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Abstract

In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters
problem while preserving differential privacy in the fully distributed local model. In this model,
there are n parties, each of which possesses a single element from a universe of size N . The
heavy hitters problem is to find the identity of the most common element shared amongst the
n parties. In the local model, there is no trusted database administrator, and so the algorithm
must interact with each of the n parties separately, using a differentially private protocol. We
give tight information-theoretic upper and lower bounds on the accuracy to which this problem
can be solved in the local model (giving a separation between the local model and the more
common centralized model of privacy), as well as computationally efficient algorithms even in
the case where the data universe N may be exponentially large.

1 Introduction

Consider the problem of a website administrator who wishes to know what his most common traffic
sources are. Each of n visitors arrives with a single referring site: the name of the last website
that she visited, which is drawn from a vast universe N of possible referring sites (N here is the set
of all websites on the internet). There is value in identifying the most popular referring site (the
heavy hitter): the site administrator may be able to better tailor the content of his webpage, or
better focus his marketing resources. On the other hand, the identity of each individual’s referring
site might be embarrassing or otherwise revealing, and is therefore private information. We can
therefore imagine a world in which this information must be treated “privately.” Moreover, in
this situation, visitors are communicating directly with the servers of the websites that they visit:
i.e. there is no third party who might be trusted to aggregate all of the referring website data
and provide privacy preserving statistics to the website administrator. In this setting, how well
can the website administrator estimate the heavy hitter while being able to provide formal privacy
guarantees to his visitors?

This situation can more generally be modeled as the heavy hitters problem under the constraint
of differential privacy. There are n individuals i ∈ [n] each of whom is associated with an element
vi ∈ N of some large data universe N . The heavy hitter is the most frequently occurring element
x ∈ N among the set {v1, . . . , vn}, and we would like to be able to identify that element, or one
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that occurs almost as frequently as the heavy hitter. Moreover, we wish to solve this problem
while preserving differential privacy in the fully distributed (local) model. We define this formally
in section 2, but roughly speaking, an algorithm is differentially private if changes to the data of
single individuals only result in small changes in the output distribution of the algorithm. Moreover,
in the fully distributed setting, each individual (who can be viewed as a database of size 1) must
interact with the algorithm independently of all of the other individuals, using a differentially
private algorithm. This is in contrast to the more commonly studied centralized model, in which a
trusted database administrator may have (exact) access to all of the data, and coordinate a private
computation.

We study this problem both from an information theoretic point of view, and from the point
of view of efficient algorithms. We say that an algorithm for the private heavy hitters problem is
efficient if it runs in time poly(n, logN): i.e. polynomial in the database size, but only polylog-
arithmic in the universe size (i.e. in what we view as the most interesting range of parameters,
the universe may be exponentially larger than the size of the database). We give tight information
theoretic upper and lower bounds on the accuracy to which the heavy hitter can be found in the
private distributed setting (separating this model from the private centralized setting), and give
several efficient algorithms which achieve good, although information-theoretically sub-optimal ac-
curacy guarantees. We leave open the question of whether efficient algorithms can exactly match
the information theoretic bounds we prove for the private heavy hitters problem in the distributed
setting.

1.1 Our Results

In this section, we summarize our results. The bounds we discuss here are informal and hide many
of the parameters which we have not yet defined. The formal bounds are given in the main body
of the paper.

First, we provide an information theoretic characterization of the accuracy to which any algo-
rithm (independent of computational constraints) can solve the heavy hitters problem in the private
distributed setting. We say that an algorithm is α-accurate if it returns a universe element which
occurs with frequency at most an additive α smaller than the true heavy hitter. In the centralized
setting, a simple application of the exponential mechanism [MT07] gives an α-accurate mechanism
for the heavy-hitters problem where α = O(log |N |), which in particular, is independent of the
number of individuals n. In contrast, we show that in the fully distributed setting, no algorithm
can be α-accurate for α = Ω(

√
n) even in the case in which |N | = 2. Conversely, we give an

almost matching upper bound (and an algorithm with run-time linear in N) which is α-accurate
for α = O(

√
n logN).

Next, we consider efficient algorithms which run in time only polylogarithmic in the universe
size |N |. Here, we give two algorithms. One is an application of a compressed sensing algorithm of
Gilbert et al [GLPS10], which is α-accurate for α = Õ(n5/6 log logN). Then, we give an algorithm
based on group-testing using pairwise independent hash functions, which has an incomparable
bound. Roughly speaking, it guarantees to return the exact heavy hitter (i.e. α = 0) whenever
the frequency of the heavy hitter is larger than the ℓ2-norm of the frequencies of the remaining
elements. Depending on how these frequencies are distributed, this can correspond to a bound of
α-accuracy for α ranging anywhere between the optimal α = O(

√
n) to α = O(n).
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1.2 Our Techniques

Our upper bounds, both information theoretic, and those with efficient algorithms, are based on
the general technique of random projection and concentration of measure. To prove our information
theoretic upper bound, we observe that to find the heavy hitter, we may view the private database
as a histogram v in N dimensional space. Then, it is enough to find the index i ∈ [N ] of the
universe element which maximizes 〈v, ei〉, where ei is the i’th standard basis vector. Both v and
each ei have small ℓ1-norm, and so each of these inner products can be approximately preserved
by taking a random projection into Õ(logN) dimensional space. Moreover, we can project each
individual’s data into this space independently in the fully distributed setting, incurring a loss of
only O(

√
n) in accuracy. This mechanism, however, is not efficient, because to find the heavy

hitter, we must enumerate through all |N | basis vectors ei in order to find the one that maximizes
the inner product with the projected database. Similar ideas lead to our efficient algorithms,
albeit with worse accuracy guarantees. For example, in our first algorithm, we apply techniques
from compressed sensing to the projected database to recover (approximately) the heavy hitter,
rather than checking basis vectors directly. In our second algorithm, we take a projection using
a particular family of pairwise-independent hash functions, which are linear functions of the data
universe elements. Because of this linearity, we are able to efficiently “invert” the projection matrix
in order to find the heavy hitter.

Our lower bound separates the distributed setting from the centralized setting by applying an
anti-concentration argument. Roughly speaking, we observe that in the fully distributed setting, if
individual data elements were selected uniformly i.i.d. from the data universe N , then even after
conditioning on the messages exchanged with any differentially private algorithm, they remain
independently distributed, and approximately uniform. Therefore, by the Berry-Esseen theorem,
even after any algorithm computes its estimate of the heavy hitter, the true distribution over counts
remains approximately normally distributed. Since the Gaussian distribution exhibits strong anti-
concentration properties, this allows us to unconditionally give an Ω(

√
n) lower bound for any

algorithm in the fully distributed setting.

1.3 Related Work

Differential privacy was introduced in a sequence of papers culminating in [DMNS06], and has since
become the standard “solution concept” for privacy in the theoretical computer science literature.
There is by now a very large literature on this topic, which is too large to summarize here. Instead,
we focus only on the most closely related work, and refer the curious reader to a survey of Dwork
[Dwo08].

Most of the literature on differential privacy focuses on the centralized model, in which there is
a trusted database administrator. In this paper, we focus on the local or fully distributed model,
introduced by [KLN+08] and studied also by [BNO08], in which each individual holds their own
data (i.e. there are n databases, each of size 1), and the algorithm must interact with each one in a
differentially private manner. There has been little work in this more restrictive model–the problems
of learning [KLN+08] and query release [GHRU11] in the local model are well understood1, but only

1Roughly, the set of concepts that can be learned in the local model given polynomial sample complexity is equal
to the set of concepts that can be learned in the SQ model given polynomial query complexity [KLN+08], and the set
of queries that can be released in the local model given polynomial sample complexity is equal to the set of concepts
that can be agnostically learned in the SQ model given polynomial query complexity [GHRU11], but the polynomials
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up to polynomial factors that do not imply tight bounds for the heavy hitters problem. The two-
party setting (which is intermediate between the centralized and fully distributed setting), in which
the data is divided between two databases without a trusted central administrator, was considered
by [MMP+10]. They proved a separation between the two-party setting and the centralized setting
for the problem of computing the Hamming distance between two strings. In this work, we prove
a separation between the fully distributed setting and the centralized setting for the problem of
estimating the heavy hitter.

A variant of the private heavy hitters problem has been considered in the setting of pan-private
streaming algorithms [DNP+10, MMNW11]. This work considers a different (although related)
problem in a different (although related) setting. [DNP+10, MMNW11] consider a setting in
which a stream of elements is presented to the algorithm, and the algorithm must estimate the
approximate count of frequently occurring elements (i.e. the number of “heavy hitters”). In this
setting, the universe elements themselves are the individuals appearing in the stream, and so it is
not possible to reveal the identity of the heavy hitter. In contrast, in our work, individuals are
distinct from universe elements, which merely label the individuals. Moreover, our goal here is to
actually identify a specific universe element which is the heavy hitter, or which occurs almost as
frequently. Also, [DNP+10, MMNW11] work in the centralized setting, but demand pan-privacy,
which roughly requires that the internal state of the algorithm itself remain differentially private.
In contrast, we work in the local privacy setting which gives a guarantee which is strictly stronger
than pan-privacy. Because algorithms in the local privacy setting only interact with individuals in
a differentially private way, and never have any other access to the private data, any algorithm in
the local privacy model can never have its state depend on data in a non-private way, and such
algorithms therefore also preserve pan-privacy. Therefore, our upper bounds hold also in the setting
of pan-privacy, whereas our lower bounds do not necessarily apply to algorithms which only satisfy
the weaker guarantee of pan-privacy.

Finally, we note that many of the upper bound techniques we employ have been previously
put to use in the centralized model of data privacy i.e. random projections [BLR08, BR11] and
compressed sensing (both for lower bounds [DMT07] and algorithms [LZWY11]). As algorithmic
techniques, these are rarely optimal in the centralized privacy setting. We remark that they are
particularly well suited to the fully distributed setting which we study here, because in a formal
sense, algorithms in the local model of privacy are constrained to only access the private data using
noisy linear queries, which is exactly the form of access used by random linear projections and
compressed sensing measurements.

2 Preliminaries

A database v consists of n records from a data universe N , one corresponding to each of n in-
dividuals: for i ∈ [n], vi ∈ N and v = {v1, . . . , vn} which may be a multiset. Without loss of
generality, we will index the elements of the data universe from 1 to |N |. It will be convenient for
us to represent databases as histograms. In this representation, v ∈ N

|N |, where vi represents the
number of occurrences of the i’th universe element in the database. Further, we write vi ∈ N

|N |

for each individual i ∈ [n], where vij = 1 if individual i is associated with the j’th universe element,

and vij′ = 0 for all other j′ 6= j. Note that in this histogram notation, we have: v =
∑n

i=1 v
i. In

are not equal.
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the following, we will usually use the histogram notation for mathematical convenience, with the
understanding that we can in fact more concisely represent the database as a multiset.

Given a database v, the heavy hitter is the universe element that occurs most frequently in the
database: hh(v) = argmaxi∈N vi. We refer to the frequency with which the heavy hitter occurs as
fhh(v) = vhh(v). We want to design algorithms which return universe elements that occur almost
as frequently as the heavy hitter.

Definition 2.1. An algorithm A is (α, β)-accurate for the heavy hitters problem if for every
database v ∈ N

|N |, with probability at least 1− β: A(v) = i∗ such that vi∗ ≥ fhh(v) − α.

2.1 Differential Privacy

Differential privacy constrains the sensitivity of a randomized algorithm to individual changes in
its input.

Definition 2.2. An algorithm A : N|N | → R is (ǫ, δ)-differentially private if for all v, v′ ∈ N
|N | such

that ||v − v′||1 ≤ 1, and for all events S ⊆ R:

Pr[A(v) ∈ S] ≤ exp(ǫ) Pr[A(v′) ∈ S] + δ

Typically, we will want δ to be negligibly small, whereas we think of ǫ as being a small constant
(and never smaller than ǫ = O(1/n)).

A useful distribution is the Laplace distribution.

Definition 2.3 (The Laplace Distribution). The Laplace Distribution (centered at 0) with scale b

is the distribution with probability density function Lap(x|b) = 1
2b exp

(

− |x|
b

)

. We will sometimes

write Lap(b) to denote the Laplace distribution with scale b, and will sometimes abuse notation
and write Lap(b) simply to denote a random variable X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries with Laplace
noise preserves (ǫ, 0)-differential privacy.

Theorem 2.4 ([DMNS06]). Suppose Q : N
|N | → R is a function such that for all databases

v, v′ ∈ N
|N | such that ||v − v′||1 ≤ 1, |Q(v) − Q(v′)| ≤ c. Then the procedure which on input v

releases Q(v) + X, where X is a draw from a Lap(c/ǫ) distribution, preserves (ǫ, 0)-differential
privacy.

It will be useful to understand how privacy parameters for individual steps of an algorithm
compose into privacy guarantees for the entire algorithm. The following useful theorem is a special
case of a theorem proven by Dwork, Rothblum, and Vadhan:

Theorem 2.5 (Privacy Composition [DRV10]). Let 0 < ǫ, δ < 1, and let M1, . . . ,MT be (ǫ′, 0)-

differentially private algorithms for some ǫ′ ≤ ǫ/
√

8T log
(

1
δ

)

. Then the algorithm M which on

input v outputs M(v) = (M1(v), . . . ,MT (v)) is (ǫ, δ)-differentially private.

The local privacy model (alternately, the fully distributed setting) was introduced by Ka-
siviswanathan et al. [KLN+08] in the context of learning. The local privacy model formalizes
randomized response: there is no central database of private data. Instead, each individual i main-
tains possession of their own data element (i.e. a database vi of size ||vi||1 = 1), and answers
questions about it only in a differentially private manner. Formally, the database v ∈ N

|N | is the
sum of n databases of size 1: v =

∑n
i=1 v

i, and each vi is held by individual i.
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Definition 2.6 ([KLN+08] (Local Randomizer)). An (ǫ, δ)-local randomizer R : N|N | → R is an
(ǫ, δ)-differentially private algorithm that takes a database of size ||v||1 = 1.

In the local privacy model, algorithms may interact with the database only through a local
randomizer oracle:

Definition 2.7 ([KLN+08] (LR Oracle)). An LR oracle LRv(·, ·) takes as input an index i ∈ [n]
and an (ǫ, δ)-local randomizer R and outputs a random value w ∈ R chosen according to the
distribution R(vi), where vi is the element held by the i’th individual in the database.

Definition 2.8 ([KLN+08] (Local Algorithm)). An algorithm is (ǫ, δ)-local if it accesses the
database v via the oracle LRv, that satisfies the following restriction: if LRv(i, R1), . . . , LRv(i, Rk)
are the algorithm’s invocations of LRv on index i, then the joint outputs of each of these k algo-
rithms must be (ǫ, δ)-differentially private.

To avoid cumbersome notation, we will avoid the formalism of LR oracles, instead remembering
that for algorithms in the local model, any operation on vi must be carried out without access to
any vj for j 6= i, and must be differentially private in isolation.

2.2 Probabilistic Tools

We will make use of several useful probabilistic tools. First, the well-known Johnson-Lindenstrauss
lemma:

Theorem 2.9 (Johnson-Lindenstrauss Lemma). Let 0 < γ < 1 be given. For any set V of q vectors

in R
N , there exists a linear map A : RN → R

m with m = O
(

log q
γ2

)

such that A is approximately

an isometric embedding of V into R
m. That is, for all x, y ∈ V , we have the two bounds

(1− γ)‖x− y‖2 ≤ ‖A(x− y)‖2 ≤ (1 + γ)‖x− y‖2

|〈Ax,Ay〉 − 〈x, y〉| ≤ O(γ(‖x‖2 + ‖y‖2))
In particular, any m × N random projection matrix Ap, whose entries are drawn IID uni-

formly from {−1/√m, 1/√m}, enjoys this property with probability at least 1 − β, with m =

O
(

log q log(1/β)
γ2

)

. Note that this projection matrix does not depend on the set of vectors V .

In other words, any set of q points in a high dimensional space can be obliviously embedded
into a space of dimension O(log q) such that w.h.p. this embedding essentially preserves pairwise
distances.

In our analysis, we will also make use of a simple tail bound on the sums of Laplace random
variables:

Theorem 2.10 (See, e.g. [GRU12]). Let Xi, i ∈ [n] be IID random variables drawn from the Lap(b)
(the Laplace distribution with parameter b) and let X =

∑n
i=1Xi. Then, we have the bound

Pr[X ≥ T ] ≤
{

exp
(

− T 2

6nb2

)

: T ≤ nb
exp

(

− T
6b

)

: T > nb

In particular, choosing Tβ = b
√
6n log(2/β) gives

Pr[|X| ≤ Tβ] ≥ 1− β
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3 Information Theoretic Upper and Lower Bounds.

In this section we present upper and lower bounds on the accuracy to which any algorithm in the
fully distributed model can privately approximate heavy hitters. Our upper bound can be viewed
as an algorithm, albeit one that runs in time linear in |N | and so is not what we consider to be
efficient.

3.1 An Upper Bound via Johnson-Lindenstrauss Projections

We present here our first algorithm, referred to as JL-HH, that solves the heavy hitters prob-
lem in the local model using the Johnson-Lindenstrauss lemma. The algorithm JL-HH is out-
lined in Algorithm 1. We write ei to refer to the i’th standard basis vector in R

N , and write
RandomProjection(m,N + 1) for a subroutine which returns a linear embedding of N + 1 points
into m dimensions using a random ±1/√m valued projection matrix, as specified by the Johnson-
Lindenstrauss lemma. By the Johnson-Lindenstrauss lemma, for any set of N + 1 elements, this
map approximately preserves pairwise distances with high probability.

Algorithm 1 JL-HH Mechanism

Input: Private histograms vi ∈ N
N , i ∈ [n]. Privacy parameters ǫ, δ > 0. Failure probability

β > 0.
Output: p∗, index of the heavy hitter.
γ ← 1/n2

m← log(N+1) log(2/β)
γ2

A← RandomProjection(m,N + 1)
for p = 1 to N indices do

for i = 1 to n users do

zi ∼
{

Lap

(√
8 log(1/δ)

ǫ

)}m

qi = Avi + zi

rip = 〈Aep, qi〉
end for

cp ←
∑n

i=1 rip
end for

p∗ ← argmaxp cp
return p∗

JL-HH is based on the following straightforward idea. If v is a private histogram, we will
estimate the count of the i’th element (〈v, ei〉), by estimating 〈Av,Aei〉, and returning the largest
count. By Theorem 2.9, since we are using the random projections matrix, we have that with
high probability, inner products between points in the set V = {e1 · · · eN , v} are approximately
preserved under A. However, we cannot access Av directly since v is private data. To preserve
differential privacy, our mechanism must add noise z to Av, and work only with the noisy samples.
Our analysis will thus focus on bounding the error introduced by this noise term. First, though,
we show that JL-HH is differentially private.

Lemma 3.1. JL-HH operates in the local privacy model and is (ǫ, δ)-differentially private.

7



Proof. The measurement Av is computed in the fully distributed setting, by computing Av ≈
∑n

i=1Av
i+zi. Each individual i may compute Avi+zi which corresponds to answering a sequence

of m linear queries, each with sensitivity 1/
√
m. By Theorem 2.4, the noise that JL-HH adds

guarantees that each such query is ǫ0-differentially private, with

ǫ0 =
ǫ

√

8m log(1/δ)

Thus, by Theorem 2.5, this composition is (ǫ, δ)-differentially private, as desired. From here, the
algorithm works with the noised measurement instead of private data, and is therefore differentially
private.

Now, we show that JL-HH estimates the counts to within an additive error of O
(√

n logN
ǫ

)

.

Theorem 3.2. For any β > 0, JL-HH mechanism is (α, β)-accurate for the heavy hitters problem,

with α = O

(√
n log(N/β) log(1/δ)

ǫ

)

.

Proof. Let v be the private histogram, and let z =
∑n

i=1 z
i denote the sum of the noise vectors

added to each individual’s data vi. The error of the mechanism is at most

2max
i∈[N ]

|〈ei, v〉 − 〈Aei, Av + z〉|

Note that for all j, the random variable zj is distributed as the sum of n i.i.d. Laplace random
variables each with scale b =

√

8 log 1/δ/ǫ. To calculate the error for an index i, we may write:

|〈ei, v〉 − 〈Aei, Av + z〉| ≤ |〈ei, v〉 − 〈Aei, Av〉| + |〈Aei, z〉| (1)

= O(γ‖v‖2 + |〈Aei, z〉|) (2)

with the second equality following from Theorem 2.9. Recall that we have set γ = n−2, and let A be
the random projection matrix, with m = O(logN log(2/β)/γ2). With probability at least 1− β/2,
the random projections matrix A actually satisfies the property for the Johnson-Lindenstrauss
lemma. So, we have

〈Aei, z〉 =
m
∑

j=1

(Aei)j

n
∑

i=1

zij

But Aei is a vector of length m with entries drawn uniformly from ±1/√m. Since the Laplace
distribution is also symmetric, the distribution of this sum is identical to the distribution of a

sum of mn i.i.d. Laplace random variables each with scale b =

√
8 log 1/δ√

mǫ
. By our tail bound in

Theorem 2.10, with probability at least 1−β/2N , this sum is bounded by O

(√
n log(1/δ) log(N/β)

ǫ

)

.

On the other hand, the other error |〈ei, v〉 − 〈Aei, Av〉| can be bounded by Equation (2), and
hence is O(1) by our choice of γ. Thus, with probability at least 1 − β/2N , we have that the

estimated count for index i is within an additive factor of O

(√
n log(1/δ) log(N/β)

ǫ

)

to the true count

of index i. Taking a union bound over all indices, we have that with probability at least 1 − β/2,
this accuracy holds for the heavy hitter, and all other elements. Since the probability of failing
when picking A was at most β/2, this gives the desired high probability bound.
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It is worthwhile to compare JL-HH with a more naive approaches. A simpler differentially
private algorithm to solve the distributed heavy hitters problem is to have each user simply add
noise Lap(1/ǫ) to each entry in the user’s private histogram, and report this vector to the central
party, which sums the noisy vectors and estimates the most frequently occurring item. This is
differentially private, as any neighboring histogram will change exactly one entry in a user’s his-
togram. However, this method requires having each user transmit O(N) amount of information
to the central party. JL-HH achieves similar accuracy compared to this naive approach, but since
the clients compress the histogram first, only O(logN) information must be communicated. Even
though JL-HH runs in time linear in N , there are natural situations where long running time can be
tolerated, but large communication complexity cannot, for instance, if the central party is a server
farm with considerable computational resources, but the communication with users must happen
over standard network links.

3.2 A Lower Bound via Anti-Concentration

Here we show that our upper bound in the previous subsection is essentially optimal: for any
ǫ < 1/2 and any δ bounded away from 1 by a constant, no (ǫ, δ)-private mechanism in the fully
distributed setting can be α-accurate for the heavy hitters problem for some α = Ω(

√
n), even

in the case in which |N | = 2. Our theorem follows by arguing that even after conditioning on
the output of the differentially private interaction with each individual in the local model, there
is still quite a bit of uncertainty in the distribution over heavy hitters, if the universe elements
were initially distributed uniformly at random. We take advantage of this uncertainty to apply an
anti-concentration argument, which implies that no matter what answer the algorithm predicts,
there is enough randomness leftover in the database instance that the algorithm is likely to be
incorrect (with at least some constant probability β). We remark that our technique (while specific
to the local privacy model) holds for (ǫ, δ)-differential privacy, even when δ > 0. This is similar
to lower bounds based on reconstruction arguments [DN03], and in in contrast to other techniques
for proving lower bounds in the centralized model, such as the elegant packing arguments used in
[BKN10, HT10], which are specific to (ǫ, 0)-differential privacy. We use an independence argument
also used by [MMP+10] to prove a lower bound in the two-party setting, and by [BNO08] to prove
a lower bound in the fully distributed setting.

Theorem 3.3. For any ǫ ≤ 1/2 and δ < 1 bounded away from 1, there exists an α = Ω(
√
n) and a

β = Ω(1) such that no (ǫ, δ)-private mechanism in the local model is (α, β)-accurate for the heavy
hitters problem.

Proof. We give a lower bound instance in which the universe is N = {0, 1}. Each individual i is
assigned a universe element si ∈ {0, 1} uniformly at random. Let Ai : N → M denote the (ǫ, δ)-
differentially private algorithm which acts on the data si of individual i, and write mi = Ai(si).

We condition on the order of the parties that we query and on the output of each algorithm,
mi = m̂i for fixed m̂i ∈M.

We first observe that conditioning on the outputs of each Ai: mi = m̂i for each i, the random
variables si remain independent of one another. (This is a standard fact from communication
complexity)

We next argue that under this conditioning, the marginal distributions of a constant fraction
of the si variables remain approximately uniform. If we define the random variables Xi to be the

9



indicator of the event si = ŝi (conditioning on all the messages), we can apply Bayes’ rule to get
for all i ∈ [n]:

Pr[Xi = ŝi] = Pr[si = ŝi|mi = m̂i]

=
Pr[mi = m̂i|si = ŝi] Pr[si = ŝi]

Pr[mi = m̂i]

≤ Pr[mi = m̂i|si = ŝi] Pr[si = ŝi]

Pr[mi = m̂i|si = b]

where b is some element of the universe. Because each Ai is (ǫ, δ)-differentially private, we have
that with probability at least 1 − δ, the following random variable (where the randomness is over
the choice of m̂i) is bounded:

Pr[mi = m̂i|si = ŝi]

Pr[mi = m̂i|si = b]
≤ eǫ

and thus with probability 1− δ over the choice of m̂j : Pr[Xi = ŝi] ≤ (eǫ)/2, using the prior on si.
In similar fashion, we can prove a lower bound on the probability. So, we have that for each i

independently with probability at least 1 − δ: Pr[Xi = ŝi] ∈ [(e−ǫ)/2, (eǫ)/2]. Because we assume
ǫ ≤ 1/2, we therefore have for each i independently with probability 1 − δ: Pr[Xi = ŝi] ∈ [c1, c2]
where c1, c2 are constants bounded away from 0 and 1 respectively. Because this occurs with
constant 1 − δ probability for each i, for any constant β, we can (by the Chernoff bound) take n
to be sufficiently large so that except with probability β/2, we have Pr[Xi = ŝi] ∈ [c1, c2] for Ω(n)
individuals i. This, together with the conditional independence of the Xi’s, allows us to apply the
Berry-Esseen theorem:

Theorem 3.4 (Berry-Esseen). Given independent random variables Xi, i ∈ [n], let µi = E[Xi], σ
2
i =

E[(Xi − µi)2], βi = E[|Xi − µi|3], and let

Sn =

∑n
i=1(Xi − µi)
√

∑n
i=1 σ

2
i

If Fn is the cdf of Sn, and Φ is the cdf for the standard normal distribution, then there exists a
constant C such that

sup
x
|Fn(x)− Φ(x)| ≤ Cψ

where

ψ =

(

n
∑

i=1

σ2i

)−1/2

max
βi
σ2i

For each of the Ω(n) individuals i for which Pr[Xi = 1] ∈ [c1, c2], each σ
2
i and βi is a constant

bounded away from 0. Thus, we have with probability at least β/2: ψ ≤ O(1/
√
n), and hence

the cdf Fn of the sample mean Sn converges uniformly to the normal distribution. By a change
of variables, this means that the cdf of the sum

∑n
i=1(Xi − µi) converges to the cdf of a normal

distribution with mean 0 and variance σ2 =
∑n

i=1 σ
2
i = Ω(n). The next lemma lower bounds the

probability that Sn is within an additive factor of Ω(
√
n) of its mean.

10



Lemma 3.5. Let β > 0 be given and condition on the event that Pr[Xi = 1] ∈ [c1, c2] for Ω(n)
individuals i ∈ [n]. For sufficiently large n, there exists a constant C such that

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

(Xi − µi)
∣

∣

∣

∣

∣

≥ C
√
n

]

≥ 1− β/2

of Lemma. This is immediate, since by the Berry-Esseen theorem the sum
∑n

i=1(Xi−µi) converges
uniformly to a Gaussian distribution with standard deviation σ = Ω(

√
n).

To complete the proof, we note that the distribution of n1 ≡
∑n

i=1Xi is simply the distri-
bution of the number of occurrences of universe element 1, after conditioning on the outcome of
differentially private mechanisms A1, . . . , An. Consider a mechanism, which given the outcome of
mechanisms A1, . . . , An attempts to guess the value of n1, and outputs n̂1. Let µ =

∑n
i=1 µi. By

the properties of the Gaussian distribution we have:

Pr[|n1 − n̂1| ≤ t] ≤ Pr[|n1 − µ| ≤ t]

for all values of t. In particular, for some t = C
√
n we have shown that this probability is at most

β. In other words, we have shown that for some constant β ≥ 0 and for some α = Ω(
√
n), there is

no (ǫ, δ)-private algorithm in the local model which is able to estimate the frequency of the heavy
hitter to within an additive α factor with probability 1− β. It is straightforward to see that there
therefore cannot be an (α, β)-accurate, (ǫ, δ)-private mechanism for the heavy hitters problem: any
such mechanism could be converted to a mechanism which estimates the frequency of the heavy
hitter by introducing “dummy” individuals corresponding to the universe element which is not the
heavy hitter, and performing a binary search over their count by computing the identity of the
heavy hitter in each dummy instance. The count at which the identity of the heavy hitter in the
dummy instance changes can then be used to estimate the frequency of the true heavy hitter.

4 Efficient Algorithms

In the last section, we saw the Johnson-Lindenstrauss algorithm which gave almost optimal accuracy
guarantees, but had running time linear in |N |. In this section, we consider efficient algorithms
with running time poly(n, log |N |). The first is an application of a sublinear time algorithm from
the compressed sensing literature, and the second is a group-testing approach made efficient by the
use of a particular family of pairwise-independent hash functions.

4.1 GLPS Sparse Recovery

In this section we adapt a sophisticated algorithm from compressed sensing. Gilbert, et al.
[GLPS10] present a sparse recovery algorithm (we refer to it as the GLPS algorithm) that takes
linear measurements from a sparse vector, and reconstructs the original vector to high accuracy.
Importantly, the algorithm runs in time polylogarithmic in |N |, and polynomial in the sparsity
parameter of the vector. We remark that our database v is n-sparse: it has at most n non-zero
components. In the rest of this section, we will write vs to denote the vector v truncated to contain
only its s largest components.

11



Let s be a sparsity parameter, and let γ be a tunable approximation level. The GLPS algorithm
runs in time O((s/γ) logcN), and makes m = O(s log(N/s)/γ)) measurements from a specially
constructed (randomized) {−1, 0, 1} valued matrix, which we will denote Φ. Given measurements
u = Φv + z (where z is arbitrary noise), the algorithm returns an approximation v̂, with error
guarantee

‖v − v̂‖2 ≤ (1 + γ)‖v − vs‖2 + γ log(s)
‖z‖2
κ

(3)

with probability at least 3/4, where κ = O(log2(s) log(N/s)). Though the GLPS bound only
occurs with probability 3/4, the success probability can be made arbitrarily close to 1 by running
this algorithm several times. In particular, using the amplification lemma from [GLM+10], the
failure probability can be driven down to β at a cost of only a factor of log(1/β) in the accuracy.
In what follows, we analyze a single run of the algorithm, with γ = 1.

Algorithm 2 GLPS-HH Mechanism

Input: Private histograms vi ∈ N
N , i ∈ [n]. GLPS matrix Φ. Privacy parameters ǫ, δ > 0.

Output: p∗, estimated index of heavy hitter.
m← s log(N/s)
b←

√

8m log(1/δ)/ǫ
for i = 1 to n users do
zi ∼ {Lap(b)}m
qi ← Φvi + zi

end for

c←∑n
i=1 q

i

v̂ ← GLPS(c,Φ)
p∗ ← argmaxp v̂p
return p∗

Next, we will show that GLPS-HH is (ǫ, δ)-differentially private.

Theorem 4.1. GLPS-HH operates in the local privacy model and is (ǫ, δ)-differentially private.

Proof. The algorithm operates in the local privacy model because each individual i compute Φvi+zi

independently, which corresponds to answering m linear queries, each with sensitivity 1. The
magnitude of the Laplace noise added, zi, is then sufficient (by Theorem 2.5) to guarantee (ǫ, δ)-
differential privacy for each individual.

Next, we will bound the error that we introduce by adding noise for differential privacy.

Theorem 4.2. Let β > 0 be given. GLPS-HH is (α, 3/4−β)-accurate for the heavy hitters problem,
with

α = O

(

n5/6 log1/3(1/β) log logN log1/6(1/δ)

ǫ1/3

)

Proof. Let b =
√

8m log(1/δ)/ǫ. Let v denote the combined private database, and let v̂ denote the
estimated private database returned by GLPS. GLPS-HH uses the GLPS algorithm with measure-
ments c = Φv + z, z =

∑

i z
i, where the noise vector z has each entry drawn from

∑n
i=1 Lap(b).

From Theorem 2.10, we have the bound (for a fixed index i)

12



Pr[|zi| ≤ O(b
√
n log(m/β))] ≥ 1− β/m

Taking a union bound over all m indices, we find this bound holds over all components with
probability at least 1− β. Thus we can bound

‖z‖2 ≤ O(b
√
nm log(m/β)) = O

(

s log(N/s) log(s log(N/s)/β)
√

n log(1/δ)

ǫ

)

With probability 3/4, we have the GLPS bound Equation (3) with γ = 1, from which we can
estimate

‖v − v̂‖∞ ≤ ‖v − v̂‖2 ≤ 2‖v − vs‖2 +O

(

s log(s log(N/s)/β)
√

n log(1/δ)

ǫ log s

)

By a Lemma from [GSTV07], we have ‖v − vs‖2 ≤ ‖v‖1/
√
s. Now, in the worst case, ‖v‖1 =

O(n), and we need to choose s to balance the errors in

‖v − v̂‖∞ ≤ 2
n√
s
+O

(

s log(s log(N/s)/β)
√

n log(1/δ)

ǫ log s

)

By setting s to be:

s =

(

ǫ

log(1/β)

√

n

log(1/δ)

)2/3

when we get an error bound

‖v − v̂‖∞ ≤ O
(

n5/6 log1/3(1/β) log logN log1/6(1/δ)

ǫ1/3

)

Thus, with probability at least 3/4 − β, we get the desired accuracy.

4.2 The Bucket mechanism

In this section we present a second computationally efficient algorithm, based on group-testing and
a specific family of pairwise independent hash functions.

At a high level, our algorithm, referred to as the Bucket mechanism, runs O(log(1/β)) trials
consisting of O(logN) 0/1 valued hash functions in each trial. For a given trial, the mechanism
hashes each universe element into one of two buckets for each hash function. Then, the mechanism
tries to find an element that hashes into the bucket with more weight (the majority bucket) for all
the hash functions. If there is such an element, it is a candidate for the heavy hitter for that trial.
Finally, the mechanism takes a majority vote over the candidates from each trial to output a final
heavy hitter.

For efficiency purposes we do not use truly random hash functions, but instead rely on a
particular family of pairwise-independent hash functions which can be expressed as linear functions
on the bits of a universe element. Specifically, each function h in the family maps [N ] to {0, 1}, and
is parameterized by a bit-string r ∈ {0, 1}log |N |. In particular, given any bit-string r ∈ {0, 1}log |N |,
we define hr(x) = 〈r, b(x)〉, where b(x) denotes the binary representation of x. r is chosen uniformly

13



Algorithm 3 The Bucket Mechanism

Input: Private labels vi ∈ [N ], i ∈ [n]. Failure probability β > 0. Privacy parameters ǫ, δ > 0.
Output: p∗, the index of the heavy hitter.
F ← {0, 1}logN \ 0
for i = 1 to 8 log(1/β) trials do
H ∈ {0, 1}log(12N)×logN ← Draw log(12N) rows from F , uniformly at random.
u ∈ R

log(12N) ← 0
for j = 1 to n users do
b ∈ {0, 1}logN ← binary expansion of vj .
s← Hb (mod 2)

z ∼
{

Lap

(

8
√

log(12N) log(1/β) log(1/δ)

ǫ

)}log(12N)

u← u+ s+ z
end for

for k = 1 to log(12N) hash functions do

bk ←
{

1 : uk > n/2
0 : otherwise

end for

wi ←
{

x0 : Hx0 = b (mod 2)
⊥ : Hx = b (mod 2) infeasible

end for

w∗ ← most frequent wi, ignoring ⊥
return p∗ ← w∗ converted from binary
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at random from the set of all strings r ∈ {0, 1}log |N | \ 0log |N |. Given hash functions of this form,
and a list of target buckets, the problem of finding an element that hashing to all of the target
buckets is equivalent to solving a linear system mod 2, which can be done efficiently. Our family of
hash functions operates on the element label in binary, hence the conversions to and from binary
in the algorithm.

We will now show that the bucket mechanism is (ǫ, δ)-differentially private, runs in time
poly(n, log |N |), and assuming a certain condition on the distribution over universe elements, re-
turns the exact heavy hitter. The accuracy analysis proceeds in two steps: first, we argue that with
constant probability > 1/2, the heavy hitter is the unique element hashed into the larger bucket
by every hash function in a given trial. Then, we argue that with high probability, the proceeding
event indeed occurs in the majority of trials, and so the majority vote among all trials returns the
true heavy hitter.

Theorem 4.3. The Bucket mechanism operates in the local model and is (ǫ, δ)-differentially private.

Proof. Each party answers log(12N) 1-sensitive queries about only their own data for each trial,
with a total of 8 log(1/β) trials. By Theorem 2.5, the correct amount of noise is added to preserve
(ǫ, δ)-differential privacy.

Theorem 4.4. For fixed ǫ, δ > 0 and failure probability β > 0, the Bucket mechanism runs in time
O(n log(1/β) log3N).

Proof. The step that dominates the run time is the inner loop over each party. For each user, the
algorithm evaluates O(logN) hash functions. Each evaluation calculates the inner product of two
logN -length bit strings, and there are O(logN) hash functions. So, each user takes time log2N
per trial. With n users and O(log(1/β)) trials, the result follows.

We first prove a simple tail bound on sums of k-wise independent random variables, modifying
a result given by Bellare and Rompel, [BR94].

Lemma 4.5. Let k be even. Take a k-independent set of random variables Xi, with 0 ≤ Xi ≤ ci,
let X =

∑

Xi, and let µ = E[X]. We have:

Pr[|X − µ| > t] ≤ Ck

(

ck

t2

)k/2

with c =
∑

c2i , and Ck = 2
√
πkek/2−1/(6k) ≤ 1.0004.

Proof. By Markov’s inequality, we can write:

Pr[|X − µ| > t] = Pr[(X − µ)k > tk] ≤ E[(X − µ)k]
tk

However, if we expand out the product, we find that we only need to consider the expected
value of products of at most k of the variables Xi. Thus, without loss of generality, we may consider
Xi to be independent for the following calculation.
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E[(X − µ)k] =
∫ ∞

0
Pr[(X − µ)k > s]ds

=

∫ ∞

0
Pr[|X − µ| > s1/k]ds

≤
∫ ∞

0
2 exp

(

− s2/k

2
∑

c2i

)

ds

where we have used that the Xi are independent in order to applied Azuma’s inequality. By a
change of variables, and letting c =

∑

c2i , we have

E[(X − µ)k] ≤
∫ ∞

0
k(2c)k/2e−yyk/2−1dy

= (2c)k/2kΓ(k/2 − 1)

= 2(2c)k/2
(

k

2

)

!

≤ 2ck/2
√
πk

(

k

e

)k/2

e1/6k

where we have used Stirling’s approximation in the last step. Now, we get

Pr[|X − µ| > t] =
E[(X − µ)k]

tk
≤ Ck

(

ck

t2

)k/2

as desired.

Lemma 4.6. Let β, ǫ, δ > 0 be given, and consider a single trial in the Bucket mechanism. Without
loss of generality, suppose that the elements are labeled in decreasing order of count, with counts
v1 ≥ v2 ≥ · · · ≥ vN . Write c =

∑N
i=2 v

2
i , let k1 be the number of hash functions per trial, and k2 be

the number of trials. If we have the condition

v1 ≥ 2

√

12k1c

β
+ b(k1, k2)

√
6n log

(

6k1
β

)

where b is the parameter for (ǫ, δ)-differential privacy:

b(k1, k2) =

√

8k1k2 log(1/δ)

ǫ

then with probability at least 1 − 2β/3, the heavy hitter is hashed into the larger bucket for each
hash function in the trial.

Proof. First consider a single hash function. If we define random variables Xi, i ∈ [N ] by:

Xi =

{

vi : i is hashed to bucket 1
0 : otherwise
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and the function f(X2, · · · ,XN ) =
∑N

i=2Xi, we show that the true heavy hitter will be hashed to
the larger bucket (with high probability) if f does not deviate from the mean by too much. If f
is close to the mean, then no matter which bucket the heavy hitter is hashed to, that will become
the larger bucket. However, we will need to keep track of the noise that will be added to preserve
differential privacy. We want v1 to be large enough to overcome the noise (with high probability).

More precisely, by Theorem 2.10, the sum of n Laplace noise terms will be bounded by
b
√
6n log(6k1/β), with probability at least 1−β/3k1. We also know that the collection {X2, · · · ,XN}

is a pairwise-independent set of random variables, so applying Lemma 4.5 with X = f , and

t =
√

12k1c
β , we have that

Pr[|f − µ| > t] ≤ C2

(

2c

t2

)

≤ 4
( c

t2

)

=
β

3k1

with C2 a constant from Lemma 4.5. The difference between the counts in the two buckets will be
2|f−µ|, so for the heavy hitter to be hashed to the larger bucket, we need v1 ≥ 2|f−µ|+ |z|, where
z is the Laplace noise term, with high probability. Taking a union bound over k1 hash functions,
we have that

2|f − µ|+ |z| ≤ 2

√

12k1c

β
+ b
√
6n log

(

6k1
β

)

holds for all the hash functions in this trial with probability at least 1− 2β/3. But by assumption,
v1 is larger than this gap, and so we are done.

Lemma 4.7. Let the notation be as in the previous Lemma, and consider a single trial in the Bucket

mechanism. If we set k1 = log
(

3N
β

)

, then with probability at least 1 − β/3, no other element will

be hashed to the same bucket as the heavy hitter through all the hash functions.

Proof. Pick any element g besides the heavy hitter, and consider a single hash function. Since the
hash function is pairwise-independent, conditioning on where the heavy hitter is hashed will not
change the marginal for where g will be hashed. Thus, there is a 1/2 chance of g colliding with
the heavy hitter for any given hash function. Since the hash functions are drawn independently at
random, the chance of this collision happening on every function is (1/2)k1 = β/(3N), by choice
of k1. Taking a union bound over the N − 1 elements besides the heavy hitter, we have that this
collision probability for all elements is bounded by β/3, as desired.

Now, we are ready to put everything together.

Theorem 4.8. Let the notation be as in the previous Lemma. If we set k1 = log(12N), k2 =
8 log(1/β), and if we have the condition

v1 ≥ 8
√

2c log(12N) +
8 log(24 log(12N))

√

6n log(12N) log(1/β) log(1/δ)

ǫ
=

Ω̃





√

log |N |
(√

c+
√

n log 1
β log 1

δ

)

ǫ





then the Bucket mechanism is (0, β)-accurate for the heavy hitters problem.
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Proof. First, note that k1 and the condition have been chosen so that from Lemmas 4.6 and 4.7,
for any single trial, the heavy hitter is always hashed to the larger bucket, and is the unique such
element, with probability at least 3/4. These two conditions ensure that we are able to correctly
identify the heavy hitter with probability 3/4 for a single trial. Now, as the trials are independent,
we apply a Chernoff bound to show that out of k2 Bernoulli variables with success probability 3/4,
the probability that at least half of them succeed is bounded below by

Pr[Majority Vote Success] ≥ 1− e−2k2(1/4)2 = 1− β

by our choice of k2. Thus, the Bucket mechanism returns the true heavy hitter with probability at
least 1− β.

We note that the accuracy guarantee of the bucket mechanism is incomparable to those of
our other mechanisms. While the other mechanisms guarantee (without conditions) to return an
element which occurs within some additive factor α as frequently as the true heavy hitter, the bucket
mechanism always returns the true heavy hitter, so long as a certain condition on v is satisfied.
When the condition is not satisfied, the algorithm comes with no guarantees. The condition is
roughly that the heavy hitter should occur more frequently than the ℓ2-norm of the frequencies
of all other elements. Depending on the distribution over elements, this condition can be satisfied
when the heavy hitter occurs with frequency as small as Õ(

√
n), or can require frequency as large

as Ω(n). Finally, we note that this condition is not unreasonable. It will, for example, be satisfied
with high probability if the frequency of the database elements is follows a power law distribution,
such as a Zipf distribution.

5 Discussion and Open Questions

We have initiated the study of the private heavy hitters problem in the fully distributed (local)
privacy model. We have provided an (almost) tight characterization of the accuracy to which the
problem can in principle be solved. In particular, we have separated the local privacy model from
the centralized privacy model: we have shown that even the easier problem of simply releasing the
approximate count of the heavy hitter cannot be accomplished to accuracy better than Ω(

√
n) in the

local model, whereas this can be accomplished to O(1) accuracy in the centralized model. We have
also given several efficient algorithms for the heavy hitters problem, but these algorithms do not
in general achieve the tight Õ(

√

n log |N |) accuracy bound that we have established is possible in
principle. We leave open the question of whether there exist efficient algorithms in the local model
which can solve the heavy hitters problem up to this information theoretically optimal bound.
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