hypergraph H with n vertices, a (1 ± ε)-spectral sparsifier H ′ is a
subgraph of H such that for any n-dimensional vector x, we have

(1 − ε)xT LH′(x) ≤ xT LH(x) ≤ (1 + ε)xT LH′(x).

Soma and Yoshida [23] give a polynomial-time algorithm that outputs a weighted spectral
sparsifier with Õ(n3) hyperedges. The algorithm of [23] is also based on sampling edges
based on a suitable notion of importance, and in their work, the importance of a hyperedge
e is measured by minu,v∈e |E({u, v})| where E({u, v}) is the set of edges that contains both
u and v. If we assume access to the underlying hypergraph using O2

nbr queries, then we can
sample a random hyperedge in E({u, v}) for any pair of vertices u and v, which makes it in
turn straightforward to simulate the algorithm of [23].

▶ Theorem 5. Given an unweighted hypergraph H = (V, E), suppose the algorithm can access
the hypergraph using Ovalue and O2

nbr queries. Then for any 0 < ε < 1, a (1 ± ε)-spectral
sparsifier with Õ(n3/ε2) hyperedges can be constructed in polynomial time in n, independent
of the number of hyperedges.

The more interesting case is when we can only access the hypergraph using Ovalue and
Oedge queries. It is now provably impossible to get a handle on |E({u, v})| using only
polynomially many queries, and thus there is no direct way to simulate the algorithm
in [23]. Recently, Bansal, Svensson, and Trevisan [4] designed another hypergraph spectral
sparsification algorithm that in polynomial-time algorithm creates a weighted spectral
sparsifier with Õ(nr3) hyperedges; here r denotes the maximum arity of any hyperedge.
Unlike the algorithm of [23], their measure of importance of a hyperedge is derived from an
auxiliary standard graph created by converting every hyperedge into a clique. The importance
of a hyperedge is then given by the maximum effective resistance among all the edges in the
clique associated with that hyperedge. We show that we can simulate this process using only
poly(n) many Ovalue and Oedge queries.

▶ Theorem 6. Given an unweighted hypergraph H = (V, E), suppose the algorithm can access
the hypergraph using only Ovalue and Oedge queries. Then for any 0 < ε < 1, a (1±ε)-spectral
sparsifier with Õ(n3/ε2) hyperedges can be constructed in polynomial time in n, independent
of the number of hyperedges.

The idea is to associate the strength of a hyperedge with the resistance of the edges inside
the clique associated with this hyperedge. We first show that in any standard graph the
effective resistance of an edge f is at most n/kf where kf denote the strength of the edge
f . We then show that the strength of a hyperedge e is at most the strength of any edge in
the clique associated with the hyperedge e. With this pair of relationships, we are able to
simulate the algorithm in [4] by the algorithm in Theorem 1, except that we will sample
somewhat larger number of hyperedges to meet the sampling probability requirement for the
sparsification algorithm in [4].

ICALP 2021
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Note that unlike hypergraph cut sparsification which is now well-understood [11], the
problem of determining the optimal size of a hypergraph spectral sparsifier is still open.
However, note that any further improvements on the size of hypergraph spectral sparsifiers
can be used in a black-box manner with our sparsification algorithms – we can simply apply
the improved sparsification algorithm to the sparsifier generated by our algorithm.

Finally, we note that since any spectral sparsifier is also a cut sparsifier, the lower bounds
in Theorem 2 and Theorem 4 also hold for spectral sparsifiers.

Extension to weighted hypergraphs. All our algorithmic results stated thus far are for
sparsifying unweighted hypergraphs. We note that all algorithms can be extended in a
straightforward manner to sparsifying weighted hypergraphs assuming natural weighted
versions of the access oracles used in proving these results. Specifically, it suffices to assume
that the oracle Ovalue returns the weight of a cut, and the oracles Oedge and O2

nbr return an
edge with probability proportional to its weight.

Organization. We set up our notation and state some useful background results in Section 2.
In Section 3, we give a poly(n) time algorithm for creating a Õ(n/ε2) size sparsifier using the
cut value and cut edge sample oracles, proving Theorem 1. In Section 4, we give a poly(n)
time algorithm for creating a Õ(n/ε2) size sparsifier using the cut value and the vertex pair
neighbor oracles, proving Theorem 3. Then in Section 5, we present poly(n) time algorithms
for hypergraph spectral sparsification proving Theorems 5 and 6. We show in Section 6 that
any weakening of the oracles assumed in Theorems 1 and 3 necessarily requires worst-case
exponential time for creating a poly(n) size hypergraph cut sparsifier, proving Theorems 2
and 4. In Section 7, we briefly describe how the results of Theorems 1 and 3 can be extended
to weighted hypergraphs. Finally, we conclude in Section 8 with some directions for future
work.

2 Preliminaries

2.1 Notation
Given an integer n and a probability p, let B(n, p) be the Bernoulli distribution with n trials
where each trial succeeds with probability p. Suppose a set has n elements, and given a
probability p. Then the following process will sample each element in the set with probability
p: we first sample a number N ∼ B(n, p), then randomly sample N elements in the set.

Given any weight function w : S → R≥0, we extend it to also be a function on subsets of
S so that w(S′) =

∑
e∈S′ w(e) for S′ ⊆ S.

Given a graph H = (V, E) and a subset of vertices V ′ ⊆ V , we define G[V ′] to be
the weighted subgraph/subhypergraph of G induced by the vertices in V ′. We identify an
edge/hyperedge e with the set of vertices that are contained in e. A hyperedge e has rank k

if |e| = k. The rank of a hypergarph is the maximum rank of its hyperedges.
Given a weighted hypergraph H = (V, E, w) and a cut C = (S, S̄), we say an edge e

crosses the cut if e ∩ S ̸= ∅ and e ∩ S̄ ̸= ∅. We denote by δH(S) the set of the edges crossing
the cut C in H. By definition, |δH(S)| is the number of edges crossing C and w(δH(S)) is
the weight of C. For any ε > 0, a (1 ± ε)-approximate cut sparsifier of H is a hypergraph
H ′ = (V, E′, w′) with E′ ⊆ E such that

∀S ⊆ V, |w′(δH′(S)) − w(δH(S))| ≤ εw(δH(S)).
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Given a weighted normal graph G with n vertices, the Laplacian LG ∈ Rn×n is defined
as follows: for any u, LG(u, u) is the total weight edges incident on u, and for any u ̸= v,
LG(u, v) is minus the weight of edges between u and v. For any n-dimensional vector x ∈ Rn,
xT LGx =

∑
(u,v)∈e w(e)(x(u) − x(v))2. A (1 ± ε)-spectral sparsifier G′ is a subgraph of G

such that for any vector x,

(1 − ε)xT LG′x ≤ xT LGx ≤ (1 + ε)xT LG′x.

The notion of spectral sparsification can be extended to hypergraphs as follows. The
Laplacian LH of a hypergraph H is a function Rn → Rn, such that for any n-dimensional
vector x, we have

xT LH(x) =
∑
e∈E

w(e) max
u,v∈e

(x(u) − x(v))2.

Given a weighted hypergraph H with n vertices, a (1 ± ε)-spectral sparsifier H ′ is a
subgraph of H such that for any n-dimensional vector x, we have

(1 − ε)xT LH′(x) ≤ xT LH(x) ≤ (1 + ε)xT LH′(x).

2.2 Hypergraph Cut Sparsification
In this section, we review some important concepts and results of hypergraph cut sparsifica-
tion.

Given a weighted hypergraph H = (V, E, w), a k-strong component of H is a maximal
induced subgraph of G that has minimum cut at least k. For any edge e, the strength of e,
denoted by ke, in H is the maximum value of k such that e is fully contained in a k-strong
component of H. Alternatively, the strength of an edge e ∈ E is the largest minimum cut
size among all induced subgraphs H[X] that contain e, where X ranges over all subsets of V .
The sum of we/ke is at most n − 1.

▶ Lemma 7 ([19]). Given a weighted hypergraph H = (V, E, w), we have
∑

e∈E we/ke ≤ n−1.

Benczúr and Karger [6, 7] showed that when we are dealing with a normal graph where each
edge contains exactly two vertices, if we sample each edge e independently with probability
pe = O(log n/ε2ke), and give it weight 1/pe if sampled, then the resulting graph will be a
(1 ± ε)-approximate cut sparsifier of G with high probability.

Kogan and Krauthgamer [19] generalized this approach to hypergraphs. They showed
that given a hypergraph H = (V, E) with rank r, for each hyperedge e, if we sample e with
probability pe = O((log n + r)/ε2ke), and has weight 1/pe if get sampled, the resulting graph
will be a cut sparsifier of H with high probability.

▶ Theorem 8 ([19]). Let H be a hypergraph with rank r, and let ε > 0 be an error parameter.
Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently
with probability pe = min{1, 3((d+2) log n+r)

keε2 }, giving it weight 1/pe if included. Then with
probability at least 1 − O(n−d)
1. the hypergraph H ′ has O( n

ε2 (r + log n)) edges, and
2. H ′ is a (1 ± ε)-approximate cut sparsifier of H.

In fact, if for each edge e, the sampling proability pe is at least 3((d+2) log n+r)
keε2 , then the

resulting graph is still a (1 ± ε)-approximate cut sparsifier. This is because in the proof of
Theorem 8, the authors showed that each cut has a very small probability that the cut size

ICALP 2021
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in H ′ is not within a factor of (1 ± ε) of the cut size in H, and the probability that there is
no such cut is also very small by taking a union bound over all possible cuts. To bound the
probability that a cut has a similar size in H ′ and H, the authors use the Chernoff bound.
However, we can also use the following concentration bound to prove the same result.

▶ Lemma 9 (Theorem 2.2 in [12]). Let {x1, . . . , xk} be a set of random variables, such that
for 1 ≤ i ≤ k, each xi independently takes value 1/pi with probability pi and 0 otherwise, for
some pi ∈ [0, 1]. Then for all N ≥ k and ε ∈ (0, 1],

Pr

∣∣∣∣∣∣
∑
i∈[k]

xi − k

∣∣∣∣∣∣ ≥ εN

 ≤ 2e−0.38ε2·mini pi·N

So if we replace the probability of sampling an edge e with qe ≥ pe, the concentration
bound in Lemma 9 still holds. In other words, if we sample according to qe then the
probability that each cut in the sampled graph H ′ has size close to the cut size in H is at
least as large as the probability when edges are sampled according to pe.

▶ Lemma 10. Let H be a hypergraph with rank r, and let ε > 0 be an error parameter.
Consider the hypergraph H ′ obtained by sampling each hyperedge e in H independently
with probability pe ≥ min{1, 3((d+2) log n+r)

keε2 }, giving it weight 1/pe if included. Then with
probability at least 1 − O(n−d), H ′ is a (1 ± ε)-approximate cut sparsifier of H.

Recently, [11] showed that for every n-vertex hypergraph, there is a (1 ± ε)-approximate
cut sparsifier with Õ(n) edges. Moreover, this sparsifier can be constructed in polynomial
time in the number of vertices and the number of hyperedges.

▶ Theorem 11 ([11]). Given a weighted hypergraph H, for any 0 < ε < 1, there exists an
randomized algorithm that constructs a (1 ± ε)-approximate cut sparsifier of H with O( n log n

ε2 )
hyperedges in O(mn + n10/ε7) time with high probability.

2.3 Hypergraph Spectral Sparsification
In this section, we review some important concepts and results on spectral sparsification in
both normal graphs and hypergraphs.

Given a weighted normal graph G, the effective resistance re of an edge e = (u, v) is
defined to be the electrical effective resistance between u and v if we view G as a electrical
network on n nodes in which each edge e corresponds to a resistor with conductance w(e).

Spielman and Srivastava [24] showed that given an unweighted graph G, if we sample
each edge e independently with probability pe = O(re log n/ε2) and give it a weight of we/pe

if sampled, then the resulting graph is a (1 ± ε)-spectral sparsifier.
In the case of hypergraphs, Soma and Yoshida [23] showed that if we sample each hyperedge

e with probability proportional to n log n/(ε2 minu,v∈e |E({u, v})|) where E({u, v}) is the
set of hyperedges that contains both u and v, then the resulting graph is a (1 ± ε)-spectral
sparsifier.

▶ Theorem 12 ([23]). Given an unweighted hypergraph H, if we sample each edge e with
probability pe = min{1, Cn log n

ε2 minu,v∈e|E({u,v})| } where C is a universal constant, and give weight
1/pe if sampled, then the resulting hypergraph H ′ is a (1 ± ε)-spectral sparsifier of H with
high probability. The sparsifier has Õ(n3/ε2) hyperedges. The running time of this algorithm
is Õ(mn2 + m + n3/ε2).
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Bansal et al. [4] take a different approach to hypergraph spectral sparsification. For any
hypergraph H, define the auxiliary graph GH as a normal graph that is obtained by, for
each hyperedge e, transforming e into a clique Fe over the vertices in e. For any hyperedge
e, we now define re = maxf∈Fe rf . Bansal et al. showed that if we sample each hyperedge e

with probability proportional to r4re log n/ε2 where r is the maximum size of any hyperedge
in H, then the resulting graph is a (1 ± ε)-spectral sparsifier.

▶ Theorem 13 ([4]). Given an unweighted hypergraph H, if we sample each edge e with
probability pe = min{1, Cr4re log n

ε2 } where C is a universal constant, and assign it weight 1/pe

if sampled, then the resulting hypergraph H ′ is a (1 ± ε)-spectral sparsifier of H with high
probability. The sparsifier has Õ(nr3/ε2) hyperedges.

Similar to the case of Theorem 8, Theorem 12 and Theorem 13 both work when we
sample each edge with a probability qe ≥ pe instead of pe and give weight 1/qe if sampled.

2.4 Minimizing a Submodular Function Using Value Queries
A set function f : 2Ω → R is a submodular function if for every S, T ⊆ Ω, f(S) + f(T ) ≥
f(S ∪ T ) + f(S ∩ T ). Given a graph/hypergraph, for any vertex set S, the cut function f(S),
defined as the weight of edges crossing cut (S, S̄) is easily shown to be submodular. There is
an algorithm that for any submodular function f finds a set S that minimizes the value of
function f using Õ(n3) value queries and in Õ(n4) time.

▶ Theorem 14 ([20]). There is an algorithm for submodular function minimization with
O(n3 log2 n) value queries and O(n4 logO(1) n) time where n is the size of the ground set.

3 Sublinear Time Cut Sparsification with Cut Size and Cut Edge
Sampling Queries

We now present an algorithm that, given access to a hypergraph H through cut size queries
(oracle Ovalue) and queries to sample a random edge crossing a cut (oracle Oedge), outputs
a (1 ± ε)-approximate sparsifier with Õ(n/ε2) hyperedges in poly(n) time. At a high-level,
our algorithm will first create a poly(n) size sparsifier H1 by indirectly implementing the
algorithm underlying Theorem 8. We then use the algorithm in Theorem 11 to construct a
sparsifier H2 of H1 which has Õ(n/ε2) hyperedges. By the definition of cut sparsifier, H2 is
also a cut sparsifier of H. We can thus focus on the construction of the sparsifier H1.

The primary challenge in simulating the algorithm of Theorem 8 is to sample edges
according to their strength with a small number of queries. Consider the following recursive
algorithm. We start with the graph H, and then at each step, we find the minimum cut of
the connected graph, and sample Θ((r + log n)/ε2) edges from the cut. We then recursively
execute this algorithm on each side of the cut. Algorithm 1 gives an implementation of
this idea.

It is easy to see that this algorithm samples each edge independently, and that the
sampling probability is at least that of Kogan-Krauthgamer in Theorem 8. The challenge is
that unlike cut queries in the normal graph, it is hard to compute the cut size in an induced
subgraph of a hypergraph using only cut queries on the original graph, which is crucial as
the algorithm proceeds recursively.

We first note that this task is straightforward to do in graphs where each edge has exactly
two vertices. For any two disjoint subsets of vertices S, T , the number of edges in S × T is
1
2 (|δ(S)| + |δ(T )| − |δ(S ∪ T )|).
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Algorithm 1 Sampling edges with probability proportional to their strength.

Input : A subset of vertices V ′ ⊆ V .
1 Let (S, S̄) be a minimum cut of the induced graph G[V ′];
2 Let c be the number of edges crossing (S, S̄) in G[V ′];
3 Sample an integer N ∼ B(c, 10(log n+r)

ϵ2c );
4 Sample N edges from δG[V ′](S) uniformly at random, and assign each of them a

weight of ϵ2c
10(log n+r) ;

5 Delete all edges in δG[V ′](S) and recurse on each of the newly created connected
components;

However, this is far from true in the hypergraph setting. The problem is that there may
be some hyperedges that intersect with each of S, T , and V \ (S ∪ T ). These edges are inside
all of δ(S), δ(T ) and δ(S ∪ T ). We have

|δ(S)| + |δ(T )| − |δ(S ∪ T )|

=2
∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) = ∅}

∣∣ +
∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) ̸= ∅}

∣∣
= |{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅}| +

∣∣{e|e ∩ S ̸= ∅, e ∩ T ̸= ∅, e ∩ (S ∪ T ) = ∅}
∣∣

▶ Example 15. Consider a hypergraph H that consists of three equal size sets of vertices
A, B, C, such that each hyperedge has a non-empty intersection with each of A, B, and C.
Then there are no hyperedges in H[A ∪ B]. But the quantity 1

2 (|δ(A)| + |δ(B)| − |δ(A ∪ B)|)
is half the total number of hyperedges which could be exponentially large in n.

▶ Example 16. Consider the following pair of hypergraphs on 4 vertices, say {v1, v2, v3, v4}:
the graph H1 is a (rank 2) clique on 4 vertices while the graph H2 contains every possible
edge of size 3 on these 4 vertices. It is easy to verify that the answer to every cut query is
the same on the graphs H1 and H2. Now consider the subgraph of these graphs induced
by the vertices X = {v1, v2}. In case of H1, the minimum cut in the induced subgraph is
1 while in H2, the minimum cut in the graph induced by X is 0. We can amplify this gap
to 0 versus Ω(n) by taking n/4 copies of H1 in one case, and n/4 copies of H2 in the other
case, and defining X to be union of arbitrarily chosen pairs of vertices from each copy. This
means that Ovalue queries can not be used to estimate cut size in induced subgraphs to any
multiplicative factor or to better than a polynomial additive error.

To get around the challenge highlighted by examples above, we next introduce notions of
pseudo cut size over a subset of vertices and pseudo strength of hyperedges, such that the
pseudo cut sizes are easy to compute by cut queries and pseudo strength of any hyperedge
is at most a factor n larger than the strength of the hyperedge. We develop these ideas in
detail in the next subsection.

3.1 Pseudo Cuts and Pseudo Strengths
Given a set of vertices X, we define ∆X(S), the pseudo cut size of a set S ⊂ X as
1
2 (|δ(S)| + |δ(X \ S)| − |δ(X)|), and define the pseudo min cut over X as a cut (S, X \ S)
that minimizes ∆X(S). Note that ∆X(S) is at most the number of edges that intersect both
S and X \ S. The following lemma shows that ∆X(S) is a submodular function, so we can
compute the pseudo min cut over any vertex set in poly(n) time by Theorem 14.

▶ Lemma 17. For any vertex set X ⊆ V , ∆X(S) is a submodular function.
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Proof. Let f1(S) be the number of edges that intersect both S and X \ S, and let f2(S)
be the number of edges that intersect both S and X \ S but are fully contained in X. By
definition, we have ∆X(S) = 1

2 (f1(S) + f2(S)), so to prove that ∆X(S) is a submodular
function, it is sufficient to prove that both f1 and f2 are submodular.

Since f2 is the cut function in the induced graph H[X], it is submodular. In fact, f1 is
also the cut function of the hypergraph whose vertex set is X and edge set is {e ∩ X|e ∈ E}.
So f1 is also a submodular function. ◀

For any edge e, we define the pseudo strength k′
e as the largest pseudo min-cut size among

all sets X that contain e, where X ranges over all subsets of V . It is easy to see that for any
edge e, k′

e is at least ke since for any set of vertices X, the minimum cut size of H[X] is at
most the pseudo min-cut size of set X. More interestingly, although Example 15 showed
that the pseudo min-cut size of a set X may be arbitrarily larger than the minimum cut size
of H[X], the lemma below shows that the pseudo strength of an edge is at most a factor n

larger than its strength.

▶ Lemma 18. For any edge e, k′
e ≤ nke.

Proof. Let X be any set of vertices that contains the edge e and has pseudo min-cut size k′
e

in H. To prove the lemma, it is sufficient to prove that the pseudo min-cut size of X in H is
at most nke.

Let Y = V and Ec = ∅. Consider the following iterative process: we find the minimum
cut (S, Y \ S) in H[Y ]. If either S or Y \ S fully contains the set X, we add all edges
crossing the cut into Ec, and set Y to be S or Y \ S (whichever fully contains X), and repeat.
Otherwise, we stop the process.

After the process terminates, suppose (S, Y \ S) is the minimum cut in H[Y ]. Since the
process terminated, (S, Y \ S) must partition X. Let S′ = S ∩ X, and consider the pseudo
cut (S′, X \ S′). We prove that the number of edges in H that intersect both S′ and X \ S′

(which is an upper bound on ∆X(S′)) is at most nke.
First, note that no edge e′ such that e′ ̸⊆ Y and e′ /∈ Ec can intersect with the set Y ;

hence any such edge e′ also does not intersect with S′ or X \ S′. Therefore every edge
that intersects with both S′ and X \ S′ either belongs to Ec or is completely contained in
Y . During the iterative process, the set Y always fully contains e, so by the definition of
strength, the minimum cut size of H[Y ] is at most ke. This implies during each step, at most
ke edges are added into Ec. On the other hand, the process repeats at most n − 2 times,
since each time the size of Y is reduced by at least 1. So |Ec| ≤ (n − 2)ke. Finally, any edge
that is fully contained in Y and intersects with both S′ and X \ S′ crosses the cut (S, Y \ S)
in H[Y ], and the number of such edges is at most the minimum cut size of H[Y ], which is at
most ke. So in total, there are at most |Ec| + ke ≤ (n − 1)ke edges that intersect both S′

and X \ S′. ◀

3.2 Sampling the Edges
We are now ready to present an algorithm that uses the cut size queries and cut edge
sample queries to sample each edge with probability inversely proportional to its strength.
Specifically, we will ensure that each edge e gets sampled with probability at least n2/k′

e

which is at least n/ke by Lemma 18. The algorithm is similar to Algorithm 1, but uses
pseudo cuts and pseudo strengths instead. To sample the edges, we call Algorithm 2 on
set V .
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Algorithm 2 Sampling edges with probability proportional to their pseudo strength.

Input : A subset of vertices V ′ ⊆ V

1 Find the pseudo min-cut (S, V ′ \ S) within the set V ′;
2 Let c be |δ(S)|, the cut size of (S, V \ S) ;
3 Sample an integer N ∼ B(c, min{1, 10n3

ϵ2c });
4 Keep sampling edges in cut (S, S̄) until we get N different hyperedges. ;
5 Recurse on both S and V ′ \ S ;

We now prove that each edge gets sampled with probability at least as large as the
sampling probability in Theorem 8. Fix an edge e, let S1 be the last input set that fully
contains e. For any i ≥ 1, if Si is not V , we define Si+1 to be the input set in the recursion
that generates a recursive call of the algorithm on the set Si. In other word, (Si, Si+1 \ Si)
is the pseudo min cut within set Si+1. Let (S0, S1 \ S0) be the pseudo min cut within S1,
by definition, e ∩ S0 ≠ ∅ and e ∩ S1 \ S0 ≠ ∅. When the algorithm works on set S1, e

gets sampled with probability min{1, 10n3

ε2|δ(S0)| }. If e gets sampled with probability 1, then
it is clearly as large as the probability in Theorem 8. Otherwise we need to prove that
n3/ |δ(S0)| = Ω((log n + r)/ke). Since n = Ω(log n + r), by Lemma 18, it is sufficient to prove
that |δ(S0)| ≤ nk′

e.

▶ Lemma 19. |δ(S0)| ≤ nk′
e.

Proof. We partition the edges crossing the cut (S0, S0) into sets E1, E2, . . . such that for
any i ≥ 0, Ei is the set of edges that are fully contained in Si+1 but not in Si. Note that
|δ(S0)| =

∑
i |Ei|. Since the algorithm has at most n levels of recursion, to prove the lemma,

it is sufficient to prove |Ei| ≤ k′
e for all i ≥ 0.

For any edge e′ ∈ Ei, e′ ∩ Si ̸= ∅ since e′ crosses the cut (S0, S0) and S0 ⊆ Si. We also
have e′ ∩ Si+1 \ Si ̸= ∅ and e′ ∩ Si+1 = ∅ since e′ is fully contained in Si+1 but not Si. So
|Ei| ≤ ∆Si+1(Si). On the other hand, by definition of pseudo strength, k′

e ≥ ∆Si+1(Si) since
e is fully contained in Si+1. Therefore, |Ei| ≤ k′

e. ◀

By Lemma 19, we proved that each edge e is sampled with probability at least the
required probability in Theorem 8. Next, we need to assign weights to each sampled edge.

We do this after we finish sampling. For each edge e that gets sampled, we need to know
the probability that it gets sampled. Since we sample edges from each cut independently, we
only need to know the probability that e gets sampled during each recursive call, and that
probability depends only on the size of the cut and whether e crosses the cut. So we can
compute the probability that e gets sampled during Algorithm 2.

To complete the proof of Theorem 1, we need to show that the running time of the whole
process is polynomial in n.

Proof of Theorem 1. During each call to Algorithm 2, we need Õ(n3) queries to cut size
query oracle and Õ(n4) time to figure out the pseudo min-cut within the set V ′ by Theorem 14
and Lemma 17. At line 4, we call cut edge sample query 10n3/ε2 times in expectation.
Total number of recursive calls to Algorithm 2 is O(n), since each time, the input set
gets partitioned into two sets, and there are n sets in the end. Thus the running time of
Algorithm 2 is Õ(n5 + n4/ε2).

We sample the edges in O(n) cuts, so when assigning the weights, we only need to query
the size of these O(n) cuts and calculate the probability of each sampled edge, which can
also be done in O(n) time for each edge. So the running time of assigning the weights is
Õ(n5/ε2).
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After sampling the edges and assigning weights, we get a (1±ε)-approximate cut sparsifier
H1 of H with polynomial size in n. Then we run the algorithm in Theorem 11 to find a
(1 + ε)-approximate cut sparsifier H2 of H1 with Õ(n/ε2) number of edges in polynomial
time in n. By definition of cut sparsifier, H2 is a (1 ± ε)2-approximate cut sparsifier of H.
Since H1 contains Õ(n4/ε2) edges, by Theorem 11, the running time is O(n10/ε7).

So the total running time is O(n10/ε7). ◀

4 Sublinear Time Cut Sparsification with Cut Size and Pair Neighbor
Queries

In this section, we show that cut edge queries can be simulated by a poly(n) number of cut size
queries (oracle Ovalue) and pair neighbor queries (oracle O2

nbr), establishing that cut size query
oracle and pair neighbor query oracle are also sufficient to compute a (1 ± ε)-approximate
cut sparsifier in poly(n) time.

Given a pair of vertices u and v, let E({u, v}) be the set of edges that contain both u and
v. We first show how to approximate |E({u, v})| to within a factor of (1 ± ε) with probability
1 − ξ, for some small ξ. Note that we can compute 2∆{u,v}({u}) = |E({u, v})| + |E ∩ {u, v}|,
where |E ∩ {u, v}| is the number of copies of the edge {u, v}. We now describe an algorithm
to approximate |E({u, v})|:

Algorithm 3 Approximating |E({u, v})|.

Input : A pair of vertices u, v ∈ V , ε, ξ.
Output : An approximation Ê({u, v}) of |E({u, v})|.

1 Define k = 12 log(2/ξ)/(ε2).
2 Call the oracle O2

nbr k times on (u, v), and let α̂ be the fraction of returned edges
that were {u, v}.

3 Return Ê({u, v}) := 2∆{u,v}({u}) · 1
1+α̂ .

Note that this algorithm makes k = O( log(1/ξ)
ε2 ) queries.

▶ Lemma 20. With probability at least 1 − ξ, Ê({u, v}) is an approximation of |E({u, v})|
to within a factor of (1 ± ε).

Proof. Let α := |E∩{u,v}|
|E({u,v})| be the fraction of hyperedges that are {u, v}. The algorithm runs

a Monte Carlo simulation to approximate α by the ratio α̂. In order to prove concentration
of α̂ around α, let k′ be the total number of {u, v} edges returned, and observe that k′

is the sum of k independent Bernoulli random variables each having probability equal to
α. By Chernoff bound, Pr[|k′ − αk| > εk/2] ≤ 2 exp(−αkε2/12α) ≤ 2 exp(−kε2/12) =
2 exp(log(ξ/2)) = ξ. Therefore with probability at least 1 − ξ, |α̂ − α| ≤ ε/2. This implies
that 1

1+α̂ ∈ 1
1+α±ε/2 ⊆ 1

(1±ε/2)(1+α) . Finally, we use that 1
(1∓ε/2) ⊆ (1 ± ε) to conclude that

1
1+α̂ ∈ 1±ε

1+α , so

2∆{u,v}({u})
1 + α̂

∈ (1 ± ε)
2∆{u,v}({u})

1 + α
= (1 ± ε)|E({u, v})|. ◀

We now describe an algorithm to sample a random edge from δ(S), simulating a response
to Oedge. We first approximate the size of E({u, v}) for each pair of vertices u ∈ S and v ∈ S̄.
Then we sample a pair of u, v with probability proportional to |E({u, v})|, sample an edge
in E({u, v}), and then decide whether we keep it or not with probability proportional to its
size. If we decide not to pick the edge, we repeat the whole process again.
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Algorithm 4 Sampling an edge in δ(S).

Input : A subset S ⊆ V

Output : An edge e ∈ δ(S)
1 For each pair of vertices u, v such that u ∈ S and v ∈ S̄, call Algorithm 3 with

ξ = 1/n20, and let Ê({u, v}) be the output;
2 Sample a pair of vertices (u, v) ∈ S × S̄ with probability proportional to Ê({u, v});
3 Use the oracle O2

nbr to sample an edge e in E({u, v});
4 With probability 1

|e∩S|·|e∩S̄| , return e. Otherwise go to Step 2.

▶ Lemma 21. With probability at least 1 − 1/n−10, Algorithm 4 samples each edge in δ(S)
gets with probability 1±ε

|δ(S)| . The expected running time is Õ(n2/ε2).

Proof. We first condition on the |S| · |S̄| ≤ n2 events that for each pair u, v with u ∈ S

and v ∈ S̄, the estimate Ê({u, v}) was indeed in (1 ± ε) · |E({u, v})|, which happens with
probability at least 1 − n2ξ > 1 − 1/n−10. Now fix an edge e ∈ δ(S). The probability that it
was sampled at a particular iteration of Algorithm 4 is

∑
u∈S∩e,v∈S̄∩e

Ê({u, v})∑
(u′,v′)∈S×S̄ Ê({u′, v′})

· 1
|E({u, v})| · 1

|e ∩ S| · |e ∩ S̄|

∈ 1∑
(u′,v′)∈S×S̄ Ê({u′, v′})

∑
u∈S∩e,v∈S̄∩e

(1 ± ε)
|e ∩ S| · |e ∩ S̄|

= (1 ± ε)∑
(u′,v′)∈S×S̄ Ê({u′, v′})

That is, the probability of sampling each edge at any given iteration of Algorithm 4 is
within (1 ± ε) of every other edge. Therefore the probability of sampling each edge is within
a factor of (1 ± ε) of every other edge.

Step 1 calls Algorithm 3 O(n2) times, so the running time is Õ(n2/ε2). At step 4, the
probability that we keep the edge and finish the algorithm is at least 1/n2, so the expected
number of iterations through step 2 to 4 is at most n2. So the total running time on step 2
to 4 is Õ(n2) in expectation. ◀

Proof of Theorem 3. We run Algorithm 2, but each time it calls Oedge, we instead run
Algorithm 4 twice. With high probability, each time we simulate Oedge by Algorithm 4, the
probability of any edge in the cut being sampled is within a (1 ± ε) factor of the uniform
distribution. Denote by q′

e be the probability that an edge e is sampled by this algorithm, and
let qe be the probability that the edge e is sampled in Algorithm 2. We have q′

e ∈ 2(1 ± ε)qe,
which is larger than pe the probability of sampling an edge in Theorem 8. Also we cannot
directly compute q′

e, but we can approximate it to within a factor of (1 ± ε), which only adds
another (1 ± ε) factor to the approximation achieved by the cut sparsifier.

Since the number of calls to Oedge oracle in Algorithm 2 is Õ(n4/ε2). So we need
Õ(n6/ε2) = o(n10/ε7) queries to simulate these calls. So the running time of the algorithm
is still O(n10/ε7). ◀

5 Sublinear Time Hypergraph Spectral Sparsification

In this section, we consider the problem of hypergraph spectral sparsification in the access
models considered in the previous sections. We will focus on unweighted hypergraphs here,
and show that these results can be extended to the weighted case in Section 7. We first
consider the setting when we can access the underlying hypergraph using Ovalue and O2

nbr
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queries. It is easy to simulate the approach in Theorem 12 since O2
nbr allows us to sample

from E({u, v}) for any u and v. For any pair of vertices u and v, we sample Cn log n/ε2

edges in E({u, v}). For any hyperedge e, e gets sampled with probablity qe which is at least
the required value pe. Next we need to assign weights to the sampled edges. For any pair
of vertices u and v, we use Algorithm 3 to approximate |E({u, v})|. Then for any e, we
approximate qe by the approximation of |E({u, v})| for all pair u and v in e, and then assign
the weight of e as 1/qe.

Proof of Theorem 5. For each pair of vertices u and v, we sample Õ(n) edges in E({u, v}),
and also use Algorithm 3 to approximate |E({u, v})|. The total number of edges in the
sparsifier and the total number of queries we perform is Õ(n3). For every sampled edge e, we
need to calculate qe, which costs at most O(n2) time as we need to combine the probabilities
of sampling e through any pair of vertices inside e. So the total time complexity of the
algorithm is Õ(n5). ◀

We next consider the case when we are given access to hypergraph via Ovalue and Oedge
queries only. We observe that we cannot simulate the algorithm in Theorem 12. Consider the
following hypergraph H: there is a pair of vertices u and v, such that H contains all possible
hyperedges that do not contain both u and v. H also contains an edge {u, v}. Since {u, v}
is the only edge that contains both u and v, we need to sample this edge with probability 1
in the algorithm of Theorem 12. However, any cut in the hypergraph has exponential (in n)
size. So we need an exponential number of queries to sample the edge {u, v}.

Given the obstacle above, we will instead simulate Theorem 13. Our approach is to show
that the task of implementing Theorem 13 can be accomplished by our algorithm in Section 3,
except that we will sample poly(n) times more hyperedges. By doing so, we will guarantee
that the probability that each hyperedge e gets sampled is larger than the pe in Theorem 13.
We now develop the ideas needed to establish this coupling between Theorem 13 and our
algorithm in Section 3.

We first observe a relationship between the effective resistance and strength of an edge in
a normal graph.

▶ Lemma 22. For any edge f in a normal (weighted) graph G, we have rf ≤ n
kf

.

Proof. Suppose the edge f = (u, v), and let c denote the min-cut size between u and v.
Since for any vertex-induced subgraph of G that contains both u and v, the min-cut size is
at most c, it follows that kf ≤ c. So it is sufficient to prove that rf ≤ n

c .
Since the min-cut size between u and v is c, the max-flow size between u and v is also

c, which means we have a set of c edge-disjoint paths from u to v. As each path can have
length at most n, this set of edge-disjoint paths can be interpreted as c parallel resistors each
with resistance at most n. By Rayleigh’s monotonicity law, it then follows that rf ≤ n

c . ◀

We now briefly review the approach underlying Theorem 13 (see Section 2.3). Recall that
for any hyperedge e in a hypergraph H, Fe is the clique associated with e in the auxiliary
graph GH , and re = maxf∈Fe

rf . Define κe = minf∈Fe
kf . Then by Lemma 22, we have

re ≤ n
κe

. The following lemma shows a relationship between κe and ke.

▶ Lemma 23. For any hyperedge e in a hypergraph H, κe ≥ ke.

Proof. For any subset of vertices X, consider the corresponding vertex-induced subgraphs
of H and GH , which we denote by H[X] and GH [X], respectively. For any cut defined by a
partition of X, and for any hyperedge e crossing this cut in H[X], at least one edge in Fe
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must cross this cut in GH [X]. So the min-cut size of H[X] is at most the min-cut size of
GH [X]. Let Xe be the set of vertices such that e ⊆ Xe and the min-cut size of H[Xe] equals
ke. The min-cut size of GH [Xe] is at least ke. For any edge f ∈ Fe, f is contained in Xe

and so kf ≥ ke, which means κe = minf∈Fe kf ≥ ke. ◀

By Lemma 22 and Lemma 23, we have n
ke

≥ re for any hyperedge e. So by Theorem 13, if
we sample each hyperedge with probability qe which is at least min{1, Cn5 log n

ε2ke
}, and assign

it weight 1/qe if sampled, then the resulting hypergraph is a (1 ± ε)-spectral sparsifier. So we
can use the same process as described in Section 3, except that we oversample hyperedges by
a factor of n4. The resulting hypergraph will then be a (1 ± ε)-spectral hypergraph sparsifier.

Proof of Theorem 6. We run Algorithm 2, except that in line 3, we set N ∼
B(c, min{1, Cn7

ε2c }) where C is the constant in Theorem 13. By the same argument as
in Section 3, we sample each edge with probability at least min{1, Cn5 log n

ε2ke
}, which means

the resulting graph is a (1 ± ε)-spectral sparsifier if we assign the weight of each edge also
using the same process in Section 3. The number of hyperedges sampled is Õ(n8/ε2). We
then run the algorithm in Theorem 12 on our sparsifier and get a (1 ± 2ε)-spectral sparsifier
with Õ(n3/ε2) hyperedges. The time taken by running Algorithm 2 and assigning weights is
Õ(n9/ε) since there are n4 times more hyperedges being sampled. The running time of the
algorithm in Theorem 12 is Õ(n10) since there are Õ(n8) hyperedges sampled by Algorithm 2.
So the overall running time is Õ(n10). ◀

6 Lower Bounds

In this section we show that any natural relaxation of the assumptions underlying Theorem 1
and 3 rules out poly(n) time sparsification algorithms, proving Theorem 2 and 4.

6.1 Queries Ovalue and O1
nbr Together are not Sufficient

In this section, we prove that if any randomized algorithm can only access the underlying
hypergraph via Ovalue and O1

nbr, it is not possible to find with probability better than o(1) a
(1 ± ε)-approximate cut sparsifier with only poly(n) queries, proving Theorem 4. We start
by showing a weaker result, as stated in the lemma below, which shows that the failure
probability of a poly(n) time algorithm must be at least 1/2 − o(1), and then show how to
amplify the failure probability to 1 − o(1).

▶ Lemma 24. There is no polynomial time algorithm that can use Ovalue and O1
nbr queries

alone to construct a (1 ± ε)-approximate sparsifier of an underlying hypergraph H with
probability at least 1/2 + ξ for any constant ξ > 0.

Proof. Suppose the runtime of the algorithm is bounded by some polynomial f(n). We will
construct two graphs H1 = (V ∪ V ′, E1) and H2 = (V ∪ V ′, E2) with |V | = |V ′| = n and the
algorithm is shown with probability 1/2 the graph H1 and with probability 1/2 the graph
H2. We will then show that (a) any algorithm that can only access the underlying graph
using Ovalue and O1

nbr cannot distinguish between these two graphs with probability at least
1/2 + ξ for any constant ξ > 0, and (b) there exists a non-empty cut such that H1 and H2
do not have any common edges crossing the cut. Together, these properties immediately
imply the lemma .

Let u, v ∈ V and u′, v′ ∈ V ′ be two arbitrary pairs of vertices. Let E = 2V ∪ 2V ′ be the
union of the complete hypergraphs on V and V ′. We define E1 as E along with all possible
edges of size two among {u, v, u′, v′}. We define E2 as E along with all possible edges of
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size 3 among {u, v, u′, v′}. It is easy to verify that for any cut, the number of edges in E1
crossing the cut equals the number of edges in E2 crossing the cut. So any cut size query
Ovalue has the same answer in H1 and H2, and hence can not distinguish between these two
graphs, no matter the number of queries allowed.

The algorithm can additionally make at most f(n) calls to O1
nbr. But since each vertex

w ∈ V ∪ V ′ has at least 2n edges incident on it, the probability that a uniformly random edge
incident on w is not in E is at most 3/2n. Using a union bound over all f(n) queries along
with the fact that 3f(n)/2n ≤ ξ for sufficiently large n, we get that for both hypergraphs,
with probability at least 1 − 3f(n)/2n ≥ 1 − ξ, all sampled edges are in E.

Thus conditioned on the event that all of the sampled edges are in E, the algorithm
cannot distinguish between H1 and H2. On the other hand, there are no common edges
crossing the cut (V, V ′) in H1 and H2, so to output a proper (1±ε)-approximate cut sparsifier,
the algorithm must distinguish between H1 and H2. Hence the probability that algorithm
succeeds is at most 1/2 + ξ. ◀

To amplify the failure probability to 1 − o(1), we can independently generate log n

instances from the distribution above with each instance containing n/ log n vertices. We
now let our underlying graph be a union of these log n instances. Any algorithm that
outputs a (1 ± ε)-approximate sparsifier, must successfully identify for each of the log n

instances whether it is an instance of H1 or H2. Thus the probability of success is at most
(1/2 + o(1))log n = o(1). This completes the proof of Theorem 4.

6.2 Oedge Queries Alone are not Sufficient
In this section, we prove that if the algorithm can access the hypergraph through only Oedge
queries, it is not possible to find a proper (1 ± ε)-approximate cut sparsifier with poly(n)
queries with success probability better than o(1), proving Theorem 2. As above, we start by
showing a weaker result, which shows that the failure probability of a poly(n) time algorithm
must be at least 1/2 − o(1), and then show how to amplify the failure probability to 1 − o(1).

We first define two distributions of hypergraphs H1 and H2 such that for any sequence of
the queries the algorithm asks to Oedge, the distribution of the answers are almost identical
regardless of whether the graph was chosen from H1 or H2.

A graph in each of the distributions H1 and H2 is generated as follows. There are n + 1
vertices v0, v1, . . . , vn and the generated graph will have 2n − n − 1 edges. If the graph is
generated by H1, then we randomly choose 2n/2 subsets of {v1, . . . , vn} with size at least 2.
If the graph is generated by H2, then we randomly choose 2n/4 subsets of {v1, . . . , vn} with
size at least 2. Then for any subset S of {v1, . . . , vn} of size at least 2, if S is chosen in the
previous step, then the edge S ∪ {v0} is in the graph, otherwise the edge S is in the graph.

The algorithm is presented with probability 1/2 a graph H generated by H1, and with
probability 1/2 a graph H generated by H2, that is, the algorithm sees a graph H generated by
the distribution 1/2H1 + 1/2H2. Since the cut sizes of ({v0}, {v0}) in the graph generated by
H1 and H2 are 2n/2 and 2n/4 respectively, any algorithm that outputs a (1 ± ε)-approximate
cut sparsifier with ε < 1 must be able to distinguish between the graphs generated by H1
and H2. However, the following lemma shows that unless the algorithm makes exponential
number of queries, it cannot distinguish between the graphs generated by H1 and H2. The
proof of this lemma is deferred to the full version of this paper.

▶ Lemma 25. Any algorithm that only makes k Oedge queries where k = Poly(n) cannot
determine with probability better than 1

2 + k2

2n/4 if the underlying graph H is generated from
H1 or H2.
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Thus any algorithm that makes only poly(n) Oedge queries, fails with probability at least
1/2 − o(1). To amplify the failure probability to 1 − o(1), we can as before independently
generate log n instances from the distribution above with each instance containing n/ log n

vertices. We now let our underlying graph be a union of these log n instances. Any algorithm
that outputs a (1 ± ε)-approximate sparsifier, must successfully identify for each of the
log n instances whether it was generated from the first distribution or the second. Thus
the probability of success is at most (1/2 + o(1))log n = o(1). This completes the proof of
Theorem 2.

7 Weighted Hypergraphs

In this section, we describe how to extend the results of Theorem 1, Theorem 3, Theorem 5,
and Theorem 6 to weighted hypergraphs. Given a weighted hypergraph H = (V, E, w), we
consider access to this graph by weighted generalizations of oracles Ovalue, Oedge, and O2

nbr:
the oracle Ovalue now returns the weight of a cut rather than its size, and instead of sampling
uniformly, the oracles Oedge and O2

nbr sample edges with probability proportional to their
weight.

We first note that all the Theorems we use to derive these results (Theorem 8, Theorem 12,
and Theorem 13) can be modified to work when the input hypergraph is weighted.

▶ Lemma 26 (Weighted version of Theorem 8). Let H = (V, E, w) be a weighted hy-
pergraph with rank r, and let ε > 0 be an error parameter. Consider the hypergraph
H ′ obtained by sampling each hyperedge e in H independently with probability pe ≥
min{1, w(e) · 3((d+2) log n+r)

keε2 }, giving it weight w(e)/pe if included. Then with probability
at least 1 − O(n−d), H ′ is a (1 ± ε)-approximate cut sparsifier of H, and has O( n

ε2 (r + log n))
hyperedges.

▶ Lemma 27 (Weighted version of Theorem 12). Let H = (V, E, w) be a weighted hypergraph,
and let ε > 0 be an error parameter. Consider the hypergraph H ′ obtained by sampling each
hyperedge e in H independently with probability pe ≥ min{1, w(e) · Cn log n

ε2 minu,v∈e w(E({u,v})) },
giving it weight w(e)/pe if included. Then with high probability, H ′ is a (1 ± ε)-approximate
spectral sparsifier of H, and has Õ(n3/ε2) hyperedges.

▶ Lemma 28 (Weighted version of Theorem 13). Let H = (V, E, w) be a weighted hypergraph
with rank r, and let ε > 0 be an error parameter. Consider the hypergraph H ′ obtained by
sampling each hyperedge e in H independently with probability pe ≥ min{1, w(e) · Cr4re log n

ε2 },
giving it weight w(e)/pe if included. Then with high probability, H ′ is a (1 ± ε)-approximate
spectral sparsifier of H, and has Õ(nr3/ε2) hyperedges.

Most of our arguments and definitions for the unweighted case of Theorem 1 and Theorem 6
translate directly to the weighted case once we replace every mention of the cardinality of an
edge set by the weight of that edge set. In particular, if we generalize the definition of pseudo
cut size to be ∆X(S) = 1

2 (w(δ(S)) + w(δ(X \ S)) − w(δ(X))), then the proofs for Lemma 17,
Lemma 18, and Lemma 19 are completely analogous. The only difference in the analysis of
Algorithm 2 is that the probability that a sample from the cut (S0, S̄0) returns an edge e in
the cut is now w(e)/w(δ(S)), implying that the probability that e is sampled by Algorithm 2
is at least min{1, 10w(e)n3

ϵ2w(δ(S0)) }. Since this is at least the requisite sampling probability in
Lemma 26, the hypergraph H1 is a sparsifier of H with high probability. In the case of
Theorem 6, we still have that for every hyperedge e, n

ke
≥ re, so Algorithm 2 can be applied

to sample each hyperedge e with the desired probability of at least min{1, w(e) · Cr4re log n
ε2 }.



Y. Chen, S. Khanna, and A. Nagda 53:19

Similarly for Theorem 3 and Theorem 5, the proof of correctness of Algorithm 3 is
almost completely analogous (although this time, the algorithm outputs an estimate of
the total weight of hyperedges containing both u and v). The proof of correctness of
Algorithm 4 is modified to assert that the probability of sampling an edge e ∈ E({u, v})
is w(e)/w(E({u, v})), implying that the probability that the algorithm samples e in each
iteration is proportional to (1 ± ε) · w(e).

Note that the running time of our algorithms are independent of the number of edges
in the unweighted setting. Similarly, in the weighted setting, our running times have no
dependence on the weights of the edges, and the running time and the size of sparsifier are
the same as in the unweighted cases.

8 Concluding Remarks

We presented the first sublinear time algorithms for creating a hypergraph sparsifier. Given
access to a hypergraph through cut size and suitable edge sampling queries, our algorithm
outputs a (1 ± ε)-approximate sparsifier with Õ(n/ε2) hyperedges in polynomial time in n,
independent of the number of hyperedges. We also showed that for any natural weakening of
our query access assumptions, there is no poly(n) time algorithm for building a hypergraph
sparsifier of poly(n) size. An intriguing question is if an information-theoretic cut sparsifier
can be constructed using cut value queries alone. Cut value queries alone can not distinguish
between hypergraphs which only contain edges of rank 2 from hypergraphs which only contain
edges of rank 3, making it impossible for them to output a proper sparsifier. But this does
not rule out the possibility that a suitable data structure can be created using these queries
alone that can recover the value of any cut to within a (1 ± ε)-approximation.
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